biopipen 0.21.0__py3-none-any.whl → 0.34.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (290) hide show
  1. biopipen/__init__.py +1 -1
  2. biopipen/core/config.toml +28 -0
  3. biopipen/core/filters.py +79 -4
  4. biopipen/core/proc.py +12 -3
  5. biopipen/core/testing.py +75 -3
  6. biopipen/ns/bam.py +148 -6
  7. biopipen/ns/bed.py +75 -0
  8. biopipen/ns/cellranger.py +186 -0
  9. biopipen/ns/cellranger_pipeline.py +126 -0
  10. biopipen/ns/cnv.py +19 -3
  11. biopipen/ns/cnvkit.py +1 -1
  12. biopipen/ns/cnvkit_pipeline.py +20 -12
  13. biopipen/ns/delim.py +34 -35
  14. biopipen/ns/gene.py +68 -23
  15. biopipen/ns/gsea.py +63 -37
  16. biopipen/ns/misc.py +39 -14
  17. biopipen/ns/plot.py +304 -1
  18. biopipen/ns/protein.py +183 -0
  19. biopipen/ns/regulatory.py +290 -0
  20. biopipen/ns/rnaseq.py +142 -5
  21. biopipen/ns/scrna.py +2053 -473
  22. biopipen/ns/scrna_metabolic_landscape.py +228 -382
  23. biopipen/ns/snp.py +659 -0
  24. biopipen/ns/stats.py +484 -0
  25. biopipen/ns/tcr.py +683 -98
  26. biopipen/ns/vcf.py +236 -2
  27. biopipen/ns/web.py +97 -6
  28. biopipen/reports/bam/CNVpytor.svelte +4 -9
  29. biopipen/reports/cellranger/CellRangerCount.svelte +18 -0
  30. biopipen/reports/cellranger/CellRangerSummary.svelte +16 -0
  31. biopipen/reports/cellranger/CellRangerVdj.svelte +18 -0
  32. biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
  33. biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
  34. biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
  35. biopipen/reports/common.svelte +15 -0
  36. biopipen/reports/protein/ProdigySummary.svelte +16 -0
  37. biopipen/reports/scrna/CellsDistribution.svelte +4 -39
  38. biopipen/reports/scrna/DimPlots.svelte +1 -1
  39. biopipen/reports/scrna/MarkersFinder.svelte +6 -126
  40. biopipen/reports/scrna/MetaMarkers.svelte +3 -75
  41. biopipen/reports/scrna/RadarPlots.svelte +4 -20
  42. biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +61 -22
  43. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +88 -82
  44. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +70 -10
  45. biopipen/reports/snp/PlinkCallRate.svelte +24 -0
  46. biopipen/reports/snp/PlinkFreq.svelte +18 -0
  47. biopipen/reports/snp/PlinkHWE.svelte +18 -0
  48. biopipen/reports/snp/PlinkHet.svelte +18 -0
  49. biopipen/reports/snp/PlinkIBD.svelte +18 -0
  50. biopipen/reports/tcr/CDR3AAPhyschem.svelte +19 -66
  51. biopipen/reports/tcr/ClonalStats.svelte +16 -0
  52. biopipen/reports/tcr/CloneResidency.svelte +3 -93
  53. biopipen/reports/tcr/Immunarch.svelte +4 -155
  54. biopipen/reports/tcr/TCRClusterStats.svelte +3 -45
  55. biopipen/reports/tcr/TESSA.svelte +11 -28
  56. biopipen/reports/utils/misc.liq +22 -7
  57. biopipen/scripts/bam/BamMerge.py +11 -15
  58. biopipen/scripts/bam/BamSampling.py +90 -0
  59. biopipen/scripts/bam/BamSort.py +141 -0
  60. biopipen/scripts/bam/BamSplitChroms.py +10 -10
  61. biopipen/scripts/bam/BamSubsetByBed.py +38 -0
  62. biopipen/scripts/bam/CNAClinic.R +41 -5
  63. biopipen/scripts/bam/CNVpytor.py +153 -54
  64. biopipen/scripts/bam/ControlFREEC.py +13 -14
  65. biopipen/scripts/bam/SamtoolsView.py +33 -0
  66. biopipen/scripts/bed/Bed2Vcf.py +5 -5
  67. biopipen/scripts/bed/BedConsensus.py +5 -5
  68. biopipen/scripts/bed/BedLiftOver.sh +6 -4
  69. biopipen/scripts/bed/BedtoolsIntersect.py +54 -0
  70. biopipen/scripts/bed/BedtoolsMakeWindows.py +47 -0
  71. biopipen/scripts/bed/BedtoolsMerge.py +4 -4
  72. biopipen/scripts/cellranger/CellRangerCount.py +138 -0
  73. biopipen/scripts/cellranger/CellRangerSummary.R +181 -0
  74. biopipen/scripts/cellranger/CellRangerVdj.py +112 -0
  75. biopipen/scripts/cnv/AneuploidyScore.R +55 -20
  76. biopipen/scripts/cnv/AneuploidyScoreSummary.R +221 -163
  77. biopipen/scripts/cnv/TMADScore.R +25 -9
  78. biopipen/scripts/cnv/TMADScoreSummary.R +57 -86
  79. biopipen/scripts/cnvkit/CNVkitAccess.py +7 -6
  80. biopipen/scripts/cnvkit/CNVkitAutobin.py +26 -18
  81. biopipen/scripts/cnvkit/CNVkitBatch.py +6 -6
  82. biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
  83. biopipen/scripts/cnvkit/CNVkitCoverage.py +4 -3
  84. biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
  85. biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
  86. biopipen/scripts/cnvkit/CNVkitGuessBaits.py +12 -8
  87. biopipen/scripts/cnvkit/CNVkitHeatmap.py +5 -5
  88. biopipen/scripts/cnvkit/CNVkitReference.py +6 -5
  89. biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
  90. biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
  91. biopipen/scripts/cnvkit/guess_baits.py +166 -93
  92. biopipen/scripts/delim/RowsBinder.R +1 -1
  93. biopipen/scripts/delim/SampleInfo.R +116 -118
  94. biopipen/scripts/gene/GeneNameConversion.R +67 -0
  95. biopipen/scripts/gene/GenePromoters.R +61 -0
  96. biopipen/scripts/gsea/Enrichr.R +5 -5
  97. biopipen/scripts/gsea/FGSEA.R +184 -50
  98. biopipen/scripts/gsea/GSEA.R +2 -2
  99. biopipen/scripts/gsea/PreRank.R +5 -5
  100. biopipen/scripts/misc/Config2File.py +2 -2
  101. biopipen/scripts/misc/Plot.R +80 -0
  102. biopipen/scripts/misc/Shell.sh +15 -0
  103. biopipen/scripts/misc/Str2File.py +2 -2
  104. biopipen/scripts/plot/Heatmap.R +3 -3
  105. biopipen/scripts/plot/Manhattan.R +147 -0
  106. biopipen/scripts/plot/QQPlot.R +146 -0
  107. biopipen/scripts/plot/ROC.R +88 -0
  108. biopipen/scripts/plot/Scatter.R +112 -0
  109. biopipen/scripts/plot/VennDiagram.R +5 -9
  110. biopipen/scripts/protein/MMCIF2PDB.py +33 -0
  111. biopipen/scripts/protein/PDB2Fasta.py +60 -0
  112. biopipen/scripts/protein/Prodigy.py +119 -0
  113. biopipen/scripts/protein/ProdigySummary.R +140 -0
  114. biopipen/scripts/protein/RMSD.py +178 -0
  115. biopipen/scripts/regulatory/MotifAffinityTest.R +102 -0
  116. biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +127 -0
  117. biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +104 -0
  118. biopipen/scripts/regulatory/MotifScan.py +159 -0
  119. biopipen/scripts/regulatory/VariantMotifPlot.R +78 -0
  120. biopipen/scripts/regulatory/motifs-common.R +324 -0
  121. biopipen/scripts/rnaseq/Simulation-ESCO.R +180 -0
  122. biopipen/scripts/rnaseq/Simulation-RUVcorr.R +45 -0
  123. biopipen/scripts/rnaseq/Simulation.R +21 -0
  124. biopipen/scripts/rnaseq/UnitConversion.R +325 -54
  125. biopipen/scripts/scrna/AnnData2Seurat.R +40 -0
  126. biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
  127. biopipen/scripts/scrna/CellCellCommunication.py +150 -0
  128. biopipen/scripts/scrna/CellCellCommunicationPlots.R +93 -0
  129. biopipen/scripts/scrna/CellSNPLite.py +30 -0
  130. biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +185 -0
  131. biopipen/scripts/scrna/CellTypeAnnotation-direct.R +68 -31
  132. biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +27 -22
  133. biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +28 -20
  134. biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +48 -25
  135. biopipen/scripts/scrna/CellTypeAnnotation.R +37 -1
  136. biopipen/scripts/scrna/CellsDistribution.R +456 -167
  137. biopipen/scripts/scrna/DimPlots.R +1 -1
  138. biopipen/scripts/scrna/ExprImputation-alra.R +109 -0
  139. biopipen/scripts/scrna/ExprImputation-rmagic.R +256 -0
  140. biopipen/scripts/scrna/{ExprImpution-scimpute.R → ExprImputation-scimpute.R} +8 -5
  141. biopipen/scripts/scrna/ExprImputation.R +7 -0
  142. biopipen/scripts/scrna/LoomTo10X.R +51 -0
  143. biopipen/scripts/scrna/MQuad.py +25 -0
  144. biopipen/scripts/scrna/MarkersFinder.R +679 -400
  145. biopipen/scripts/scrna/MetaMarkers.R +265 -161
  146. biopipen/scripts/scrna/ModuleScoreCalculator.R +66 -11
  147. biopipen/scripts/scrna/PseudoBulkDEG.R +678 -0
  148. biopipen/scripts/scrna/RadarPlots.R +355 -134
  149. biopipen/scripts/scrna/ScFGSEA.R +298 -100
  150. biopipen/scripts/scrna/ScSimulation.R +65 -0
  151. biopipen/scripts/scrna/ScVelo.py +617 -0
  152. biopipen/scripts/scrna/Seurat2AnnData.R +7 -0
  153. biopipen/scripts/scrna/SeuratClusterStats-clustree.R +87 -0
  154. biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +36 -30
  155. biopipen/scripts/scrna/SeuratClusterStats-features.R +138 -187
  156. biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +81 -0
  157. biopipen/scripts/scrna/SeuratClusterStats-stats.R +78 -89
  158. biopipen/scripts/scrna/SeuratClusterStats.R +47 -10
  159. biopipen/scripts/scrna/SeuratClustering.R +36 -233
  160. biopipen/scripts/scrna/SeuratLoading.R +2 -2
  161. biopipen/scripts/scrna/SeuratMap2Ref.R +84 -113
  162. biopipen/scripts/scrna/SeuratMetadataMutater.R +16 -6
  163. biopipen/scripts/scrna/SeuratPreparing.R +223 -173
  164. biopipen/scripts/scrna/SeuratSubClustering.R +64 -0
  165. biopipen/scripts/scrna/SeuratTo10X.R +27 -0
  166. biopipen/scripts/scrna/Slingshot.R +65 -0
  167. biopipen/scripts/scrna/Subset10X.R +2 -2
  168. biopipen/scripts/scrna/TopExpressingGenes.R +169 -135
  169. biopipen/scripts/scrna/celltypist-wrapper.py +195 -0
  170. biopipen/scripts/scrna/scvelo_paga.py +313 -0
  171. biopipen/scripts/scrna/seurat_anndata_conversion.py +98 -0
  172. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +447 -82
  173. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +348 -241
  174. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +188 -166
  175. biopipen/scripts/snp/MatrixEQTL.R +217 -0
  176. biopipen/scripts/snp/Plink2GTMat.py +148 -0
  177. biopipen/scripts/snp/PlinkCallRate.R +199 -0
  178. biopipen/scripts/snp/PlinkFilter.py +100 -0
  179. biopipen/scripts/snp/PlinkFreq.R +291 -0
  180. biopipen/scripts/snp/PlinkFromVcf.py +81 -0
  181. biopipen/scripts/snp/PlinkHWE.R +85 -0
  182. biopipen/scripts/snp/PlinkHet.R +96 -0
  183. biopipen/scripts/snp/PlinkIBD.R +196 -0
  184. biopipen/scripts/snp/PlinkSimulation.py +124 -0
  185. biopipen/scripts/snp/PlinkUpdateName.py +124 -0
  186. biopipen/scripts/stats/ChowTest.R +146 -0
  187. biopipen/scripts/stats/DiffCoexpr.R +152 -0
  188. biopipen/scripts/stats/LiquidAssoc.R +135 -0
  189. biopipen/scripts/stats/Mediation.R +108 -0
  190. biopipen/scripts/stats/MetaPvalue.R +130 -0
  191. biopipen/scripts/stats/MetaPvalue1.R +74 -0
  192. biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
  193. biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
  194. biopipen/scripts/tcr/Attach2Seurat.R +3 -2
  195. biopipen/scripts/tcr/CDR3AAPhyschem.R +211 -143
  196. biopipen/scripts/tcr/CDR3Clustering.R +343 -0
  197. biopipen/scripts/tcr/ClonalStats.R +526 -0
  198. biopipen/scripts/tcr/CloneResidency.R +255 -131
  199. biopipen/scripts/tcr/CloneSizeQQPlot.R +4 -4
  200. biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
  201. biopipen/scripts/tcr/GIANA/GIANA4.py +1362 -789
  202. biopipen/scripts/tcr/GIANA/query.py +164 -162
  203. biopipen/scripts/tcr/Immunarch-basic.R +31 -9
  204. biopipen/scripts/tcr/Immunarch-clonality.R +25 -5
  205. biopipen/scripts/tcr/Immunarch-diversity.R +352 -134
  206. biopipen/scripts/tcr/Immunarch-geneusage.R +45 -5
  207. biopipen/scripts/tcr/Immunarch-kmer.R +68 -8
  208. biopipen/scripts/tcr/Immunarch-overlap.R +84 -4
  209. biopipen/scripts/tcr/Immunarch-spectratyping.R +35 -6
  210. biopipen/scripts/tcr/Immunarch-tracking.R +38 -6
  211. biopipen/scripts/tcr/Immunarch-vjjunc.R +165 -0
  212. biopipen/scripts/tcr/Immunarch.R +63 -11
  213. biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
  214. biopipen/scripts/tcr/ImmunarchFilter.R +4 -4
  215. biopipen/scripts/tcr/ImmunarchLoading.R +38 -29
  216. biopipen/scripts/tcr/SampleDiversity.R +1 -1
  217. biopipen/scripts/tcr/ScRepCombiningExpression.R +40 -0
  218. biopipen/scripts/tcr/ScRepLoading.R +166 -0
  219. biopipen/scripts/tcr/TCRClusterStats.R +176 -22
  220. biopipen/scripts/tcr/TCRDock.py +110 -0
  221. biopipen/scripts/tcr/TESSA.R +102 -118
  222. biopipen/scripts/tcr/VJUsage.R +5 -5
  223. biopipen/scripts/tcr/immunarch-patched.R +142 -0
  224. biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
  225. biopipen/scripts/vcf/BcftoolsAnnotate.py +91 -0
  226. biopipen/scripts/vcf/BcftoolsFilter.py +90 -0
  227. biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
  228. biopipen/scripts/vcf/BcftoolsSort.py +113 -0
  229. biopipen/scripts/vcf/BcftoolsView.py +73 -0
  230. biopipen/scripts/vcf/TruvariBench.sh +14 -7
  231. biopipen/scripts/vcf/TruvariBenchSummary.R +16 -13
  232. biopipen/scripts/vcf/TruvariConsistency.R +1 -1
  233. biopipen/scripts/vcf/Vcf2Bed.py +2 -2
  234. biopipen/scripts/vcf/VcfAnno.py +11 -11
  235. biopipen/scripts/vcf/VcfDownSample.sh +22 -10
  236. biopipen/scripts/vcf/VcfFilter.py +5 -5
  237. biopipen/scripts/vcf/VcfFix.py +7 -7
  238. biopipen/scripts/vcf/VcfFix_utils.py +13 -4
  239. biopipen/scripts/vcf/VcfIndex.py +3 -3
  240. biopipen/scripts/vcf/VcfIntersect.py +3 -3
  241. biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
  242. biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
  243. biopipen/scripts/vcf/bcftools_utils.py +52 -0
  244. biopipen/scripts/web/Download.py +8 -4
  245. biopipen/scripts/web/DownloadList.py +5 -5
  246. biopipen/scripts/web/GCloudStorageDownloadBucket.py +82 -0
  247. biopipen/scripts/web/GCloudStorageDownloadFile.py +23 -0
  248. biopipen/scripts/web/gcloud_common.py +49 -0
  249. biopipen/utils/gene.py +108 -60
  250. biopipen/utils/misc.py +146 -20
  251. biopipen/utils/reference.py +64 -20
  252. biopipen/utils/reporter.py +177 -0
  253. biopipen/utils/vcf.py +1 -1
  254. biopipen-0.34.26.dist-info/METADATA +27 -0
  255. biopipen-0.34.26.dist-info/RECORD +292 -0
  256. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
  257. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +6 -2
  258. biopipen/ns/bcftools.py +0 -111
  259. biopipen/ns/scrna_basic.py +0 -255
  260. biopipen/reports/delim/SampleInfo.svelte +0 -36
  261. biopipen/reports/scrna/GeneExpressionInvistigation.svelte +0 -32
  262. biopipen/reports/scrna/ScFGSEA.svelte +0 -35
  263. biopipen/reports/scrna/SeuratClusterStats.svelte +0 -82
  264. biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -20
  265. biopipen/reports/scrna/SeuratPreparing.svelte +0 -38
  266. biopipen/reports/scrna/TopExpressingGenes.svelte +0 -55
  267. biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -31
  268. biopipen/reports/utils/gsea.liq +0 -110
  269. biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -42
  270. biopipen/scripts/bcftools/BcftoolsFilter.py +0 -79
  271. biopipen/scripts/bcftools/BcftoolsSort.py +0 -19
  272. biopipen/scripts/gene/GeneNameConversion.py +0 -66
  273. biopipen/scripts/scrna/ExprImpution-alra.R +0 -32
  274. biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -29
  275. biopipen/scripts/scrna/ExprImpution.R +0 -7
  276. biopipen/scripts/scrna/GeneExpressionInvistigation.R +0 -132
  277. biopipen/scripts/scrna/Write10X.R +0 -11
  278. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -150
  279. biopipen/scripts/tcr/TCRClustering.R +0 -280
  280. biopipen/utils/common_docstrs.py +0 -61
  281. biopipen/utils/gene.R +0 -49
  282. biopipen/utils/gsea.R +0 -193
  283. biopipen/utils/io.R +0 -20
  284. biopipen/utils/misc.R +0 -114
  285. biopipen/utils/mutate_helpers.R +0 -433
  286. biopipen/utils/plot.R +0 -173
  287. biopipen/utils/rnaseq.R +0 -48
  288. biopipen/utils/single_cell.R +0 -115
  289. biopipen-0.21.0.dist-info/METADATA +0 -22
  290. biopipen-0.21.0.dist-info/RECORD +0 -218
@@ -0,0 +1,161 @@
1
+ # patched version of cc_circos
2
+ # See https://github.com/Sarah145/CCPlotR/issues/4
3
+
4
+ cc_circos <- function(cc_df, option = "A", n_top_ints = 15, exp_df = NULL, cell_cols = NULL, palette = "BuPu", cex = 1, show_legend = TRUE, scale = FALSE, ...) {
5
+ stopifnot("'cc_df' must be a dataframe" = is(cc_df, "data.frame"))
6
+ stopifnot("cc_df should contain columns named source, target, ligand, receptor and score. See `toy_data` for an example." = all(c('source', 'target', 'ligand', 'receptor', 'score') %in% colnames(cc_df)))
7
+ stopifnot("option must be either 'A', 'B', 'C'" = option %in% c('A', 'B', 'C'))
8
+ library(stringr)
9
+ library(ComplexHeatmap)
10
+ library(circlize)
11
+ circos.clear()
12
+
13
+ target <- score <- ligand <- receptor <- source_lig <- target_rec <- cell_type <- gene <- cell_gene <- NULL
14
+ if (option == "A") {
15
+ input_df <- cc_df %>%
16
+ mutate(source = factor(source), target = factor(target)) %>%
17
+ group_by(source, target) %>%
18
+ tally()
19
+ if (is.null(cell_cols)) {
20
+ cell_cols <- setNames(paletteMartin(n = length(unique(c(input_df$source, input_df$target)))), unique(c(input_df$source, input_df$target)))
21
+ }
22
+ circlize_plot <- function() {
23
+ par(cex = cex)
24
+ chordDiagram(input_df,
25
+ scale = FALSE, grid.col = cell_cols,
26
+ annotationTrack = c("grid", "name"), directional = 1, direction.type = c("arrows", "diffHeight"), link.arr.type = "big.arrow", link.arr.length = 0.1, diffHeight = -mm_h(0.5), preAllocateTracks = list(
27
+ track.height = mm_h(10),
28
+ track.margin = c(mm_h(2), -mm_h(4))
29
+ ), ...
30
+ )
31
+ }
32
+ } else if (option == "B") {
33
+ input_df <- cc_df %>%
34
+ slice_max(order_by = score, n = n_top_ints) %>%
35
+ mutate(
36
+ source_lig = paste0(source, "|", ligand),
37
+ target_rec = paste0(target, "|", receptor)
38
+ )
39
+ arr_wd <- (((input_df$score - min(input_df$score)) / (max(input_df$score) - min(input_df$score))) * (4)) + 1
40
+
41
+ if (is.null(cell_cols)) {
42
+ cell_cols <- setNames(paletteMartin(n = length(unique(c(input_df$source, input_df$target)))), unique(c(input_df$source, input_df$target)))
43
+ }
44
+
45
+ link_cols <- c()
46
+ for (i in input_df$source_lig) {
47
+ link_cols <- c(link_cols, cell_cols[str_extract(i, "[^|]+")])
48
+ }
49
+
50
+ segments <- unique(c(paste0(input_df$source, "|", input_df$ligand), paste0(input_df$target, "|", input_df$receptor)))
51
+ grp <- str_extract(segments, "[^|]+")
52
+ names(grp) <- segments
53
+ lgd <- Legend(
54
+ labels = unique(c(input_df$source, input_df$target)),
55
+ title = "Cell type",
56
+ type = "points",
57
+ title_gp = gpar(fontsize = 14 * cex),
58
+ labels_gp = gpar(fontsize = 12 * cex),
59
+ legend_gp = gpar(col = "transparent"),
60
+ background = cell_cols[unique(c(input_df$source, input_df$target))]
61
+ )
62
+ circlize_plot <- function() {
63
+ par(cex = cex)
64
+ chordDiagram(
65
+ input_df %>%
66
+ select(source_lig, target_rec, score),
67
+ directional = 1, group = grp, link.sort = FALSE, scale = scale, diffHeight = 0.005,
68
+ direction.type = c("arrows"), link.arr.type = "triangle", annotationTrack = c(),
69
+ preAllocateTracks = list(list(track.height = 0.175), list(track.height = 0.05)),
70
+ big.gap = 3, transparency = 1, link.arr.lwd = arr_wd, link.arr.col = link_cols,
71
+ link.arr.length = 0.4, link.arr.width = 0.35, ...
72
+ )
73
+ circos.track(track.index = 1, panel.fun = function(x, y) {
74
+ circos.text(CELL_META$xcenter, CELL_META$ylim[1], str_extract(CELL_META$sector.index, "[^|]+$"),
75
+ facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.55), cex = 1.3
76
+ )
77
+ }, bg.border = NA)
78
+ for (l in unique(str_extract(segments, "[^|]+"))) {
79
+ highlight.sector(segments[str_detect(segments, paste0("^", str_escape(l)))], track.index = 2, col = cell_cols[l])
80
+ }
81
+ if (show_legend == TRUE) {
82
+ draw(lgd, just = c("left", "bottom"), x = unit(5, "mm"), y = unit(5, "mm"))
83
+ }
84
+ circos.clear()
85
+ }
86
+ } else if (option == "C") {
87
+ stopifnot("'exp_df' must be a dataframe" = is(exp_df, "data.frame"))
88
+ stopifnot("exp_df should contain columns named cell_type, gene and mean_exp. See `toy_exp` for an example." = all(c('cell_type', 'gene', 'mean_exp') %in% colnames(exp_df)))
89
+
90
+ input_df <- cc_df %>%
91
+ slice_max(order_by = score, n = n_top_ints) %>%
92
+ mutate(
93
+ source_lig = paste0(source, "|", ligand),
94
+ target_rec = paste0(target, "|", receptor)
95
+ )
96
+
97
+ arr_wd <- (((input_df$score - min(input_df$score)) / (max(input_df$score) - min(input_df$score))) * (4)) + 1
98
+
99
+ if (is.null(cell_cols)) {
100
+ cell_cols <- setNames(paletteMartin(n = length(unique(c(input_df$source, input_df$target)))), unique(c(input_df$source, input_df$target)))
101
+ }
102
+
103
+ segments <- unique(c(paste0(input_df$source, "|", input_df$ligand), paste0(input_df$target, "|", input_df$receptor)))
104
+ grp <- str_extract(segments, "[^|]+")
105
+ names(grp) <- segments
106
+
107
+ gene_df <- as.data.frame(exp_df %>% mutate(cell_gene = paste0(cell_type, "|", gene)) %>% filter(cell_gene %in% segments))
108
+ rownames(gene_df) <- gene_df$cell_gene
109
+
110
+ brks <- scales::pretty_breaks(n = 5)(c(floor(min(gene_df$mean_exp)), ceiling(max(gene_df$mean_exp))))
111
+ gene_col_fun <- colorRamp2(brks, RColorBrewer::brewer.pal(length(brks), palette))
112
+
113
+ inner.cols <- setNames(gene_col_fun(gene_df[segments, "mean_exp"]), segments)
114
+ lgd1 <- Legend(
115
+ labels = unique(c(input_df$source, input_df$target)),
116
+ title = "Cell type",
117
+ type = "points",
118
+ title_gp = gpar(fontsize = 14 * cex),
119
+ labels_gp = gpar(fontsize = 12 * cex),
120
+ legend_gp = gpar(col = "transparent"),
121
+ background = cell_cols[unique(c(input_df$source, input_df$target))],
122
+ direction = "horizontal"
123
+ )
124
+
125
+ lgd2 <- Legend(
126
+ title_gp = gpar(fontsize = 14 * cex),
127
+ labels_gp = gpar(fontsize = 12 * cex),
128
+ direction = "horizontal", at = brks,
129
+ col_fun = gene_col_fun, title = "Mean exp."
130
+ )
131
+ circlize_plot <- function() {
132
+ par(cex = cex)
133
+ chordDiagram(
134
+ input_df %>%
135
+ select(source_lig, target_rec, score),
136
+ directional = 1, group = grp, link.sort = FALSE, diffHeight = 0.005, scale = scale,
137
+ direction.type = c("arrows"), link.arr.type = "triangle", annotationTrack = c(),
138
+ preAllocateTracks = list(list(track.height = 0.175), list(track.height = 0.05), list(track.height = 0.045)),
139
+ big.gap = 3, transparency = 1, link.arr.lwd = arr_wd, link.arr.col = "black", link.arr.length = 0.4, link.arr.width = 0.35, ...
140
+ )
141
+ circos.track(track.index = 1, panel.fun = function(x, y) {
142
+ circos.text(CELL_META$xcenter, CELL_META$ylim[1], str_extract(CELL_META$sector.index, "[^|]+$"),
143
+ facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.55), cex = 1.3
144
+ )
145
+ }, bg.border = NA)
146
+ for (l in unique(str_extract(segments, "[^|]+"))) {
147
+ highlight.sector(segments[str_detect(segments, paste0("^", str_escape(l)))], track.index = 2, col = cell_cols[l])
148
+ }
149
+ circos.track(track.index = 3, panel.fun = function(x, y) {
150
+ circos.rect(CELL_META$xlim[1], CELL_META$ylim[1], CELL_META$xlim[2], CELL_META$ylim[2],
151
+ sector.index = CELL_META$sector.index, col = inner.cols[CELL_META$sector.index]
152
+ )
153
+ }, bg.border = NA)
154
+ if (show_legend == TRUE) {
155
+ draw(packLegend(lgd1, lgd2, direction = "vertical"), just = c("left", "bottom"), x = unit(4.75, "mm"), y = unit(4.75, "mm"))
156
+ }
157
+ circos.clear()
158
+ }
159
+ }
160
+ circlize_plot()
161
+ }
@@ -0,0 +1,150 @@
1
+ from pathlib import Path
2
+ from biopipen.utils.misc import run_command, logger
3
+ from biopipen.scripts.scrna.seurat_anndata_conversion import convert_seurat_to_anndata
4
+ import os
5
+ import numpy as np
6
+ import pandas as pd
7
+ import scanpy
8
+ import liana
9
+ import liana.method.sc._liana_pipe as _liana_pipe
10
+
11
+ # AttributeError: module 'numpy' has no attribute 'product'
12
+ if not hasattr(np, "product"):
13
+ np.product = np.prod
14
+
15
+ # monkey-patch liana.method.sc._liana_pipe._trimean due to the updates by scipy 1.14
16
+ # https://github.com/scipy/scipy/commit/a660202652deead0f3b4b688eb9fdcdf9f74066c
17
+ def _trimean(a, axis=0):
18
+ try:
19
+ arr = a.A
20
+ except AttributeError:
21
+ arr = a.toarray()
22
+
23
+ quantiles = np.quantile(arr, q=[0.25, 0.75], axis=axis)
24
+ median = np.median(arr, axis=axis)
25
+ return (quantiles[0] + 2 * median + quantiles[1]) / 4
26
+
27
+
28
+ _liana_pipe._trimean = _trimean
29
+
30
+
31
+ sobjfile = Path({{in.sobjfile | quote}}) # pyright: ignore # noqa: E999
32
+ outfile = Path({{out.outfile | quote}}) # pyright: ignore
33
+ envs: dict = {{envs | dict}} # pyright: ignore
34
+
35
+ # https://github.com/h5py/h5py/issues/1082#issuecomment-1311498466
36
+ os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
37
+ method = envs.pop("method")
38
+ assay = envs.pop("assay")
39
+ ncores = envs.pop("ncores")
40
+ species = envs.pop("species")
41
+ rscript = envs.pop("rscript")
42
+ subset = envs.pop("subset")
43
+ group_by = envs.pop("group_by", None)
44
+ groupby = envs.pop("groupby", None) or group_by
45
+ subset_using = envs.pop("subset_using", "auto")
46
+ if subset_using == "auto":
47
+ subset_using = "python" if subset and "[" in subset else "r"
48
+ split_by = envs.pop("split_by")
49
+
50
+ if sobjfile.suffix.lower() in (".rds", ".qs", "qs2"):
51
+ annfile = outfile.parent / f"{sobjfile.stem}.h5ad"
52
+ seurat_ident_col = convert_seurat_to_anndata(
53
+ input_file=str(sobjfile),
54
+ output_file=str(annfile),
55
+ assay=assay,
56
+ subset=subset if subset_using == "r" else None,
57
+ rscript=rscript,
58
+ return_ident_col=not groupby,
59
+ )
60
+ groupby = groupby or seurat_ident_col
61
+ sobjfile = annfile
62
+ elif subset and subset == "r":
63
+ raise ValueError(
64
+ "h5ad file is provided as input, ",
65
+ "'subset' can only be a 'python' expression (`envs.subset_using = 'python'`)."
66
+ )
67
+
68
+ if not groupby:
69
+ logger.warning(
70
+ "`groupby` is not provided. "
71
+ "Using 'seurat_clusters' as the default groupby column. "
72
+ "It is recommended to provide the `groupby` parameter."
73
+ )
74
+ groupby = "seurat_clusters"
75
+
76
+ envs["groupby"] = groupby
77
+
78
+ logger.info("Reading the h5ad file ...")
79
+ adata = scanpy.read_h5ad(sobjfile)
80
+
81
+ if subset and subset_using == "python":
82
+ logger.info("Subsetting the data ...")
83
+ adata = adata[{{envs['subset']}}] # pyright: ignore
84
+
85
+ method = method.lower()
86
+ if method == "log2fc":
87
+ method_fun = liana.mt.logfc
88
+ else:
89
+ method_fun = getattr(liana.mt, method)
90
+
91
+ envs["resource_name"] = "consensus" if species == "human" else "mouseconsensus"
92
+ envs["n_jobs"] = ncores
93
+ envs["inplace"] = True
94
+ envs["verbose"] = True
95
+ envs["key_added"] = "liana_ccc"
96
+
97
+ if split_by:
98
+ split_vals = adata.obs[split_by].unique()
99
+ result: pd.DataFrame = None # type: ignore
100
+ for split_val in split_vals:
101
+ logger.info(f"Running {method} for {split_by} = {split_val} ...")
102
+ adata_split = adata[adata.obs[split_by] == split_val]
103
+ envs["adata"] = adata_split
104
+
105
+ method_fun(**envs)
106
+ res = adata_split.uns['liana_ccc']
107
+ res[split_by] = split_val
108
+
109
+ if result is None:
110
+ result = res
111
+ else:
112
+ result = pd.concat([result, res], ignore_index=True)
113
+ else:
114
+ logger.info(f"Running {method} ...")
115
+ envs["adata"] = adata
116
+ method_fun(**envs)
117
+
118
+ result = adata.uns['liana_ccc']
119
+
120
+ mag_score_names = {
121
+ "cellphonedb": "lr_means",
122
+ "connectome": "expr_prod",
123
+ "log2fc": None,
124
+ "natmi": "expr_prod",
125
+ "singlecellsignalr": "lrscore",
126
+ "rank_aggregation": "magnitude_rank",
127
+ "geometric_mean": "lr_gmeans",
128
+ "scseqcomm": "inter_score",
129
+ "cellchat": "lr_probs",
130
+ }
131
+
132
+ spec_score_names = {
133
+ "cellphonedb": "cellphone_pvals",
134
+ "connectome": "scaled_weight",
135
+ "log2fc": "lr_logfc",
136
+ "natmi": "spec_weight",
137
+ "singlecellsignalr": None,
138
+ "rank_aggregation": "specificity_rank",
139
+ "geometric_mean": "gmean_pvals",
140
+ "scseqcomm": None,
141
+ "cellchat": "cellchat_pvals",
142
+ }
143
+
144
+ if mag_score_names[method] is not None:
145
+ result['mag_score'] = result[mag_score_names[method]]
146
+ if spec_score_names[method] is not None:
147
+ result['spec_score'] = result[spec_score_names[method]]
148
+
149
+ logger.info("Saving the result ...")
150
+ result.to_csv(outfile, sep="\t", index=False)
@@ -0,0 +1,93 @@
1
+ library(rlang)
2
+ library(dplyr)
3
+ library(scplotter)
4
+ library(biopipen.utils)
5
+
6
+ cccfile <- {{ in.cccfile | r }}
7
+ outdir <- {{ out.outdir | r }}
8
+ joboutdir <- {{ job.outdir | r }}
9
+ envs <- {{ envs | r }}
10
+ envs <- extract_vars(
11
+ envs,
12
+ "magnitude", "specificity", "devpars", "subset", "cases", "more_formats", "descr"
13
+ )
14
+
15
+ ccc <- read.table(cccfile, header=TRUE, sep="\t", check.names = FALSE)
16
+
17
+ if (length(ccc) == 0) {
18
+ stop("No data found in the input file: ", cccfile)
19
+ }
20
+
21
+ defaults <- list(
22
+ magnitude = NULL,
23
+ specificity = NULL,
24
+ subset = subset,
25
+ descr = descr,
26
+ more_formats = more_formats,
27
+ devpars = list(res = 100)
28
+ )
29
+
30
+ cases <- expand_cases(cases, defaults, default_case = "Cell-Cell Communication")
31
+ log <- get_logger()
32
+ reporter <- get_reporter()
33
+
34
+ do_case <- function(name) {
35
+ log$info("- Case: {name}")
36
+ case <- cases[[name]]
37
+ info <- case_info(name, outdir, is_dir = FALSE)
38
+ case <- extract_vars(case, subset_ = "subset", "devpars", "more_formats", "descr")
39
+
40
+ case$data <- ccc
41
+ if (!is.null(subset_)) {
42
+ case$data <- ccc %>% dplyr::filter(!!parse_expr(subset_))
43
+ }
44
+
45
+ if (identical(case$plot_type, "table")) {
46
+ write.table(
47
+ case$data,
48
+ file = paste0(info$prefix, ".txt"),
49
+ sep = "\t",
50
+ row.names = FALSE,
51
+ col.names = TRUE,
52
+ quote = FALSE
53
+ )
54
+ report <- list(
55
+ kind = "table",
56
+ data = list(nrows = 100),
57
+ src = paste0(info$prefix, ".txt")
58
+ )
59
+ reporter$add2(report, hs = c(info$section, info$name))
60
+ return()
61
+ }
62
+
63
+ if (is.null(case$magnitude)) {
64
+ case$magnitude <- NULL
65
+ }
66
+ if (is.null(case$specificity)) {
67
+ case$specificity <- NULL
68
+ }
69
+ p <- do_call(scplotter::CCCPlot, case)
70
+ save_plot(
71
+ p, info$prefix,
72
+ devpars = devpars, formats = unique(c("png", more_formats))
73
+ )
74
+
75
+ report <- list(
76
+ kind = "table_image",
77
+ src = paste0(info$prefix, ".png"),
78
+ download = list(),
79
+ descr = html_escape(descr),
80
+ name = html_escape(info$name)
81
+ )
82
+ exformats <- setdiff(more_formats, "png")
83
+ if (length(exformats) > 0) {
84
+ report$download <- lapply(exformats, function(fmt) {
85
+ paste0(info$prefix, ".", fmt)
86
+ })
87
+ }
88
+ reporter$add2(report, hs = c(info$section, info$name), ui = "table_of_images:2")
89
+ }
90
+
91
+ sapply(names(cases), do_case)
92
+
93
+ reporter$save(joboutdir)
@@ -0,0 +1,30 @@
1
+ from __future__ import annotations
2
+
3
+ from contextlib import suppress
4
+ from pathlib import Path
5
+ from biopipen.core.filters import dict_to_cli_args
6
+ from biopipen.utils.misc import run_command
7
+
8
+ crdir = Path({{in.crdir | quote}}) # noqa: E999 # pyright: ignore
9
+ outdir = {{out.outdir | quote}} # pyright: ignore
10
+ envs: dict = {{envs | repr}} # pyright: ignore
11
+ cellsnp_lite = envs.pop("cellsnp_lite")
12
+ ncores = envs.pop("ncores")
13
+
14
+ with suppress(RuntimeError):
15
+ run_command([cellsnp_lite, "--version"], fg=True)
16
+ print("")
17
+
18
+ if crdir.name != "outs":
19
+ crdir = crdir / "outs"
20
+
21
+ bamfile = str(crdir / "possorted_genome_bam.bam")
22
+ barcodefile = str(crdir / "filtered_feature_bc_matrix" / "barcodes.tsv.gz")
23
+
24
+ envs["nproc"] = ncores
25
+ envs["samFile"] = bamfile
26
+ envs["barcodeFile"] = barcodefile
27
+ envs["outDir"] = outdir
28
+
29
+ cmd = [cellsnp_lite, *dict_to_cli_args(envs)]
30
+ run_command(cmd, fg=True, bufsize=1)
@@ -0,0 +1,185 @@
1
+ library(rlang)
2
+ library(hdf5r)
3
+ library(dplyr)
4
+ library(Seurat)
5
+ library(biopipen.utils)
6
+
7
+ sobjfile <- {{in.sobjfile | r}}
8
+ outfile <- {{out.outfile | r}}
9
+ newcol <- {{envs.newcol | r}}
10
+ cluster_ident <- {{envs.ident | r }}
11
+ merge_same_labels <- {{envs.merge | r}}
12
+ celltypist_args <- {{envs.celltypist_args | r}}
13
+ outtype <- {{envs.outtype | r }}
14
+ if (identical(outtype, "input")) {
15
+ outtype <- tolower(tools::file_ext(outfile)) # rds, h5ad, qs/qs2
16
+ }
17
+
18
+ outdir <- dirname(outfile)
19
+ outprefix <- file.path(outdir, tools::file_path_sans_ext(basename(outfile)))
20
+
21
+ over_clustering <- celltypist_args$over_clustering %||% cluster_ident
22
+
23
+ require_package("celltypist", version = ">=1.7.1", python = celltypist_args$python)
24
+
25
+ log <- get_logger()
26
+
27
+ if (is.null(celltypist_args$model)) {
28
+ stop("Please specify a model for celltypist (envs.celltypist_args.model)")
29
+ } else if (!file.exists(celltypist_args$model)) {
30
+ stop(paste0("Model file not found (envs.celltypist_args.model)"))
31
+ }
32
+ dir.create(file.path(outdir, "data", "models"), recursive = TRUE, showWarnings = FALSE)
33
+ modelfile <- file.path(outdir, "data", "models", basename(celltypist_args$model))
34
+ suppressWarnings(file.remove(modelfile))
35
+ file.symlink(normalizePath(celltypist_args$model), modelfile)
36
+
37
+ sobj <- NULL
38
+ ident <- NULL
39
+ if (!endsWith(sobjfile, ".h5ad")) {
40
+ sobj <- read_obj(sobjfile)
41
+ ident <- GetIdentityColumn(sobj)
42
+ over_clustering <- over_clustering %||% ident
43
+
44
+ if (!isFALSE(over_clustering)) {
45
+ destfile <- paste0(outprefix, ".", over_clustering, ".h5ad")
46
+ } else {
47
+ destfile <- paste0(outprefix, ".h5ad")
48
+ }
49
+
50
+ if (file.exists(destfile) && (file.mtime(destfile) < file.mtime(sobjfile))) {
51
+ file.remove(destfile)
52
+ }
53
+ if (file.exists(destfile)) {
54
+ log$warn("Using existing H5AD file: {destfile} ...")
55
+ } else {
56
+ log$info("Converting to H5AD file ...")
57
+ ConvertSeuratToAnnData(
58
+ sobj,
59
+ outfile = destfile,
60
+ assay = celltypist_args$assay,
61
+ log = log
62
+ )
63
+ }
64
+ sobjfile <- destfile
65
+ }
66
+
67
+ # sobjfile h5ad ensured
68
+ # use celltypist to annotate
69
+ log$info("Annotating cell types using celltypist ...")
70
+ # celltypist_script <- file.path(
71
+ # "{ {biopipen_dir} }", "scripts", "scrna", "celltypist-wrapper.py"
72
+ # )
73
+ # In case this script is running in the cloud and <biopipen_dir> can not be found in there
74
+ # In stead, we use the python command, which is associated with the cloud environment,
75
+ # to get the biopipen directory
76
+ biopipen_dir <- get_biopipen_dir(celltypist_args$python)
77
+ celltypist_script <- file.path(
78
+ biopipen_dir, "scripts", "scrna", "celltypist-wrapper.py"
79
+ )
80
+
81
+ if (outtype == "h5ad") {
82
+ celltypist_outfile <- outfile
83
+ } else if (outtype == "rds" || outtype == "qs" || outtype == "qs2") {
84
+ ext <- if (is.null(sobj)) ".h5ad" else ".txt"
85
+ celltypist_outfile <- paste0(outprefix, ".celltypist", ext)
86
+ } else {
87
+ stop(paste0("Unknown output type: ", outtype))
88
+ }
89
+
90
+ if (file.exists(celltypist_outfile) &&
91
+ (file.mtime(celltypist_outfile) > file.mtime(sobjfile))) {
92
+ log$warn("Using existing celltypist results: {celltypist_outfile} ...")
93
+ } else {
94
+ command <- paste(
95
+ paste0("CELLTYPIST_FOLDER='", outdir, "'"),
96
+ celltypist_args$python,
97
+ celltypist_script,
98
+ "-i", sobjfile,
99
+ "-m", celltypist_args$model,
100
+ "-o", celltypist_outfile
101
+ )
102
+ if (!isFALSE(over_clustering) && !is.null(over_clustering)) {
103
+ command <- paste(command, "-c", over_clustering)
104
+ }
105
+ if (isTRUE(celltypist_args$majority_voting)) {
106
+ command <- paste(command, "-v")
107
+ }
108
+ log$info("Running celltypist:")
109
+ # print("- {command}")
110
+ log$debug(" {command}")
111
+ rc <- system(command)
112
+ if (rc != 0) {
113
+ stop("Failed to run celltypist. Check the job.stderr file to see the error message.")
114
+ }
115
+ }
116
+
117
+ if (outtype == "h5ad") {
118
+ if (merge_same_labels) {
119
+ log$warn("- Merging clusters with the same labels is not supported and is ignored for h5ad outfile ...")
120
+ }
121
+ } else if (outtype == "rds" || outtype == "qs" || outtype == "qs2") {
122
+ if (is.null(sobj)) {
123
+ log$info("Reading H5AD from celltypist ...")
124
+ sobj <- ConvertAnnDataToSeurat(
125
+ infile = celltypist_outfile,
126
+ outfile = NULL,
127
+ assay = celltypist_args$assay %||% "RNA",
128
+ ident = ident,
129
+ log = log
130
+ )
131
+ } else {
132
+ log$info("Attaching celltypist results to Seurat object ...")
133
+
134
+ celltypist_out <- read.table(
135
+ celltypist_outfile, sep = "\t", header = TRUE, row.names = 1)
136
+
137
+ sobj <- AddMetaData(
138
+ sobj,
139
+ celltypist_out[
140
+ rownames(sobj@meta.data),
141
+ setdiff(colnames(celltypist_out), colnames(sobj@meta.data)),
142
+ drop = FALSE
143
+ ]
144
+ )
145
+ }
146
+
147
+ if (celltypist_args$majority_voting) {
148
+ prediction <- "majority_voting"
149
+
150
+ if (!is.null(newcol)) {
151
+ sobj@meta.data[[newcol]] <- sobj@meta.data[[prediction]]
152
+ } else if (!isFALSE(over_clustering) && !is.null(over_clustering)) {
153
+ # save the original over_clustering column as seurat_clusters_id
154
+ sobj@meta.data$seurat_clusters_id <- sobj@meta.data[[over_clustering]]
155
+
156
+ # make a map of original cluster id to new cluster id
157
+ cluster_map <- data.frame(
158
+ seurat_clusters_id = sobj@meta.data$seurat_clusters_id,
159
+ seurat_clusters = sobj@meta.data[[prediction]]
160
+ ) %>%
161
+ group_by(seurat_clusters_id) %>%
162
+ summarise(seurat_clusters = first(seurat_clusters), .groups = "drop") %>%
163
+ mutate(seurat_clusters = make.unique(seurat_clusters))
164
+ cluster_map <- split(cluster_map$seurat_clusters, cluster_map$seurat_clusters_id)
165
+ sobj <- rename_idents(sobj, over_clustering, cluster_map)
166
+ }
167
+ } else if (!is.null(newcol)) {
168
+ sobj@meta.data[[newcol]] <- sobj@meta.data[["predicted_labels"]]
169
+ }
170
+
171
+ if (merge_same_labels) {
172
+ log$info("Merging clusters with the same labels ...")
173
+ sobj <- merge_clusters_with_same_labels(sobj, newcol)
174
+ }
175
+
176
+ if (!is.null(ident)) {
177
+ # restore the original identity
178
+ Idents(sobj) <- ident
179
+ }
180
+
181
+ log$info("Saving the object ...")
182
+ save_obj(sobj, outfile)
183
+ } else {
184
+ stop(paste0("Unknown output type: ", outtype))
185
+ }