biopipen 0.21.0__py3-none-any.whl → 0.34.26__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- biopipen/__init__.py +1 -1
- biopipen/core/config.toml +28 -0
- biopipen/core/filters.py +79 -4
- biopipen/core/proc.py +12 -3
- biopipen/core/testing.py +75 -3
- biopipen/ns/bam.py +148 -6
- biopipen/ns/bed.py +75 -0
- biopipen/ns/cellranger.py +186 -0
- biopipen/ns/cellranger_pipeline.py +126 -0
- biopipen/ns/cnv.py +19 -3
- biopipen/ns/cnvkit.py +1 -1
- biopipen/ns/cnvkit_pipeline.py +20 -12
- biopipen/ns/delim.py +34 -35
- biopipen/ns/gene.py +68 -23
- biopipen/ns/gsea.py +63 -37
- biopipen/ns/misc.py +39 -14
- biopipen/ns/plot.py +304 -1
- biopipen/ns/protein.py +183 -0
- biopipen/ns/regulatory.py +290 -0
- biopipen/ns/rnaseq.py +142 -5
- biopipen/ns/scrna.py +2053 -473
- biopipen/ns/scrna_metabolic_landscape.py +228 -382
- biopipen/ns/snp.py +659 -0
- biopipen/ns/stats.py +484 -0
- biopipen/ns/tcr.py +683 -98
- biopipen/ns/vcf.py +236 -2
- biopipen/ns/web.py +97 -6
- biopipen/reports/bam/CNVpytor.svelte +4 -9
- biopipen/reports/cellranger/CellRangerCount.svelte +18 -0
- biopipen/reports/cellranger/CellRangerSummary.svelte +16 -0
- biopipen/reports/cellranger/CellRangerVdj.svelte +18 -0
- biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
- biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
- biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
- biopipen/reports/common.svelte +15 -0
- biopipen/reports/protein/ProdigySummary.svelte +16 -0
- biopipen/reports/scrna/CellsDistribution.svelte +4 -39
- biopipen/reports/scrna/DimPlots.svelte +1 -1
- biopipen/reports/scrna/MarkersFinder.svelte +6 -126
- biopipen/reports/scrna/MetaMarkers.svelte +3 -75
- biopipen/reports/scrna/RadarPlots.svelte +4 -20
- biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +61 -22
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +88 -82
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +70 -10
- biopipen/reports/snp/PlinkCallRate.svelte +24 -0
- biopipen/reports/snp/PlinkFreq.svelte +18 -0
- biopipen/reports/snp/PlinkHWE.svelte +18 -0
- biopipen/reports/snp/PlinkHet.svelte +18 -0
- biopipen/reports/snp/PlinkIBD.svelte +18 -0
- biopipen/reports/tcr/CDR3AAPhyschem.svelte +19 -66
- biopipen/reports/tcr/ClonalStats.svelte +16 -0
- biopipen/reports/tcr/CloneResidency.svelte +3 -93
- biopipen/reports/tcr/Immunarch.svelte +4 -155
- biopipen/reports/tcr/TCRClusterStats.svelte +3 -45
- biopipen/reports/tcr/TESSA.svelte +11 -28
- biopipen/reports/utils/misc.liq +22 -7
- biopipen/scripts/bam/BamMerge.py +11 -15
- biopipen/scripts/bam/BamSampling.py +90 -0
- biopipen/scripts/bam/BamSort.py +141 -0
- biopipen/scripts/bam/BamSplitChroms.py +10 -10
- biopipen/scripts/bam/BamSubsetByBed.py +38 -0
- biopipen/scripts/bam/CNAClinic.R +41 -5
- biopipen/scripts/bam/CNVpytor.py +153 -54
- biopipen/scripts/bam/ControlFREEC.py +13 -14
- biopipen/scripts/bam/SamtoolsView.py +33 -0
- biopipen/scripts/bed/Bed2Vcf.py +5 -5
- biopipen/scripts/bed/BedConsensus.py +5 -5
- biopipen/scripts/bed/BedLiftOver.sh +6 -4
- biopipen/scripts/bed/BedtoolsIntersect.py +54 -0
- biopipen/scripts/bed/BedtoolsMakeWindows.py +47 -0
- biopipen/scripts/bed/BedtoolsMerge.py +4 -4
- biopipen/scripts/cellranger/CellRangerCount.py +138 -0
- biopipen/scripts/cellranger/CellRangerSummary.R +181 -0
- biopipen/scripts/cellranger/CellRangerVdj.py +112 -0
- biopipen/scripts/cnv/AneuploidyScore.R +55 -20
- biopipen/scripts/cnv/AneuploidyScoreSummary.R +221 -163
- biopipen/scripts/cnv/TMADScore.R +25 -9
- biopipen/scripts/cnv/TMADScoreSummary.R +57 -86
- biopipen/scripts/cnvkit/CNVkitAccess.py +7 -6
- biopipen/scripts/cnvkit/CNVkitAutobin.py +26 -18
- biopipen/scripts/cnvkit/CNVkitBatch.py +6 -6
- biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
- biopipen/scripts/cnvkit/CNVkitCoverage.py +4 -3
- biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
- biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
- biopipen/scripts/cnvkit/CNVkitGuessBaits.py +12 -8
- biopipen/scripts/cnvkit/CNVkitHeatmap.py +5 -5
- biopipen/scripts/cnvkit/CNVkitReference.py +6 -5
- biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
- biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
- biopipen/scripts/cnvkit/guess_baits.py +166 -93
- biopipen/scripts/delim/RowsBinder.R +1 -1
- biopipen/scripts/delim/SampleInfo.R +116 -118
- biopipen/scripts/gene/GeneNameConversion.R +67 -0
- biopipen/scripts/gene/GenePromoters.R +61 -0
- biopipen/scripts/gsea/Enrichr.R +5 -5
- biopipen/scripts/gsea/FGSEA.R +184 -50
- biopipen/scripts/gsea/GSEA.R +2 -2
- biopipen/scripts/gsea/PreRank.R +5 -5
- biopipen/scripts/misc/Config2File.py +2 -2
- biopipen/scripts/misc/Plot.R +80 -0
- biopipen/scripts/misc/Shell.sh +15 -0
- biopipen/scripts/misc/Str2File.py +2 -2
- biopipen/scripts/plot/Heatmap.R +3 -3
- biopipen/scripts/plot/Manhattan.R +147 -0
- biopipen/scripts/plot/QQPlot.R +146 -0
- biopipen/scripts/plot/ROC.R +88 -0
- biopipen/scripts/plot/Scatter.R +112 -0
- biopipen/scripts/plot/VennDiagram.R +5 -9
- biopipen/scripts/protein/MMCIF2PDB.py +33 -0
- biopipen/scripts/protein/PDB2Fasta.py +60 -0
- biopipen/scripts/protein/Prodigy.py +119 -0
- biopipen/scripts/protein/ProdigySummary.R +140 -0
- biopipen/scripts/protein/RMSD.py +178 -0
- biopipen/scripts/regulatory/MotifAffinityTest.R +102 -0
- biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +127 -0
- biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +104 -0
- biopipen/scripts/regulatory/MotifScan.py +159 -0
- biopipen/scripts/regulatory/VariantMotifPlot.R +78 -0
- biopipen/scripts/regulatory/motifs-common.R +324 -0
- biopipen/scripts/rnaseq/Simulation-ESCO.R +180 -0
- biopipen/scripts/rnaseq/Simulation-RUVcorr.R +45 -0
- biopipen/scripts/rnaseq/Simulation.R +21 -0
- biopipen/scripts/rnaseq/UnitConversion.R +325 -54
- biopipen/scripts/scrna/AnnData2Seurat.R +40 -0
- biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
- biopipen/scripts/scrna/CellCellCommunication.py +150 -0
- biopipen/scripts/scrna/CellCellCommunicationPlots.R +93 -0
- biopipen/scripts/scrna/CellSNPLite.py +30 -0
- biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +185 -0
- biopipen/scripts/scrna/CellTypeAnnotation-direct.R +68 -31
- biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +27 -22
- biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +28 -20
- biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +48 -25
- biopipen/scripts/scrna/CellTypeAnnotation.R +37 -1
- biopipen/scripts/scrna/CellsDistribution.R +456 -167
- biopipen/scripts/scrna/DimPlots.R +1 -1
- biopipen/scripts/scrna/ExprImputation-alra.R +109 -0
- biopipen/scripts/scrna/ExprImputation-rmagic.R +256 -0
- biopipen/scripts/scrna/{ExprImpution-scimpute.R → ExprImputation-scimpute.R} +8 -5
- biopipen/scripts/scrna/ExprImputation.R +7 -0
- biopipen/scripts/scrna/LoomTo10X.R +51 -0
- biopipen/scripts/scrna/MQuad.py +25 -0
- biopipen/scripts/scrna/MarkersFinder.R +679 -400
- biopipen/scripts/scrna/MetaMarkers.R +265 -161
- biopipen/scripts/scrna/ModuleScoreCalculator.R +66 -11
- biopipen/scripts/scrna/PseudoBulkDEG.R +678 -0
- biopipen/scripts/scrna/RadarPlots.R +355 -134
- biopipen/scripts/scrna/ScFGSEA.R +298 -100
- biopipen/scripts/scrna/ScSimulation.R +65 -0
- biopipen/scripts/scrna/ScVelo.py +617 -0
- biopipen/scripts/scrna/Seurat2AnnData.R +7 -0
- biopipen/scripts/scrna/SeuratClusterStats-clustree.R +87 -0
- biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +36 -30
- biopipen/scripts/scrna/SeuratClusterStats-features.R +138 -187
- biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +81 -0
- biopipen/scripts/scrna/SeuratClusterStats-stats.R +78 -89
- biopipen/scripts/scrna/SeuratClusterStats.R +47 -10
- biopipen/scripts/scrna/SeuratClustering.R +36 -233
- biopipen/scripts/scrna/SeuratLoading.R +2 -2
- biopipen/scripts/scrna/SeuratMap2Ref.R +84 -113
- biopipen/scripts/scrna/SeuratMetadataMutater.R +16 -6
- biopipen/scripts/scrna/SeuratPreparing.R +223 -173
- biopipen/scripts/scrna/SeuratSubClustering.R +64 -0
- biopipen/scripts/scrna/SeuratTo10X.R +27 -0
- biopipen/scripts/scrna/Slingshot.R +65 -0
- biopipen/scripts/scrna/Subset10X.R +2 -2
- biopipen/scripts/scrna/TopExpressingGenes.R +169 -135
- biopipen/scripts/scrna/celltypist-wrapper.py +195 -0
- biopipen/scripts/scrna/scvelo_paga.py +313 -0
- biopipen/scripts/scrna/seurat_anndata_conversion.py +98 -0
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +447 -82
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +348 -241
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +188 -166
- biopipen/scripts/snp/MatrixEQTL.R +217 -0
- biopipen/scripts/snp/Plink2GTMat.py +148 -0
- biopipen/scripts/snp/PlinkCallRate.R +199 -0
- biopipen/scripts/snp/PlinkFilter.py +100 -0
- biopipen/scripts/snp/PlinkFreq.R +291 -0
- biopipen/scripts/snp/PlinkFromVcf.py +81 -0
- biopipen/scripts/snp/PlinkHWE.R +85 -0
- biopipen/scripts/snp/PlinkHet.R +96 -0
- biopipen/scripts/snp/PlinkIBD.R +196 -0
- biopipen/scripts/snp/PlinkSimulation.py +124 -0
- biopipen/scripts/snp/PlinkUpdateName.py +124 -0
- biopipen/scripts/stats/ChowTest.R +146 -0
- biopipen/scripts/stats/DiffCoexpr.R +152 -0
- biopipen/scripts/stats/LiquidAssoc.R +135 -0
- biopipen/scripts/stats/Mediation.R +108 -0
- biopipen/scripts/stats/MetaPvalue.R +130 -0
- biopipen/scripts/stats/MetaPvalue1.R +74 -0
- biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
- biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
- biopipen/scripts/tcr/Attach2Seurat.R +3 -2
- biopipen/scripts/tcr/CDR3AAPhyschem.R +211 -143
- biopipen/scripts/tcr/CDR3Clustering.R +343 -0
- biopipen/scripts/tcr/ClonalStats.R +526 -0
- biopipen/scripts/tcr/CloneResidency.R +255 -131
- biopipen/scripts/tcr/CloneSizeQQPlot.R +4 -4
- biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
- biopipen/scripts/tcr/GIANA/GIANA4.py +1362 -789
- biopipen/scripts/tcr/GIANA/query.py +164 -162
- biopipen/scripts/tcr/Immunarch-basic.R +31 -9
- biopipen/scripts/tcr/Immunarch-clonality.R +25 -5
- biopipen/scripts/tcr/Immunarch-diversity.R +352 -134
- biopipen/scripts/tcr/Immunarch-geneusage.R +45 -5
- biopipen/scripts/tcr/Immunarch-kmer.R +68 -8
- biopipen/scripts/tcr/Immunarch-overlap.R +84 -4
- biopipen/scripts/tcr/Immunarch-spectratyping.R +35 -6
- biopipen/scripts/tcr/Immunarch-tracking.R +38 -6
- biopipen/scripts/tcr/Immunarch-vjjunc.R +165 -0
- biopipen/scripts/tcr/Immunarch.R +63 -11
- biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
- biopipen/scripts/tcr/ImmunarchFilter.R +4 -4
- biopipen/scripts/tcr/ImmunarchLoading.R +38 -29
- biopipen/scripts/tcr/SampleDiversity.R +1 -1
- biopipen/scripts/tcr/ScRepCombiningExpression.R +40 -0
- biopipen/scripts/tcr/ScRepLoading.R +166 -0
- biopipen/scripts/tcr/TCRClusterStats.R +176 -22
- biopipen/scripts/tcr/TCRDock.py +110 -0
- biopipen/scripts/tcr/TESSA.R +102 -118
- biopipen/scripts/tcr/VJUsage.R +5 -5
- biopipen/scripts/tcr/immunarch-patched.R +142 -0
- biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
- biopipen/scripts/vcf/BcftoolsAnnotate.py +91 -0
- biopipen/scripts/vcf/BcftoolsFilter.py +90 -0
- biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
- biopipen/scripts/vcf/BcftoolsSort.py +113 -0
- biopipen/scripts/vcf/BcftoolsView.py +73 -0
- biopipen/scripts/vcf/TruvariBench.sh +14 -7
- biopipen/scripts/vcf/TruvariBenchSummary.R +16 -13
- biopipen/scripts/vcf/TruvariConsistency.R +1 -1
- biopipen/scripts/vcf/Vcf2Bed.py +2 -2
- biopipen/scripts/vcf/VcfAnno.py +11 -11
- biopipen/scripts/vcf/VcfDownSample.sh +22 -10
- biopipen/scripts/vcf/VcfFilter.py +5 -5
- biopipen/scripts/vcf/VcfFix.py +7 -7
- biopipen/scripts/vcf/VcfFix_utils.py +13 -4
- biopipen/scripts/vcf/VcfIndex.py +3 -3
- biopipen/scripts/vcf/VcfIntersect.py +3 -3
- biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
- biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
- biopipen/scripts/vcf/bcftools_utils.py +52 -0
- biopipen/scripts/web/Download.py +8 -4
- biopipen/scripts/web/DownloadList.py +5 -5
- biopipen/scripts/web/GCloudStorageDownloadBucket.py +82 -0
- biopipen/scripts/web/GCloudStorageDownloadFile.py +23 -0
- biopipen/scripts/web/gcloud_common.py +49 -0
- biopipen/utils/gene.py +108 -60
- biopipen/utils/misc.py +146 -20
- biopipen/utils/reference.py +64 -20
- biopipen/utils/reporter.py +177 -0
- biopipen/utils/vcf.py +1 -1
- biopipen-0.34.26.dist-info/METADATA +27 -0
- biopipen-0.34.26.dist-info/RECORD +292 -0
- {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
- {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +6 -2
- biopipen/ns/bcftools.py +0 -111
- biopipen/ns/scrna_basic.py +0 -255
- biopipen/reports/delim/SampleInfo.svelte +0 -36
- biopipen/reports/scrna/GeneExpressionInvistigation.svelte +0 -32
- biopipen/reports/scrna/ScFGSEA.svelte +0 -35
- biopipen/reports/scrna/SeuratClusterStats.svelte +0 -82
- biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -20
- biopipen/reports/scrna/SeuratPreparing.svelte +0 -38
- biopipen/reports/scrna/TopExpressingGenes.svelte +0 -55
- biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -31
- biopipen/reports/utils/gsea.liq +0 -110
- biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -42
- biopipen/scripts/bcftools/BcftoolsFilter.py +0 -79
- biopipen/scripts/bcftools/BcftoolsSort.py +0 -19
- biopipen/scripts/gene/GeneNameConversion.py +0 -66
- biopipen/scripts/scrna/ExprImpution-alra.R +0 -32
- biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -29
- biopipen/scripts/scrna/ExprImpution.R +0 -7
- biopipen/scripts/scrna/GeneExpressionInvistigation.R +0 -132
- biopipen/scripts/scrna/Write10X.R +0 -11
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -150
- biopipen/scripts/tcr/TCRClustering.R +0 -280
- biopipen/utils/common_docstrs.py +0 -61
- biopipen/utils/gene.R +0 -49
- biopipen/utils/gsea.R +0 -193
- biopipen/utils/io.R +0 -20
- biopipen/utils/misc.R +0 -114
- biopipen/utils/mutate_helpers.R +0 -433
- biopipen/utils/plot.R +0 -173
- biopipen/utils/rnaseq.R +0 -48
- biopipen/utils/single_cell.R +0 -115
- biopipen-0.21.0.dist-info/METADATA +0 -22
- biopipen-0.21.0.dist-info/RECORD +0 -218
|
@@ -1,150 +0,0 @@
|
|
|
1
|
-
source("{{biopipen_dir}}/utils/misc.R")
|
|
2
|
-
source("{{biopipen_dir}}/utils/gsea.R")
|
|
3
|
-
|
|
4
|
-
library(parallel)
|
|
5
|
-
library(scater)
|
|
6
|
-
library(Seurat)
|
|
7
|
-
|
|
8
|
-
sobjfile <- {{ in.sobjfile | r }}
|
|
9
|
-
outdir <- {{ out.outdir | r }}
|
|
10
|
-
gmtfile <- {{ envs.gmtfile | r }}
|
|
11
|
-
ncores <- {{ envs.ncores | r }}
|
|
12
|
-
fgsea <- {{ envs.fgsea | r }}
|
|
13
|
-
top <- {{ envs.top | r }}
|
|
14
|
-
prerank_method <- {{ envs.prerank_method | r }}
|
|
15
|
-
grouping <- {{ envs.grouping | r }}
|
|
16
|
-
grouping_prefix <- {{ envs.grouping_prefix | r }}
|
|
17
|
-
subsetting_cols <- {{ envs.subsetting | r }}
|
|
18
|
-
subsetting_prefix <- {{ envs.subsetting_prefix | r }}
|
|
19
|
-
subsetting_comparison <- {{ envs.subsetting_comparison | r }}
|
|
20
|
-
|
|
21
|
-
if (!is.null(grouping_prefix) && nchar(grouping_prefix) > 0) {
|
|
22
|
-
grouping_prefix = paste0(grouping_prefix, "_")
|
|
23
|
-
}
|
|
24
|
-
|
|
25
|
-
if (!is.null(subsetting_prefix) && nchar(subsetting_prefix) > 0) {
|
|
26
|
-
subsetting_prefix = paste0(subsetting_prefix, "_")
|
|
27
|
-
}
|
|
28
|
-
|
|
29
|
-
set.seed(8525)
|
|
30
|
-
|
|
31
|
-
## gmt_pathways is copied from fgsea package.
|
|
32
|
-
gmt_pathways <- function(gmt_file) {
|
|
33
|
-
pathway_lines <- strsplit(readLines(gmt_file), "\t")
|
|
34
|
-
pathways <- lapply(pathway_lines, tail, -2)
|
|
35
|
-
names(pathways) <- sapply(pathway_lines, head, 1)
|
|
36
|
-
pathways
|
|
37
|
-
}
|
|
38
|
-
|
|
39
|
-
pathways <- gmt_pathways(gmtfile)
|
|
40
|
-
metabolics <- unique(as.vector(unname(unlist(pathways))))
|
|
41
|
-
sobj <- readRDS(sobjfile)
|
|
42
|
-
|
|
43
|
-
do_one_comparison <- function(
|
|
44
|
-
obj,
|
|
45
|
-
compname,
|
|
46
|
-
case,
|
|
47
|
-
control,
|
|
48
|
-
groupdir,
|
|
49
|
-
subset_col,
|
|
50
|
-
subset_prefix
|
|
51
|
-
) {
|
|
52
|
-
print(paste(" Design:", compname, "(", case, ",", control, ")"))
|
|
53
|
-
case_code = paste0("subset(obj, subset = ", subset_col, " == '", case, "')")
|
|
54
|
-
case_obj = tryCatch({
|
|
55
|
-
eval(parse(text = case_code))
|
|
56
|
-
}, error = function(e) {
|
|
57
|
-
NULL
|
|
58
|
-
})
|
|
59
|
-
if (is.null(case_obj)) {
|
|
60
|
-
print(" Skip (not enough cells in case)")
|
|
61
|
-
return (NULL)
|
|
62
|
-
}
|
|
63
|
-
control_code = paste0("subset(obj, subset = ", subset_col, " == '", control, "')")
|
|
64
|
-
control_obj = tryCatch({
|
|
65
|
-
eval(parse(text = control_code))
|
|
66
|
-
}, error = function(e) {
|
|
67
|
-
NULL
|
|
68
|
-
})
|
|
69
|
-
if (is.null(control_obj)) {
|
|
70
|
-
print(" Skip (not enough cells in control)")
|
|
71
|
-
return (NULL)
|
|
72
|
-
}
|
|
73
|
-
exprs_case = GetAssayData(case_obj)
|
|
74
|
-
exprs_control = GetAssayData(control_obj)
|
|
75
|
-
|
|
76
|
-
odir = file.path(groupdir, paste0(subset_prefix, compname))
|
|
77
|
-
dir.create(odir, showWarnings = FALSE)
|
|
78
|
-
if (ncol(exprs_case) < 3 || ncol(exprs_control) < 3) {
|
|
79
|
-
print(" Skip (not enough cells)")
|
|
80
|
-
return (NULL)
|
|
81
|
-
}
|
|
82
|
-
if (fgsea) {
|
|
83
|
-
ranks = prerank(
|
|
84
|
-
cbind(exprs_case, exprs_control),
|
|
85
|
-
case,
|
|
86
|
-
control,
|
|
87
|
-
c(rep(case, ncol(exprs_case)), rep(control, ncol(exprs_control))),
|
|
88
|
-
method = prerank_method
|
|
89
|
-
)
|
|
90
|
-
|
|
91
|
-
runFGSEA(
|
|
92
|
-
ranks,
|
|
93
|
-
gmtfile,
|
|
94
|
-
top = top,
|
|
95
|
-
outdir = odir,
|
|
96
|
-
envs = list(nproc = 1)
|
|
97
|
-
)
|
|
98
|
-
} else {
|
|
99
|
-
runGSEA(
|
|
100
|
-
cbind(exprs_case, exprs_control),
|
|
101
|
-
c(rep(case, ncol(exprs_case)), rep(control, ncol(exprs_control))),
|
|
102
|
-
gmtfile,
|
|
103
|
-
odir
|
|
104
|
-
)
|
|
105
|
-
}
|
|
106
|
-
}
|
|
107
|
-
|
|
108
|
-
do_one_group <- function(group) {
|
|
109
|
-
print(paste("- Group:", group, "..."))
|
|
110
|
-
|
|
111
|
-
genes = intersect(metabolics, rownames(sobj))
|
|
112
|
-
group_code = paste0(
|
|
113
|
-
"subset(sobj, subset = ", grouping, " == '", group, "', features = genes)"
|
|
114
|
-
)
|
|
115
|
-
obj = eval(parse(text = group_code))
|
|
116
|
-
groupname = paste0(grouping_prefix, group)
|
|
117
|
-
groupdir = file.path(outdir, groupname)
|
|
118
|
-
dir.create(groupdir, showWarnings = FALSE)
|
|
119
|
-
|
|
120
|
-
for (i in seq_along(subsetting_comparison)) {
|
|
121
|
-
sci = subsetting_comparison[[i]]
|
|
122
|
-
if (is.null(sci) || length(sci) == 0) {
|
|
123
|
-
next
|
|
124
|
-
}
|
|
125
|
-
sapply(
|
|
126
|
-
names(sci),
|
|
127
|
-
function(compname) {
|
|
128
|
-
do_one_comparison(
|
|
129
|
-
obj,
|
|
130
|
-
compname,
|
|
131
|
-
sci[[compname]][1],
|
|
132
|
-
sci[[compname]][2],
|
|
133
|
-
groupdir,
|
|
134
|
-
subsetting_cols[i],
|
|
135
|
-
subsetting_prefix[i]
|
|
136
|
-
)
|
|
137
|
-
}
|
|
138
|
-
)
|
|
139
|
-
}
|
|
140
|
-
}
|
|
141
|
-
|
|
142
|
-
groups = as.character(unique(sobj@meta.data[[grouping]]))
|
|
143
|
-
if (ncores == 1) {
|
|
144
|
-
lapply(groups, do_one_group)
|
|
145
|
-
} else {
|
|
146
|
-
x = mclapply(groups, do_one_group, mc.cores = ncores)
|
|
147
|
-
if (any(unlist(lapply(x, class)) == "try-error")) {
|
|
148
|
-
stop("mclapply error")
|
|
149
|
-
}
|
|
150
|
-
}
|
|
@@ -1,280 +0,0 @@
|
|
|
1
|
-
|
|
2
|
-
# # https://stackoverflow.com/questions/50145643/unable-to-change-python-path-in-reticulate
|
|
3
|
-
# python = Sys.which({{envs.python | r}})
|
|
4
|
-
# Sys.setenv(RETICULATE_PYTHON = python)
|
|
5
|
-
# library(reticulate)
|
|
6
|
-
|
|
7
|
-
library(immunarch)
|
|
8
|
-
library(dplyr)
|
|
9
|
-
library(tidyr)
|
|
10
|
-
library(tibble)
|
|
11
|
-
|
|
12
|
-
immfile = {{in.immfile | r}}
|
|
13
|
-
outdir = normalizePath({{job.outdir | r}})
|
|
14
|
-
outfile = {{out.immfile | r}}
|
|
15
|
-
clusterfile = {{out.clusterfile | r}}
|
|
16
|
-
tool = {{envs.tool | r}}
|
|
17
|
-
python = {{envs.python | r}}
|
|
18
|
-
on_multi = {{envs.on_multi | r}}
|
|
19
|
-
args = {{envs.args | r}}
|
|
20
|
-
|
|
21
|
-
setwd(outdir)
|
|
22
|
-
|
|
23
|
-
immdata = readRDS(immfile)
|
|
24
|
-
if (on_multi) {
|
|
25
|
-
seqdata = immdata$multi
|
|
26
|
-
} else {
|
|
27
|
-
seqdata = immdata$data
|
|
28
|
-
}
|
|
29
|
-
|
|
30
|
-
get_cdr3aa_df = function() {
|
|
31
|
-
out = NULL
|
|
32
|
-
for (sample in names(immdata$data)) {
|
|
33
|
-
tmpdf = immdata$data[[sample]] %>%
|
|
34
|
-
select(Barcode, CDR3.aa) %>%
|
|
35
|
-
separate_rows(Barcode, sep = ";") %>%
|
|
36
|
-
mutate(Barcode = paste0(sample, "_", Barcode))
|
|
37
|
-
out = bind_rows(out, tmpdf)
|
|
38
|
-
}
|
|
39
|
-
out
|
|
40
|
-
}
|
|
41
|
-
cdr3aa_df = get_cdr3aa_df()
|
|
42
|
-
|
|
43
|
-
prepare_clustcr = function(clustcr_dir) {
|
|
44
|
-
clustering_args = ""
|
|
45
|
-
for (name in names(args)) {
|
|
46
|
-
value = args[[name]]
|
|
47
|
-
if (is.logical(value)) {
|
|
48
|
-
value = tools::toTitleCase(as.character(value))
|
|
49
|
-
} else if (is.character(value)) {
|
|
50
|
-
value = paste0("'", value, "'")
|
|
51
|
-
}
|
|
52
|
-
clustering_args = paste(name, "=", value)
|
|
53
|
-
}
|
|
54
|
-
clustcr_source = '
|
|
55
|
-
import sys
|
|
56
|
-
import pandas as pd
|
|
57
|
-
import clustcr
|
|
58
|
-
|
|
59
|
-
clustcr_dir, clustcr_infile = sys.argv[1:3]
|
|
60
|
-
cdr3df = pd.read_csv(clustcr_infile, index_col=None)
|
|
61
|
-
cdr3 = cdr3df.iloc[:, 0]
|
|
62
|
-
|
|
63
|
-
clustering = clustcr.Clustering(%s)
|
|
64
|
-
output = clustering.fit(cdr3)
|
|
65
|
-
output.clusters_df.to_csv(clustcr_dir + "/clusters.txt", sep="\\t", index=False)
|
|
66
|
-
'
|
|
67
|
-
clustcr_file = file.path(clustcr_dir, "_clustcr.py")
|
|
68
|
-
cat(sprintf(clustcr_source, clustering_args), file=clustcr_file)
|
|
69
|
-
clustcr_file
|
|
70
|
-
}
|
|
71
|
-
|
|
72
|
-
clean_clustcr_output = function(clustcr_outfile, clustcr_input) {
|
|
73
|
-
clustcr_out = read.delim2(clustcr_outfile, header=TRUE, row.names = NULL)
|
|
74
|
-
colnames(clustcr_out) = c("CDR3.aa", "TCR_Cluster")
|
|
75
|
-
in_cdr3 = read.delim2(clustcr_input, header=TRUE, row.names = NULL)
|
|
76
|
-
out = left_join(in_cdr3, distinct(clustcr_out), by=c("CDR3.aa")) %>%
|
|
77
|
-
mutate(
|
|
78
|
-
TCR_Cluster = if_else(
|
|
79
|
-
is.na(TCR_Cluster),
|
|
80
|
-
paste0("S_", row_number()),
|
|
81
|
-
paste0("M_", as.character(TCR_Cluster))
|
|
82
|
-
)
|
|
83
|
-
)
|
|
84
|
-
out = left_join(
|
|
85
|
-
cdr3aa_df,
|
|
86
|
-
out,
|
|
87
|
-
by = "CDR3.aa"
|
|
88
|
-
)
|
|
89
|
-
df = out %>%
|
|
90
|
-
select(Barcode, TCR_Cluster) %>%
|
|
91
|
-
add_count(TCR_Cluster, name="TCR_Cluster_Size") %>%
|
|
92
|
-
distinct(Barcode, .keep_all = TRUE) %>%
|
|
93
|
-
add_count(TCR_Cluster, name="TCR_Cluster_Size1") %>%
|
|
94
|
-
column_to_rownames("Barcode")
|
|
95
|
-
|
|
96
|
-
write.table(df, clusterfile, row.names=T, col.names=T, quote=F, sep="\t")
|
|
97
|
-
out
|
|
98
|
-
}
|
|
99
|
-
|
|
100
|
-
run_clustcr = function() {
|
|
101
|
-
print(paste("Using tool:", "ClusTCR"))
|
|
102
|
-
clustcr_dir = file.path(outdir, "ClusTCR_Output")
|
|
103
|
-
dir.create(clustcr_dir, showWarnings = FALSE)
|
|
104
|
-
clustcr_file = prepare_clustcr(clustcr_dir)
|
|
105
|
-
clustcr_input = prepare_input()
|
|
106
|
-
clustcr_cmd = paste(
|
|
107
|
-
python,
|
|
108
|
-
clustcr_file,
|
|
109
|
-
clustcr_dir,
|
|
110
|
-
clustcr_input
|
|
111
|
-
)
|
|
112
|
-
print("Running:")
|
|
113
|
-
print(clustcr_cmd)
|
|
114
|
-
rc = system(clustcr_cmd)
|
|
115
|
-
if (rc != 0) {
|
|
116
|
-
quit(status=rc)
|
|
117
|
-
}
|
|
118
|
-
clustcr_outfile = file.path(clustcr_dir, "clusters.txt")
|
|
119
|
-
clean_clustcr_output(clustcr_outfile, clustcr_input)
|
|
120
|
-
}
|
|
121
|
-
|
|
122
|
-
prepare_giana = function() {
|
|
123
|
-
giana_srcdir = "{{biopipen_dir}}/scripts/tcr/GIANA"
|
|
124
|
-
|
|
125
|
-
# # The source code of GIANA is downloaded now to giana_srcdir
|
|
126
|
-
# giana_file = file.path(giana_srcdir, "GIANA.py")
|
|
127
|
-
# giana4_file = file.path(giana_srcdir, "GIANA4.py")
|
|
128
|
-
# giana_query = file.path(giana_srcdir, "query.py")
|
|
129
|
-
# giana_trbv = file.path(giana_srcdir, "Imgt_Human_TRBV.fasta")
|
|
130
|
-
# if (!file.exists(giana_file)) {
|
|
131
|
-
# download.file(paste(giana_repo, "GIANA4.1.py", sep="/"), giana_file)
|
|
132
|
-
# download.file(paste(giana_repo, "GIANA4.py", sep="/"), giana4_file)
|
|
133
|
-
# download.file(paste(giana_repo, "query.py", sep="/"), giana_query)
|
|
134
|
-
# download.file(paste(giana_repo, "Imgt_Human_TRBV.fasta", sep="/"), giana_trbv)
|
|
135
|
-
# }
|
|
136
|
-
|
|
137
|
-
giana_srcdir
|
|
138
|
-
}
|
|
139
|
-
|
|
140
|
-
prepare_input = function() {
|
|
141
|
-
# prepare input file for GIANA
|
|
142
|
-
cdr3 = c()
|
|
143
|
-
# cdr3col = if (!on_multi) "cdr3" else "CDR3.aa"
|
|
144
|
-
cdr3col = "CDR3.aa"
|
|
145
|
-
for (sample in names(seqdata)) {
|
|
146
|
-
# cdr3 = bind_rows(cdr3, seqdata[[sample]] %>%
|
|
147
|
-
# transmute(aminoAcid=CDR3.aa, vMaxResolved=paste0(V.name, "*01"), Sample=sample))
|
|
148
|
-
cdr3 = union(
|
|
149
|
-
cdr3,
|
|
150
|
-
seqdata[[sample]] %>% pull(cdr3col) %>% unique()
|
|
151
|
-
)
|
|
152
|
-
}
|
|
153
|
-
cdr3 = unique(cdr3)
|
|
154
|
-
|
|
155
|
-
# cdr3 = distinct(cdr3, aminoAcid, vMaxResolved)
|
|
156
|
-
|
|
157
|
-
cdr3file = file.path(outdir, "cdr3.csv")
|
|
158
|
-
write.table(
|
|
159
|
-
data.frame(CDR3.aa=cdr3),
|
|
160
|
-
cdr3file,
|
|
161
|
-
row.names=FALSE, col.names=TRUE, quote=FALSE
|
|
162
|
-
)
|
|
163
|
-
cdr3file
|
|
164
|
-
}
|
|
165
|
-
|
|
166
|
-
clean_giana_output = function(giana_outfile, giana_infile) {
|
|
167
|
-
# generate an output file with columns:
|
|
168
|
-
# CDR3.aa, TCR_Cluster, V.name, Sample
|
|
169
|
-
# If sequence doesn't exist in the input file,
|
|
170
|
-
# Then a unique cluster id is assigned to it.
|
|
171
|
-
giana_out = read.delim2(giana_outfile, header=FALSE, comment.char = "#", row.names = NULL)[, 1:2, drop=FALSE]
|
|
172
|
-
colnames(giana_out) = c("CDR3.aa", "TCR_Cluster")
|
|
173
|
-
in_cdr3 = read.delim2(giana_infile, header=TRUE, row.names = NULL)
|
|
174
|
-
out = left_join(in_cdr3, distinct(giana_out), by=c("CDR3.aa")) %>%
|
|
175
|
-
mutate(
|
|
176
|
-
TCR_Cluster = if_else(
|
|
177
|
-
is.na(TCR_Cluster),
|
|
178
|
-
paste0("S_", row_number()),
|
|
179
|
-
paste0("M_", as.character(TCR_Cluster))
|
|
180
|
-
)
|
|
181
|
-
)
|
|
182
|
-
|
|
183
|
-
out = left_join(
|
|
184
|
-
cdr3aa_df,
|
|
185
|
-
out,
|
|
186
|
-
by = "CDR3.aa"
|
|
187
|
-
)
|
|
188
|
-
df = out %>%
|
|
189
|
-
select(Barcode, TCR_Cluster) %>%
|
|
190
|
-
add_count(TCR_Cluster, name="TCR_Cluster_Size") %>%
|
|
191
|
-
distinct(Barcode, .keep_all = TRUE) %>%
|
|
192
|
-
add_count(TCR_Cluster, name="TCR_Cluster_Size1") %>%
|
|
193
|
-
column_to_rownames("Barcode")
|
|
194
|
-
|
|
195
|
-
write.table(df, clusterfile, row.names=T, col.names=T, quote=F, sep="\t")
|
|
196
|
-
out
|
|
197
|
-
}
|
|
198
|
-
|
|
199
|
-
run_giana = function() {
|
|
200
|
-
print(paste("Using tool:", "GIANA"))
|
|
201
|
-
giana_srcdir = prepare_giana()
|
|
202
|
-
giana_input = prepare_input()
|
|
203
|
-
giana_outdir = file.path(outdir, "GIANA_Output")
|
|
204
|
-
dir.create(giana_outdir, showWarnings = FALSE)
|
|
205
|
-
args_str = ""
|
|
206
|
-
for (argname in names(args)) {
|
|
207
|
-
argvalue = args[[argname]]
|
|
208
|
-
if (!startsWith(argname, "-")) {
|
|
209
|
-
if (nchar(argname) == 1) {
|
|
210
|
-
argname = paste0("-", argname)
|
|
211
|
-
} else {
|
|
212
|
-
argname = paste0("--", argname)
|
|
213
|
-
}
|
|
214
|
-
}
|
|
215
|
-
if (isTRUE(argvalue) || toupper(as.character(argvalue)) == "TRUE") {
|
|
216
|
-
argvalue = ""
|
|
217
|
-
} else {
|
|
218
|
-
argvalue = as.character(argvalue)
|
|
219
|
-
}
|
|
220
|
-
args_str = paste(args_str, argname, argvalue)
|
|
221
|
-
}
|
|
222
|
-
giana_cmd = paste(
|
|
223
|
-
python,
|
|
224
|
-
file.path(giana_srcdir, "GIANA.py"),
|
|
225
|
-
"-f", giana_input,
|
|
226
|
-
"-o", giana_outdir,
|
|
227
|
-
"-v", # TRBV mutation not supported
|
|
228
|
-
args_str
|
|
229
|
-
)
|
|
230
|
-
print("Running:")
|
|
231
|
-
print(giana_cmd)
|
|
232
|
-
rc = system(giana_cmd)
|
|
233
|
-
if (rc != 0) {
|
|
234
|
-
quit(status=rc)
|
|
235
|
-
}
|
|
236
|
-
giana_outfile = file.path(giana_outdir, "cdr3--RotationEncodingBL62.txt")
|
|
237
|
-
clean_giana_output(giana_outfile, giana_input)
|
|
238
|
-
}
|
|
239
|
-
|
|
240
|
-
attach_to_immdata = function(out) {
|
|
241
|
-
seqdata2 = list()
|
|
242
|
-
# by = if (!on_multi) c(cdr3 = "CDR3.aa") else "CDR3.aa"
|
|
243
|
-
by = "CDR3.aa"
|
|
244
|
-
for (sample in names(seqdata)) {
|
|
245
|
-
sample_out = left_join(seqdata[[sample]], out, by=by)
|
|
246
|
-
seqdata2[[sample]] = sample_out
|
|
247
|
-
if (!on_multi) {
|
|
248
|
-
immdata$data[[sample]] = immdata$data[[sample]] %>% left_join(
|
|
249
|
-
out, by = "CDR3.aa"
|
|
250
|
-
)
|
|
251
|
-
} else {
|
|
252
|
-
immdata$multi[[sample]] = immdata$multi[[sample]] %>% left_join(
|
|
253
|
-
out, by = c(cdr3 = "CDR3.aa")
|
|
254
|
-
)
|
|
255
|
-
}
|
|
256
|
-
# if ("single" %in% names(immdata)) {
|
|
257
|
-
# immdata$data[[sample]] = immdata$data[[sample]] %>% left_join(
|
|
258
|
-
# out, by = "CDR3.aa"
|
|
259
|
-
# )
|
|
260
|
-
# }
|
|
261
|
-
}
|
|
262
|
-
if (!on_multi) {
|
|
263
|
-
immdata$data = seqdata2
|
|
264
|
-
} else {
|
|
265
|
-
immdata$multi = seqdata2
|
|
266
|
-
}
|
|
267
|
-
saveRDS(immdata, file = outfile)
|
|
268
|
-
# seqdata2
|
|
269
|
-
}
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
if (tolower(tool) == "clustcr") {
|
|
273
|
-
out = run_clustcr()
|
|
274
|
-
} else if (tolower(tool) == "giana") {
|
|
275
|
-
out = run_giana()
|
|
276
|
-
} else {
|
|
277
|
-
stop(paste("Unknown tool:", tool))
|
|
278
|
-
}
|
|
279
|
-
|
|
280
|
-
attach_to_immdata(out)
|
biopipen/utils/common_docstrs.py
DELETED
|
@@ -1,61 +0,0 @@
|
|
|
1
|
-
"""Common docstrings for biopipen procs."""
|
|
2
|
-
import textwrap
|
|
3
|
-
from typing import Callable
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
def indent_docstr(docstr: str, indent: str) -> str:
|
|
7
|
-
"""Indent the docstring.
|
|
8
|
-
|
|
9
|
-
Args:
|
|
10
|
-
docstr: The docstring.
|
|
11
|
-
indent: The indent.
|
|
12
|
-
|
|
13
|
-
Returns:
|
|
14
|
-
The indented docstring.
|
|
15
|
-
"""
|
|
16
|
-
return textwrap.indent(docstr, indent).strip()
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def format_placeholder(**kwargs) -> Callable[[type], type]:
|
|
20
|
-
"""A decorator to format a docstring placeholder.
|
|
21
|
-
|
|
22
|
-
Args:
|
|
23
|
-
**kwargs: The docstring placeholder.
|
|
24
|
-
|
|
25
|
-
Returns:
|
|
26
|
-
The decorated function.
|
|
27
|
-
"""
|
|
28
|
-
|
|
29
|
-
def decorator(klass: type) -> type:
|
|
30
|
-
klass.__doc__ = klass.__doc__ % kwargs
|
|
31
|
-
return klass
|
|
32
|
-
|
|
33
|
-
return decorator
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
MUTATE_HELPERS_CLONESIZE = """
|
|
37
|
-
There are also also 4 helper functions, `expanded`, `collapsed`, `emerged` and `vanished`,
|
|
38
|
-
which can be used to identify the expanded/collpased/emerged/vanished groups (i.e. TCR clones).
|
|
39
|
-
For example, you can use
|
|
40
|
-
`{"Patient1_Tumor_Collapsed_Clones": "expanded(., Source, 'Tumor', subset = Patent == 'Patient1', uniq = FALSE)"}`
|
|
41
|
-
to create a new column in metadata named `Patient1_Tumor_Collapsed_Clones`
|
|
42
|
-
with the collapsed clones in the tumor sample (compared to the normal sample) of patient 1.
|
|
43
|
-
The values in this columns for other clones will be `NA`.
|
|
44
|
-
Those functions take following arguments:
|
|
45
|
-
* `df`: The metadata data frame. You can use the `.` to refer to it.
|
|
46
|
-
* `group-by`: The column name in metadata to group the cells.
|
|
47
|
-
* `idents`: The first group or both groups of cells to compare (value in `group-by` column). If only the first group is given, the rest of the cells (with non-NA in `group-by` column) will be used as the second group.
|
|
48
|
-
* `subset`: An expression to subset the cells, will be passed to `dplyr::filter()`. Default is `TRUE` (no filtering).
|
|
49
|
-
* `id`: The column name in metadata for the group ids (i.e. `CDR3.aa`).
|
|
50
|
-
* `compare`: Either a (numeric) column name (i.e. `Clones`) in metadata to compare between groups, or `.n` to compare the number of cells in each group.
|
|
51
|
-
If numeric column is given, the values should be the same for all cells in the same group.
|
|
52
|
-
This will not be checked (only the first value is used).
|
|
53
|
-
* `uniq`: Whether to return unique ids or not. Default is `TRUE`. If `FALSE`, you can mutate the meta data frame with the returned ids. For example, `df |> mutate(expanded = expanded(...))`.
|
|
54
|
-
* `order`: The order of the returned ids. It could be `sum` or `diff`, which is the sum or diff of the `compare` between idents.
|
|
55
|
-
Two kinds of modifiers can be added, including `desc` and `abs`.
|
|
56
|
-
For example, `sum,desc` means the sum of `compare` between idents in descending order.
|
|
57
|
-
Default is `diff,abs,desc`. It only works when `uniq` is `TRUE`. If `uniq` is `FALSE`, the returned
|
|
58
|
-
ids will be in the same order as in `df`.
|
|
59
|
-
* `include_emerged`: Whether to include the emerged group for `expanded` (only works for `expanded`). Default is `FALSE`.
|
|
60
|
-
* `include_vanished`: Whether to include the vanished group for `collapsed` (only works for `collapsed`). Default is `FALSE`.
|
|
61
|
-
"""
|
biopipen/utils/gene.R
DELETED
|
@@ -1,49 +0,0 @@
|
|
|
1
|
-
library(mygene)
|
|
2
|
-
library(dplyr)
|
|
3
|
-
|
|
4
|
-
gene_name_conversion = function(
|
|
5
|
-
genes,
|
|
6
|
-
species,
|
|
7
|
-
infmt,
|
|
8
|
-
outfmt,
|
|
9
|
-
notfound
|
|
10
|
-
) {
|
|
11
|
-
out = queryMany(
|
|
12
|
-
genes,
|
|
13
|
-
scopes=infmt,
|
|
14
|
-
fields=outfmt,
|
|
15
|
-
species=species
|
|
16
|
-
) %>% as.data.frame() %>% group_by(
|
|
17
|
-
query
|
|
18
|
-
) %>% arrange(
|
|
19
|
-
desc(X_score)
|
|
20
|
-
) %>% slice_head(n=1) %>% select(
|
|
21
|
-
-c(X_id, X_score)
|
|
22
|
-
)
|
|
23
|
-
|
|
24
|
-
if ("notfound" %in% colnames(out)) {
|
|
25
|
-
out = out %>% select(-c("notfound"))
|
|
26
|
-
}
|
|
27
|
-
|
|
28
|
-
if (length(outfmt) == 1 && "," %in% outfmt) {
|
|
29
|
-
outfmt = trimws(unlist(strsplit(outfmt, ",", fixed=TRUE)))
|
|
30
|
-
}
|
|
31
|
-
|
|
32
|
-
out = tibble(query=genes) %>% left_join(out, by="query")
|
|
33
|
-
if (notfound == "use-query") {
|
|
34
|
-
out = out %>% mutate(
|
|
35
|
-
across(
|
|
36
|
-
outfmt,
|
|
37
|
-
function(col, query) if_else(is.na(col), query, col),
|
|
38
|
-
query=query
|
|
39
|
-
)
|
|
40
|
-
)
|
|
41
|
-
} else if (notfound == "error" && any(is.na(out[[outfmt[1]]]))) {
|
|
42
|
-
nagenes = out %>% filter(is.na(.[[outfmt[1]]])) %>% pull("query")
|
|
43
|
-
stop(paste("Query genes not found:", paste(nagenes, collapse=",")))
|
|
44
|
-
} else if (notfound == "skip") {
|
|
45
|
-
out = out %>% filter(!is.na(.[[outfmt[1]]]))
|
|
46
|
-
}
|
|
47
|
-
|
|
48
|
-
return out
|
|
49
|
-
}
|