biopipen 0.21.0__py3-none-any.whl → 0.34.26__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- biopipen/__init__.py +1 -1
- biopipen/core/config.toml +28 -0
- biopipen/core/filters.py +79 -4
- biopipen/core/proc.py +12 -3
- biopipen/core/testing.py +75 -3
- biopipen/ns/bam.py +148 -6
- biopipen/ns/bed.py +75 -0
- biopipen/ns/cellranger.py +186 -0
- biopipen/ns/cellranger_pipeline.py +126 -0
- biopipen/ns/cnv.py +19 -3
- biopipen/ns/cnvkit.py +1 -1
- biopipen/ns/cnvkit_pipeline.py +20 -12
- biopipen/ns/delim.py +34 -35
- biopipen/ns/gene.py +68 -23
- biopipen/ns/gsea.py +63 -37
- biopipen/ns/misc.py +39 -14
- biopipen/ns/plot.py +304 -1
- biopipen/ns/protein.py +183 -0
- biopipen/ns/regulatory.py +290 -0
- biopipen/ns/rnaseq.py +142 -5
- biopipen/ns/scrna.py +2053 -473
- biopipen/ns/scrna_metabolic_landscape.py +228 -382
- biopipen/ns/snp.py +659 -0
- biopipen/ns/stats.py +484 -0
- biopipen/ns/tcr.py +683 -98
- biopipen/ns/vcf.py +236 -2
- biopipen/ns/web.py +97 -6
- biopipen/reports/bam/CNVpytor.svelte +4 -9
- biopipen/reports/cellranger/CellRangerCount.svelte +18 -0
- biopipen/reports/cellranger/CellRangerSummary.svelte +16 -0
- biopipen/reports/cellranger/CellRangerVdj.svelte +18 -0
- biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
- biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
- biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
- biopipen/reports/common.svelte +15 -0
- biopipen/reports/protein/ProdigySummary.svelte +16 -0
- biopipen/reports/scrna/CellsDistribution.svelte +4 -39
- biopipen/reports/scrna/DimPlots.svelte +1 -1
- biopipen/reports/scrna/MarkersFinder.svelte +6 -126
- biopipen/reports/scrna/MetaMarkers.svelte +3 -75
- biopipen/reports/scrna/RadarPlots.svelte +4 -20
- biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +61 -22
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +88 -82
- biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +70 -10
- biopipen/reports/snp/PlinkCallRate.svelte +24 -0
- biopipen/reports/snp/PlinkFreq.svelte +18 -0
- biopipen/reports/snp/PlinkHWE.svelte +18 -0
- biopipen/reports/snp/PlinkHet.svelte +18 -0
- biopipen/reports/snp/PlinkIBD.svelte +18 -0
- biopipen/reports/tcr/CDR3AAPhyschem.svelte +19 -66
- biopipen/reports/tcr/ClonalStats.svelte +16 -0
- biopipen/reports/tcr/CloneResidency.svelte +3 -93
- biopipen/reports/tcr/Immunarch.svelte +4 -155
- biopipen/reports/tcr/TCRClusterStats.svelte +3 -45
- biopipen/reports/tcr/TESSA.svelte +11 -28
- biopipen/reports/utils/misc.liq +22 -7
- biopipen/scripts/bam/BamMerge.py +11 -15
- biopipen/scripts/bam/BamSampling.py +90 -0
- biopipen/scripts/bam/BamSort.py +141 -0
- biopipen/scripts/bam/BamSplitChroms.py +10 -10
- biopipen/scripts/bam/BamSubsetByBed.py +38 -0
- biopipen/scripts/bam/CNAClinic.R +41 -5
- biopipen/scripts/bam/CNVpytor.py +153 -54
- biopipen/scripts/bam/ControlFREEC.py +13 -14
- biopipen/scripts/bam/SamtoolsView.py +33 -0
- biopipen/scripts/bed/Bed2Vcf.py +5 -5
- biopipen/scripts/bed/BedConsensus.py +5 -5
- biopipen/scripts/bed/BedLiftOver.sh +6 -4
- biopipen/scripts/bed/BedtoolsIntersect.py +54 -0
- biopipen/scripts/bed/BedtoolsMakeWindows.py +47 -0
- biopipen/scripts/bed/BedtoolsMerge.py +4 -4
- biopipen/scripts/cellranger/CellRangerCount.py +138 -0
- biopipen/scripts/cellranger/CellRangerSummary.R +181 -0
- biopipen/scripts/cellranger/CellRangerVdj.py +112 -0
- biopipen/scripts/cnv/AneuploidyScore.R +55 -20
- biopipen/scripts/cnv/AneuploidyScoreSummary.R +221 -163
- biopipen/scripts/cnv/TMADScore.R +25 -9
- biopipen/scripts/cnv/TMADScoreSummary.R +57 -86
- biopipen/scripts/cnvkit/CNVkitAccess.py +7 -6
- biopipen/scripts/cnvkit/CNVkitAutobin.py +26 -18
- biopipen/scripts/cnvkit/CNVkitBatch.py +6 -6
- biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
- biopipen/scripts/cnvkit/CNVkitCoverage.py +4 -3
- biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
- biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
- biopipen/scripts/cnvkit/CNVkitGuessBaits.py +12 -8
- biopipen/scripts/cnvkit/CNVkitHeatmap.py +5 -5
- biopipen/scripts/cnvkit/CNVkitReference.py +6 -5
- biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
- biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
- biopipen/scripts/cnvkit/guess_baits.py +166 -93
- biopipen/scripts/delim/RowsBinder.R +1 -1
- biopipen/scripts/delim/SampleInfo.R +116 -118
- biopipen/scripts/gene/GeneNameConversion.R +67 -0
- biopipen/scripts/gene/GenePromoters.R +61 -0
- biopipen/scripts/gsea/Enrichr.R +5 -5
- biopipen/scripts/gsea/FGSEA.R +184 -50
- biopipen/scripts/gsea/GSEA.R +2 -2
- biopipen/scripts/gsea/PreRank.R +5 -5
- biopipen/scripts/misc/Config2File.py +2 -2
- biopipen/scripts/misc/Plot.R +80 -0
- biopipen/scripts/misc/Shell.sh +15 -0
- biopipen/scripts/misc/Str2File.py +2 -2
- biopipen/scripts/plot/Heatmap.R +3 -3
- biopipen/scripts/plot/Manhattan.R +147 -0
- biopipen/scripts/plot/QQPlot.R +146 -0
- biopipen/scripts/plot/ROC.R +88 -0
- biopipen/scripts/plot/Scatter.R +112 -0
- biopipen/scripts/plot/VennDiagram.R +5 -9
- biopipen/scripts/protein/MMCIF2PDB.py +33 -0
- biopipen/scripts/protein/PDB2Fasta.py +60 -0
- biopipen/scripts/protein/Prodigy.py +119 -0
- biopipen/scripts/protein/ProdigySummary.R +140 -0
- biopipen/scripts/protein/RMSD.py +178 -0
- biopipen/scripts/regulatory/MotifAffinityTest.R +102 -0
- biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +127 -0
- biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +104 -0
- biopipen/scripts/regulatory/MotifScan.py +159 -0
- biopipen/scripts/regulatory/VariantMotifPlot.R +78 -0
- biopipen/scripts/regulatory/motifs-common.R +324 -0
- biopipen/scripts/rnaseq/Simulation-ESCO.R +180 -0
- biopipen/scripts/rnaseq/Simulation-RUVcorr.R +45 -0
- biopipen/scripts/rnaseq/Simulation.R +21 -0
- biopipen/scripts/rnaseq/UnitConversion.R +325 -54
- biopipen/scripts/scrna/AnnData2Seurat.R +40 -0
- biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
- biopipen/scripts/scrna/CellCellCommunication.py +150 -0
- biopipen/scripts/scrna/CellCellCommunicationPlots.R +93 -0
- biopipen/scripts/scrna/CellSNPLite.py +30 -0
- biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +185 -0
- biopipen/scripts/scrna/CellTypeAnnotation-direct.R +68 -31
- biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +27 -22
- biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +28 -20
- biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +48 -25
- biopipen/scripts/scrna/CellTypeAnnotation.R +37 -1
- biopipen/scripts/scrna/CellsDistribution.R +456 -167
- biopipen/scripts/scrna/DimPlots.R +1 -1
- biopipen/scripts/scrna/ExprImputation-alra.R +109 -0
- biopipen/scripts/scrna/ExprImputation-rmagic.R +256 -0
- biopipen/scripts/scrna/{ExprImpution-scimpute.R → ExprImputation-scimpute.R} +8 -5
- biopipen/scripts/scrna/ExprImputation.R +7 -0
- biopipen/scripts/scrna/LoomTo10X.R +51 -0
- biopipen/scripts/scrna/MQuad.py +25 -0
- biopipen/scripts/scrna/MarkersFinder.R +679 -400
- biopipen/scripts/scrna/MetaMarkers.R +265 -161
- biopipen/scripts/scrna/ModuleScoreCalculator.R +66 -11
- biopipen/scripts/scrna/PseudoBulkDEG.R +678 -0
- biopipen/scripts/scrna/RadarPlots.R +355 -134
- biopipen/scripts/scrna/ScFGSEA.R +298 -100
- biopipen/scripts/scrna/ScSimulation.R +65 -0
- biopipen/scripts/scrna/ScVelo.py +617 -0
- biopipen/scripts/scrna/Seurat2AnnData.R +7 -0
- biopipen/scripts/scrna/SeuratClusterStats-clustree.R +87 -0
- biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +36 -30
- biopipen/scripts/scrna/SeuratClusterStats-features.R +138 -187
- biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +81 -0
- biopipen/scripts/scrna/SeuratClusterStats-stats.R +78 -89
- biopipen/scripts/scrna/SeuratClusterStats.R +47 -10
- biopipen/scripts/scrna/SeuratClustering.R +36 -233
- biopipen/scripts/scrna/SeuratLoading.R +2 -2
- biopipen/scripts/scrna/SeuratMap2Ref.R +84 -113
- biopipen/scripts/scrna/SeuratMetadataMutater.R +16 -6
- biopipen/scripts/scrna/SeuratPreparing.R +223 -173
- biopipen/scripts/scrna/SeuratSubClustering.R +64 -0
- biopipen/scripts/scrna/SeuratTo10X.R +27 -0
- biopipen/scripts/scrna/Slingshot.R +65 -0
- biopipen/scripts/scrna/Subset10X.R +2 -2
- biopipen/scripts/scrna/TopExpressingGenes.R +169 -135
- biopipen/scripts/scrna/celltypist-wrapper.py +195 -0
- biopipen/scripts/scrna/scvelo_paga.py +313 -0
- biopipen/scripts/scrna/seurat_anndata_conversion.py +98 -0
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +447 -82
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +348 -241
- biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +188 -166
- biopipen/scripts/snp/MatrixEQTL.R +217 -0
- biopipen/scripts/snp/Plink2GTMat.py +148 -0
- biopipen/scripts/snp/PlinkCallRate.R +199 -0
- biopipen/scripts/snp/PlinkFilter.py +100 -0
- biopipen/scripts/snp/PlinkFreq.R +291 -0
- biopipen/scripts/snp/PlinkFromVcf.py +81 -0
- biopipen/scripts/snp/PlinkHWE.R +85 -0
- biopipen/scripts/snp/PlinkHet.R +96 -0
- biopipen/scripts/snp/PlinkIBD.R +196 -0
- biopipen/scripts/snp/PlinkSimulation.py +124 -0
- biopipen/scripts/snp/PlinkUpdateName.py +124 -0
- biopipen/scripts/stats/ChowTest.R +146 -0
- biopipen/scripts/stats/DiffCoexpr.R +152 -0
- biopipen/scripts/stats/LiquidAssoc.R +135 -0
- biopipen/scripts/stats/Mediation.R +108 -0
- biopipen/scripts/stats/MetaPvalue.R +130 -0
- biopipen/scripts/stats/MetaPvalue1.R +74 -0
- biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
- biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
- biopipen/scripts/tcr/Attach2Seurat.R +3 -2
- biopipen/scripts/tcr/CDR3AAPhyschem.R +211 -143
- biopipen/scripts/tcr/CDR3Clustering.R +343 -0
- biopipen/scripts/tcr/ClonalStats.R +526 -0
- biopipen/scripts/tcr/CloneResidency.R +255 -131
- biopipen/scripts/tcr/CloneSizeQQPlot.R +4 -4
- biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
- biopipen/scripts/tcr/GIANA/GIANA4.py +1362 -789
- biopipen/scripts/tcr/GIANA/query.py +164 -162
- biopipen/scripts/tcr/Immunarch-basic.R +31 -9
- biopipen/scripts/tcr/Immunarch-clonality.R +25 -5
- biopipen/scripts/tcr/Immunarch-diversity.R +352 -134
- biopipen/scripts/tcr/Immunarch-geneusage.R +45 -5
- biopipen/scripts/tcr/Immunarch-kmer.R +68 -8
- biopipen/scripts/tcr/Immunarch-overlap.R +84 -4
- biopipen/scripts/tcr/Immunarch-spectratyping.R +35 -6
- biopipen/scripts/tcr/Immunarch-tracking.R +38 -6
- biopipen/scripts/tcr/Immunarch-vjjunc.R +165 -0
- biopipen/scripts/tcr/Immunarch.R +63 -11
- biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
- biopipen/scripts/tcr/ImmunarchFilter.R +4 -4
- biopipen/scripts/tcr/ImmunarchLoading.R +38 -29
- biopipen/scripts/tcr/SampleDiversity.R +1 -1
- biopipen/scripts/tcr/ScRepCombiningExpression.R +40 -0
- biopipen/scripts/tcr/ScRepLoading.R +166 -0
- biopipen/scripts/tcr/TCRClusterStats.R +176 -22
- biopipen/scripts/tcr/TCRDock.py +110 -0
- biopipen/scripts/tcr/TESSA.R +102 -118
- biopipen/scripts/tcr/VJUsage.R +5 -5
- biopipen/scripts/tcr/immunarch-patched.R +142 -0
- biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
- biopipen/scripts/vcf/BcftoolsAnnotate.py +91 -0
- biopipen/scripts/vcf/BcftoolsFilter.py +90 -0
- biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
- biopipen/scripts/vcf/BcftoolsSort.py +113 -0
- biopipen/scripts/vcf/BcftoolsView.py +73 -0
- biopipen/scripts/vcf/TruvariBench.sh +14 -7
- biopipen/scripts/vcf/TruvariBenchSummary.R +16 -13
- biopipen/scripts/vcf/TruvariConsistency.R +1 -1
- biopipen/scripts/vcf/Vcf2Bed.py +2 -2
- biopipen/scripts/vcf/VcfAnno.py +11 -11
- biopipen/scripts/vcf/VcfDownSample.sh +22 -10
- biopipen/scripts/vcf/VcfFilter.py +5 -5
- biopipen/scripts/vcf/VcfFix.py +7 -7
- biopipen/scripts/vcf/VcfFix_utils.py +13 -4
- biopipen/scripts/vcf/VcfIndex.py +3 -3
- biopipen/scripts/vcf/VcfIntersect.py +3 -3
- biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
- biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
- biopipen/scripts/vcf/bcftools_utils.py +52 -0
- biopipen/scripts/web/Download.py +8 -4
- biopipen/scripts/web/DownloadList.py +5 -5
- biopipen/scripts/web/GCloudStorageDownloadBucket.py +82 -0
- biopipen/scripts/web/GCloudStorageDownloadFile.py +23 -0
- biopipen/scripts/web/gcloud_common.py +49 -0
- biopipen/utils/gene.py +108 -60
- biopipen/utils/misc.py +146 -20
- biopipen/utils/reference.py +64 -20
- biopipen/utils/reporter.py +177 -0
- biopipen/utils/vcf.py +1 -1
- biopipen-0.34.26.dist-info/METADATA +27 -0
- biopipen-0.34.26.dist-info/RECORD +292 -0
- {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
- {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +6 -2
- biopipen/ns/bcftools.py +0 -111
- biopipen/ns/scrna_basic.py +0 -255
- biopipen/reports/delim/SampleInfo.svelte +0 -36
- biopipen/reports/scrna/GeneExpressionInvistigation.svelte +0 -32
- biopipen/reports/scrna/ScFGSEA.svelte +0 -35
- biopipen/reports/scrna/SeuratClusterStats.svelte +0 -82
- biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -20
- biopipen/reports/scrna/SeuratPreparing.svelte +0 -38
- biopipen/reports/scrna/TopExpressingGenes.svelte +0 -55
- biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -31
- biopipen/reports/utils/gsea.liq +0 -110
- biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -42
- biopipen/scripts/bcftools/BcftoolsFilter.py +0 -79
- biopipen/scripts/bcftools/BcftoolsSort.py +0 -19
- biopipen/scripts/gene/GeneNameConversion.py +0 -66
- biopipen/scripts/scrna/ExprImpution-alra.R +0 -32
- biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -29
- biopipen/scripts/scrna/ExprImpution.R +0 -7
- biopipen/scripts/scrna/GeneExpressionInvistigation.R +0 -132
- biopipen/scripts/scrna/Write10X.R +0 -11
- biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -150
- biopipen/scripts/tcr/TCRClustering.R +0 -280
- biopipen/utils/common_docstrs.py +0 -61
- biopipen/utils/gene.R +0 -49
- biopipen/utils/gsea.R +0 -193
- biopipen/utils/io.R +0 -20
- biopipen/utils/misc.R +0 -114
- biopipen/utils/mutate_helpers.R +0 -433
- biopipen/utils/plot.R +0 -173
- biopipen/utils/rnaseq.R +0 -48
- biopipen/utils/single_cell.R +0 -115
- biopipen-0.21.0.dist-info/METADATA +0 -22
- biopipen-0.21.0.dist-info/RECORD +0 -218
|
@@ -1,60 +1,33 @@
|
|
|
1
|
-
|
|
1
|
+
|
|
2
2
|
# https://immunarch.com/articles/web_only/v6_diversity.html
|
|
3
3
|
|
|
4
|
-
|
|
5
|
-
#
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
div_test = {{envs.divs.test | r}}
|
|
11
|
-
div_cases = {{envs.divs.cases | r: todot="-"}}
|
|
12
|
-
div_devpars = {{envs.divs.devpars | r}}
|
|
13
|
-
div_separate_by = {{envs.divs.separate_by | r}}
|
|
14
|
-
div_align_x = {{envs.divs.align_x | r}}
|
|
15
|
-
div_align_y = {{envs.divs.align_y | r}}
|
|
16
|
-
div_subset = {{envs.divs.subset | r}}
|
|
17
|
-
div_log = {{envs.divs.log | r}}
|
|
18
|
-
div_ncol = {{envs.divs.ncol | r}}
|
|
19
|
-
div_ymin = {{envs.divs.ymin | r}}
|
|
20
|
-
div_ymax = {{envs.divs.ymax | r}}
|
|
4
|
+
log_info("")
|
|
5
|
+
log_info("# Diversity estimation")
|
|
6
|
+
log_info("-----------------------------------")
|
|
7
|
+
|
|
8
|
+
div_test = div_test %||% list(method = "none", padjust = "none")
|
|
9
|
+
div_devpars = div_devpars %||% list(res = 100, width = 800, height = 800)
|
|
21
10
|
|
|
22
11
|
div_dir = file.path(outdir, "diversity")
|
|
23
12
|
dir.create(div_dir, showWarnings = FALSE)
|
|
24
13
|
|
|
25
|
-
print("- Diversity estimation ...")
|
|
26
|
-
|
|
27
14
|
# Fill up the cases
|
|
28
|
-
update_case = function(case) {
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
case$method = div_method
|
|
34
|
-
}
|
|
35
|
-
if (is.null(case$by)) {
|
|
36
|
-
case$by = div_by
|
|
37
|
-
}
|
|
15
|
+
update_case = function(case, name) {
|
|
16
|
+
log_debug("Filling up case: {name} ...")
|
|
17
|
+
case$subset <- case$subset %||% div_subset
|
|
18
|
+
case$method <- case$method %||% div_method
|
|
19
|
+
case$by <- case$by %||% div_by
|
|
38
20
|
if (!is.null(case$by) && nchar(case$by) > 0) {
|
|
39
21
|
case$by = unlist(strsplit(case$by, ",")) %>% trimws()
|
|
40
22
|
}
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
if (is.null(case$args)) {
|
|
45
|
-
case$args = div_args
|
|
46
|
-
}
|
|
23
|
+
case$plot_type <- case$plot_type %||% div_plot_type
|
|
24
|
+
case$order <- case$order %||% div_order
|
|
25
|
+
case$args <- case$args %||% div_args
|
|
47
26
|
for (name in names(case$args)) {
|
|
48
|
-
|
|
49
|
-
case$args[[name]] = div_args[[name]]
|
|
50
|
-
}
|
|
51
|
-
}
|
|
52
|
-
if (is.null(case$test)) {
|
|
53
|
-
case$test = div_test
|
|
54
|
-
}
|
|
55
|
-
if (is.null(case$test$method)) {
|
|
56
|
-
case$test$method = div_test$method
|
|
27
|
+
case$args[[name]] = case$args[[name]] %||% div_args[[name]]
|
|
57
28
|
}
|
|
29
|
+
case$test <- case$test %||% div_test
|
|
30
|
+
case$test$method <- case$test$method %||% div_test$method
|
|
58
31
|
if (!case$test$method %in% c("none", "t.test", "wilcox.test")) {
|
|
59
32
|
stop(paste0(
|
|
60
33
|
"Diversity estimation: Unknown test method: ",
|
|
@@ -62,46 +35,27 @@ update_case = function(case) {
|
|
|
62
35
|
". Expected: t.test, wilcox.test"
|
|
63
36
|
))
|
|
64
37
|
}
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
}
|
|
83
|
-
if (is.null(case$align_x)) {
|
|
84
|
-
case$align_x = div_align_x
|
|
85
|
-
}
|
|
86
|
-
if (is.null(case$align_y)) {
|
|
87
|
-
case$align_y = div_align_y
|
|
88
|
-
}
|
|
89
|
-
if (is.null(case$log)) {
|
|
90
|
-
case$log = div_log
|
|
91
|
-
}
|
|
92
|
-
if (is.null(case$ncol)) {
|
|
93
|
-
case$ncol = div_ncol
|
|
94
|
-
}
|
|
95
|
-
if (is.null(case$ymin)) {
|
|
96
|
-
case$ymin = div_ymin
|
|
97
|
-
}
|
|
98
|
-
if (is.null(case$ymax)) {
|
|
99
|
-
case$ymax = div_ymax
|
|
100
|
-
}
|
|
38
|
+
case$test$padjust <- case$test$padjust %||% div_test$padjust
|
|
39
|
+
case$devpars <- case$devpars %||% div_devpars
|
|
40
|
+
case$devpars$res <- case$devpars$res %||% div_devpars$res
|
|
41
|
+
case$devpars$width <- case$devpars$width %||% div_devpars$width
|
|
42
|
+
case$devpars$height <- case$devpars$height %||% div_devpars$height
|
|
43
|
+
case$separate_by <- case$separate_by %||% div_separate_by
|
|
44
|
+
case$split_by <- case$split_by %||% div_split_by
|
|
45
|
+
case$split_order <- case$split_order %||% div_split_order
|
|
46
|
+
if (!is.null(case$separate_by) && !is.null(case$split_by)) {
|
|
47
|
+
stop("Diversity estimation: `separate_by` and `split_by` cannot be specified at the same time")
|
|
48
|
+
}
|
|
49
|
+
case$align_x <- case$align_x %||% div_align_x
|
|
50
|
+
case$align_y <- case$align_y %||% div_align_y
|
|
51
|
+
case$log <- case$log %||% div_log
|
|
52
|
+
case$ncol <- case$ncol %||% div_ncol
|
|
53
|
+
case$ymin <- case$ymin %||% div_ymin
|
|
54
|
+
case$ymax <- case$ymax %||% div_ymax
|
|
101
55
|
if (!is.null(case$args) && length(case$args) > 0) {
|
|
102
56
|
names(case$args) = paste0(".", names(case$args))
|
|
103
57
|
}
|
|
104
|
-
if (!is.null(case$test) && case$test != "none" && (is.null(case$by) || length(case$by) == 0)) {
|
|
58
|
+
if (!is.null(case$test) && case$test$method != "none" && (is.null(case$by) || length(case$by) == 0)) {
|
|
105
59
|
stop("For diversity estimation, `test` is only supported when `by` is specified")
|
|
106
60
|
}
|
|
107
61
|
# Just ignore them for rarefraction
|
|
@@ -114,33 +68,16 @@ update_case = function(case) {
|
|
|
114
68
|
return (case)
|
|
115
69
|
}
|
|
116
70
|
|
|
117
|
-
# See https://github.com/immunomind/immunarch/pull/341
|
|
118
|
-
vis.immunr_gini <- function(.data, .by = NA, .meta = NA,
|
|
119
|
-
.errorbars = c(0.025, 0.975), .errorbars.off = FALSE,
|
|
120
|
-
.points = TRUE, .test = TRUE, .signif.label.size = 3.5, ...) {
|
|
121
|
-
# repDiversity(..., .method = "gini") generates a matrix
|
|
122
|
-
.data = data.frame(Sample = rownames(.data), Value = .data[, 1])
|
|
123
|
-
vis_bar(
|
|
124
|
-
.data = .data, .by = .by, .meta = .meta,
|
|
125
|
-
.errorbars = .errorbars, .errorbars.off = .errorbars.off, .stack = FALSE,
|
|
126
|
-
.points = .points, .test = .test, .signif.label.size = .signif.label.size,
|
|
127
|
-
.defgroupby = "Sample", .grouping.var = "Group",
|
|
128
|
-
.labs = c(NA, "Gini coefficient"),
|
|
129
|
-
.title = "Gini coefficient", .subtitle = "Sample diversity estimation using the Gini coefficient",
|
|
130
|
-
.legend = NA, .leg.title = NA
|
|
131
|
-
)
|
|
132
|
-
}
|
|
133
|
-
|
|
134
71
|
if (is.null(div_cases) || length(div_cases) == 0) {
|
|
135
72
|
if (is.null(div_method) || length(div_method) == 0 || nchar(div_method) == 0) {
|
|
136
73
|
stop("No method is specified for diversity estimation")
|
|
137
74
|
}
|
|
138
|
-
default_case = update_case(list())
|
|
75
|
+
default_case = update_case(list(), name = "DEFAULT")
|
|
139
76
|
div_cases = list(x = default_case)
|
|
140
77
|
names(div_cases) = div_method
|
|
141
78
|
} else {
|
|
142
79
|
for (name in names(div_cases)) {
|
|
143
|
-
div_cases[[name]] = update_case(div_cases[[name]])
|
|
80
|
+
div_cases[[name]] = update_case(div_cases[[name]], name = name)
|
|
144
81
|
}
|
|
145
82
|
}
|
|
146
83
|
|
|
@@ -161,7 +98,7 @@ filter_div = function(div, samples) {
|
|
|
161
98
|
# case: the case with argument to be run
|
|
162
99
|
# ddir: the directory to save the results
|
|
163
100
|
# value_col: the column name of the value
|
|
164
|
-
run_general = function(d, case, ddir, value_col = "Value") {
|
|
101
|
+
run_general = function(casename, d, case, ddir, value_col = "Value") {
|
|
165
102
|
args = case$args
|
|
166
103
|
args$.data = d$data
|
|
167
104
|
args$.method = case$method
|
|
@@ -188,6 +125,14 @@ run_general = function(d, case, ddir, value_col = "Value") {
|
|
|
188
125
|
)
|
|
189
126
|
}
|
|
190
127
|
|
|
128
|
+
if (!is.null(case$split_by)) {
|
|
129
|
+
newdiv = newdiv %>% left_join(
|
|
130
|
+
d$meta[, c("Sample", case$split_by), drop = FALSE],
|
|
131
|
+
by = "Sample",
|
|
132
|
+
suffix = c(".div", "")
|
|
133
|
+
)
|
|
134
|
+
}
|
|
135
|
+
|
|
191
136
|
write.table(
|
|
192
137
|
newdiv,
|
|
193
138
|
file = file.path(ddir, "diversity.txt"),
|
|
@@ -197,18 +142,41 @@ run_general = function(d, case, ddir, value_col = "Value") {
|
|
|
197
142
|
col.names = TRUE
|
|
198
143
|
)
|
|
199
144
|
|
|
145
|
+
.meta_vals <- function(meta, cols) {
|
|
146
|
+
if (length(cols) == 1) {
|
|
147
|
+
return (meta[[cols]])
|
|
148
|
+
}
|
|
149
|
+
|
|
150
|
+
vlist = lapply(cols, function(.x) meta[[.x]])
|
|
151
|
+
do.call(function(...) paste(..., sep = "; "), vlist)
|
|
152
|
+
}
|
|
153
|
+
|
|
200
154
|
# plot
|
|
201
155
|
# by, order, separate_by, align_y
|
|
202
156
|
n_seps = 1
|
|
203
157
|
if (!is.null(case$by) && length(case$by) > 0) {
|
|
204
158
|
if (!is.null(case$separate_by)) {
|
|
205
159
|
metas = split(d$meta, d$meta[[case$separate_by]])
|
|
160
|
+
if (!is.null(case$split_order)) {
|
|
161
|
+
if (is.character(case$split_order) && length(case$split_order) == 1) {
|
|
162
|
+
case$split_order = trimws(unlist(strsplit(case$split_order, ",")))
|
|
163
|
+
}
|
|
164
|
+
metas = metas[intersect(case$split_order, names(metas))]
|
|
165
|
+
}
|
|
206
166
|
ps = lapply(metas, function(meta) {
|
|
207
|
-
.test = length(unique(meta
|
|
208
|
-
p = vis(
|
|
209
|
-
|
|
167
|
+
.test = length(unique(.meta_vals(meta, case$by))) > 1
|
|
168
|
+
p = vis(
|
|
169
|
+
filter_div(div, meta$Sample),
|
|
170
|
+
.by = case$by,
|
|
171
|
+
.meta = meta,
|
|
172
|
+
.test = .test,
|
|
173
|
+
.plot.type = case$plot_type
|
|
174
|
+
)
|
|
175
|
+
p = p + xlab(paste0(case$separate_by, ": ", meta[[case$separate_by]][1], ")"))
|
|
210
176
|
if (!is.null(case$order) && length(case$order) > 0) {
|
|
211
|
-
p = p + scale_x_discrete(
|
|
177
|
+
p = p + scale_x_discrete(
|
|
178
|
+
limits = intersect(case$order, unique(.meta_vals(meta, case$by)))
|
|
179
|
+
)
|
|
212
180
|
}
|
|
213
181
|
if (!is.null(case$ymin) && !is.null(case$ymax)) {
|
|
214
182
|
p = p + ylim(c(case$ymin, case$ymax))
|
|
@@ -222,20 +190,79 @@ run_general = function(d, case, ddir, value_col = "Value") {
|
|
|
222
190
|
})
|
|
223
191
|
n_seps = length(ps)
|
|
224
192
|
p = wrap_plots(ps, ncol = case$ncol)
|
|
193
|
+
} else if (!is.null(case$split_by)) {
|
|
194
|
+
metas = split(d$meta, d$meta[[case$split_by]])
|
|
195
|
+
if (!is.null(case$split_order)) {
|
|
196
|
+
if (is.character(case$split_order) && length(case$split_order) == 1) {
|
|
197
|
+
case$split_order = trimws(unlist(strsplit(case$split_order, ",")))
|
|
198
|
+
}
|
|
199
|
+
metas = metas[intersect(case$split_order, names(metas))]
|
|
200
|
+
}
|
|
201
|
+
.i = 0
|
|
202
|
+
ps = lapply(metas, function(meta) {
|
|
203
|
+
nby = length(unique(.meta_vals(meta, case$by)))
|
|
204
|
+
p = vis(
|
|
205
|
+
filter_div(div, meta$Sample),
|
|
206
|
+
.by = case$by,
|
|
207
|
+
.meta = meta,
|
|
208
|
+
.test = nby > 1,
|
|
209
|
+
.plot.type = case$plot_type
|
|
210
|
+
)
|
|
211
|
+
if (!is.null(case$order) && length(case$order) > 0) {
|
|
212
|
+
p = p + scale_x_discrete(
|
|
213
|
+
limits = intersect(case$order, unique(.meta_vals(meta, case$by)))
|
|
214
|
+
)
|
|
215
|
+
}
|
|
216
|
+
p = p + xlab(meta[[case$split_by]][1]) + theme(
|
|
217
|
+
axis.text.x = element_blank(),
|
|
218
|
+
plot.title = element_blank(),
|
|
219
|
+
plot.subtitle = element_blank(),
|
|
220
|
+
legend.position = "right"
|
|
221
|
+
)
|
|
222
|
+
if (.i > 0) {
|
|
223
|
+
p = p + theme(
|
|
224
|
+
axis.text.y = element_blank(),
|
|
225
|
+
axis.title.y = element_blank(),
|
|
226
|
+
axis.ticks.y = element_blank(),
|
|
227
|
+
axis.line.y = element_blank()
|
|
228
|
+
)
|
|
229
|
+
}
|
|
230
|
+
.i <<- .i + 1
|
|
231
|
+
list(
|
|
232
|
+
p = p,
|
|
233
|
+
ymin = case$ymin %||% min(newdiv[[value_col]]),
|
|
234
|
+
ymax = case$ymax %||% max(newdiv[[value_col]]),
|
|
235
|
+
nby = nby
|
|
236
|
+
)
|
|
237
|
+
})
|
|
238
|
+
n_seps = length(ps)
|
|
239
|
+
ymin = do.call(min, lapply(ps, function(x) x$ymin))
|
|
240
|
+
ymin = max(0, ymin - 0.1)
|
|
241
|
+
ymax = do.call(max, lapply(ps, function(x) x$ymax))
|
|
242
|
+
ymax = ymax + 0.3 * (ymax - ymin) # for the pvalue marks
|
|
243
|
+
widths = sapply(ps, function(x) ifelse(x$nby == 1, 1.2, x$nby))
|
|
244
|
+
plots = lapply(ps, function(x) x$p + ylim(c(ymin, ymax)))
|
|
245
|
+
p = wrap_plots(plots, widths = widths, guides = "collect")
|
|
225
246
|
} else {
|
|
226
|
-
.test = length(unique(d$meta
|
|
227
|
-
p = vis(div, .by = case$by, .meta = d$meta, .test = .test)
|
|
247
|
+
.test = length(unique(.meta_vals(d$meta, case$by))) > 1
|
|
248
|
+
p = vis(div, .by = case$by, .meta = d$meta, .test = .test, .plot.type = case$plot_type)
|
|
228
249
|
if (!is.null(case$order) && length(case$order) > 0) {
|
|
229
|
-
p = p + scale_x_discrete(limits = intersect(case$order, unique(d$meta
|
|
250
|
+
p = p + scale_x_discrete(limits = intersect(case$order, unique(.meta_vals(d$meta, case$by))))
|
|
230
251
|
}
|
|
231
252
|
}
|
|
232
253
|
} else if (!is.null(case$separate_by)) {
|
|
233
254
|
metas = split(d$meta, d$meta[[case$separate_by]])
|
|
255
|
+
if (!is.null(case$split_order)) {
|
|
256
|
+
if (is.character(case$split_order) && length(case$split_order) == 1) {
|
|
257
|
+
case$split_order = trimws(unlist(strsplit(case$split_order, ",")))
|
|
258
|
+
}
|
|
259
|
+
metas = metas[intersect(case$split_order, names(metas))]
|
|
260
|
+
}
|
|
234
261
|
ps = lapply(metas, function(meta) {
|
|
235
262
|
p = vis(filter_div(div, meta$Sample))
|
|
236
263
|
p = p + ggtitle(paste0(p$labels$title, " (" , case$separate_by, ": ", meta[[case$separate_by]][1], ")"))
|
|
237
264
|
if (!is.null(case$order) && length(case$order) > 0) {
|
|
238
|
-
p = p + scale_x_discrete(limits = intersect(case$order, unique(meta[[
|
|
265
|
+
p = p + scale_x_discrete(limits = intersect(case$order, unique(meta[[Sample]])))
|
|
239
266
|
}
|
|
240
267
|
if (!is.null(case$ymin) && !is.null(case$ymax)) {
|
|
241
268
|
p = p + ylim(c(case$ymin, case$ymax))
|
|
@@ -249,10 +276,57 @@ run_general = function(d, case, ddir, value_col = "Value") {
|
|
|
249
276
|
})
|
|
250
277
|
n_seps = length(ps)
|
|
251
278
|
p = wrap_plots(ps, ncol = case$ncol)
|
|
279
|
+
} else if (!is.null(case$split_by)) {
|
|
280
|
+
metas = split(d$meta, d$meta[[case$split_by]])
|
|
281
|
+
if (!is.null(case$split_order)) {
|
|
282
|
+
if (is.character(case$split_order) && length(case$split_order) == 1) {
|
|
283
|
+
case$split_order = trimws(unlist(strsplit(case$split_order, ",")))
|
|
284
|
+
}
|
|
285
|
+
metas = metas[intersect(case$split_order, names(metas))]
|
|
286
|
+
}
|
|
287
|
+
.i = 0
|
|
288
|
+
ps = lapply(metas, function(meta) {
|
|
289
|
+
nby = length(unique(meta$Sample))
|
|
290
|
+
p = vis(filter_div(div, meta$Sample))
|
|
291
|
+
if (!is.null(case$order) && length(case$order) > 0) {
|
|
292
|
+
p = p + scale_x_discrete(limits = intersect(case$order, unique(meta[[Sample]])))
|
|
293
|
+
}
|
|
294
|
+
p = p + xlab(meta[[case$split_by]][1]) + theme(
|
|
295
|
+
axis.text.x = element_blank(),
|
|
296
|
+
plot.title = element_blank(),
|
|
297
|
+
plot.subtitle = element_blank(),
|
|
298
|
+
legend.position = "right"
|
|
299
|
+
)
|
|
300
|
+
if (.i > 0) {
|
|
301
|
+
p = p + theme(
|
|
302
|
+
axis.text.y = element_blank(),
|
|
303
|
+
axis.title.y = element_blank(),
|
|
304
|
+
axis.ticks.y = element_blank(),
|
|
305
|
+
axis.line.y = element_blank()
|
|
306
|
+
)
|
|
307
|
+
}
|
|
308
|
+
.i <<- .i + 1
|
|
309
|
+
list(
|
|
310
|
+
p = p,
|
|
311
|
+
ymin = case$ymin %||% min(newdiv[[value_col]]),
|
|
312
|
+
ymax = case$ymax %||% max(newdiv[[value_col]]) + 0.1 * max(newdiv[[value_col]]),
|
|
313
|
+
nby = nby
|
|
314
|
+
)
|
|
315
|
+
})
|
|
316
|
+
n_seps = length(ps)
|
|
317
|
+
ymin = do.call(min, lapply(ps, function(x) x$ymin))
|
|
318
|
+
ymin = max(0, ymin - 0.1)
|
|
319
|
+
ymax = do.call(max, lapply(ps, function(x) x$ymax))
|
|
320
|
+
ymax = ymax + 0.3 * (ymax - ymin) # for the pvalue marks
|
|
321
|
+
widths = sapply(ps, function(x) ifelse(x$nby == 1, 1.2, x$nby))
|
|
322
|
+
plots = lapply(ps, function(x) x$p + ylim(c(ymin, ymax)))
|
|
323
|
+
p = wrap_plots(plots, widths = widths, guides = "collect")
|
|
252
324
|
} else {
|
|
253
325
|
p = vis(div)
|
|
254
326
|
if (!is.null(case$order) && length(case$order) > 0) {
|
|
255
|
-
p = p + scale_x_discrete(
|
|
327
|
+
p = p + scale_x_discrete(
|
|
328
|
+
limits = intersect(case$order, unique(.meta_vals(d$meta, case$by)))
|
|
329
|
+
)
|
|
256
330
|
}
|
|
257
331
|
}
|
|
258
332
|
|
|
@@ -260,24 +334,97 @@ run_general = function(d, case, ddir, value_col = "Value") {
|
|
|
260
334
|
width = case$devpars$width
|
|
261
335
|
height = case$devpars$height
|
|
262
336
|
res = case$devpars$res
|
|
263
|
-
|
|
337
|
+
res = res %||% 100
|
|
264
338
|
if (is.null(height)) {
|
|
265
|
-
|
|
339
|
+
if (!is.nulL(case$split_by)) {
|
|
340
|
+
height = 800
|
|
341
|
+
} else {
|
|
342
|
+
height = if (n_seps == 1) 800 else 600 * ceiling(n_seps / case$ncol)
|
|
343
|
+
}
|
|
266
344
|
}
|
|
267
345
|
if (is.null(width)) {
|
|
268
346
|
if (!is.null(case$by) && length(case$by) > 0) {
|
|
269
|
-
width = 200 * length(unique(d$meta
|
|
347
|
+
width = 200 * length(unique(.meta_vals(d$meta, case$by))) + 120
|
|
270
348
|
} else {
|
|
271
349
|
width = 100 * length(unique(d$meta$Sample)) + 120
|
|
272
350
|
}
|
|
351
|
+
if (!is.null(case$split_by)) { width = width / 2 }
|
|
273
352
|
if (n_seps > 1) {
|
|
274
353
|
width = width * case$ncol
|
|
275
354
|
}
|
|
276
355
|
}
|
|
277
|
-
|
|
356
|
+
|
|
357
|
+
div_plot = file.path(ddir, "diversity.png")
|
|
358
|
+
png(div_plot, width = width, height = height, res = res)
|
|
278
359
|
print(p)
|
|
279
360
|
dev.off()
|
|
280
361
|
|
|
362
|
+
div_plot_pdf = file.path(ddir, "diversity.pdf")
|
|
363
|
+
pdf(div_plot_pdf, width = width / res, height = height / res)
|
|
364
|
+
print(p)
|
|
365
|
+
dev.off()
|
|
366
|
+
|
|
367
|
+
add_report(
|
|
368
|
+
list(
|
|
369
|
+
kind = "descr",
|
|
370
|
+
content = paste0(
|
|
371
|
+
"Diversity estimation using ",
|
|
372
|
+
"<code>",
|
|
373
|
+
case$method,
|
|
374
|
+
"</code>: ",
|
|
375
|
+
switch(case$method,
|
|
376
|
+
chao1 = paste0(
|
|
377
|
+
"a nonparameteric asymptotic estimator of species richness ",
|
|
378
|
+
"(number of species in a population)."),
|
|
379
|
+
hill = paste0(
|
|
380
|
+
"Hill numbers are a mathematically unified family of ",
|
|
381
|
+
"diversity indices (differing only by an exponent q)."),
|
|
382
|
+
div = paste0(
|
|
383
|
+
"true diversity, or the effective number of types, ",
|
|
384
|
+
"refers to the number of equally abundant types needed for ",
|
|
385
|
+
"the average proportional abundance of the types to equal that ",
|
|
386
|
+
"observed in the dataset of interest where all types may ",
|
|
387
|
+
"not be equally abundant."),
|
|
388
|
+
gini.simp = paste0(
|
|
389
|
+
"the Gini-Simpson index is the probability of interspecific ",
|
|
390
|
+
"encounter, i.e., probability that two entities represent different types."),
|
|
391
|
+
inv.simp = paste0(
|
|
392
|
+
"Inverse Simpson index is the effective number of types ",
|
|
393
|
+
"that is obtained when the weighted arithmetic mean is used ",
|
|
394
|
+
"to quantify average proportional abundance of types in ",
|
|
395
|
+
"the dataset of interest."),
|
|
396
|
+
gini = paste0(
|
|
397
|
+
"the Gini coefficient measures the inequality among ",
|
|
398
|
+
"values of a frequency distribution (for example levels of income). ",
|
|
399
|
+
"A Gini coefficient of zero expresses perfect equality, ",
|
|
400
|
+
"where all values are the same (for example, where everyone has ",
|
|
401
|
+
"the same income). A Gini coefficient of one (or 100 percents ) ",
|
|
402
|
+
"expresses maximal inequality among values (for example where only ",
|
|
403
|
+
"one person has all the income)."),
|
|
404
|
+
d50 = paste0(
|
|
405
|
+
"the D50 index. ",
|
|
406
|
+
"It is the number of types that are needed to cover 50% of the total
|
|
407
|
+
abundance.")
|
|
408
|
+
)
|
|
409
|
+
)
|
|
410
|
+
),
|
|
411
|
+
h1 = "Diversity Estimation",
|
|
412
|
+
h2 = casename
|
|
413
|
+
)
|
|
414
|
+
add_report(
|
|
415
|
+
list(
|
|
416
|
+
name = "Diversity Plot",
|
|
417
|
+
contents = list(list(kind = "image", src = div_plot, download = div_plot_pdf))
|
|
418
|
+
),
|
|
419
|
+
list(
|
|
420
|
+
name = "Diversity Table",
|
|
421
|
+
contents = list(list(kind = "table", src = file.path(ddir, "diversity.txt")))
|
|
422
|
+
),
|
|
423
|
+
h1 = "Diversity Estimation",
|
|
424
|
+
h2 = casename,
|
|
425
|
+
ui = "tabs"
|
|
426
|
+
)
|
|
427
|
+
|
|
281
428
|
# Test
|
|
282
429
|
if (!is.null(case$test) && case$test$method != "none") {
|
|
283
430
|
# Use pairwise.t.test or pairwise.wilcox.test
|
|
@@ -340,6 +487,19 @@ run_general = function(d, case, ddir, value_col = "Value") {
|
|
|
340
487
|
row.names = FALSE,
|
|
341
488
|
col.names = TRUE
|
|
342
489
|
)
|
|
490
|
+
|
|
491
|
+
add_report(
|
|
492
|
+
list(
|
|
493
|
+
name = paste0("Test (", case$test$method, ")"),
|
|
494
|
+
contents = list(list(
|
|
495
|
+
kind = "table",
|
|
496
|
+
src = file.path(ddir, paste0("diversity.test.", case$test$method, ".txt"))
|
|
497
|
+
))
|
|
498
|
+
),
|
|
499
|
+
h1 = "Diversity Estimation",
|
|
500
|
+
h2 = casename,
|
|
501
|
+
ui = "tabs"
|
|
502
|
+
)
|
|
343
503
|
}
|
|
344
504
|
}
|
|
345
505
|
|
|
@@ -406,6 +566,10 @@ run_raref_single = function(d, case, ddir, suffix = "", save_p = TRUE) {
|
|
|
406
566
|
png(file.path(ddir, "raref.png"), width = devpars$width, height = devpars$height, res = devpars$res)
|
|
407
567
|
print(p)
|
|
408
568
|
dev.off()
|
|
569
|
+
|
|
570
|
+
pdf(file.path(ddir, "raref.pdf"), width = devpars$width / devpars$res, height = devpars$height / devpars$res)
|
|
571
|
+
print(p)
|
|
572
|
+
dev.off()
|
|
409
573
|
} else {
|
|
410
574
|
return (list(p = p, width = devpars$width))
|
|
411
575
|
}
|
|
@@ -421,7 +585,8 @@ run_raref_multi = function(d, case, ddir) {
|
|
|
421
585
|
widths = list()
|
|
422
586
|
plots = list()
|
|
423
587
|
for (sepvar in sepvars) {
|
|
424
|
-
print(paste0(" ", case$separate_by, ": ", sepvar))
|
|
588
|
+
# print(paste0(" ", case$separate_by, ": ", sepvar))
|
|
589
|
+
log_info(" {case$separate_by}: {sepvar}")
|
|
425
590
|
q = list(include(sepvar))
|
|
426
591
|
names(q) = case$separate_by
|
|
427
592
|
single_run = run_raref_single(
|
|
@@ -466,50 +631,103 @@ run_raref_multi = function(d, case, ddir) {
|
|
|
466
631
|
} else {
|
|
467
632
|
height = case$devpars$height
|
|
468
633
|
}
|
|
469
|
-
png(
|
|
634
|
+
png(
|
|
635
|
+
file.path(ddir, paste0("raref-", slugify(case$separate_by), ".png")),
|
|
636
|
+
width = width,
|
|
637
|
+
height = height,
|
|
638
|
+
res = res
|
|
639
|
+
)
|
|
640
|
+
print(p)
|
|
641
|
+
dev.off()
|
|
642
|
+
|
|
643
|
+
pdf(
|
|
644
|
+
file.path(ddir, paste0("raref-", slugify(case$separate_by), ".pdf")),
|
|
645
|
+
width = width / res,
|
|
646
|
+
height = height / res
|
|
647
|
+
)
|
|
470
648
|
print(p)
|
|
471
649
|
dev.off()
|
|
472
650
|
}
|
|
473
651
|
|
|
474
652
|
# Run the diversity estimation for one case
|
|
475
653
|
run_div_case = function(casename) {
|
|
476
|
-
|
|
654
|
+
log_info("Processing case: {casename} ...")
|
|
477
655
|
case = div_cases[[casename]]
|
|
478
656
|
if (case$method == "raref") {
|
|
479
|
-
ddir = file.path(outdir, "rarefraction", casename)
|
|
657
|
+
ddir = file.path(outdir, "rarefraction", slugify(casename))
|
|
480
658
|
} else {
|
|
481
|
-
ddir = file.path(div_dir, casename)
|
|
659
|
+
ddir = file.path(div_dir, slugify(casename))
|
|
482
660
|
}
|
|
483
661
|
dir.create(ddir, recursive = TRUE, showWarnings = FALSE)
|
|
484
662
|
|
|
485
663
|
# Filter
|
|
486
664
|
if (!is.null(case$subset)) {
|
|
487
665
|
d = immdata_from_expanded(filter_expanded_immdata(exdata, case$subset))
|
|
666
|
+
if (nrow(d$meta) == 0) {
|
|
667
|
+
stop(paste0(
|
|
668
|
+
"No samples/cells left after filtering. ",
|
|
669
|
+
"Do you have the correct `subset` for case: ",
|
|
670
|
+
casename, "?"))
|
|
671
|
+
}
|
|
488
672
|
} else {
|
|
489
673
|
d = immdata
|
|
490
674
|
}
|
|
491
675
|
|
|
492
676
|
# Run repDiversity
|
|
493
|
-
if (case$method == "
|
|
494
|
-
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
|
|
677
|
+
if (case$method == "raref") {
|
|
678
|
+
add_report(
|
|
679
|
+
list(
|
|
680
|
+
kind = "descr",
|
|
681
|
+
content = paste0(
|
|
682
|
+
"Rarefaction is a technique to assess species richness from the ",
|
|
683
|
+
"results of sampling through extrapolation. "
|
|
684
|
+
)
|
|
685
|
+
),
|
|
686
|
+
h1 = "Rarefraction",
|
|
687
|
+
h2 = casename
|
|
688
|
+
)
|
|
689
|
+
|
|
506
690
|
if (!is.null(case$separate_by)) {
|
|
507
691
|
run_raref_multi(d, case, ddir)
|
|
692
|
+
add_report(
|
|
693
|
+
list(
|
|
694
|
+
kind = "image",
|
|
695
|
+
src = file.path(ddir, paste0("raref-", slugify(case$separate_by), ".png")),
|
|
696
|
+
download = file.path(ddir, paste0("raref-", slugify(case$separate_by), ".pdf"))
|
|
697
|
+
),
|
|
698
|
+
h1 = "Rarefraction",
|
|
699
|
+
h2 = casename
|
|
700
|
+
)
|
|
508
701
|
} else {
|
|
509
702
|
run_raref_single(d, case, ddir)
|
|
703
|
+
add_report(
|
|
704
|
+
list(
|
|
705
|
+
kind = "image",
|
|
706
|
+
src = file.path(ddir, "raref.png"),
|
|
707
|
+
download = file.path(ddir, "raref.pdf")
|
|
708
|
+
),
|
|
709
|
+
h1 = "Rarefraction",
|
|
710
|
+
h2 = casename
|
|
711
|
+
)
|
|
510
712
|
}
|
|
511
713
|
} else {
|
|
512
|
-
|
|
714
|
+
if (case$method == "chao1") {
|
|
715
|
+
run_general(casename, d, case, ddir, "Estimator")
|
|
716
|
+
} else if (case$method == "hill") {
|
|
717
|
+
run_general(casename, d, case, ddir)
|
|
718
|
+
} else if (case$method == "div") {
|
|
719
|
+
run_general(casename, d, case, ddir)
|
|
720
|
+
} else if (case$method == "gini.simp") {
|
|
721
|
+
run_general(casename, d, case, ddir)
|
|
722
|
+
} else if (case$method == "inv.simp") {
|
|
723
|
+
run_general(casename, d, case, ddir)
|
|
724
|
+
} else if (case$method == "gini") {
|
|
725
|
+
run_general(casename, d, case, ddir, "V1")
|
|
726
|
+
} else if (case$method == "d50") {
|
|
727
|
+
run_general(casename, d, case, ddir, "Clones")
|
|
728
|
+
} else {
|
|
729
|
+
stop(paste0("Unknown diversity method: ", case$method))
|
|
730
|
+
}
|
|
513
731
|
}
|
|
514
732
|
}
|
|
515
733
|
|