diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +16 -2
- diffusers/configuration_utils.py +1 -0
- diffusers/dependency_versions_check.py +1 -14
- diffusers/dependency_versions_table.py +5 -4
- diffusers/image_processor.py +186 -14
- diffusers/loaders/__init__.py +82 -0
- diffusers/loaders/ip_adapter.py +157 -0
- diffusers/loaders/lora.py +1415 -0
- diffusers/loaders/lora_conversion_utils.py +284 -0
- diffusers/loaders/single_file.py +631 -0
- diffusers/loaders/textual_inversion.py +459 -0
- diffusers/loaders/unet.py +735 -0
- diffusers/loaders/utils.py +59 -0
- diffusers/models/__init__.py +12 -1
- diffusers/models/attention.py +165 -14
- diffusers/models/attention_flax.py +9 -1
- diffusers/models/attention_processor.py +286 -1
- diffusers/models/autoencoder_asym_kl.py +14 -9
- diffusers/models/autoencoder_kl.py +3 -18
- diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
- diffusers/models/autoencoder_tiny.py +20 -24
- diffusers/models/consistency_decoder_vae.py +37 -30
- diffusers/models/controlnet.py +59 -39
- diffusers/models/controlnet_flax.py +19 -18
- diffusers/models/embeddings_flax.py +2 -0
- diffusers/models/lora.py +131 -1
- diffusers/models/modeling_flax_utils.py +2 -1
- diffusers/models/modeling_outputs.py +17 -0
- diffusers/models/modeling_utils.py +27 -19
- diffusers/models/normalization.py +2 -2
- diffusers/models/resnet.py +390 -59
- diffusers/models/transformer_2d.py +20 -3
- diffusers/models/transformer_temporal.py +183 -1
- diffusers/models/unet_2d_blocks_flax.py +5 -0
- diffusers/models/unet_2d_condition.py +9 -0
- diffusers/models/unet_2d_condition_flax.py +13 -13
- diffusers/models/unet_3d_blocks.py +957 -173
- diffusers/models/unet_3d_condition.py +16 -8
- diffusers/models/unet_kandi3.py +589 -0
- diffusers/models/unet_motion_model.py +48 -33
- diffusers/models/unet_spatio_temporal_condition.py +489 -0
- diffusers/models/vae.py +63 -13
- diffusers/models/vae_flax.py +7 -0
- diffusers/models/vq_model.py +3 -1
- diffusers/optimization.py +16 -9
- diffusers/pipelines/__init__.py +65 -12
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
- diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
- diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
- diffusers/pipelines/auto_pipeline.py +6 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
- diffusers/pipelines/kandinsky3/__init__.py +49 -0
- diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
- diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
- diffusers/pipelines/pipeline_flax_utils.py +4 -2
- diffusers/pipelines/pipeline_utils.py +33 -13
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
- diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
- diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/__init__.py +64 -21
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
- diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
- diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
- diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
- diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
- diffusers/schedulers/__init__.py +2 -4
- diffusers/schedulers/deprecated/__init__.py +50 -0
- diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
- diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
- diffusers/schedulers/scheduling_ddim.py +1 -3
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
- diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
- diffusers/schedulers/scheduling_ddpm.py +1 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
- diffusers/schedulers/scheduling_deis_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
- diffusers/schedulers/scheduling_euler_discrete.py +40 -13
- diffusers/schedulers/scheduling_heun_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
- diffusers/schedulers/scheduling_lcm.py +123 -29
- diffusers/schedulers/scheduling_lms_discrete.py +1 -3
- diffusers/schedulers/scheduling_pndm.py +1 -3
- diffusers/schedulers/scheduling_repaint.py +1 -3
- diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
- diffusers/utils/__init__.py +1 -0
- diffusers/utils/constants.py +11 -6
- diffusers/utils/dummy_pt_objects.py +45 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
- diffusers/utils/dynamic_modules_utils.py +4 -4
- diffusers/utils/export_utils.py +8 -3
- diffusers/utils/logging.py +10 -10
- diffusers/utils/outputs.py +5 -5
- diffusers/utils/peft_utils.py +88 -44
- diffusers/utils/torch_utils.py +2 -2
- diffusers/utils/versions.py +117 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
- diffusers/loaders.py +0 -3336
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
- {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -20,10 +20,10 @@ import numpy as np
|
|
20
20
|
import PIL.Image
|
21
21
|
import torch
|
22
22
|
import torch.nn.functional as F
|
23
|
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
23
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
24
24
|
|
25
25
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
26
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27
27
|
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
28
28
|
from ...models.lora import adjust_lora_scale_text_encoder
|
29
29
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -91,8 +91,53 @@ EXAMPLE_DOC_STRING = """
|
|
91
91
|
"""
|
92
92
|
|
93
93
|
|
94
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
95
|
+
def retrieve_timesteps(
|
96
|
+
scheduler,
|
97
|
+
num_inference_steps: Optional[int] = None,
|
98
|
+
device: Optional[Union[str, torch.device]] = None,
|
99
|
+
timesteps: Optional[List[int]] = None,
|
100
|
+
**kwargs,
|
101
|
+
):
|
102
|
+
"""
|
103
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
104
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
105
|
+
|
106
|
+
Args:
|
107
|
+
scheduler (`SchedulerMixin`):
|
108
|
+
The scheduler to get timesteps from.
|
109
|
+
num_inference_steps (`int`):
|
110
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
111
|
+
`timesteps` must be `None`.
|
112
|
+
device (`str` or `torch.device`, *optional*):
|
113
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
114
|
+
timesteps (`List[int]`, *optional*):
|
115
|
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
116
|
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
117
|
+
must be `None`.
|
118
|
+
|
119
|
+
Returns:
|
120
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
121
|
+
second element is the number of inference steps.
|
122
|
+
"""
|
123
|
+
if timesteps is not None:
|
124
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
125
|
+
if not accepts_timesteps:
|
126
|
+
raise ValueError(
|
127
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
128
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
129
|
+
)
|
130
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
131
|
+
timesteps = scheduler.timesteps
|
132
|
+
num_inference_steps = len(timesteps)
|
133
|
+
else:
|
134
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
135
|
+
timesteps = scheduler.timesteps
|
136
|
+
return timesteps, num_inference_steps
|
137
|
+
|
138
|
+
|
94
139
|
class StableDiffusionControlNetPipeline(
|
95
|
-
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
140
|
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
96
141
|
):
|
97
142
|
r"""
|
98
143
|
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
@@ -102,6 +147,7 @@ class StableDiffusionControlNetPipeline(
|
|
102
147
|
|
103
148
|
The pipeline also inherits the following loading methods:
|
104
149
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
150
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
105
151
|
|
106
152
|
Args:
|
107
153
|
vae ([`AutoencoderKL`]):
|
@@ -126,9 +172,11 @@ class StableDiffusionControlNetPipeline(
|
|
126
172
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
127
173
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
128
174
|
"""
|
175
|
+
|
129
176
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
130
|
-
_optional_components = ["safety_checker", "feature_extractor"]
|
177
|
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
131
178
|
_exclude_from_cpu_offload = ["safety_checker"]
|
179
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
132
180
|
|
133
181
|
def __init__(
|
134
182
|
self,
|
@@ -140,6 +188,7 @@ class StableDiffusionControlNetPipeline(
|
|
140
188
|
scheduler: KarrasDiffusionSchedulers,
|
141
189
|
safety_checker: StableDiffusionSafetyChecker,
|
142
190
|
feature_extractor: CLIPImageProcessor,
|
191
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
143
192
|
requires_safety_checker: bool = True,
|
144
193
|
):
|
145
194
|
super().__init__()
|
@@ -172,6 +221,7 @@ class StableDiffusionControlNetPipeline(
|
|
172
221
|
scheduler=scheduler,
|
173
222
|
safety_checker=safety_checker,
|
174
223
|
feature_extractor=feature_extractor,
|
224
|
+
image_encoder=image_encoder,
|
175
225
|
)
|
176
226
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
177
227
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
@@ -428,6 +478,20 @@ class StableDiffusionControlNetPipeline(
|
|
428
478
|
|
429
479
|
return prompt_embeds, negative_prompt_embeds
|
430
480
|
|
481
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
482
|
+
def encode_image(self, image, device, num_images_per_prompt):
|
483
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
484
|
+
|
485
|
+
if not isinstance(image, torch.Tensor):
|
486
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
487
|
+
|
488
|
+
image = image.to(device=device, dtype=dtype)
|
489
|
+
image_embeds = self.image_encoder(image).image_embeds
|
490
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
491
|
+
|
492
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
493
|
+
return image_embeds, uncond_image_embeds
|
494
|
+
|
431
495
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
432
496
|
def run_safety_checker(self, image, device, dtype):
|
433
497
|
if self.safety_checker is None:
|
@@ -484,15 +548,21 @@ class StableDiffusionControlNetPipeline(
|
|
484
548
|
controlnet_conditioning_scale=1.0,
|
485
549
|
control_guidance_start=0.0,
|
486
550
|
control_guidance_end=1.0,
|
551
|
+
callback_on_step_end_tensor_inputs=None,
|
487
552
|
):
|
488
|
-
if
|
489
|
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
490
|
-
):
|
553
|
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
491
554
|
raise ValueError(
|
492
555
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
493
556
|
f" {type(callback_steps)}."
|
494
557
|
)
|
495
558
|
|
559
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
560
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
561
|
+
):
|
562
|
+
raise ValueError(
|
563
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
564
|
+
)
|
565
|
+
|
496
566
|
if prompt is not None and prompt_embeds is not None:
|
497
567
|
raise ValueError(
|
498
568
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
@@ -726,6 +796,58 @@ class StableDiffusionControlNetPipeline(
|
|
726
796
|
"""Disables the FreeU mechanism if enabled."""
|
727
797
|
self.unet.disable_freeu()
|
728
798
|
|
799
|
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
800
|
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
801
|
+
"""
|
802
|
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
803
|
+
|
804
|
+
Args:
|
805
|
+
timesteps (`torch.Tensor`):
|
806
|
+
generate embedding vectors at these timesteps
|
807
|
+
embedding_dim (`int`, *optional*, defaults to 512):
|
808
|
+
dimension of the embeddings to generate
|
809
|
+
dtype:
|
810
|
+
data type of the generated embeddings
|
811
|
+
|
812
|
+
Returns:
|
813
|
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
814
|
+
"""
|
815
|
+
assert len(w.shape) == 1
|
816
|
+
w = w * 1000.0
|
817
|
+
|
818
|
+
half_dim = embedding_dim // 2
|
819
|
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
820
|
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
821
|
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
822
|
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
823
|
+
if embedding_dim % 2 == 1: # zero pad
|
824
|
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
825
|
+
assert emb.shape == (w.shape[0], embedding_dim)
|
826
|
+
return emb
|
827
|
+
|
828
|
+
@property
|
829
|
+
def guidance_scale(self):
|
830
|
+
return self._guidance_scale
|
831
|
+
|
832
|
+
@property
|
833
|
+
def clip_skip(self):
|
834
|
+
return self._clip_skip
|
835
|
+
|
836
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
837
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
838
|
+
# corresponds to doing no classifier free guidance.
|
839
|
+
@property
|
840
|
+
def do_classifier_free_guidance(self):
|
841
|
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
842
|
+
|
843
|
+
@property
|
844
|
+
def cross_attention_kwargs(self):
|
845
|
+
return self._cross_attention_kwargs
|
846
|
+
|
847
|
+
@property
|
848
|
+
def num_timesteps(self):
|
849
|
+
return self._num_timesteps
|
850
|
+
|
729
851
|
@torch.no_grad()
|
730
852
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
731
853
|
def __call__(
|
@@ -735,6 +857,7 @@ class StableDiffusionControlNetPipeline(
|
|
735
857
|
height: Optional[int] = None,
|
736
858
|
width: Optional[int] = None,
|
737
859
|
num_inference_steps: int = 50,
|
860
|
+
timesteps: List[int] = None,
|
738
861
|
guidance_scale: float = 7.5,
|
739
862
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
740
863
|
num_images_per_prompt: Optional[int] = 1,
|
@@ -743,16 +866,18 @@ class StableDiffusionControlNetPipeline(
|
|
743
866
|
latents: Optional[torch.FloatTensor] = None,
|
744
867
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
745
868
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
869
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
746
870
|
output_type: Optional[str] = "pil",
|
747
871
|
return_dict: bool = True,
|
748
|
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
749
|
-
callback_steps: int = 1,
|
750
872
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
751
873
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
752
874
|
guess_mode: bool = False,
|
753
875
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
754
876
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
755
877
|
clip_skip: Optional[int] = None,
|
878
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
879
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
880
|
+
**kwargs,
|
756
881
|
):
|
757
882
|
r"""
|
758
883
|
The call function to the pipeline for generation.
|
@@ -775,6 +900,10 @@ class StableDiffusionControlNetPipeline(
|
|
775
900
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
776
901
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
777
902
|
expense of slower inference.
|
903
|
+
timesteps (`List[int]`, *optional*):
|
904
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
905
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
906
|
+
passed will be used. Must be in descending order.
|
778
907
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
779
908
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
780
909
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
@@ -799,6 +928,7 @@ class StableDiffusionControlNetPipeline(
|
|
799
928
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
800
929
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
801
930
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
931
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
802
932
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
803
933
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
804
934
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -827,6 +957,15 @@ class StableDiffusionControlNetPipeline(
|
|
827
957
|
clip_skip (`int`, *optional*):
|
828
958
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
829
959
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
960
|
+
callback_on_step_end (`Callable`, *optional*):
|
961
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
962
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
963
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
964
|
+
`callback_on_step_end_tensor_inputs`.
|
965
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
966
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
967
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
968
|
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
830
969
|
|
831
970
|
Examples:
|
832
971
|
|
@@ -837,6 +976,23 @@ class StableDiffusionControlNetPipeline(
|
|
837
976
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
838
977
|
"not-safe-for-work" (nsfw) content.
|
839
978
|
"""
|
979
|
+
|
980
|
+
callback = kwargs.pop("callback", None)
|
981
|
+
callback_steps = kwargs.pop("callback_steps", None)
|
982
|
+
|
983
|
+
if callback is not None:
|
984
|
+
deprecate(
|
985
|
+
"callback",
|
986
|
+
"1.0.0",
|
987
|
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
988
|
+
)
|
989
|
+
if callback_steps is not None:
|
990
|
+
deprecate(
|
991
|
+
"callback_steps",
|
992
|
+
"1.0.0",
|
993
|
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
994
|
+
)
|
995
|
+
|
840
996
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
841
997
|
|
842
998
|
# align format for control guidance
|
@@ -846,9 +1002,10 @@ class StableDiffusionControlNetPipeline(
|
|
846
1002
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
847
1003
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
848
1004
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
849
|
-
control_guidance_start, control_guidance_end =
|
850
|
-
|
851
|
-
|
1005
|
+
control_guidance_start, control_guidance_end = (
|
1006
|
+
mult * [control_guidance_start],
|
1007
|
+
mult * [control_guidance_end],
|
1008
|
+
)
|
852
1009
|
|
853
1010
|
# 1. Check inputs. Raise error if not correct
|
854
1011
|
self.check_inputs(
|
@@ -861,8 +1018,13 @@ class StableDiffusionControlNetPipeline(
|
|
861
1018
|
controlnet_conditioning_scale,
|
862
1019
|
control_guidance_start,
|
863
1020
|
control_guidance_end,
|
1021
|
+
callback_on_step_end_tensor_inputs,
|
864
1022
|
)
|
865
1023
|
|
1024
|
+
self._guidance_scale = guidance_scale
|
1025
|
+
self._clip_skip = clip_skip
|
1026
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1027
|
+
|
866
1028
|
# 2. Define call parameters
|
867
1029
|
if prompt is not None and isinstance(prompt, str):
|
868
1030
|
batch_size = 1
|
@@ -872,10 +1034,6 @@ class StableDiffusionControlNetPipeline(
|
|
872
1034
|
batch_size = prompt_embeds.shape[0]
|
873
1035
|
|
874
1036
|
device = self._execution_device
|
875
|
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
876
|
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
877
|
-
# corresponds to doing no classifier free guidance.
|
878
|
-
do_classifier_free_guidance = guidance_scale > 1.0
|
879
1037
|
|
880
1038
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
881
1039
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
@@ -889,25 +1047,30 @@ class StableDiffusionControlNetPipeline(
|
|
889
1047
|
|
890
1048
|
# 3. Encode input prompt
|
891
1049
|
text_encoder_lora_scale = (
|
892
|
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1050
|
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
893
1051
|
)
|
894
1052
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
895
1053
|
prompt,
|
896
1054
|
device,
|
897
1055
|
num_images_per_prompt,
|
898
|
-
do_classifier_free_guidance,
|
1056
|
+
self.do_classifier_free_guidance,
|
899
1057
|
negative_prompt,
|
900
1058
|
prompt_embeds=prompt_embeds,
|
901
1059
|
negative_prompt_embeds=negative_prompt_embeds,
|
902
1060
|
lora_scale=text_encoder_lora_scale,
|
903
|
-
clip_skip=clip_skip,
|
1061
|
+
clip_skip=self.clip_skip,
|
904
1062
|
)
|
905
1063
|
# For classifier free guidance, we need to do two forward passes.
|
906
1064
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
907
1065
|
# to avoid doing two forward passes
|
908
|
-
if do_classifier_free_guidance:
|
1066
|
+
if self.do_classifier_free_guidance:
|
909
1067
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
910
1068
|
|
1069
|
+
if ip_adapter_image is not None:
|
1070
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
1071
|
+
if self.do_classifier_free_guidance:
|
1072
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1073
|
+
|
911
1074
|
# 4. Prepare image
|
912
1075
|
if isinstance(controlnet, ControlNetModel):
|
913
1076
|
image = self.prepare_image(
|
@@ -918,7 +1081,7 @@ class StableDiffusionControlNetPipeline(
|
|
918
1081
|
num_images_per_prompt=num_images_per_prompt,
|
919
1082
|
device=device,
|
920
1083
|
dtype=controlnet.dtype,
|
921
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1084
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
922
1085
|
guess_mode=guess_mode,
|
923
1086
|
)
|
924
1087
|
height, width = image.shape[-2:]
|
@@ -934,7 +1097,7 @@ class StableDiffusionControlNetPipeline(
|
|
934
1097
|
num_images_per_prompt=num_images_per_prompt,
|
935
1098
|
device=device,
|
936
1099
|
dtype=controlnet.dtype,
|
937
|
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
1100
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
938
1101
|
guess_mode=guess_mode,
|
939
1102
|
)
|
940
1103
|
|
@@ -946,8 +1109,8 @@ class StableDiffusionControlNetPipeline(
|
|
946
1109
|
assert False
|
947
1110
|
|
948
1111
|
# 5. Prepare timesteps
|
949
|
-
self.scheduler
|
950
|
-
|
1112
|
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1113
|
+
self._num_timesteps = len(timesteps)
|
951
1114
|
|
952
1115
|
# 6. Prepare latent variables
|
953
1116
|
num_channels_latents = self.unet.config.in_channels
|
@@ -962,10 +1125,21 @@ class StableDiffusionControlNetPipeline(
|
|
962
1125
|
latents,
|
963
1126
|
)
|
964
1127
|
|
1128
|
+
# 6.5 Optionally get Guidance Scale Embedding
|
1129
|
+
timestep_cond = None
|
1130
|
+
if self.unet.config.time_cond_proj_dim is not None:
|
1131
|
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1132
|
+
timestep_cond = self.get_guidance_scale_embedding(
|
1133
|
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1134
|
+
).to(device=device, dtype=latents.dtype)
|
1135
|
+
|
965
1136
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
966
1137
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
967
1138
|
|
968
|
-
# 7.1
|
1139
|
+
# 7.1 Add image embeds for IP-Adapter
|
1140
|
+
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
|
1141
|
+
|
1142
|
+
# 7.2 Create tensor stating which controlnets to keep
|
969
1143
|
controlnet_keep = []
|
970
1144
|
for i in range(len(timesteps)):
|
971
1145
|
keeps = [
|
@@ -986,11 +1160,11 @@ class StableDiffusionControlNetPipeline(
|
|
986
1160
|
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
987
1161
|
torch._inductor.cudagraph_mark_step_begin()
|
988
1162
|
# expand the latents if we are doing classifier free guidance
|
989
|
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1163
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
990
1164
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
991
1165
|
|
992
1166
|
# controlnet(s) inference
|
993
|
-
if guess_mode and do_classifier_free_guidance:
|
1167
|
+
if guess_mode and self.do_classifier_free_guidance:
|
994
1168
|
# Infer ControlNet only for the conditional batch.
|
995
1169
|
control_model_input = latents
|
996
1170
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
@@ -1017,7 +1191,7 @@ class StableDiffusionControlNetPipeline(
|
|
1017
1191
|
return_dict=False,
|
1018
1192
|
)
|
1019
1193
|
|
1020
|
-
if guess_mode and do_classifier_free_guidance:
|
1194
|
+
if guess_mode and self.do_classifier_free_guidance:
|
1021
1195
|
# Infered ControlNet only for the conditional batch.
|
1022
1196
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1023
1197
|
# add 0 to the unconditional batch to keep it unchanged.
|
@@ -1029,20 +1203,32 @@ class StableDiffusionControlNetPipeline(
|
|
1029
1203
|
latent_model_input,
|
1030
1204
|
t,
|
1031
1205
|
encoder_hidden_states=prompt_embeds,
|
1032
|
-
|
1206
|
+
timestep_cond=timestep_cond,
|
1207
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1033
1208
|
down_block_additional_residuals=down_block_res_samples,
|
1034
1209
|
mid_block_additional_residual=mid_block_res_sample,
|
1210
|
+
added_cond_kwargs=added_cond_kwargs,
|
1035
1211
|
return_dict=False,
|
1036
1212
|
)[0]
|
1037
1213
|
|
1038
1214
|
# perform guidance
|
1039
|
-
if do_classifier_free_guidance:
|
1215
|
+
if self.do_classifier_free_guidance:
|
1040
1216
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1041
|
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1217
|
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1042
1218
|
|
1043
1219
|
# compute the previous noisy sample x_t -> x_t-1
|
1044
1220
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1045
1221
|
|
1222
|
+
if callback_on_step_end is not None:
|
1223
|
+
callback_kwargs = {}
|
1224
|
+
for k in callback_on_step_end_tensor_inputs:
|
1225
|
+
callback_kwargs[k] = locals()[k]
|
1226
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1227
|
+
|
1228
|
+
latents = callback_outputs.pop("latents", latents)
|
1229
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1230
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1231
|
+
|
1046
1232
|
# call the callback, if provided
|
1047
1233
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1048
1234
|
progress_bar.update()
|