biopipen 0.21.0__py3-none-any.whl → 0.34.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (290) hide show
  1. biopipen/__init__.py +1 -1
  2. biopipen/core/config.toml +28 -0
  3. biopipen/core/filters.py +79 -4
  4. biopipen/core/proc.py +12 -3
  5. biopipen/core/testing.py +75 -3
  6. biopipen/ns/bam.py +148 -6
  7. biopipen/ns/bed.py +75 -0
  8. biopipen/ns/cellranger.py +186 -0
  9. biopipen/ns/cellranger_pipeline.py +126 -0
  10. biopipen/ns/cnv.py +19 -3
  11. biopipen/ns/cnvkit.py +1 -1
  12. biopipen/ns/cnvkit_pipeline.py +20 -12
  13. biopipen/ns/delim.py +34 -35
  14. biopipen/ns/gene.py +68 -23
  15. biopipen/ns/gsea.py +63 -37
  16. biopipen/ns/misc.py +39 -14
  17. biopipen/ns/plot.py +304 -1
  18. biopipen/ns/protein.py +183 -0
  19. biopipen/ns/regulatory.py +290 -0
  20. biopipen/ns/rnaseq.py +142 -5
  21. biopipen/ns/scrna.py +2053 -473
  22. biopipen/ns/scrna_metabolic_landscape.py +228 -382
  23. biopipen/ns/snp.py +659 -0
  24. biopipen/ns/stats.py +484 -0
  25. biopipen/ns/tcr.py +683 -98
  26. biopipen/ns/vcf.py +236 -2
  27. biopipen/ns/web.py +97 -6
  28. biopipen/reports/bam/CNVpytor.svelte +4 -9
  29. biopipen/reports/cellranger/CellRangerCount.svelte +18 -0
  30. biopipen/reports/cellranger/CellRangerSummary.svelte +16 -0
  31. biopipen/reports/cellranger/CellRangerVdj.svelte +18 -0
  32. biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
  33. biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
  34. biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
  35. biopipen/reports/common.svelte +15 -0
  36. biopipen/reports/protein/ProdigySummary.svelte +16 -0
  37. biopipen/reports/scrna/CellsDistribution.svelte +4 -39
  38. biopipen/reports/scrna/DimPlots.svelte +1 -1
  39. biopipen/reports/scrna/MarkersFinder.svelte +6 -126
  40. biopipen/reports/scrna/MetaMarkers.svelte +3 -75
  41. biopipen/reports/scrna/RadarPlots.svelte +4 -20
  42. biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +61 -22
  43. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +88 -82
  44. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +70 -10
  45. biopipen/reports/snp/PlinkCallRate.svelte +24 -0
  46. biopipen/reports/snp/PlinkFreq.svelte +18 -0
  47. biopipen/reports/snp/PlinkHWE.svelte +18 -0
  48. biopipen/reports/snp/PlinkHet.svelte +18 -0
  49. biopipen/reports/snp/PlinkIBD.svelte +18 -0
  50. biopipen/reports/tcr/CDR3AAPhyschem.svelte +19 -66
  51. biopipen/reports/tcr/ClonalStats.svelte +16 -0
  52. biopipen/reports/tcr/CloneResidency.svelte +3 -93
  53. biopipen/reports/tcr/Immunarch.svelte +4 -155
  54. biopipen/reports/tcr/TCRClusterStats.svelte +3 -45
  55. biopipen/reports/tcr/TESSA.svelte +11 -28
  56. biopipen/reports/utils/misc.liq +22 -7
  57. biopipen/scripts/bam/BamMerge.py +11 -15
  58. biopipen/scripts/bam/BamSampling.py +90 -0
  59. biopipen/scripts/bam/BamSort.py +141 -0
  60. biopipen/scripts/bam/BamSplitChroms.py +10 -10
  61. biopipen/scripts/bam/BamSubsetByBed.py +38 -0
  62. biopipen/scripts/bam/CNAClinic.R +41 -5
  63. biopipen/scripts/bam/CNVpytor.py +153 -54
  64. biopipen/scripts/bam/ControlFREEC.py +13 -14
  65. biopipen/scripts/bam/SamtoolsView.py +33 -0
  66. biopipen/scripts/bed/Bed2Vcf.py +5 -5
  67. biopipen/scripts/bed/BedConsensus.py +5 -5
  68. biopipen/scripts/bed/BedLiftOver.sh +6 -4
  69. biopipen/scripts/bed/BedtoolsIntersect.py +54 -0
  70. biopipen/scripts/bed/BedtoolsMakeWindows.py +47 -0
  71. biopipen/scripts/bed/BedtoolsMerge.py +4 -4
  72. biopipen/scripts/cellranger/CellRangerCount.py +138 -0
  73. biopipen/scripts/cellranger/CellRangerSummary.R +181 -0
  74. biopipen/scripts/cellranger/CellRangerVdj.py +112 -0
  75. biopipen/scripts/cnv/AneuploidyScore.R +55 -20
  76. biopipen/scripts/cnv/AneuploidyScoreSummary.R +221 -163
  77. biopipen/scripts/cnv/TMADScore.R +25 -9
  78. biopipen/scripts/cnv/TMADScoreSummary.R +57 -86
  79. biopipen/scripts/cnvkit/CNVkitAccess.py +7 -6
  80. biopipen/scripts/cnvkit/CNVkitAutobin.py +26 -18
  81. biopipen/scripts/cnvkit/CNVkitBatch.py +6 -6
  82. biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
  83. biopipen/scripts/cnvkit/CNVkitCoverage.py +4 -3
  84. biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
  85. biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
  86. biopipen/scripts/cnvkit/CNVkitGuessBaits.py +12 -8
  87. biopipen/scripts/cnvkit/CNVkitHeatmap.py +5 -5
  88. biopipen/scripts/cnvkit/CNVkitReference.py +6 -5
  89. biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
  90. biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
  91. biopipen/scripts/cnvkit/guess_baits.py +166 -93
  92. biopipen/scripts/delim/RowsBinder.R +1 -1
  93. biopipen/scripts/delim/SampleInfo.R +116 -118
  94. biopipen/scripts/gene/GeneNameConversion.R +67 -0
  95. biopipen/scripts/gene/GenePromoters.R +61 -0
  96. biopipen/scripts/gsea/Enrichr.R +5 -5
  97. biopipen/scripts/gsea/FGSEA.R +184 -50
  98. biopipen/scripts/gsea/GSEA.R +2 -2
  99. biopipen/scripts/gsea/PreRank.R +5 -5
  100. biopipen/scripts/misc/Config2File.py +2 -2
  101. biopipen/scripts/misc/Plot.R +80 -0
  102. biopipen/scripts/misc/Shell.sh +15 -0
  103. biopipen/scripts/misc/Str2File.py +2 -2
  104. biopipen/scripts/plot/Heatmap.R +3 -3
  105. biopipen/scripts/plot/Manhattan.R +147 -0
  106. biopipen/scripts/plot/QQPlot.R +146 -0
  107. biopipen/scripts/plot/ROC.R +88 -0
  108. biopipen/scripts/plot/Scatter.R +112 -0
  109. biopipen/scripts/plot/VennDiagram.R +5 -9
  110. biopipen/scripts/protein/MMCIF2PDB.py +33 -0
  111. biopipen/scripts/protein/PDB2Fasta.py +60 -0
  112. biopipen/scripts/protein/Prodigy.py +119 -0
  113. biopipen/scripts/protein/ProdigySummary.R +140 -0
  114. biopipen/scripts/protein/RMSD.py +178 -0
  115. biopipen/scripts/regulatory/MotifAffinityTest.R +102 -0
  116. biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +127 -0
  117. biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +104 -0
  118. biopipen/scripts/regulatory/MotifScan.py +159 -0
  119. biopipen/scripts/regulatory/VariantMotifPlot.R +78 -0
  120. biopipen/scripts/regulatory/motifs-common.R +324 -0
  121. biopipen/scripts/rnaseq/Simulation-ESCO.R +180 -0
  122. biopipen/scripts/rnaseq/Simulation-RUVcorr.R +45 -0
  123. biopipen/scripts/rnaseq/Simulation.R +21 -0
  124. biopipen/scripts/rnaseq/UnitConversion.R +325 -54
  125. biopipen/scripts/scrna/AnnData2Seurat.R +40 -0
  126. biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
  127. biopipen/scripts/scrna/CellCellCommunication.py +150 -0
  128. biopipen/scripts/scrna/CellCellCommunicationPlots.R +93 -0
  129. biopipen/scripts/scrna/CellSNPLite.py +30 -0
  130. biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +185 -0
  131. biopipen/scripts/scrna/CellTypeAnnotation-direct.R +68 -31
  132. biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +27 -22
  133. biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +28 -20
  134. biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +48 -25
  135. biopipen/scripts/scrna/CellTypeAnnotation.R +37 -1
  136. biopipen/scripts/scrna/CellsDistribution.R +456 -167
  137. biopipen/scripts/scrna/DimPlots.R +1 -1
  138. biopipen/scripts/scrna/ExprImputation-alra.R +109 -0
  139. biopipen/scripts/scrna/ExprImputation-rmagic.R +256 -0
  140. biopipen/scripts/scrna/{ExprImpution-scimpute.R → ExprImputation-scimpute.R} +8 -5
  141. biopipen/scripts/scrna/ExprImputation.R +7 -0
  142. biopipen/scripts/scrna/LoomTo10X.R +51 -0
  143. biopipen/scripts/scrna/MQuad.py +25 -0
  144. biopipen/scripts/scrna/MarkersFinder.R +679 -400
  145. biopipen/scripts/scrna/MetaMarkers.R +265 -161
  146. biopipen/scripts/scrna/ModuleScoreCalculator.R +66 -11
  147. biopipen/scripts/scrna/PseudoBulkDEG.R +678 -0
  148. biopipen/scripts/scrna/RadarPlots.R +355 -134
  149. biopipen/scripts/scrna/ScFGSEA.R +298 -100
  150. biopipen/scripts/scrna/ScSimulation.R +65 -0
  151. biopipen/scripts/scrna/ScVelo.py +617 -0
  152. biopipen/scripts/scrna/Seurat2AnnData.R +7 -0
  153. biopipen/scripts/scrna/SeuratClusterStats-clustree.R +87 -0
  154. biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +36 -30
  155. biopipen/scripts/scrna/SeuratClusterStats-features.R +138 -187
  156. biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +81 -0
  157. biopipen/scripts/scrna/SeuratClusterStats-stats.R +78 -89
  158. biopipen/scripts/scrna/SeuratClusterStats.R +47 -10
  159. biopipen/scripts/scrna/SeuratClustering.R +36 -233
  160. biopipen/scripts/scrna/SeuratLoading.R +2 -2
  161. biopipen/scripts/scrna/SeuratMap2Ref.R +84 -113
  162. biopipen/scripts/scrna/SeuratMetadataMutater.R +16 -6
  163. biopipen/scripts/scrna/SeuratPreparing.R +223 -173
  164. biopipen/scripts/scrna/SeuratSubClustering.R +64 -0
  165. biopipen/scripts/scrna/SeuratTo10X.R +27 -0
  166. biopipen/scripts/scrna/Slingshot.R +65 -0
  167. biopipen/scripts/scrna/Subset10X.R +2 -2
  168. biopipen/scripts/scrna/TopExpressingGenes.R +169 -135
  169. biopipen/scripts/scrna/celltypist-wrapper.py +195 -0
  170. biopipen/scripts/scrna/scvelo_paga.py +313 -0
  171. biopipen/scripts/scrna/seurat_anndata_conversion.py +98 -0
  172. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +447 -82
  173. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +348 -241
  174. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +188 -166
  175. biopipen/scripts/snp/MatrixEQTL.R +217 -0
  176. biopipen/scripts/snp/Plink2GTMat.py +148 -0
  177. biopipen/scripts/snp/PlinkCallRate.R +199 -0
  178. biopipen/scripts/snp/PlinkFilter.py +100 -0
  179. biopipen/scripts/snp/PlinkFreq.R +291 -0
  180. biopipen/scripts/snp/PlinkFromVcf.py +81 -0
  181. biopipen/scripts/snp/PlinkHWE.R +85 -0
  182. biopipen/scripts/snp/PlinkHet.R +96 -0
  183. biopipen/scripts/snp/PlinkIBD.R +196 -0
  184. biopipen/scripts/snp/PlinkSimulation.py +124 -0
  185. biopipen/scripts/snp/PlinkUpdateName.py +124 -0
  186. biopipen/scripts/stats/ChowTest.R +146 -0
  187. biopipen/scripts/stats/DiffCoexpr.R +152 -0
  188. biopipen/scripts/stats/LiquidAssoc.R +135 -0
  189. biopipen/scripts/stats/Mediation.R +108 -0
  190. biopipen/scripts/stats/MetaPvalue.R +130 -0
  191. biopipen/scripts/stats/MetaPvalue1.R +74 -0
  192. biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
  193. biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
  194. biopipen/scripts/tcr/Attach2Seurat.R +3 -2
  195. biopipen/scripts/tcr/CDR3AAPhyschem.R +211 -143
  196. biopipen/scripts/tcr/CDR3Clustering.R +343 -0
  197. biopipen/scripts/tcr/ClonalStats.R +526 -0
  198. biopipen/scripts/tcr/CloneResidency.R +255 -131
  199. biopipen/scripts/tcr/CloneSizeQQPlot.R +4 -4
  200. biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
  201. biopipen/scripts/tcr/GIANA/GIANA4.py +1362 -789
  202. biopipen/scripts/tcr/GIANA/query.py +164 -162
  203. biopipen/scripts/tcr/Immunarch-basic.R +31 -9
  204. biopipen/scripts/tcr/Immunarch-clonality.R +25 -5
  205. biopipen/scripts/tcr/Immunarch-diversity.R +352 -134
  206. biopipen/scripts/tcr/Immunarch-geneusage.R +45 -5
  207. biopipen/scripts/tcr/Immunarch-kmer.R +68 -8
  208. biopipen/scripts/tcr/Immunarch-overlap.R +84 -4
  209. biopipen/scripts/tcr/Immunarch-spectratyping.R +35 -6
  210. biopipen/scripts/tcr/Immunarch-tracking.R +38 -6
  211. biopipen/scripts/tcr/Immunarch-vjjunc.R +165 -0
  212. biopipen/scripts/tcr/Immunarch.R +63 -11
  213. biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
  214. biopipen/scripts/tcr/ImmunarchFilter.R +4 -4
  215. biopipen/scripts/tcr/ImmunarchLoading.R +38 -29
  216. biopipen/scripts/tcr/SampleDiversity.R +1 -1
  217. biopipen/scripts/tcr/ScRepCombiningExpression.R +40 -0
  218. biopipen/scripts/tcr/ScRepLoading.R +166 -0
  219. biopipen/scripts/tcr/TCRClusterStats.R +176 -22
  220. biopipen/scripts/tcr/TCRDock.py +110 -0
  221. biopipen/scripts/tcr/TESSA.R +102 -118
  222. biopipen/scripts/tcr/VJUsage.R +5 -5
  223. biopipen/scripts/tcr/immunarch-patched.R +142 -0
  224. biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
  225. biopipen/scripts/vcf/BcftoolsAnnotate.py +91 -0
  226. biopipen/scripts/vcf/BcftoolsFilter.py +90 -0
  227. biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
  228. biopipen/scripts/vcf/BcftoolsSort.py +113 -0
  229. biopipen/scripts/vcf/BcftoolsView.py +73 -0
  230. biopipen/scripts/vcf/TruvariBench.sh +14 -7
  231. biopipen/scripts/vcf/TruvariBenchSummary.R +16 -13
  232. biopipen/scripts/vcf/TruvariConsistency.R +1 -1
  233. biopipen/scripts/vcf/Vcf2Bed.py +2 -2
  234. biopipen/scripts/vcf/VcfAnno.py +11 -11
  235. biopipen/scripts/vcf/VcfDownSample.sh +22 -10
  236. biopipen/scripts/vcf/VcfFilter.py +5 -5
  237. biopipen/scripts/vcf/VcfFix.py +7 -7
  238. biopipen/scripts/vcf/VcfFix_utils.py +13 -4
  239. biopipen/scripts/vcf/VcfIndex.py +3 -3
  240. biopipen/scripts/vcf/VcfIntersect.py +3 -3
  241. biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
  242. biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
  243. biopipen/scripts/vcf/bcftools_utils.py +52 -0
  244. biopipen/scripts/web/Download.py +8 -4
  245. biopipen/scripts/web/DownloadList.py +5 -5
  246. biopipen/scripts/web/GCloudStorageDownloadBucket.py +82 -0
  247. biopipen/scripts/web/GCloudStorageDownloadFile.py +23 -0
  248. biopipen/scripts/web/gcloud_common.py +49 -0
  249. biopipen/utils/gene.py +108 -60
  250. biopipen/utils/misc.py +146 -20
  251. biopipen/utils/reference.py +64 -20
  252. biopipen/utils/reporter.py +177 -0
  253. biopipen/utils/vcf.py +1 -1
  254. biopipen-0.34.26.dist-info/METADATA +27 -0
  255. biopipen-0.34.26.dist-info/RECORD +292 -0
  256. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
  257. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +6 -2
  258. biopipen/ns/bcftools.py +0 -111
  259. biopipen/ns/scrna_basic.py +0 -255
  260. biopipen/reports/delim/SampleInfo.svelte +0 -36
  261. biopipen/reports/scrna/GeneExpressionInvistigation.svelte +0 -32
  262. biopipen/reports/scrna/ScFGSEA.svelte +0 -35
  263. biopipen/reports/scrna/SeuratClusterStats.svelte +0 -82
  264. biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -20
  265. biopipen/reports/scrna/SeuratPreparing.svelte +0 -38
  266. biopipen/reports/scrna/TopExpressingGenes.svelte +0 -55
  267. biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -31
  268. biopipen/reports/utils/gsea.liq +0 -110
  269. biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -42
  270. biopipen/scripts/bcftools/BcftoolsFilter.py +0 -79
  271. biopipen/scripts/bcftools/BcftoolsSort.py +0 -19
  272. biopipen/scripts/gene/GeneNameConversion.py +0 -66
  273. biopipen/scripts/scrna/ExprImpution-alra.R +0 -32
  274. biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -29
  275. biopipen/scripts/scrna/ExprImpution.R +0 -7
  276. biopipen/scripts/scrna/GeneExpressionInvistigation.R +0 -132
  277. biopipen/scripts/scrna/Write10X.R +0 -11
  278. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -150
  279. biopipen/scripts/tcr/TCRClustering.R +0 -280
  280. biopipen/utils/common_docstrs.py +0 -61
  281. biopipen/utils/gene.R +0 -49
  282. biopipen/utils/gsea.R +0 -193
  283. biopipen/utils/io.R +0 -20
  284. biopipen/utils/misc.R +0 -114
  285. biopipen/utils/mutate_helpers.R +0 -433
  286. biopipen/utils/plot.R +0 -173
  287. biopipen/utils/rnaseq.R +0 -48
  288. biopipen/utils/single_cell.R +0 -115
  289. biopipen-0.21.0.dist-info/METADATA +0 -22
  290. biopipen-0.21.0.dist-info/RECORD +0 -218
@@ -0,0 +1,180 @@
1
+
2
+ library(ESCO)
3
+ library(rlang)
4
+ library(glue)
5
+ library(biopipen.utils)
6
+
7
+ args <- {{envs.esco_args | r: todot="-"}}
8
+ args <- args %||% list()
9
+
10
+ save <- args$save
11
+ args$save <- NULL
12
+
13
+ log <- get_logger()
14
+
15
+ if (!is.null(seed)) {
16
+ set.seed(seed)
17
+ args$seed <- seed
18
+ }
19
+ args$nGenes <- ngenes
20
+ args$nCells <- nsamples
21
+ args$dirname <- paste0(outdir, "/")
22
+ args$verbose <- TRUE
23
+ args$numCores <- ncores
24
+ type <- args$type
25
+
26
+ log$info("Running simulation ...")
27
+ sim <- do_call(escoSimulate, args)
28
+ attributes(sim) <- c(attributes(sim), c(simulation_tool = "ESCO"))
29
+ save_obj(sim, file.path(outdir, "sim.rds"))
30
+
31
+ log$info("Plotting ...")
32
+ if (type == "single") {
33
+ asys <- assays(sim)
34
+ datalist = list(`simulated-truth` = asys$TrueCounts)
35
+ if (!is.null(asys$counts)) {
36
+ datalist$`zero-inflated` = asys$counts
37
+ }
38
+ if (!is.null(asys$observedcounts)) {
39
+ datalist$`down-sampled` = asys$observedcounts
40
+ }
41
+
42
+ log$info("- Plotting the data ...")
43
+ dataplot <- file.path(outdir, "data.png")
44
+ png(dataplot, width=length(datalist) * 600, height=1200, res=30)
45
+ heatdata(datalist, norm = FALSE, size = 2, ncol = 3)
46
+ dev.off()
47
+
48
+ rholist <- metadata(sim)$Params@corr
49
+ if (length(rholist) > 0) {
50
+ log$info("- Plotting the GCN ...")
51
+ corrgenes <- rownames(rholist[[1]])
52
+ gcnlist = lapply(datalist, function(data)gcn(data, genes = corrgenes))
53
+ gcnlist = append(gcnlist, list("given truth" = rholist[[1]]), 1)
54
+
55
+ gcnplot <- file.path(outdir, "gcn.png")
56
+ png(gcnplot, width=length(gcnlist) * 600, height=1200, res=30)
57
+ heatgcn(gcnlist, size = 2, ncol = 4)
58
+ dev.off()
59
+ }
60
+ } else if (type == "groups") {
61
+ asys <- assays(sim)
62
+ # organize the marker gene info
63
+ genegroup = paste0("Group", rowData(sim)$GeneGroup)
64
+ genegroup[which(genegroup=="Group0")] = "None"
65
+ geneinfo = data.frame(genes = rowData(sim)$Gene,
66
+ newcelltype = as.factor(genegroup))
67
+
68
+ # organize the cell info
69
+ cellinfo = data.frame(çells = colData(sim)$Cell,
70
+ newcelltype= as.factor(colData(sim)$Group))
71
+
72
+ # data
73
+ datalist = list(`simulated-truth` = asys$TrueCounts)
74
+ if (!is.null(asys$counts)) {
75
+ datalist$`zero-inflated` = asys$counts
76
+ }
77
+ if (!is.null(asys$observedcounts)) {
78
+ datalist$`down-sampled` = asys$observedcounts
79
+ }
80
+
81
+ log$info("- Plotting the data ...")
82
+ dataplot <- file.path(outdir, "data.png")
83
+ png(dataplot, width=length(datalist) * 600, height=1200, res=30)
84
+ heatdata(datalist, cellinfo = cellinfo, geneinfo = geneinfo, size = 1, ncol = 3)
85
+ dev.off()
86
+
87
+ log$info("- Plotting the GCN for all marker genes (i.e. DE genes) across all cell groups ...")
88
+ degeneinfo = geneinfo[which(geneinfo$newcelltype!="None"),]
89
+ degeneinfo$newcelltype = droplevels(degeneinfo$newcelltype)
90
+ degcnlist = lapply(datalist, function(data)gcn(data, genes = degeneinfo$genes))
91
+ gcnplot <- file.path(outdir, "gcn-allgroups.png")
92
+ png(gcnplot, width=length(degcnlist) * 700, height=1200, res=30)
93
+ heatgcn(degcnlist, geneinfo = degeneinfo, size = 2, ncol = 3)
94
+ dev.off()
95
+
96
+ log$info("- Plotting the GCN for marker genes within one cell group ...")
97
+ rholist = metadata(sim)$Params@corr
98
+ group2_gcnlist = lapply(datalist,
99
+ function(data){
100
+ gcn(data[,which(colData(sim)$Group=="Group2")],
101
+ CPM2 = TRUE,
102
+ genes = rownames(rholist[["Group2"]]))})
103
+ group2_gcnlist = append(group2_gcnlist,
104
+ list("given truth" = rholist[["Group2"]]), 1)
105
+ gcnplot2 <- file.path(outdir, "gcn-onegroup.png")
106
+ png(gcnplot2, width=length(group2_gcnlist) * 700, height=1200, res=30)
107
+ heatgcn(group2_gcnlist, size = 3, ncol = 4)
108
+ dev.off()
109
+ } else if (type == "tree") {
110
+ # get the data
111
+ datatrue = assays(sim)$TrueCounts
112
+
113
+ # get the cellinfo
114
+ cellinfo = data.frame(cell = colData(sim)$Cell,
115
+ newcelltype = as.factor(colData(sim)$Group))
116
+ levels(cellinfo$newcelltype) = tree$tip.label
117
+
118
+ # get the geneinfo
119
+ genegroup = paste0("Group", rowData(sim)$GeneGroup)
120
+ genegroup[which(genegroup=="Group0")] = "None"
121
+ geneinfo = data.frame(genes = rowData(sim)$Gene,
122
+ newcelltype = as.factor(genegroup))
123
+ levels(geneinfo$newcelltype)[1:3] = tree$tip.label
124
+
125
+ # get the DE geneinfo
126
+ groups <- colData(sim)$Group
127
+ group.names <- sort(unique(groups))
128
+ group.facs.gene <- rowData(sim)[, paste0("DEFac", group.names)]
129
+ DEgene.name = as.character(rowData(sim)$Gene[which(group.facs.gene[,1]>1)])
130
+ degeneinfo = geneinfo[match(DEgene.name, geneinfo$genes),]
131
+
132
+ log$info("- Plotting the data ...")
133
+ dataplot <- file.path(outdir, "data.png")
134
+ png(dataplot, width=2000, height=1200, res=30)
135
+ # plot the data
136
+ heatdata(list(datatrue),
137
+ colv = TRUE,
138
+ cellinfo = cellinfo,
139
+ geneinfo = degeneinfo,
140
+ genes = degeneinfo$genes,
141
+ size = 1.5, ncol = 1)
142
+ dev.off()
143
+ } else if (type == "traj") {
144
+ datatrue = assays(sim)$TrueCounts
145
+
146
+ # get the cellinfo
147
+ cellinfo = data.frame(cell = colData(sim)$Cell,
148
+ newcelltype = colData(sim)$Path)
149
+ # get the pesudo time
150
+ celltime = data.frame(path = as.numeric(colData(sim)$Path),
151
+ step = as.numeric(colData(sim)$Step))
152
+ celltime = order(celltime[,1], celltime[,2])
153
+
154
+ # get the geneinfo
155
+ degenes = which(metadata(sim)$Params@paths.DEgenes==1)
156
+
157
+ log$info("- Plotting the trajectory ...")
158
+ trajplot <- file.path(outdir, "traj.png")
159
+ png(trajplot, width=1600, height=1200, res=30)
160
+ # plot the data
161
+ umapplot(t(t(datatrue)/colSums(datatrue)),
162
+ celltype = colData(sim)$Path,
163
+ labels = levels(as.factor(colData(sim)$Path)))
164
+ dev.off()
165
+
166
+ log$info("- Plotting the data ...")
167
+ dataplot <- file.path(outdir, "data.png")
168
+ heatdata(list("simulated truth" = datatrue[degenes,]),
169
+ cellinfo = cellinfo,
170
+ colv = celltime, size = 1, ncol = 1)
171
+ dev.off()
172
+ }
173
+
174
+ simulated <- switch(save,
175
+ `simulated-truth` = assays(sim)$TrueCounts,
176
+ `zero-inflated` = assays(sim)$counts,
177
+ `down-sampled` = assays(sim)$observedcounts,
178
+ { stop(glue("Unknown save option: {save}, expected one of 'simulated-truth', 'zero-inflated', 'down-sampled'")) }
179
+ )
180
+
@@ -0,0 +1,45 @@
1
+
2
+ library(rlang)
3
+ library(RUVcorr)
4
+ library(biopipen.utils)
5
+
6
+ log <- get_logger()
7
+
8
+ args <- {{envs.ruvcorr_args | r: todot="-"}}
9
+ if (!is.null(seed)) { set.seed(seed) }
10
+
11
+ args$k <- args$k %||% 10
12
+ args$size.alpha <- args$size.alpha %||% 2
13
+ args$corr.strength <- args$corr.strength %||% 3
14
+ args$g <- args$g %||% NULL
15
+ args$Sigma.eps <- args$Sigma.eps %||% 1
16
+ args$nc <- args$nc %||% (ngenes %/% 4)
17
+ args$ne <- args$ne %||% (ngenes %/% 4)
18
+ args$intercept <- args$intercept %||% TRUE
19
+ args$check <- args$check %||% TRUE
20
+ args$n = ngenes
21
+ args$m = nsamples
22
+
23
+ log$info("Running simulation ...")
24
+ sim <- do_call(simulateGEdata, args)
25
+ attributes(sim) <- c(attributes(sim), c(simulation_tool = "RUVcorr"))
26
+ genes <- paste0("Gene", 1:ngenes)
27
+ samples <- paste0("Sample", 1:nsamples)
28
+
29
+ colnames(sim$Truth) <- genes
30
+ rownames(sim$Truth) <- samples
31
+ sim$Truth <- t(sim$Truth)
32
+ colnames(sim$Y) <- genes
33
+ rownames(sim$Y) <- samples
34
+ sim$Y <- t(sim$Y)
35
+ colnames(sim$Noise) <- genes
36
+ rownames(sim$Noise) <- samples
37
+ sim$Noise <- t(sim$Noise)
38
+ colnames(sim$Sigma) <- genes
39
+ rownames(sim$Sigma) <- genes
40
+
41
+ log$info("Saving results ...")
42
+ save_obj(sim, file.path(outdir, "sim.rds"))
43
+ save_obj(sim$Truth, file.path(outdir, "Truth.rds"))
44
+
45
+ simulated <- sim$Y
@@ -0,0 +1,21 @@
1
+ ngenes <- {{in.ngenes | r}}
2
+ nsamples <- {{in.nsamples | r}}
3
+ outfile <- {{out.outfile | r}}
4
+ outdir <- {{out.outdir | r}}
5
+ seed <- {{envs.seed | r}}
6
+ ncores <- {{envs.ncores | r}}
7
+ transpose_output <- {{envs.transpose_output | r}}
8
+ index_start <- {{envs.index_start | r}}
9
+
10
+ {% if envs.tool.lower() == "ruvcorr" %}
11
+ {% include biopipen_dir + "/scripts/rnaseq/Simulation-RUVcorr.R" %}
12
+ {% elif envs.tool.lower() == "esco" %}
13
+ {% include biopipen_dir + "/scripts/rnaseq/Simulation-ESCO.R" %}
14
+ {% else %}
15
+ stop("Unknown tool: {{envs.tool}}, only 'RUVcorr' and 'ESCO' are supported.")
16
+ {% endif %}
17
+
18
+ colnames(simulated) <- paste0("Sample", index_start + 0:(nsamples - 1))
19
+ if (transpose_output) { simulated <- t(simulated) }
20
+
21
+ write.table(simulated, file = outfile, sep = "\t", quote = FALSE, row.names = TRUE, col.names = TRUE)
@@ -1,73 +1,344 @@
1
- infile = {{in.infile | r}}
2
- outfile = {{out.outfile | r}}
3
- infmt = {{envs.infmt | r}}
4
- inunit = {{envs.inunit | r}}
5
- outunit = {{envs.outunit | r}}
6
- refexon = {{envs.refexon | r}}
7
- inlog2p = {{envs.inlog2p | r}}
8
- outlog2p = {{envs.outlog2p | r}}
1
+ library(rlang)
2
+ library(glue)
3
+ library(biopipen.utils)
9
4
 
10
- if (infmt == "rds") {
11
- indata = readRDS(infile)
12
- } else if (endsWith(infile, ".gz")) {
13
- indata = read.table(infile, header=T, row.names=NULL, sep="\t", check.names = F)
14
- genes = make.unique(indata[, 1])
15
- indata = indata[, -1]
16
- rownames(indata) = genes
5
+ infile <- {{in.infile | r}}
6
+ outfile <- {{out.outfile | r}}
7
+ inunit <- {{envs.inunit | r}}
8
+ outunit <- {{envs.outunit | r}}
9
+ refexon <- {{envs.refexon | r}}
10
+ meanfl <- {{envs.meanfl | r}}
11
+ nreads <- {{envs.nreads | r}}
12
+
13
+ log <- get_logger()
14
+
15
+ log$info("Reading input data ...")
16
+ indata = read.table(infile, header = TRUE, sep = "\t", row.names = 1, check.names = F)
17
+ samples = colnames(indata)
18
+
19
+ # parse the inunit to see if there is any transformation
20
+ parsable <- function(arg) { is.call(arg) || is_symbol(arg) }
21
+
22
+ check_call_args <- function(arg1, arg2) {
23
+ if (parsable(arg1) && parsable(arg2)) {
24
+ stop(glue("Can't parse the call. Multiple names or calls detected: {arg1}, {arg2}\n"))
25
+ }
26
+ if (!parsable(arg1) && !parsable(arg2)) {
27
+ stop(glue("Can't parse the call. Both arguments are constants: {arg1}, {arg2}. Use the result directly\n"))
28
+ }
17
29
  }
18
30
 
31
+ parse_call <- function(call, expr = "indata") {
32
+ if (!is.call(call)) {
33
+ call <- match.arg(
34
+ as_string(call),
35
+ c(
36
+ "count", "counts", "rawcount", "rawcounts",
37
+ "cpm",
38
+ "fpkm", "rpkm",
39
+ "fpkmuq", "rpkmuq",
40
+ "tpm",
41
+ "tmm"
42
+ )
43
+ )
44
+ return(glue("{as_string(call)} = {expr}"))
45
+ }
46
+ cn <- as_string(call_name(call))
47
+ args <- call_args(call)
48
+ if (length(args) == 1) {
49
+ # This should be those supported functions
50
+ cn <- match.arg(cn, c("log", "log2", "log10", "exp", "sqrt"))
51
+ if (cn == "log") return(parse_call(args[[1]], glue("e ^ ({expr})")))
52
+ if (cn == "log2") return(parse_call(args[[1]], glue("2 ^ ({expr})")))
53
+ if (cn == "log10") return(parse_call(args[[1]], glue("10 ^ ({expr})")))
54
+ if (cn == "exp") return(parse_call(args[[1]], glue("log({expr})")))
55
+ if (cn == "sqrt") return(parse_call(args[[1]], glue("({expr}) ^ 2")))
56
+ } else {
57
+ check_call_args(args[[1]], args[[2]])
58
+ if (cn == "+") {
59
+ if (parsable(args[[1]])) return(parse_call(args[[1]], glue("{expr} - {args[[2]]}")))
60
+ return(parse_call(args[[2]], glue("{expr} - {args[[1]]}")))
61
+ }
62
+ if (cn == "-") {
63
+ if (parsable(args[[1]])) return(parse_call(args[[1]], glue("{expr} + {args[[2]]}")))
64
+ return(parse_call(args[[2]], glue("{args[[1]]} - {expr}")))
65
+ }
66
+ if (cn == "*") {
67
+ if (parsable(args[[1]])) return(parse_call(args[[1]], glue("({expr}) / ({args[[2]]})")))
68
+ return(parse_call(args[[2]], glue("({expr}) / ({args[[1]]})")))
69
+ }
70
+ if (cn == "/") {
71
+ if (parsable(args[[1]])) return(parse_call(args[[1]], glue("({expr}) * ({args[[2]]})")))
72
+ return(parse_call(args[[2]], glue("({args[[1]]}) / ({expr})")))
73
+ }
74
+ if (cn == "^") {
75
+ if (parsable(args[[1]])) return(parse_call(args[[1]], glue("{expr} * (1 / ({args[[2]]}))")))
76
+ return(parse_call(args[[2]], glue("log({expr}, {args[[1]]})")))
77
+ }
78
+ stop(paste0("Unknown function to parse: {cn}\n"))
79
+ }
80
+ }
19
81
 
20
- glenFromExon = function(exonfile, x) {
21
- gff = read.table(exonfile, header = F, row.names = NULL)
22
- # V4: start, V5: end, V10: gene name
23
- glen = aggregate(V5-V4+1 ~ V10, gff, sum)
24
- genes = glen[,1]
25
- glen = glen[,-1,drop=F]
26
- rownames(glen) = genes
82
+ glenFromExon = function(exonfile, data) {
83
+ gff = read.table(exonfile, header = F, row.names = NULL)
84
+ # V4: start, V5: end, V10: gene name
85
+ glen = aggregate(V5-V4+1 ~ V10, gff, sum)
86
+ genes = glen[,1]
87
+ glen = glen[,-1,drop=F]
88
+ rownames(glen) = genes
27
89
 
28
- mygenes = rownames(x)
29
- outgenes = intersect(genes, mygenes)
30
- if (length(outgenes) < length(mygenes))
31
- warning('Genes not found in refexon: ', paste(setdiff(mygenes, outgenes)))
90
+ mygenes = rownames(data)
91
+ outgenes = intersect(genes, mygenes)
92
+ if (length(outgenes) < length(mygenes))
93
+ logger('Genes not found in refexon: ', paste(setdiff(mygenes, outgenes), collapse = ','), level = 'WARNING')
32
94
 
33
- glen[outgenes, , drop = FALSE]
95
+ glen[outgenes, , drop = FALSE]
34
96
  }
35
97
 
36
98
  meanflFromFile = function(samples, mflfile) {
37
- if (is.numeric(mflfile)) {
38
- ret = matrix(mflfile, nrow = length(samples), ncol = 1)
39
- rownames(ret) = samples
40
- } else {
41
- ret = read.table(mflfile, header = F, row.names = 1, check.names = F, sep = "\t")
42
- ret = ret[samples,,drop = F]
43
- }
44
- ret
99
+ if (is.numeric(mflfile)) {
100
+ ret = matrix(mflfile, nrow = length(samples), ncol = 1)
101
+ rownames(ret) = samples
102
+ } else {
103
+ ret = read.table(mflfile, header = F, row.names = 1, check.names = F, sep = "\t")
104
+ ret = ret[samples,,drop = F]
105
+ }
106
+ ret
45
107
  }
46
108
 
47
- count2tpm = function(x) {
48
- glen = glenFromExon(refexon, x)
49
- x = x[rownames(glen), , drop = F]
50
- fld = meanflFromFile(samples, meanfl)
109
+ nreadsFromFile = function(samples, nreads) {
110
+ if (is.numeric(nreads)) {
111
+ ret = matrix(nreads, nrow = length(samples), ncol = 1)
112
+ rownames(ret) = samples
113
+ } else {
114
+ ret = read.table(nreads, header = F, row.names = 1, check.names = F, sep = "\t")
115
+ ret = ret[samples,,drop = F]
116
+ }
117
+ ret
118
+ }
51
119
 
52
- # see: https://gist.github.com/slowkow/c6ab0348747f86e2748b
53
- expr = as.data.frame(sapply(samples, function(s){
54
- rate = log(x[, s]) - log(glen - fld[s, ] + 1)
55
- denom = log(sum(exp(rate)))
56
- exp(rate - denom + log(1e6))
57
- }))
58
- colnames(expr) = colnames(x)
59
- rownames(expr) = rownames(x)
60
- expr
120
+ count2cpm <- function(data) {
121
+ edgeR::cpm(data)
61
122
  }
62
123
 
63
- if (inunit %in% c('count', 'counts', 'rawcount', 'rawcounts')) {
64
- inunit = "count"
124
+ count2fpkm = function(data) {
125
+ # may lose some genes
126
+ glen = glenFromExon(refexon, data)
127
+ data = data[rownames(glen), , drop = F]
128
+ dge = edgeR::DGEList(counts=data)
129
+
130
+ dge$genes$Length = glen
131
+ edgeR::rpkm(dge)
65
132
  }
66
133
 
134
+ count2fpkmuq = function(data) {
135
+ # may lose some genes
136
+ glen = glenFromExon(refexon, data)
137
+ data = data[rownames(glen), , drop = FALSE]
138
+
139
+ fld = meanflFromFile(samples, meanfl)
140
+ expr = sapply(samples, function(s){
141
+ RC75 = quantile(data[, s], .75)
142
+ exp( log(data[, s]) + log(1e9) - log(glen - fld[s, ] + 1) - log(RC75) )
143
+ })
144
+ rownames(expr) = rownames(data)
145
+ expr
146
+ }
147
+
148
+ count2tpm = function(data) {
149
+ glen = glenFromExon(refexon, data)
150
+ data = data[rownames(glen), , drop = F]
151
+ fld = meanflFromFile(samples, meanfl)
152
+
153
+ # see: https://gist.github.com/slowkow/c6ab0348747f86e2748b
154
+ expr = as.data.frame(sapply(samples, function(s){
155
+ rate = log(data[, s]) - log(glen - fld[s, ] + 1)
156
+ denom = log(sum(exp(rate)))
157
+ exp(rate - denom + log(1e6))
158
+ }))
159
+ colnames(expr) = colnames(data)
160
+ rownames(expr) = rownames(data)
161
+ expr
162
+ }
163
+
164
+ count2tmm = function(data) {
165
+ dge = edgeR::DGEList(counts=data)
166
+ dge = edgeR::calcNormFactors(dge, method = "TMM")
167
+ edgeR::cpm(dge)
168
+ }
169
+
170
+ fpkm2count = function(data) {
171
+ glen = glenFromExon(refexon, data)
172
+ data = data[rownames(glen), , drop = F]
173
+ fld = meanflFromFile(samples, meanfl)
174
+ totalnr = nreadsFromFile(samples, nreads)
175
+
176
+ expr = sapply(samples, function(s){
177
+ N = totalnr[s, ]
178
+ exp( log(data[, s]) + log(N) + log(glen - fld[s, ] + 1) - log(1e9) )
179
+ })
180
+ rownames(expr) = rownames(data)
181
+ expr
182
+ }
183
+
184
+ fpkm2tpm = function(data) {
185
+ expr = sapply(samples, function(s) {
186
+ exp( log(data[, s]) - log(sum(data[, s])) + log(1e6) )
187
+ })
188
+ rownames(expr) = rownames(data)
189
+ expr
190
+ }
191
+
192
+ fpkm2cpm = function(data) {
193
+ glen = glenFromExon(refexon, data)
194
+ data = data[rownames(glen), , drop = F]
195
+ expr = sapply(samples, function(s) {
196
+ exp( log(data[, s]) - log(1e3) - log(glen - fld[s, ] + 1) )
197
+ })
198
+ rownames(expr) = rownames(data)
199
+ expr
200
+ }
201
+
202
+ tpm2count = function(data) {
203
+ totalnr = nreadsFromFile(samples, nreads)
204
+ ngenes = nrow(data)
205
+
206
+ expr = sapply(samples, function(s){
207
+ # counts to tpm:
208
+ # rate <- log(counts) - log(effLen)
209
+ # denom <- log(sum(exp(rate)))
210
+ # tpm = exp(rate - denom + log(1e6))
211
+ # so:
212
+ # log(tpm) = rate - denom + log(1e6)
213
+ # rate = log(tpm) + denom - log(1e6)
214
+ # log(counts) - log(effLen) = log(tpm) + log(sum(exp(rate))) - log(1e6)
215
+ # log(counts) - log(effLen) = log(tpm) + log(sum(exp(log(counts) - log(effLen)))) - log(1e6)
216
+ # log(counts) - log(effLen) = log(tpm) + log(sum(exp(log(counts))/exp(log(effLen)))) - log(1e6)
217
+ # log(counts) - log(effLen) = log(tpm) + log(sum(counts/effLen)) - log(1e6)
218
+ # ?????????????
219
+ # ??? estimated by sum(counts)/sum(effLen) * length(effLen)
220
+ # log(counts) = log(effLen) + log(tpm) + log(sum(counts)) - log(effLen) + log(length(effLen))) - log(1e6)
221
+ # counts = expr( log(tpm) + log(nreads) + log(length(effLen)) - log(1e6) )
222
+ exp( log(data[, s]) + log(totalnr[s, ]) + log(ngenes) - log(1e6) )
223
+ })
224
+ rownames(expr) = rownames(data)
225
+ expr
226
+ }
227
+
228
+ tpm2fpkm = function(data) {
229
+ totalnr = nreadsFromFile(samples, nreads)
230
+ expr = sapply(samples, function(s) {
231
+ exp( log(data[, s]) - log(1e6) + log(totalnr[s, ]) )
232
+ })
233
+ rownames(expr) = rownames(data)
234
+ expr
235
+ }
236
+
237
+ tpm2cpm = function(data) {
238
+ glen = glenFromExon(refexon, data)
239
+ data = data[rownames(glen), , drop = F]
240
+ fld = meanflFromFile(samples, meanfl)
241
+ ngenes = length(outgenes)
242
+
243
+ expr = sapply(samples, function(s) {
244
+ exp( log(data[, s]) + log(glen - fld[s, ] + 1) - log(sum(glen - fld[s, ] + 1)) + log(ngenes) )
245
+ })
246
+ rownames(expr) = rownames(data)
247
+ expr
248
+ }
249
+
250
+ cpm2count = function(data) {
251
+ totalnr = nreadsFromFile(samples, nreads)
252
+
253
+ expr = sapply(samples, function(s) {
254
+ exp( log(data[, s]) + log(totalnr[s, ]) - log(1e6) )
255
+ })
256
+ rownames(expr) = rownames(data)
257
+ expr
258
+ }
259
+
260
+ cpm2fpkm = function(data) {
261
+ glen = glenFromExon(refexon, data)
262
+ data = data[rownames(glen), , drop = F]
263
+ expr = sapply(samples, function(s) {
264
+ exp( log(data[, s]) + log(1e3) - log(glen - fld[s, ] + 1) )
265
+ })
266
+ rownames(expr) = rownames(data)
267
+ expr
268
+ }
269
+
270
+ cpm2tpm = function(data) {
271
+ glen = glenFromExon(refexon, data)
272
+ data = data[rownames(glen), , drop = F]
273
+ ngenes = nrow(glen)
274
+ expr = sapply(samples, function(s) {
275
+ exp( log(data[, s]) - log(glen - fld[s, ] + 1) - log(sum(glen - fld[s, ] + 1)) + log(ngenes) )
276
+ })
277
+ rownames(expr) = rownames(data)
278
+ expr
279
+ }
280
+
281
+ is.count = function(unit) {unit %in% c('count', 'counts', 'rawcount', 'rawcounts')}
282
+ is.cpm = function(unit) {unit == 'cpm'}
283
+ is.fpkm = function(unit) {unit %in% c('fpkm', 'rpkm')}
284
+ is.fpkmuq = function(unit) {unit %in% c('fpkmuq', 'rpkmuq')}
285
+ is.tpm = function(unit) {unit == 'tpm'}
286
+ is.tmm = function(unit) {unit == 'tmm'}
287
+
288
+ # log2(count + 1) -> count = 2 ^ indata - 1
289
+ parsed_transformation <- parse_call(parse_expr(inunit))
290
+ splits <- strsplit(parsed_transformation, " = ")[[1]]
291
+ if (is.count(splits[[1]])) {
292
+ intype <- "count"
293
+ } else if (is.cpm(splits[[1]])) {
294
+ intype <- "cpm"
295
+ } else if (is.fpkm(splits[[1]])) {
296
+ intype <- "fpkm"
297
+ } else if (is.fpkmuq(splits[[1]])) {
298
+ intype <- "fpkmuq"
299
+ } else if (is.tpm(splits[[1]])) {
300
+ intype <- "tpm"
301
+ } else if (is.tmm(splits[[1]])) {
302
+ intype <- "tmm"
303
+ } else {
304
+ stop(glue("Can't find a supported unit in the inunit: {inunit}\n"))
305
+ }
306
+ splits[1] <- intype
307
+ eval(parse_expr(paste(splits, collapse = " = ")))
308
+ indata <- get(intype)
309
+
310
+ # find out the outtype
311
+ if (grepl('rawcounts|rawcount|counts|count', outunit)) {
312
+ outtype <- 'count'
313
+ outunit <- gsub('rawcounts|rawcount|counts|count', 'count', outunit)
314
+ } else if (grepl('fpkmuq|rpkmuq', outunit)) {
315
+ outtype <- 'fpkmuq'
316
+ outunit <- gsub('fpkmuq|rpkmuq', 'fpkmuq', outunit)
317
+ } else if (grepl('fpkm|rpkm', outunit)) {
318
+ outtype <- 'fpkm'
319
+ outunit <- gsub('fpkm|rpkm', 'fpkm', outunit)
320
+ } else if (grepl('tpm', outunit)) {
321
+ outtype <- 'tpm'
322
+ } else if (grepl('cpm', outunit)) {
323
+ outtype <- 'cpm'
324
+ } else if (grepl('tmm', outunit)) {
325
+ outtype <- 'tmm'
326
+ } else {
327
+ stop(glue("Can't find a supported unit in the outunit: {outunit}\n"))
328
+ }
67
329
 
68
- convert = function(data, inunit, outunit) {
69
- func = get(paste0(inunit, "2", outunit))
70
- func(data)
330
+ log$info("Transforming data by resolving {inunit} ...")
331
+ if (intype == outtype) {
332
+ fun <- identity
333
+ } else {
334
+ fun <- glue("{intype}2{outtype}")
335
+ fun <- tryCatch(
336
+ { get(fun) },
337
+ error = function(e) { stop(glue("Unsupported conversion from {intype} to {outunit}\n")) }
338
+ )
71
339
  }
340
+ assign(outtype, fun(indata))
341
+ out <- eval(parse_expr(outunit))
72
342
 
73
- convert(indata, inunit, outunit)
343
+ log$info("Saving output data ...")
344
+ write.table(out, outfile, quote=FALSE, row.names=TRUE, col.names=TRUE, sep="\t")
@@ -0,0 +1,40 @@
1
+ library(rlang)
2
+ library(Seurat)
3
+ library(scplotter)
4
+ library(biopipen.utils)
5
+
6
+ adfile <- {{in.adfile | r}}
7
+ outfile <- {{out.outfile | r}}
8
+ dotplot_check <- {{envs.dotplot_check | r}}
9
+ outdir <- dirname(outfile)
10
+ assay <- {{envs.assay | r}}
11
+ ident <- {{envs.ident | r}}
12
+
13
+ log <- get_logger()
14
+
15
+ ConvertAnnDataToSeurat(adfile, outfile = outfile, assay = assay, ident = ident, log = log)
16
+
17
+ if (!isFALSE(dotplot_check)) {
18
+ log$info("Reading Seurat object ...")
19
+ sobj <- read_obj(outfile)
20
+
21
+ log$info("Checking dotplot ...")
22
+ dotfig <- file.path(outdir, "dotplot.png")
23
+ if (isTRUE(dotplot_check)) {
24
+ vobj <- FindVariableFeatures(
25
+ sobj, selection.method = "vst", nfeatures = 2000)
26
+ dotplot_check <- head(VariableFeatures(vobj), 10)
27
+ } else if (is.character(dotplot_check)) {
28
+ dotplot_check <- trimws(strsplit(dotplot_check, ",")[[1]])
29
+ }
30
+ p <- FeatureStatPlot(
31
+ sobj, features = dotplot_check, plot_type = "dot",
32
+ assay = assay
33
+ )
34
+ res = 70
35
+ height <- attr(p, "height") * res
36
+ width <- attr(p, "width") * res
37
+ png(dotfig, width = width, height = height, res = res)
38
+ print(p)
39
+ dev.off()
40
+ }