diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -16,11 +16,18 @@ import inspect
|
|
16
16
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17
17
|
|
18
18
|
import torch
|
19
|
-
from transformers import
|
19
|
+
from transformers import (
|
20
|
+
CLIPImageProcessor,
|
21
|
+
CLIPTextModel,
|
22
|
+
CLIPTextModelWithProjection,
|
23
|
+
CLIPTokenizer,
|
24
|
+
CLIPVisionModelWithProjection,
|
25
|
+
)
|
20
26
|
|
21
|
-
from ...image_processor import VaeImageProcessor
|
27
|
+
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
22
28
|
from ...loaders import (
|
23
29
|
FromSingleFileMixin,
|
30
|
+
IPAdapterMixin,
|
24
31
|
StableDiffusionXLLoraLoaderMixin,
|
25
32
|
TextualInversionLoaderMixin,
|
26
33
|
)
|
@@ -93,8 +100,57 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
93
100
|
return noise_cfg
|
94
101
|
|
95
102
|
|
103
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
104
|
+
def retrieve_timesteps(
|
105
|
+
scheduler,
|
106
|
+
num_inference_steps: Optional[int] = None,
|
107
|
+
device: Optional[Union[str, torch.device]] = None,
|
108
|
+
timesteps: Optional[List[int]] = None,
|
109
|
+
**kwargs,
|
110
|
+
):
|
111
|
+
"""
|
112
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
113
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
114
|
+
|
115
|
+
Args:
|
116
|
+
scheduler (`SchedulerMixin`):
|
117
|
+
The scheduler to get timesteps from.
|
118
|
+
num_inference_steps (`int`):
|
119
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
120
|
+
`timesteps` must be `None`.
|
121
|
+
device (`str` or `torch.device`, *optional*):
|
122
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
123
|
+
timesteps (`List[int]`, *optional*):
|
124
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
125
|
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
126
|
+
must be `None`.
|
127
|
+
|
128
|
+
Returns:
|
129
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
130
|
+
second element is the number of inference steps.
|
131
|
+
"""
|
132
|
+
if timesteps is not None:
|
133
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
134
|
+
if not accepts_timesteps:
|
135
|
+
raise ValueError(
|
136
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
137
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
138
|
+
)
|
139
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
140
|
+
timesteps = scheduler.timesteps
|
141
|
+
num_inference_steps = len(timesteps)
|
142
|
+
else:
|
143
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
144
|
+
timesteps = scheduler.timesteps
|
145
|
+
return timesteps, num_inference_steps
|
146
|
+
|
147
|
+
|
96
148
|
class StableDiffusionXLPipeline(
|
97
|
-
DiffusionPipeline,
|
149
|
+
DiffusionPipeline,
|
150
|
+
FromSingleFileMixin,
|
151
|
+
StableDiffusionXLLoraLoaderMixin,
|
152
|
+
TextualInversionLoaderMixin,
|
153
|
+
IPAdapterMixin,
|
98
154
|
):
|
99
155
|
r"""
|
100
156
|
Pipeline for text-to-image generation using Stable Diffusion XL.
|
@@ -140,8 +196,16 @@ class StableDiffusionXLPipeline(
|
|
140
196
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
141
197
|
watermarker will be used.
|
142
198
|
"""
|
199
|
+
|
143
200
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
144
|
-
_optional_components = [
|
201
|
+
_optional_components = [
|
202
|
+
"tokenizer",
|
203
|
+
"tokenizer_2",
|
204
|
+
"text_encoder",
|
205
|
+
"text_encoder_2",
|
206
|
+
"image_encoder",
|
207
|
+
"feature_extractor",
|
208
|
+
]
|
145
209
|
_callback_tensor_inputs = [
|
146
210
|
"latents",
|
147
211
|
"prompt_embeds",
|
@@ -161,6 +225,8 @@ class StableDiffusionXLPipeline(
|
|
161
225
|
tokenizer_2: CLIPTokenizer,
|
162
226
|
unet: UNet2DConditionModel,
|
163
227
|
scheduler: KarrasDiffusionSchedulers,
|
228
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
229
|
+
feature_extractor: CLIPImageProcessor = None,
|
164
230
|
force_zeros_for_empty_prompt: bool = True,
|
165
231
|
add_watermarker: Optional[bool] = None,
|
166
232
|
):
|
@@ -174,6 +240,8 @@ class StableDiffusionXLPipeline(
|
|
174
240
|
tokenizer_2=tokenizer_2,
|
175
241
|
unet=unet,
|
176
242
|
scheduler=scheduler,
|
243
|
+
image_encoder=image_encoder,
|
244
|
+
feature_extractor=feature_extractor,
|
177
245
|
)
|
178
246
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
179
247
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
@@ -455,6 +523,20 @@ class StableDiffusionXLPipeline(
|
|
455
523
|
|
456
524
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
457
525
|
|
526
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
527
|
+
def encode_image(self, image, device, num_images_per_prompt):
|
528
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
529
|
+
|
530
|
+
if not isinstance(image, torch.Tensor):
|
531
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
532
|
+
|
533
|
+
image = image.to(device=device, dtype=dtype)
|
534
|
+
image_embeds = self.image_encoder(image).image_embeds
|
535
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
536
|
+
|
537
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
538
|
+
return image_embeds, uncond_image_embeds
|
539
|
+
|
458
540
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
459
541
|
def prepare_extra_step_kwargs(self, generator, eta):
|
460
542
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
@@ -705,6 +787,7 @@ class StableDiffusionXLPipeline(
|
|
705
787
|
height: Optional[int] = None,
|
706
788
|
width: Optional[int] = None,
|
707
789
|
num_inference_steps: int = 50,
|
790
|
+
timesteps: List[int] = None,
|
708
791
|
denoising_end: Optional[float] = None,
|
709
792
|
guidance_scale: float = 5.0,
|
710
793
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
@@ -717,6 +800,7 @@ class StableDiffusionXLPipeline(
|
|
717
800
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
718
801
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
719
802
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
803
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
720
804
|
output_type: Optional[str] = "pil",
|
721
805
|
return_dict: bool = True,
|
722
806
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -755,6 +839,10 @@ class StableDiffusionXLPipeline(
|
|
755
839
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
756
840
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
757
841
|
expense of slower inference.
|
842
|
+
timesteps (`List[int]`, *optional*):
|
843
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
844
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
845
|
+
passed will be used. Must be in descending order.
|
758
846
|
denoising_end (`float`, *optional*):
|
759
847
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
760
848
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
@@ -801,6 +889,7 @@ class StableDiffusionXLPipeline(
|
|
801
889
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
802
890
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
803
891
|
input argument.
|
892
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
804
893
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
805
894
|
The output format of the generate image. Choose between
|
806
895
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -853,7 +942,7 @@ class StableDiffusionXLPipeline(
|
|
853
942
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
854
943
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
855
944
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
856
|
-
`._callback_tensor_inputs` attribute of your
|
945
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
857
946
|
|
858
947
|
Examples:
|
859
948
|
|
@@ -945,9 +1034,7 @@ class StableDiffusionXLPipeline(
|
|
945
1034
|
)
|
946
1035
|
|
947
1036
|
# 4. Prepare timesteps
|
948
|
-
self.scheduler
|
949
|
-
|
950
|
-
timesteps = self.scheduler.timesteps
|
1037
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
951
1038
|
|
952
1039
|
# 5. Prepare latent variables
|
953
1040
|
num_channels_latents = self.unet.config.in_channels
|
@@ -999,6 +1086,12 @@ class StableDiffusionXLPipeline(
|
|
999
1086
|
add_text_embeds = add_text_embeds.to(device)
|
1000
1087
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1001
1088
|
|
1089
|
+
if ip_adapter_image is not None:
|
1090
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
1091
|
+
if self.do_classifier_free_guidance:
|
1092
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1093
|
+
image_embeds = image_embeds.to(device)
|
1094
|
+
|
1002
1095
|
# 8. Denoising loop
|
1003
1096
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1004
1097
|
|
@@ -1036,6 +1129,8 @@ class StableDiffusionXLPipeline(
|
|
1036
1129
|
|
1037
1130
|
# predict the noise residual
|
1038
1131
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1132
|
+
if ip_adapter_image is not None:
|
1133
|
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1039
1134
|
noise_pred = self.unet(
|
1040
1135
|
latent_model_input,
|
1041
1136
|
t,
|
@@ -17,10 +17,21 @@ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
17
17
|
|
18
18
|
import PIL.Image
|
19
19
|
import torch
|
20
|
-
from transformers import
|
20
|
+
from transformers import (
|
21
|
+
CLIPImageProcessor,
|
22
|
+
CLIPTextModel,
|
23
|
+
CLIPTextModelWithProjection,
|
24
|
+
CLIPTokenizer,
|
25
|
+
CLIPVisionModelWithProjection,
|
26
|
+
)
|
21
27
|
|
22
28
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
23
|
-
from ...loaders import
|
29
|
+
from ...loaders import (
|
30
|
+
FromSingleFileMixin,
|
31
|
+
IPAdapterMixin,
|
32
|
+
StableDiffusionXLLoraLoaderMixin,
|
33
|
+
TextualInversionLoaderMixin,
|
34
|
+
)
|
24
35
|
from ...models import AutoencoderKL, UNet2DConditionModel
|
25
36
|
from ...models.attention_processor import (
|
26
37
|
AttnProcessor2_0,
|
@@ -94,17 +105,70 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
94
105
|
|
95
106
|
|
96
107
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
97
|
-
def retrieve_latents(
|
98
|
-
|
108
|
+
def retrieve_latents(
|
109
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
110
|
+
):
|
111
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
99
112
|
return encoder_output.latent_dist.sample(generator)
|
113
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
114
|
+
return encoder_output.latent_dist.mode()
|
100
115
|
elif hasattr(encoder_output, "latents"):
|
101
116
|
return encoder_output.latents
|
102
117
|
else:
|
103
118
|
raise AttributeError("Could not access latents of provided encoder_output")
|
104
119
|
|
105
120
|
|
121
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
122
|
+
def retrieve_timesteps(
|
123
|
+
scheduler,
|
124
|
+
num_inference_steps: Optional[int] = None,
|
125
|
+
device: Optional[Union[str, torch.device]] = None,
|
126
|
+
timesteps: Optional[List[int]] = None,
|
127
|
+
**kwargs,
|
128
|
+
):
|
129
|
+
"""
|
130
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
131
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
132
|
+
|
133
|
+
Args:
|
134
|
+
scheduler (`SchedulerMixin`):
|
135
|
+
The scheduler to get timesteps from.
|
136
|
+
num_inference_steps (`int`):
|
137
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
138
|
+
`timesteps` must be `None`.
|
139
|
+
device (`str` or `torch.device`, *optional*):
|
140
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
141
|
+
timesteps (`List[int]`, *optional*):
|
142
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
143
|
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
144
|
+
must be `None`.
|
145
|
+
|
146
|
+
Returns:
|
147
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
148
|
+
second element is the number of inference steps.
|
149
|
+
"""
|
150
|
+
if timesteps is not None:
|
151
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
152
|
+
if not accepts_timesteps:
|
153
|
+
raise ValueError(
|
154
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
155
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
156
|
+
)
|
157
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
158
|
+
timesteps = scheduler.timesteps
|
159
|
+
num_inference_steps = len(timesteps)
|
160
|
+
else:
|
161
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
162
|
+
timesteps = scheduler.timesteps
|
163
|
+
return timesteps, num_inference_steps
|
164
|
+
|
165
|
+
|
106
166
|
class StableDiffusionXLImg2ImgPipeline(
|
107
|
-
DiffusionPipeline,
|
167
|
+
DiffusionPipeline,
|
168
|
+
TextualInversionLoaderMixin,
|
169
|
+
FromSingleFileMixin,
|
170
|
+
StableDiffusionXLLoraLoaderMixin,
|
171
|
+
IPAdapterMixin,
|
108
172
|
):
|
109
173
|
r"""
|
110
174
|
Pipeline for text-to-image generation using Stable Diffusion XL.
|
@@ -153,8 +217,16 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
153
217
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
154
218
|
watermarker will be used.
|
155
219
|
"""
|
220
|
+
|
156
221
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
157
|
-
_optional_components = [
|
222
|
+
_optional_components = [
|
223
|
+
"tokenizer",
|
224
|
+
"tokenizer_2",
|
225
|
+
"text_encoder",
|
226
|
+
"text_encoder_2",
|
227
|
+
"image_encoder",
|
228
|
+
"feature_extractor",
|
229
|
+
]
|
158
230
|
_callback_tensor_inputs = [
|
159
231
|
"latents",
|
160
232
|
"prompt_embeds",
|
@@ -174,6 +246,8 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
174
246
|
tokenizer_2: CLIPTokenizer,
|
175
247
|
unet: UNet2DConditionModel,
|
176
248
|
scheduler: KarrasDiffusionSchedulers,
|
249
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
250
|
+
feature_extractor: CLIPImageProcessor = None,
|
177
251
|
requires_aesthetics_score: bool = False,
|
178
252
|
force_zeros_for_empty_prompt: bool = True,
|
179
253
|
add_watermarker: Optional[bool] = None,
|
@@ -187,6 +261,8 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
187
261
|
tokenizer=tokenizer,
|
188
262
|
tokenizer_2=tokenizer_2,
|
189
263
|
unet=unet,
|
264
|
+
image_encoder=image_encoder,
|
265
|
+
feature_extractor=feature_extractor,
|
190
266
|
scheduler=scheduler,
|
191
267
|
)
|
192
268
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
@@ -664,6 +740,20 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
664
740
|
|
665
741
|
return latents
|
666
742
|
|
743
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
744
|
+
def encode_image(self, image, device, num_images_per_prompt):
|
745
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
746
|
+
|
747
|
+
if not isinstance(image, torch.Tensor):
|
748
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
749
|
+
|
750
|
+
image = image.to(device=device, dtype=dtype)
|
751
|
+
image_embeds = self.image_encoder(image).image_embeds
|
752
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
753
|
+
|
754
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
755
|
+
return image_embeds, uncond_image_embeds
|
756
|
+
|
667
757
|
def _get_add_time_ids(
|
668
758
|
self,
|
669
759
|
original_size,
|
@@ -836,6 +926,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
836
926
|
image: PipelineImageInput = None,
|
837
927
|
strength: float = 0.3,
|
838
928
|
num_inference_steps: int = 50,
|
929
|
+
timesteps: List[int] = None,
|
839
930
|
denoising_start: Optional[float] = None,
|
840
931
|
denoising_end: Optional[float] = None,
|
841
932
|
guidance_scale: float = 5.0,
|
@@ -849,6 +940,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
849
940
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
850
941
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
851
942
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
943
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
852
944
|
output_type: Optional[str] = "pil",
|
853
945
|
return_dict: bool = True,
|
854
946
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -888,6 +980,10 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
888
980
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
889
981
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
890
982
|
expense of slower inference.
|
983
|
+
timesteps (`List[int]`, *optional*):
|
984
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
985
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
986
|
+
passed will be used. Must be in descending order.
|
891
987
|
denoising_start (`float`, *optional*):
|
892
988
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
893
989
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
@@ -942,6 +1038,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
942
1038
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
943
1039
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
944
1040
|
input argument.
|
1041
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
945
1042
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
946
1043
|
The output format of the generate image. Choose between
|
947
1044
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -1005,7 +1102,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1005
1102
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1006
1103
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1007
1104
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1008
|
-
`._callback_tensor_inputs` attribute of your
|
1105
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1009
1106
|
|
1010
1107
|
Examples:
|
1011
1108
|
|
@@ -1094,7 +1191,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1094
1191
|
def denoising_value_valid(dnv):
|
1095
1192
|
return isinstance(self.denoising_end, float) and 0 < dnv < 1
|
1096
1193
|
|
1097
|
-
self.scheduler
|
1194
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1098
1195
|
timesteps, num_inference_steps = self.get_timesteps(
|
1099
1196
|
num_inference_steps,
|
1100
1197
|
strength,
|
@@ -1161,6 +1258,12 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1161
1258
|
add_text_embeds = add_text_embeds.to(device)
|
1162
1259
|
add_time_ids = add_time_ids.to(device)
|
1163
1260
|
|
1261
|
+
if ip_adapter_image is not None:
|
1262
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
1263
|
+
if self.do_classifier_free_guidance:
|
1264
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1265
|
+
image_embeds = image_embeds.to(device)
|
1266
|
+
|
1164
1267
|
# 9. Denoising loop
|
1165
1268
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1166
1269
|
|
@@ -1204,6 +1307,8 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1204
1307
|
|
1205
1308
|
# predict the noise residual
|
1206
1309
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1310
|
+
if ip_adapter_image is not None:
|
1311
|
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1207
1312
|
noise_pred = self.unet(
|
1208
1313
|
latent_model_input,
|
1209
1314
|
t,
|
@@ -18,10 +18,21 @@ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
18
18
|
import numpy as np
|
19
19
|
import PIL.Image
|
20
20
|
import torch
|
21
|
-
from transformers import
|
21
|
+
from transformers import (
|
22
|
+
CLIPImageProcessor,
|
23
|
+
CLIPTextModel,
|
24
|
+
CLIPTextModelWithProjection,
|
25
|
+
CLIPTokenizer,
|
26
|
+
CLIPVisionModelWithProjection,
|
27
|
+
)
|
22
28
|
|
23
29
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
24
|
-
from ...loaders import
|
30
|
+
from ...loaders import (
|
31
|
+
FromSingleFileMixin,
|
32
|
+
IPAdapterMixin,
|
33
|
+
StableDiffusionXLLoraLoaderMixin,
|
34
|
+
TextualInversionLoaderMixin,
|
35
|
+
)
|
25
36
|
from ...models import AutoencoderKL, UNet2DConditionModel
|
26
37
|
from ...models.attention_processor import (
|
27
38
|
AttnProcessor2_0,
|
@@ -239,17 +250,70 @@ def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool
|
|
239
250
|
|
240
251
|
|
241
252
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
242
|
-
def retrieve_latents(
|
243
|
-
|
253
|
+
def retrieve_latents(
|
254
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
255
|
+
):
|
256
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
244
257
|
return encoder_output.latent_dist.sample(generator)
|
258
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
259
|
+
return encoder_output.latent_dist.mode()
|
245
260
|
elif hasattr(encoder_output, "latents"):
|
246
261
|
return encoder_output.latents
|
247
262
|
else:
|
248
263
|
raise AttributeError("Could not access latents of provided encoder_output")
|
249
264
|
|
250
265
|
|
266
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
267
|
+
def retrieve_timesteps(
|
268
|
+
scheduler,
|
269
|
+
num_inference_steps: Optional[int] = None,
|
270
|
+
device: Optional[Union[str, torch.device]] = None,
|
271
|
+
timesteps: Optional[List[int]] = None,
|
272
|
+
**kwargs,
|
273
|
+
):
|
274
|
+
"""
|
275
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
276
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
277
|
+
|
278
|
+
Args:
|
279
|
+
scheduler (`SchedulerMixin`):
|
280
|
+
The scheduler to get timesteps from.
|
281
|
+
num_inference_steps (`int`):
|
282
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
283
|
+
`timesteps` must be `None`.
|
284
|
+
device (`str` or `torch.device`, *optional*):
|
285
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
286
|
+
timesteps (`List[int]`, *optional*):
|
287
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
288
|
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
289
|
+
must be `None`.
|
290
|
+
|
291
|
+
Returns:
|
292
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
293
|
+
second element is the number of inference steps.
|
294
|
+
"""
|
295
|
+
if timesteps is not None:
|
296
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
297
|
+
if not accepts_timesteps:
|
298
|
+
raise ValueError(
|
299
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
300
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
301
|
+
)
|
302
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
303
|
+
timesteps = scheduler.timesteps
|
304
|
+
num_inference_steps = len(timesteps)
|
305
|
+
else:
|
306
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
307
|
+
timesteps = scheduler.timesteps
|
308
|
+
return timesteps, num_inference_steps
|
309
|
+
|
310
|
+
|
251
311
|
class StableDiffusionXLInpaintPipeline(
|
252
|
-
DiffusionPipeline,
|
312
|
+
DiffusionPipeline,
|
313
|
+
TextualInversionLoaderMixin,
|
314
|
+
StableDiffusionXLLoraLoaderMixin,
|
315
|
+
FromSingleFileMixin,
|
316
|
+
IPAdapterMixin,
|
253
317
|
):
|
254
318
|
r"""
|
255
319
|
Pipeline for text-to-image generation using Stable Diffusion XL.
|
@@ -298,9 +362,17 @@ class StableDiffusionXLInpaintPipeline(
|
|
298
362
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
299
363
|
watermarker will be used.
|
300
364
|
"""
|
365
|
+
|
301
366
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
302
367
|
|
303
|
-
_optional_components = [
|
368
|
+
_optional_components = [
|
369
|
+
"tokenizer",
|
370
|
+
"tokenizer_2",
|
371
|
+
"text_encoder",
|
372
|
+
"text_encoder_2",
|
373
|
+
"image_encoder",
|
374
|
+
"feature_extractor",
|
375
|
+
]
|
304
376
|
_callback_tensor_inputs = [
|
305
377
|
"latents",
|
306
378
|
"prompt_embeds",
|
@@ -322,6 +394,8 @@ class StableDiffusionXLInpaintPipeline(
|
|
322
394
|
tokenizer_2: CLIPTokenizer,
|
323
395
|
unet: UNet2DConditionModel,
|
324
396
|
scheduler: KarrasDiffusionSchedulers,
|
397
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
398
|
+
feature_extractor: CLIPImageProcessor = None,
|
325
399
|
requires_aesthetics_score: bool = False,
|
326
400
|
force_zeros_for_empty_prompt: bool = True,
|
327
401
|
add_watermarker: Optional[bool] = None,
|
@@ -335,6 +409,8 @@ class StableDiffusionXLInpaintPipeline(
|
|
335
409
|
tokenizer=tokenizer,
|
336
410
|
tokenizer_2=tokenizer_2,
|
337
411
|
unet=unet,
|
412
|
+
image_encoder=image_encoder,
|
413
|
+
feature_extractor=feature_extractor,
|
338
414
|
scheduler=scheduler,
|
339
415
|
)
|
340
416
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
@@ -385,6 +461,20 @@ class StableDiffusionXLInpaintPipeline(
|
|
385
461
|
"""
|
386
462
|
self.vae.disable_tiling()
|
387
463
|
|
464
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
465
|
+
def encode_image(self, image, device, num_images_per_prompt):
|
466
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
467
|
+
|
468
|
+
if not isinstance(image, torch.Tensor):
|
469
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
470
|
+
|
471
|
+
image = image.to(device=device, dtype=dtype)
|
472
|
+
image_embeds = self.image_encoder(image).image_embeds
|
473
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
474
|
+
|
475
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
476
|
+
return image_embeds, uncond_image_embeds
|
477
|
+
|
388
478
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
389
479
|
def encode_prompt(
|
390
480
|
self,
|
@@ -741,10 +831,11 @@ class StableDiffusionXLInpaintPipeline(
|
|
741
831
|
|
742
832
|
if image.shape[1] == 4:
|
743
833
|
image_latents = image.to(device=device, dtype=dtype)
|
834
|
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
744
835
|
elif return_image_latents or (latents is None and not is_strength_max):
|
745
836
|
image = image.to(device=device, dtype=dtype)
|
746
837
|
image_latents = self._encode_vae_image(image=image, generator=generator)
|
747
|
-
|
838
|
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
748
839
|
|
749
840
|
if latents is None and add_noise:
|
750
841
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
@@ -1059,6 +1150,7 @@ class StableDiffusionXLInpaintPipeline(
|
|
1059
1150
|
width: Optional[int] = None,
|
1060
1151
|
strength: float = 0.9999,
|
1061
1152
|
num_inference_steps: int = 50,
|
1153
|
+
timesteps: List[int] = None,
|
1062
1154
|
denoising_start: Optional[float] = None,
|
1063
1155
|
denoising_end: Optional[float] = None,
|
1064
1156
|
guidance_scale: float = 7.5,
|
@@ -1072,6 +1164,7 @@ class StableDiffusionXLInpaintPipeline(
|
|
1072
1164
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1073
1165
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1074
1166
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1167
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1075
1168
|
output_type: Optional[str] = "pil",
|
1076
1169
|
return_dict: bool = True,
|
1077
1170
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -1128,6 +1221,10 @@ class StableDiffusionXLInpaintPipeline(
|
|
1128
1221
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
1129
1222
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1130
1223
|
expense of slower inference.
|
1224
|
+
timesteps (`List[int]`, *optional*):
|
1225
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1226
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1227
|
+
passed will be used. Must be in descending order.
|
1131
1228
|
denoising_start (`float`, *optional*):
|
1132
1229
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1133
1230
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
@@ -1170,6 +1267,7 @@ class StableDiffusionXLInpaintPipeline(
|
|
1170
1267
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1171
1268
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1172
1269
|
input argument.
|
1270
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1173
1271
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1174
1272
|
The number of images to generate per prompt.
|
1175
1273
|
eta (`float`, *optional*, defaults to 0.0):
|
@@ -1240,7 +1338,7 @@ class StableDiffusionXLInpaintPipeline(
|
|
1240
1338
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1241
1339
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1242
1340
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1243
|
-
`._callback_tensor_inputs` attribute of your
|
1341
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1244
1342
|
|
1245
1343
|
Examples:
|
1246
1344
|
|
@@ -1332,7 +1430,7 @@ class StableDiffusionXLInpaintPipeline(
|
|
1332
1430
|
def denoising_value_valid(dnv):
|
1333
1431
|
return isinstance(self.denoising_end, float) and 0 < dnv < 1
|
1334
1432
|
|
1335
|
-
self.scheduler
|
1433
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1336
1434
|
timesteps, num_inference_steps = self.get_timesteps(
|
1337
1435
|
num_inference_steps,
|
1338
1436
|
strength,
|
@@ -1469,6 +1567,12 @@ class StableDiffusionXLInpaintPipeline(
|
|
1469
1567
|
add_text_embeds = add_text_embeds.to(device)
|
1470
1568
|
add_time_ids = add_time_ids.to(device)
|
1471
1569
|
|
1570
|
+
if ip_adapter_image is not None:
|
1571
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
1572
|
+
if self.do_classifier_free_guidance:
|
1573
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1574
|
+
image_embeds = image_embeds.to(device)
|
1575
|
+
|
1472
1576
|
# 11. Denoising loop
|
1473
1577
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1474
1578
|
|
@@ -1515,6 +1619,8 @@ class StableDiffusionXLInpaintPipeline(
|
|
1515
1619
|
|
1516
1620
|
# predict the noise residual
|
1517
1621
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1622
|
+
if ip_adapter_image is not None:
|
1623
|
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1518
1624
|
noise_pred = self.unet(
|
1519
1625
|
latent_model_input,
|
1520
1626
|
t,
|