diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -92,9 +92,13 @@ EXAMPLE_DOC_STRING = """
|
|
92
92
|
|
93
93
|
|
94
94
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
95
|
-
def retrieve_latents(
|
96
|
-
|
95
|
+
def retrieve_latents(
|
96
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
97
|
+
):
|
98
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
97
99
|
return encoder_output.latent_dist.sample(generator)
|
100
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
101
|
+
return encoder_output.latent_dist.mode()
|
98
102
|
elif hasattr(encoder_output, "latents"):
|
99
103
|
return encoder_output.latents
|
100
104
|
else:
|
@@ -160,9 +164,11 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
160
164
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
161
165
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
162
166
|
"""
|
167
|
+
|
163
168
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
164
169
|
_optional_components = ["safety_checker", "feature_extractor"]
|
165
170
|
_exclude_from_cpu_offload = ["safety_checker"]
|
171
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
166
172
|
|
167
173
|
def __init__(
|
168
174
|
self,
|
@@ -518,15 +524,21 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
518
524
|
controlnet_conditioning_scale=1.0,
|
519
525
|
control_guidance_start=0.0,
|
520
526
|
control_guidance_end=1.0,
|
527
|
+
callback_on_step_end_tensor_inputs=None,
|
521
528
|
):
|
522
|
-
if
|
523
|
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
524
|
-
):
|
529
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
525
530
|
raise ValueError(
|
526
531
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
527
532
|
f" {type(callback_steps)}."
|
528
533
|
)
|
529
534
|
|
535
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
536
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
537
|
+
):
|
538
|
+
raise ValueError(
|
539
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
540
|
+
)
|
541
|
+
|
530
542
|
if prompt is not None and prompt_embeds is not None:
|
531
543
|
raise ValueError(
|
532
544
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
@@ -807,6 +819,29 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
807
819
|
"""Disables the FreeU mechanism if enabled."""
|
808
820
|
self.unet.disable_freeu()
|
809
821
|
|
822
|
+
@property
|
823
|
+
def guidance_scale(self):
|
824
|
+
return self._guidance_scale
|
825
|
+
|
826
|
+
@property
|
827
|
+
def clip_skip(self):
|
828
|
+
return self._clip_skip
|
829
|
+
|
830
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
831
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
832
|
+
# corresponds to doing no classifier free guidance.
|
833
|
+
@property
|
834
|
+
def do_classifier_free_guidance(self):
|
835
|
+
return self._guidance_scale > 1
|
836
|
+
|
837
|
+
@property
|
838
|
+
def cross_attention_kwargs(self):
|
839
|
+
return self._cross_attention_kwargs
|
840
|
+
|
841
|
+
@property
|
842
|
+
def num_timesteps(self):
|
843
|
+
return self._num_timesteps
|
844
|
+
|
810
845
|
@torch.no_grad()
|
811
846
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
812
847
|
def __call__(
|
@@ -828,14 +863,15 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
828
863
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
829
864
|
output_type: Optional[str] = "pil",
|
830
865
|
return_dict: bool = True,
|
831
|
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
832
|
-
callback_steps: int = 1,
|
833
866
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
834
867
|
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
835
868
|
guess_mode: bool = False,
|
836
869
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
837
870
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
838
871
|
clip_skip: Optional[int] = None,
|
872
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
873
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
874
|
+
**kwargs,
|
839
875
|
):
|
840
876
|
r"""
|
841
877
|
The call function to the pipeline for generation.
|
@@ -891,12 +927,6 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
891
927
|
return_dict (`bool`, *optional*, defaults to `True`):
|
892
928
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
893
929
|
plain tuple.
|
894
|
-
callback (`Callable`, *optional*):
|
895
|
-
A function that calls every `callback_steps` steps during inference. The function is called with the
|
896
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
897
|
-
callback_steps (`int`, *optional*, defaults to 1):
|
898
|
-
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
899
|
-
every step.
|
900
930
|
cross_attention_kwargs (`dict`, *optional*):
|
901
931
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
902
932
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
@@ -914,6 +944,15 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
914
944
|
clip_skip (`int`, *optional*):
|
915
945
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
916
946
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
947
|
+
callback_on_step_end (`Callable`, *optional*):
|
948
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
949
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
950
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
951
|
+
`callback_on_step_end_tensor_inputs`.
|
952
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
953
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
954
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
955
|
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
917
956
|
|
918
957
|
Examples:
|
919
958
|
|
@@ -924,6 +963,23 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
924
963
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
925
964
|
"not-safe-for-work" (nsfw) content.
|
926
965
|
"""
|
966
|
+
|
967
|
+
callback = kwargs.pop("callback", None)
|
968
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
969
|
+
|
970
|
+
if callback is not None:
|
971
|
+
deprecate(
|
972
|
+
"callback",
|
973
|
+
"1.0.0",
|
974
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
975
|
+
)
|
976
|
+
if callback_steps is not None:
|
977
|
+
deprecate(
|
978
|
+
"callback_steps",
|
979
|
+
"1.0.0",
|
980
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
981
|
+
)
|
982
|
+
|
927
983
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
928
984
|
|
929
985
|
# align format for control guidance
|
@@ -933,9 +989,10 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
933
989
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
934
990
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
935
991
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
936
|
-
control_guidance_start, control_guidance_end =
|
937
|
-
|
938
|
-
|
992
|
+
control_guidance_start, control_guidance_end = (
|
993
|
+
mult * [control_guidance_start],
|
994
|
+
mult * [control_guidance_end],
|
995
|
+
)
|
939
996
|
|
940
997
|
# 1. Check inputs. Raise error if not correct
|
941
998
|
self.check_inputs(
|
@@ -948,8 +1005,13 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
948
1005
|
controlnet_conditioning_scale,
|
949
1006
|
control_guidance_start,
|
950
1007
|
control_guidance_end,
|
1008
|
+
callback_on_step_end_tensor_inputs,
|
951
1009
|
)
|
952
1010
|
|
1011
|
+
self._guidance_scale = guidance_scale
|
1012
|
+
self._clip_skip = clip_skip
|
1013
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1014
|
+
|
953
1015
|
# 2. Define call parameters
|
954
1016
|
if prompt is not None and isinstance(prompt, str):
|
955
1017
|
batch_size = 1
|
@@ -959,10 +1021,6 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
959
1021
|
batch_size = prompt_embeds.shape[0]
|
960
1022
|
|
961
1023
|
device = self._execution_device
|
962
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
963
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
964
|
-
# corresponds to doing no classifier free guidance.
|
965
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
966
1024
|
|
967
1025
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
968
1026
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
@@ -976,27 +1034,27 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
976
1034
|
|
977
1035
|
# 3. Encode input prompt
|
978
1036
|
text_encoder_lora_scale = (
|
979
|
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1037
|
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
980
1038
|
)
|
981
1039
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
982
1040
|
prompt,
|
983
1041
|
device,
|
984
1042
|
num_images_per_prompt,
|
985
|
-
do_classifier_free_guidance,
|
1043
|
+
self.do_classifier_free_guidance,
|
986
1044
|
negative_prompt,
|
987
1045
|
prompt_embeds=prompt_embeds,
|
988
1046
|
negative_prompt_embeds=negative_prompt_embeds,
|
989
1047
|
lora_scale=text_encoder_lora_scale,
|
990
|
-
clip_skip=clip_skip,
|
1048
|
+
clip_skip=self.clip_skip,
|
991
1049
|
)
|
992
1050
|
# For classifier free guidance, we need to do two forward passes.
|
993
1051
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
994
1052
|
# to avoid doing two forward passes
|
995
|
-
if do_classifier_free_guidance:
|
1053
|
+
if self.do_classifier_free_guidance:
|
996
1054
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
997
1055
|
|
998
1056
|
# 4. Prepare image
|
999
|
-
image = self.image_processor.preprocess(image).to(dtype=torch.float32)
|
1057
|
+
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
1000
1058
|
|
1001
1059
|
# 5. Prepare controlnet_conditioning_image
|
1002
1060
|
if isinstance(controlnet, ControlNetModel):
|
@@ -1008,7 +1066,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1008
1066
|
num_images_per_prompt=num_images_per_prompt,
|
1009
1067
|
device=device,
|
1010
1068
|
dtype=controlnet.dtype,
|
1011
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1069
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1012
1070
|
guess_mode=guess_mode,
|
1013
1071
|
)
|
1014
1072
|
elif isinstance(controlnet, MultiControlNetModel):
|
@@ -1023,7 +1081,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1023
1081
|
num_images_per_prompt=num_images_per_prompt,
|
1024
1082
|
device=device,
|
1025
1083
|
dtype=controlnet.dtype,
|
1026
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1084
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1027
1085
|
guess_mode=guess_mode,
|
1028
1086
|
)
|
1029
1087
|
|
@@ -1037,6 +1095,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1037
1095
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1038
1096
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
1039
1097
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1098
|
+
self._num_timesteps = len(timesteps)
|
1040
1099
|
|
1041
1100
|
# 6. Prepare latent variables
|
1042
1101
|
latents = self.prepare_latents(
|
@@ -1066,11 +1125,11 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1066
1125
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1067
1126
|
for i, t in enumerate(timesteps):
|
1068
1127
|
# expand the latents if we are doing classifier free guidance
|
1069
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1128
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1070
1129
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1071
1130
|
|
1072
1131
|
# controlnet(s) inference
|
1073
|
-
if guess_mode and do_classifier_free_guidance:
|
1132
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1074
1133
|
# Infer ControlNet only for the conditional batch.
|
1075
1134
|
control_model_input = latents
|
1076
1135
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
@@ -1097,7 +1156,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1097
1156
|
return_dict=False,
|
1098
1157
|
)
|
1099
1158
|
|
1100
|
-
if guess_mode and do_classifier_free_guidance:
|
1159
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1101
1160
|
# Infered ControlNet only for the conditional batch.
|
1102
1161
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1103
1162
|
# add 0 to the unconditional batch to keep it unchanged.
|
@@ -1109,20 +1168,30 @@ class StableDiffusionControlNetImg2ImgPipeline(
|
|
1109
1168
|
latent_model_input,
|
1110
1169
|
t,
|
1111
1170
|
encoder_hidden_states=prompt_embeds,
|
1112
|
-
cross_attention_kwargs=cross_attention_kwargs,
|
1171
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1113
1172
|
down_block_additional_residuals=down_block_res_samples,
|
1114
1173
|
mid_block_additional_residual=mid_block_res_sample,
|
1115
1174
|
return_dict=False,
|
1116
1175
|
)[0]
|
1117
1176
|
|
1118
1177
|
# perform guidance
|
1119
|
-
if do_classifier_free_guidance:
|
1178
|
+
if self.do_classifier_free_guidance:
|
1120
1179
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1121
1180
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1122
1181
|
|
1123
1182
|
# compute the previous noisy sample x_t -> x_t-1
|
1124
1183
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1125
1184
|
|
1185
|
+
if callback_on_step_end is not None:
|
1186
|
+
callback_kwargs = {}
|
1187
|
+
for k in callback_on_step_end_tensor_inputs:
|
1188
|
+
callback_kwargs[k] = locals()[k]
|
1189
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1190
|
+
|
1191
|
+
latents = callback_outputs.pop("latents", latents)
|
1192
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1193
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1194
|
+
|
1126
1195
|
# call the callback, if provided
|
1127
1196
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1128
1197
|
progress_bar.update()
|