diffusers 0.23.0__py3-none-any.whl → 0.24.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (177) hide show
  1. diffusers/__init__.py +16 -2
  2. diffusers/configuration_utils.py +1 -0
  3. diffusers/dependency_versions_check.py +1 -14
  4. diffusers/dependency_versions_table.py +5 -4
  5. diffusers/image_processor.py +186 -14
  6. diffusers/loaders/__init__.py +82 -0
  7. diffusers/loaders/ip_adapter.py +157 -0
  8. diffusers/loaders/lora.py +1415 -0
  9. diffusers/loaders/lora_conversion_utils.py +284 -0
  10. diffusers/loaders/single_file.py +631 -0
  11. diffusers/loaders/textual_inversion.py +459 -0
  12. diffusers/loaders/unet.py +735 -0
  13. diffusers/loaders/utils.py +59 -0
  14. diffusers/models/__init__.py +12 -1
  15. diffusers/models/attention.py +165 -14
  16. diffusers/models/attention_flax.py +9 -1
  17. diffusers/models/attention_processor.py +286 -1
  18. diffusers/models/autoencoder_asym_kl.py +14 -9
  19. diffusers/models/autoencoder_kl.py +3 -18
  20. diffusers/models/autoencoder_kl_temporal_decoder.py +402 -0
  21. diffusers/models/autoencoder_tiny.py +20 -24
  22. diffusers/models/consistency_decoder_vae.py +37 -30
  23. diffusers/models/controlnet.py +59 -39
  24. diffusers/models/controlnet_flax.py +19 -18
  25. diffusers/models/embeddings_flax.py +2 -0
  26. diffusers/models/lora.py +131 -1
  27. diffusers/models/modeling_flax_utils.py +2 -1
  28. diffusers/models/modeling_outputs.py +17 -0
  29. diffusers/models/modeling_utils.py +27 -19
  30. diffusers/models/normalization.py +2 -2
  31. diffusers/models/resnet.py +390 -59
  32. diffusers/models/transformer_2d.py +20 -3
  33. diffusers/models/transformer_temporal.py +183 -1
  34. diffusers/models/unet_2d_blocks_flax.py +5 -0
  35. diffusers/models/unet_2d_condition.py +9 -0
  36. diffusers/models/unet_2d_condition_flax.py +13 -13
  37. diffusers/models/unet_3d_blocks.py +957 -173
  38. diffusers/models/unet_3d_condition.py +16 -8
  39. diffusers/models/unet_kandi3.py +589 -0
  40. diffusers/models/unet_motion_model.py +48 -33
  41. diffusers/models/unet_spatio_temporal_condition.py +489 -0
  42. diffusers/models/vae.py +63 -13
  43. diffusers/models/vae_flax.py +7 -0
  44. diffusers/models/vq_model.py +3 -1
  45. diffusers/optimization.py +16 -9
  46. diffusers/pipelines/__init__.py +65 -12
  47. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +93 -23
  48. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +97 -25
  49. diffusers/pipelines/animatediff/pipeline_animatediff.py +34 -4
  50. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -0
  51. diffusers/pipelines/auto_pipeline.py +6 -0
  52. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -0
  53. diffusers/pipelines/controlnet/pipeline_controlnet.py +217 -31
  54. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +101 -32
  55. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +136 -39
  56. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +119 -37
  57. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +196 -35
  58. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +102 -31
  59. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -0
  60. diffusers/pipelines/ddim/pipeline_ddim.py +1 -0
  61. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -0
  62. diffusers/pipelines/deepfloyd_if/pipeline_if.py +13 -1
  63. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +13 -1
  64. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +13 -1
  65. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +13 -1
  66. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +13 -1
  67. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +13 -1
  68. diffusers/pipelines/dit/pipeline_dit.py +1 -0
  69. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  70. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
  71. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  72. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +1 -1
  73. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +1 -1
  74. diffusers/pipelines/kandinsky3/__init__.py +49 -0
  75. diffusers/pipelines/kandinsky3/kandinsky3_pipeline.py +452 -0
  76. diffusers/pipelines/kandinsky3/kandinsky3img2img_pipeline.py +460 -0
  77. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +65 -6
  78. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +55 -3
  79. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -0
  80. diffusers/pipelines/musicldm/pipeline_musicldm.py +1 -1
  81. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +7 -2
  82. diffusers/pipelines/pipeline_flax_utils.py +4 -2
  83. diffusers/pipelines/pipeline_utils.py +33 -13
  84. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +196 -36
  85. diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +1 -0
  86. diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -0
  87. diffusers/pipelines/stable_diffusion/__init__.py +64 -21
  88. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +8 -3
  89. diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +18 -2
  90. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +2 -2
  91. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +2 -4
  92. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -0
  93. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +1 -0
  94. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +88 -9
  95. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +1 -0
  96. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +8 -3
  97. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py +1 -0
  98. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen.py +1 -0
  99. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_gligen_text_image.py +1 -0
  100. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +1 -0
  101. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -9
  102. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -9
  103. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +1 -0
  104. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -13
  105. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -0
  106. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +1 -0
  107. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py +1 -0
  108. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +1 -0
  109. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +1 -0
  110. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_paradigms.py +1 -0
  111. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +1 -0
  112. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +1 -0
  113. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +1 -0
  114. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +103 -8
  115. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +113 -8
  116. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +115 -9
  117. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -12
  118. diffusers/pipelines/stable_video_diffusion/__init__.py +58 -0
  119. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +649 -0
  120. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +108 -12
  121. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +109 -14
  122. diffusers/pipelines/text_to_video_synthesis/__init__.py +2 -0
  123. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +1 -0
  124. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +18 -3
  125. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -2
  126. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +872 -0
  127. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +29 -40
  128. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -0
  129. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -0
  130. diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -0
  131. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +14 -4
  132. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +9 -5
  133. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +1 -1
  134. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +2 -2
  135. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +1 -1
  136. diffusers/schedulers/__init__.py +2 -4
  137. diffusers/schedulers/deprecated/__init__.py +50 -0
  138. diffusers/schedulers/{scheduling_karras_ve.py → deprecated/scheduling_karras_ve.py} +4 -4
  139. diffusers/schedulers/{scheduling_sde_vp.py → deprecated/scheduling_sde_vp.py} +4 -6
  140. diffusers/schedulers/scheduling_ddim.py +1 -3
  141. diffusers/schedulers/scheduling_ddim_inverse.py +1 -3
  142. diffusers/schedulers/scheduling_ddim_parallel.py +1 -3
  143. diffusers/schedulers/scheduling_ddpm.py +1 -3
  144. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -3
  145. diffusers/schedulers/scheduling_deis_multistep.py +15 -5
  146. diffusers/schedulers/scheduling_dpmsolver_multistep.py +15 -5
  147. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +15 -5
  148. diffusers/schedulers/scheduling_dpmsolver_sde.py +1 -3
  149. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +15 -5
  150. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +1 -3
  151. diffusers/schedulers/scheduling_euler_discrete.py +40 -13
  152. diffusers/schedulers/scheduling_heun_discrete.py +15 -5
  153. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +15 -5
  154. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +15 -5
  155. diffusers/schedulers/scheduling_lcm.py +123 -29
  156. diffusers/schedulers/scheduling_lms_discrete.py +1 -3
  157. diffusers/schedulers/scheduling_pndm.py +1 -3
  158. diffusers/schedulers/scheduling_repaint.py +1 -3
  159. diffusers/schedulers/scheduling_unipc_multistep.py +15 -5
  160. diffusers/utils/__init__.py +1 -0
  161. diffusers/utils/constants.py +11 -6
  162. diffusers/utils/dummy_pt_objects.py +45 -0
  163. diffusers/utils/dummy_torch_and_transformers_objects.py +60 -0
  164. diffusers/utils/dynamic_modules_utils.py +4 -4
  165. diffusers/utils/export_utils.py +8 -3
  166. diffusers/utils/logging.py +10 -10
  167. diffusers/utils/outputs.py +5 -5
  168. diffusers/utils/peft_utils.py +88 -44
  169. diffusers/utils/torch_utils.py +2 -2
  170. diffusers/utils/versions.py +117 -0
  171. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/METADATA +83 -64
  172. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/RECORD +176 -157
  173. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/WHEEL +1 -1
  174. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/entry_points.txt +1 -0
  175. diffusers/loaders.py +0 -3336
  176. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/LICENSE +0 -0
  177. {diffusers-0.23.0.dist-info → diffusers-0.24.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,872 @@
1
+ import copy
2
+ from dataclasses import dataclass
3
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
4
+
5
+ import numpy as np
6
+ import PIL
7
+ import torch
8
+ import torch.nn.functional as F
9
+ from torch.nn.functional import grid_sample
10
+ from transformers import (
11
+ CLIPImageProcessor,
12
+ CLIPTextModel,
13
+ CLIPTextModelWithProjection,
14
+ CLIPTokenizer,
15
+ CLIPVisionModelWithProjection,
16
+ )
17
+
18
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
19
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
20
+ from diffusers.schedulers import KarrasDiffusionSchedulers
21
+ from diffusers.utils import BaseOutput
22
+ from diffusers.utils.torch_utils import randn_tensor
23
+
24
+
25
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.rearrange_0
26
+ def rearrange_0(tensor, f):
27
+ F, C, H, W = tensor.size()
28
+ tensor = torch.permute(torch.reshape(tensor, (F // f, f, C, H, W)), (0, 2, 1, 3, 4))
29
+ return tensor
30
+
31
+
32
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.rearrange_1
33
+ def rearrange_1(tensor):
34
+ B, C, F, H, W = tensor.size()
35
+ return torch.reshape(torch.permute(tensor, (0, 2, 1, 3, 4)), (B * F, C, H, W))
36
+
37
+
38
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.rearrange_3
39
+ def rearrange_3(tensor, f):
40
+ F, D, C = tensor.size()
41
+ return torch.reshape(tensor, (F // f, f, D, C))
42
+
43
+
44
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.rearrange_4
45
+ def rearrange_4(tensor):
46
+ B, F, D, C = tensor.size()
47
+ return torch.reshape(tensor, (B * F, D, C))
48
+
49
+
50
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor
51
+ class CrossFrameAttnProcessor:
52
+ """
53
+ Cross frame attention processor. Each frame attends the first frame.
54
+
55
+ Args:
56
+ batch_size: The number that represents actual batch size, other than the frames.
57
+ For example, calling unet with a single prompt and num_images_per_prompt=1, batch_size should be equal to
58
+ 2, due to classifier-free guidance.
59
+ """
60
+
61
+ def __init__(self, batch_size=2):
62
+ self.batch_size = batch_size
63
+
64
+ def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
65
+ batch_size, sequence_length, _ = hidden_states.shape
66
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
67
+ query = attn.to_q(hidden_states)
68
+
69
+ is_cross_attention = encoder_hidden_states is not None
70
+ if encoder_hidden_states is None:
71
+ encoder_hidden_states = hidden_states
72
+ elif attn.norm_cross:
73
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
74
+
75
+ key = attn.to_k(encoder_hidden_states)
76
+ value = attn.to_v(encoder_hidden_states)
77
+
78
+ # Cross Frame Attention
79
+ if not is_cross_attention:
80
+ video_length = key.size()[0] // self.batch_size
81
+ first_frame_index = [0] * video_length
82
+
83
+ # rearrange keys to have batch and frames in the 1st and 2nd dims respectively
84
+ key = rearrange_3(key, video_length)
85
+ key = key[:, first_frame_index]
86
+ # rearrange values to have batch and frames in the 1st and 2nd dims respectively
87
+ value = rearrange_3(value, video_length)
88
+ value = value[:, first_frame_index]
89
+
90
+ # rearrange back to original shape
91
+ key = rearrange_4(key)
92
+ value = rearrange_4(value)
93
+
94
+ query = attn.head_to_batch_dim(query)
95
+ key = attn.head_to_batch_dim(key)
96
+ value = attn.head_to_batch_dim(value)
97
+
98
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
99
+ hidden_states = torch.bmm(attention_probs, value)
100
+ hidden_states = attn.batch_to_head_dim(hidden_states)
101
+
102
+ # linear proj
103
+ hidden_states = attn.to_out[0](hidden_states)
104
+ # dropout
105
+ hidden_states = attn.to_out[1](hidden_states)
106
+
107
+ return hidden_states
108
+
109
+
110
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor2_0
111
+ class CrossFrameAttnProcessor2_0:
112
+ """
113
+ Cross frame attention processor with scaled_dot_product attention of Pytorch 2.0.
114
+
115
+ Args:
116
+ batch_size: The number that represents actual batch size, other than the frames.
117
+ For example, calling unet with a single prompt and num_images_per_prompt=1, batch_size should be equal to
118
+ 2, due to classifier-free guidance.
119
+ """
120
+
121
+ def __init__(self, batch_size=2):
122
+ if not hasattr(F, "scaled_dot_product_attention"):
123
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
124
+ self.batch_size = batch_size
125
+
126
+ def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
127
+ batch_size, sequence_length, _ = (
128
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
129
+ )
130
+ inner_dim = hidden_states.shape[-1]
131
+
132
+ if attention_mask is not None:
133
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
134
+ # scaled_dot_product_attention expects attention_mask shape to be
135
+ # (batch, heads, source_length, target_length)
136
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
137
+
138
+ query = attn.to_q(hidden_states)
139
+
140
+ is_cross_attention = encoder_hidden_states is not None
141
+ if encoder_hidden_states is None:
142
+ encoder_hidden_states = hidden_states
143
+ elif attn.norm_cross:
144
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
145
+
146
+ key = attn.to_k(encoder_hidden_states)
147
+ value = attn.to_v(encoder_hidden_states)
148
+
149
+ # Cross Frame Attention
150
+ if not is_cross_attention:
151
+ video_length = max(1, key.size()[0] // self.batch_size)
152
+ first_frame_index = [0] * video_length
153
+
154
+ # rearrange keys to have batch and frames in the 1st and 2nd dims respectively
155
+ key = rearrange_3(key, video_length)
156
+ key = key[:, first_frame_index]
157
+ # rearrange values to have batch and frames in the 1st and 2nd dims respectively
158
+ value = rearrange_3(value, video_length)
159
+ value = value[:, first_frame_index]
160
+
161
+ # rearrange back to original shape
162
+ key = rearrange_4(key)
163
+ value = rearrange_4(value)
164
+
165
+ head_dim = inner_dim // attn.heads
166
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
167
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
168
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
169
+
170
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
171
+ # TODO: add support for attn.scale when we move to Torch 2.1
172
+ hidden_states = F.scaled_dot_product_attention(
173
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
174
+ )
175
+
176
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
177
+ hidden_states = hidden_states.to(query.dtype)
178
+
179
+ # linear proj
180
+ hidden_states = attn.to_out[0](hidden_states)
181
+ # dropout
182
+ hidden_states = attn.to_out[1](hidden_states)
183
+ return hidden_states
184
+
185
+
186
+ @dataclass
187
+ class TextToVideoSDXLPipelineOutput(BaseOutput):
188
+ """
189
+ Output class for zero-shot text-to-video pipeline.
190
+
191
+ Args:
192
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
193
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
194
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
195
+ """
196
+
197
+ images: Union[List[PIL.Image.Image], np.ndarray]
198
+
199
+
200
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.coords_grid
201
+ def coords_grid(batch, ht, wd, device):
202
+ # Adapted from https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py
203
+ coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device))
204
+ coords = torch.stack(coords[::-1], dim=0).float()
205
+ return coords[None].repeat(batch, 1, 1, 1)
206
+
207
+
208
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.warp_single_latent
209
+ def warp_single_latent(latent, reference_flow):
210
+ """
211
+ Warp latent of a single frame with given flow
212
+
213
+ Args:
214
+ latent: latent code of a single frame
215
+ reference_flow: flow which to warp the latent with
216
+
217
+ Returns:
218
+ warped: warped latent
219
+ """
220
+ _, _, H, W = reference_flow.size()
221
+ _, _, h, w = latent.size()
222
+ coords0 = coords_grid(1, H, W, device=latent.device).to(latent.dtype)
223
+
224
+ coords_t0 = coords0 + reference_flow
225
+ coords_t0[:, 0] /= W
226
+ coords_t0[:, 1] /= H
227
+
228
+ coords_t0 = coords_t0 * 2.0 - 1.0
229
+ coords_t0 = F.interpolate(coords_t0, size=(h, w), mode="bilinear")
230
+ coords_t0 = torch.permute(coords_t0, (0, 2, 3, 1))
231
+
232
+ warped = grid_sample(latent, coords_t0, mode="nearest", padding_mode="reflection")
233
+ return warped
234
+
235
+
236
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.create_motion_field
237
+ def create_motion_field(motion_field_strength_x, motion_field_strength_y, frame_ids, device, dtype):
238
+ """
239
+ Create translation motion field
240
+
241
+ Args:
242
+ motion_field_strength_x: motion strength along x-axis
243
+ motion_field_strength_y: motion strength along y-axis
244
+ frame_ids: indexes of the frames the latents of which are being processed.
245
+ This is needed when we perform chunk-by-chunk inference
246
+ device: device
247
+ dtype: dtype
248
+
249
+ Returns:
250
+
251
+ """
252
+ seq_length = len(frame_ids)
253
+ reference_flow = torch.zeros((seq_length, 2, 512, 512), device=device, dtype=dtype)
254
+ for fr_idx in range(seq_length):
255
+ reference_flow[fr_idx, 0, :, :] = motion_field_strength_x * (frame_ids[fr_idx])
256
+ reference_flow[fr_idx, 1, :, :] = motion_field_strength_y * (frame_ids[fr_idx])
257
+ return reference_flow
258
+
259
+
260
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.create_motion_field_and_warp_latents
261
+ def create_motion_field_and_warp_latents(motion_field_strength_x, motion_field_strength_y, frame_ids, latents):
262
+ """
263
+ Creates translation motion and warps the latents accordingly
264
+
265
+ Args:
266
+ motion_field_strength_x: motion strength along x-axis
267
+ motion_field_strength_y: motion strength along y-axis
268
+ frame_ids: indexes of the frames the latents of which are being processed.
269
+ This is needed when we perform chunk-by-chunk inference
270
+ latents: latent codes of frames
271
+
272
+ Returns:
273
+ warped_latents: warped latents
274
+ """
275
+ motion_field = create_motion_field(
276
+ motion_field_strength_x=motion_field_strength_x,
277
+ motion_field_strength_y=motion_field_strength_y,
278
+ frame_ids=frame_ids,
279
+ device=latents.device,
280
+ dtype=latents.dtype,
281
+ )
282
+ warped_latents = latents.clone().detach()
283
+ for i in range(len(warped_latents)):
284
+ warped_latents[i] = warp_single_latent(latents[i][None], motion_field[i][None])
285
+ return warped_latents
286
+
287
+
288
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
289
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
290
+ """
291
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
292
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
293
+ """
294
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
295
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
296
+ # rescale the results from guidance (fixes overexposure)
297
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
298
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
299
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
300
+ return noise_cfg
301
+
302
+
303
+ class TextToVideoZeroSDXLPipeline(StableDiffusionXLPipeline):
304
+ r"""
305
+ Pipeline for zero-shot text-to-video generation using Stable Diffusion XL.
306
+
307
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
308
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
309
+
310
+ Args:
311
+ vae ([`AutoencoderKL`]):
312
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
313
+ text_encoder ([`CLIPTextModel`]):
314
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
315
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
316
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
317
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
318
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
319
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
320
+ specifically the
321
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
322
+ variant.
323
+ tokenizer (`CLIPTokenizer`):
324
+ Tokenizer of class
325
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
326
+ tokenizer_2 (`CLIPTokenizer`):
327
+ Second Tokenizer of class
328
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
329
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
330
+ scheduler ([`SchedulerMixin`]):
331
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
332
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
333
+ """
334
+
335
+ def __init__(
336
+ self,
337
+ vae: AutoencoderKL,
338
+ text_encoder: CLIPTextModel,
339
+ text_encoder_2: CLIPTextModelWithProjection,
340
+ tokenizer: CLIPTokenizer,
341
+ tokenizer_2: CLIPTokenizer,
342
+ unet: UNet2DConditionModel,
343
+ scheduler: KarrasDiffusionSchedulers,
344
+ image_encoder: CLIPVisionModelWithProjection = None,
345
+ feature_extractor: CLIPImageProcessor = None,
346
+ force_zeros_for_empty_prompt: bool = True,
347
+ add_watermarker: Optional[bool] = None,
348
+ ):
349
+ super().__init__(
350
+ vae=vae,
351
+ text_encoder=text_encoder,
352
+ text_encoder_2=text_encoder_2,
353
+ tokenizer=tokenizer,
354
+ tokenizer_2=tokenizer_2,
355
+ unet=unet,
356
+ scheduler=scheduler,
357
+ image_encoder=image_encoder,
358
+ feature_extractor=feature_extractor,
359
+ force_zeros_for_empty_prompt=force_zeros_for_empty_prompt,
360
+ add_watermarker=add_watermarker,
361
+ )
362
+ processor = (
363
+ CrossFrameAttnProcessor2_0(batch_size=2)
364
+ if hasattr(F, "scaled_dot_product_attention")
365
+ else CrossFrameAttnProcessor(batch_size=2)
366
+ )
367
+ self.unet.set_attn_processor(processor)
368
+
369
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoZeroPipeline.forward_loop
370
+ def forward_loop(self, x_t0, t0, t1, generator):
371
+ """
372
+ Perform DDPM forward process from time t0 to t1. This is the same as adding noise with corresponding variance.
373
+
374
+ Args:
375
+ x_t0:
376
+ Latent code at time t0.
377
+ t0:
378
+ Timestep at t0.
379
+ t1:
380
+ Timestamp at t1.
381
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
382
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
383
+ generation deterministic.
384
+
385
+ Returns:
386
+ x_t1:
387
+ Forward process applied to x_t0 from time t0 to t1.
388
+ """
389
+ eps = randn_tensor(x_t0.size(), generator=generator, dtype=x_t0.dtype, device=x_t0.device)
390
+ alpha_vec = torch.prod(self.scheduler.alphas[t0:t1])
391
+ x_t1 = torch.sqrt(alpha_vec) * x_t0 + torch.sqrt(1 - alpha_vec) * eps
392
+ return x_t1
393
+
394
+ def backward_loop(
395
+ self,
396
+ latents,
397
+ timesteps,
398
+ prompt_embeds,
399
+ guidance_scale,
400
+ callback,
401
+ callback_steps,
402
+ num_warmup_steps,
403
+ extra_step_kwargs,
404
+ add_text_embeds,
405
+ add_time_ids,
406
+ cross_attention_kwargs=None,
407
+ guidance_rescale: float = 0.0,
408
+ ):
409
+ """
410
+ Perform backward process given list of time steps
411
+
412
+ Args:
413
+ latents:
414
+ Latents at time timesteps[0].
415
+ timesteps:
416
+ Time steps along which to perform backward process.
417
+ prompt_embeds:
418
+ Pre-generated text embeddings.
419
+ guidance_scale:
420
+ A higher guidance scale value encourages the model to generate images closely linked to the text
421
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
422
+ callback (`Callable`, *optional*):
423
+ A function that calls every `callback_steps` steps during inference. The function is called with the
424
+ following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
425
+ callback_steps (`int`, *optional*, defaults to 1):
426
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
427
+ every step.
428
+ extra_step_kwargs:
429
+ Extra_step_kwargs.
430
+ cross_attention_kwargs:
431
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
432
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
433
+ num_warmup_steps:
434
+ number of warmup steps.
435
+
436
+ Returns:
437
+ latents: latents of backward process output at time timesteps[-1]
438
+ """
439
+
440
+ do_classifier_free_guidance = guidance_scale > 1.0
441
+ num_steps = (len(timesteps) - num_warmup_steps) // self.scheduler.order
442
+
443
+ with self.progress_bar(total=num_steps) as progress_bar:
444
+ for i, t in enumerate(timesteps):
445
+ # expand the latents if we are doing classifier free guidance
446
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
447
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
448
+
449
+ # predict the noise residual
450
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
451
+ noise_pred = self.unet(
452
+ latent_model_input,
453
+ t,
454
+ encoder_hidden_states=prompt_embeds,
455
+ cross_attention_kwargs=cross_attention_kwargs,
456
+ added_cond_kwargs=added_cond_kwargs,
457
+ return_dict=False,
458
+ )[0]
459
+
460
+ # perform guidance
461
+ if do_classifier_free_guidance:
462
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
463
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
464
+
465
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
466
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
467
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
468
+
469
+ # compute the previous noisy sample x_t -> x_t-1
470
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
471
+
472
+ # call the callback, if provided
473
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
474
+ progress_bar.update()
475
+ if callback is not None and i % callback_steps == 0:
476
+ callback(i, t, latents)
477
+ return latents.clone().detach()
478
+
479
+ @torch.no_grad()
480
+ def __call__(
481
+ self,
482
+ prompt: Union[str, List[str]],
483
+ prompt_2: Optional[Union[str, List[str]]] = None,
484
+ video_length: Optional[int] = 8,
485
+ height: Optional[int] = None,
486
+ width: Optional[int] = None,
487
+ num_inference_steps: int = 50,
488
+ denoising_end: Optional[float] = None,
489
+ guidance_scale: float = 7.5,
490
+ negative_prompt: Optional[Union[str, List[str]]] = None,
491
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
492
+ num_videos_per_prompt: Optional[int] = 1,
493
+ eta: float = 0.0,
494
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
495
+ frame_ids: Optional[List[int]] = None,
496
+ prompt_embeds: Optional[torch.FloatTensor] = None,
497
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
498
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
499
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
500
+ latents: Optional[torch.FloatTensor] = None,
501
+ motion_field_strength_x: float = 12,
502
+ motion_field_strength_y: float = 12,
503
+ output_type: Optional[str] = "tensor",
504
+ return_dict: bool = True,
505
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
506
+ callback_steps: int = 1,
507
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
508
+ guidance_rescale: float = 0.0,
509
+ original_size: Optional[Tuple[int, int]] = None,
510
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
511
+ target_size: Optional[Tuple[int, int]] = None,
512
+ t0: int = 44,
513
+ t1: int = 47,
514
+ ):
515
+ """
516
+ Function invoked when calling the pipeline for generation.
517
+
518
+ Args:
519
+ prompt (`str` or `List[str]`, *optional*):
520
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
521
+ instead.
522
+ prompt_2 (`str` or `List[str]`, *optional*):
523
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
524
+ used in both text-encoders
525
+ video_length (`int`, *optional*, defaults to 8):
526
+ The number of generated video frames.
527
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
528
+ The height in pixels of the generated image.
529
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
530
+ The width in pixels of the generated image.
531
+ num_inference_steps (`int`, *optional*, defaults to 50):
532
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
533
+ expense of slower inference.
534
+ denoising_end (`float`, *optional*):
535
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
536
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
537
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
538
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
539
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
540
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
541
+ guidance_scale (`float`, *optional*, defaults to 7.5):
542
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
543
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
544
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
545
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
546
+ usually at the expense of lower image quality.
547
+ negative_prompt (`str` or `List[str]`, *optional*):
548
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
549
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
550
+ less than `1`).
551
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
552
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
553
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
554
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
555
+ The number of videos to generate per prompt.
556
+ eta (`float`, *optional*, defaults to 0.0):
557
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
558
+ [`schedulers.DDIMScheduler`], will be ignored for others.
559
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
560
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
561
+ to make generation deterministic.
562
+ frame_ids (`List[int]`, *optional*):
563
+ Indexes of the frames that are being generated. This is used when generating longer videos
564
+ chunk-by-chunk.
565
+ prompt_embeds (`torch.FloatTensor`, *optional*):
566
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
567
+ provided, text embeddings will be generated from `prompt` input argument.
568
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
569
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
570
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
571
+ argument.
572
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
573
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
574
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
575
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
576
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
577
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
578
+ input argument.
579
+ latents (`torch.FloatTensor`, *optional*):
580
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
581
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
582
+ tensor will ge generated by sampling using the supplied random `generator`.
583
+ motion_field_strength_x (`float`, *optional*, defaults to 12):
584
+ Strength of motion in generated video along x-axis. See the [paper](https://arxiv.org/abs/2303.13439),
585
+ Sect. 3.3.1.
586
+ motion_field_strength_y (`float`, *optional*, defaults to 12):
587
+ Strength of motion in generated video along y-axis. See the [paper](https://arxiv.org/abs/2303.13439),
588
+ Sect. 3.3.1.
589
+ output_type (`str`, *optional*, defaults to `"pil"`):
590
+ The output format of the generate image. Choose between
591
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
592
+ return_dict (`bool`, *optional*, defaults to `True`):
593
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
594
+ of a plain tuple.
595
+ callback (`Callable`, *optional*):
596
+ A function that will be called every `callback_steps` steps during inference. The function will be
597
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
598
+ callback_steps (`int`, *optional*, defaults to 1):
599
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
600
+ called at every step.
601
+ cross_attention_kwargs (`dict`, *optional*):
602
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
603
+ `self.processor` in
604
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
605
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
606
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
607
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
608
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
609
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
610
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
611
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
612
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
613
+ explained in section 2.2 of
614
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
615
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
616
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
617
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
618
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
619
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
620
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
621
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
622
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
623
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
624
+ t0 (`int`, *optional*, defaults to 44):
625
+ Timestep t0. Should be in the range [0, num_inference_steps - 1]. See the
626
+ [paper](https://arxiv.org/abs/2303.13439), Sect. 3.3.1.
627
+ t1 (`int`, *optional*, defaults to 47):
628
+ Timestep t0. Should be in the range [t0 + 1, num_inference_steps - 1]. See the
629
+ [paper](https://arxiv.org/abs/2303.13439), Sect. 3.3.1.
630
+
631
+ Returns:
632
+ [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoSDXLPipelineOutput`] or
633
+ `tuple`: [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoSDXLPipelineOutput`]
634
+ if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
635
+ generated images.
636
+ """
637
+ assert video_length > 0
638
+ if frame_ids is None:
639
+ frame_ids = list(range(video_length))
640
+ assert len(frame_ids) == video_length
641
+
642
+ assert num_videos_per_prompt == 1
643
+
644
+ if isinstance(prompt, str):
645
+ prompt = [prompt]
646
+ if isinstance(negative_prompt, str):
647
+ negative_prompt = [negative_prompt]
648
+
649
+ # 0. Default height and width to unet
650
+ height = height or self.default_sample_size * self.vae_scale_factor
651
+ width = width or self.default_sample_size * self.vae_scale_factor
652
+
653
+ original_size = original_size or (height, width)
654
+ target_size = target_size or (height, width)
655
+
656
+ # 1. Check inputs. Raise error if not correct
657
+ self.check_inputs(
658
+ prompt,
659
+ prompt_2,
660
+ height,
661
+ width,
662
+ callback_steps,
663
+ negative_prompt,
664
+ negative_prompt_2,
665
+ prompt_embeds,
666
+ negative_prompt_embeds,
667
+ pooled_prompt_embeds,
668
+ negative_pooled_prompt_embeds,
669
+ )
670
+
671
+ # 2. Define call parameters
672
+ batch_size = (
673
+ 1 if isinstance(prompt, str) else len(prompt) if isinstance(prompt, list) else prompt_embeds.shape[0]
674
+ )
675
+ device = self._execution_device
676
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
677
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
678
+ # corresponds to doing no classifier free guidance.
679
+ do_classifier_free_guidance = guidance_scale > 1.0
680
+
681
+ # 3. Encode input prompt
682
+ text_encoder_lora_scale = (
683
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
684
+ )
685
+ (
686
+ prompt_embeds,
687
+ negative_prompt_embeds,
688
+ pooled_prompt_embeds,
689
+ negative_pooled_prompt_embeds,
690
+ ) = self.encode_prompt(
691
+ prompt=prompt,
692
+ prompt_2=prompt_2,
693
+ device=device,
694
+ num_images_per_prompt=num_videos_per_prompt,
695
+ do_classifier_free_guidance=do_classifier_free_guidance,
696
+ negative_prompt=negative_prompt,
697
+ negative_prompt_2=negative_prompt_2,
698
+ prompt_embeds=prompt_embeds,
699
+ negative_prompt_embeds=negative_prompt_embeds,
700
+ pooled_prompt_embeds=pooled_prompt_embeds,
701
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
702
+ lora_scale=text_encoder_lora_scale,
703
+ )
704
+
705
+ # 4. Prepare timesteps
706
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
707
+ timesteps = self.scheduler.timesteps
708
+
709
+ # 5. Prepare latent variables
710
+ num_channels_latents = self.unet.config.in_channels
711
+
712
+ latents = self.prepare_latents(
713
+ batch_size * num_videos_per_prompt,
714
+ num_channels_latents,
715
+ height,
716
+ width,
717
+ prompt_embeds.dtype,
718
+ device,
719
+ generator,
720
+ latents,
721
+ )
722
+
723
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
724
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
725
+
726
+ # 7. Prepare added time ids & embeddings
727
+ add_text_embeds = pooled_prompt_embeds
728
+ if self.text_encoder_2 is None:
729
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
730
+ else:
731
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
732
+
733
+ add_time_ids = self._get_add_time_ids(
734
+ original_size,
735
+ crops_coords_top_left,
736
+ target_size,
737
+ dtype=prompt_embeds.dtype,
738
+ text_encoder_projection_dim=text_encoder_projection_dim,
739
+ )
740
+
741
+ if do_classifier_free_guidance:
742
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
743
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
744
+ add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
745
+
746
+ prompt_embeds = prompt_embeds.to(device)
747
+ add_text_embeds = add_text_embeds.to(device)
748
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_videos_per_prompt, 1)
749
+
750
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
751
+
752
+ # Perform the first backward process up to time T_1
753
+ x_1_t1 = self.backward_loop(
754
+ timesteps=timesteps[: -t1 - 1],
755
+ prompt_embeds=prompt_embeds,
756
+ latents=latents,
757
+ guidance_scale=guidance_scale,
758
+ callback=callback,
759
+ callback_steps=callback_steps,
760
+ extra_step_kwargs=extra_step_kwargs,
761
+ num_warmup_steps=num_warmup_steps,
762
+ add_text_embeds=add_text_embeds,
763
+ add_time_ids=add_time_ids,
764
+ )
765
+
766
+ scheduler_copy = copy.deepcopy(self.scheduler)
767
+
768
+ # Perform the second backward process up to time T_0
769
+ x_1_t0 = self.backward_loop(
770
+ timesteps=timesteps[-t1 - 1 : -t0 - 1],
771
+ prompt_embeds=prompt_embeds,
772
+ latents=x_1_t1,
773
+ guidance_scale=guidance_scale,
774
+ callback=callback,
775
+ callback_steps=callback_steps,
776
+ extra_step_kwargs=extra_step_kwargs,
777
+ num_warmup_steps=0,
778
+ add_text_embeds=add_text_embeds,
779
+ add_time_ids=add_time_ids,
780
+ )
781
+
782
+ # Propagate first frame latents at time T_0 to remaining frames
783
+ x_2k_t0 = x_1_t0.repeat(video_length - 1, 1, 1, 1)
784
+
785
+ # Add motion in latents at time T_0
786
+ x_2k_t0 = create_motion_field_and_warp_latents(
787
+ motion_field_strength_x=motion_field_strength_x,
788
+ motion_field_strength_y=motion_field_strength_y,
789
+ latents=x_2k_t0,
790
+ frame_ids=frame_ids[1:],
791
+ )
792
+
793
+ # Perform forward process up to time T_1
794
+ x_2k_t1 = self.forward_loop(
795
+ x_t0=x_2k_t0,
796
+ t0=timesteps[-t0 - 1].to(torch.long),
797
+ t1=timesteps[-t1 - 1].to(torch.long),
798
+ generator=generator,
799
+ )
800
+
801
+ # Perform backward process from time T_1 to 0
802
+ latents = torch.cat([x_1_t1, x_2k_t1])
803
+
804
+ self.scheduler = scheduler_copy
805
+ timesteps = timesteps[-t1 - 1 :]
806
+
807
+ b, l, d = prompt_embeds.size()
808
+ prompt_embeds = prompt_embeds[:, None].repeat(1, video_length, 1, 1).reshape(b * video_length, l, d)
809
+
810
+ b, k = add_text_embeds.size()
811
+ add_text_embeds = add_text_embeds[:, None].repeat(1, video_length, 1).reshape(b * video_length, k)
812
+
813
+ b, k = add_time_ids.size()
814
+ add_time_ids = add_time_ids[:, None].repeat(1, video_length, 1).reshape(b * video_length, k)
815
+
816
+ # 7.1 Apply denoising_end
817
+ if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
818
+ discrete_timestep_cutoff = int(
819
+ round(
820
+ self.scheduler.config.num_train_timesteps
821
+ - (denoising_end * self.scheduler.config.num_train_timesteps)
822
+ )
823
+ )
824
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
825
+ timesteps = timesteps[:num_inference_steps]
826
+
827
+ x_1k_0 = self.backward_loop(
828
+ timesteps=timesteps,
829
+ prompt_embeds=prompt_embeds,
830
+ latents=latents,
831
+ guidance_scale=guidance_scale,
832
+ callback=callback,
833
+ callback_steps=callback_steps,
834
+ extra_step_kwargs=extra_step_kwargs,
835
+ num_warmup_steps=0,
836
+ add_text_embeds=add_text_embeds,
837
+ add_time_ids=add_time_ids,
838
+ )
839
+
840
+ latents = x_1k_0
841
+
842
+ if not output_type == "latent":
843
+ # make sure the VAE is in float32 mode, as it overflows in float16
844
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
845
+
846
+ if needs_upcasting:
847
+ self.upcast_vae()
848
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
849
+
850
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
851
+
852
+ # cast back to fp16 if needed
853
+ if needs_upcasting:
854
+ self.vae.to(dtype=torch.float16)
855
+ else:
856
+ image = latents
857
+ return TextToVideoSDXLPipelineOutput(images=image)
858
+
859
+ # apply watermark if available
860
+ if self.watermark is not None:
861
+ image = self.watermark.apply_watermark(image)
862
+
863
+ image = self.image_processor.postprocess(image, output_type=output_type)
864
+
865
+ # Offload last model to CPU manually for max memory savings
866
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
867
+ self.final_offload_hook.offload()
868
+
869
+ if not return_dict:
870
+ return (image,)
871
+
872
+ return TextToVideoSDXLPipelineOutput(images=image)