biopipen 0.21.0__py3-none-any.whl → 0.34.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (290) hide show
  1. biopipen/__init__.py +1 -1
  2. biopipen/core/config.toml +28 -0
  3. biopipen/core/filters.py +79 -4
  4. biopipen/core/proc.py +12 -3
  5. biopipen/core/testing.py +75 -3
  6. biopipen/ns/bam.py +148 -6
  7. biopipen/ns/bed.py +75 -0
  8. biopipen/ns/cellranger.py +186 -0
  9. biopipen/ns/cellranger_pipeline.py +126 -0
  10. biopipen/ns/cnv.py +19 -3
  11. biopipen/ns/cnvkit.py +1 -1
  12. biopipen/ns/cnvkit_pipeline.py +20 -12
  13. biopipen/ns/delim.py +34 -35
  14. biopipen/ns/gene.py +68 -23
  15. biopipen/ns/gsea.py +63 -37
  16. biopipen/ns/misc.py +39 -14
  17. biopipen/ns/plot.py +304 -1
  18. biopipen/ns/protein.py +183 -0
  19. biopipen/ns/regulatory.py +290 -0
  20. biopipen/ns/rnaseq.py +142 -5
  21. biopipen/ns/scrna.py +2053 -473
  22. biopipen/ns/scrna_metabolic_landscape.py +228 -382
  23. biopipen/ns/snp.py +659 -0
  24. biopipen/ns/stats.py +484 -0
  25. biopipen/ns/tcr.py +683 -98
  26. biopipen/ns/vcf.py +236 -2
  27. biopipen/ns/web.py +97 -6
  28. biopipen/reports/bam/CNVpytor.svelte +4 -9
  29. biopipen/reports/cellranger/CellRangerCount.svelte +18 -0
  30. biopipen/reports/cellranger/CellRangerSummary.svelte +16 -0
  31. biopipen/reports/cellranger/CellRangerVdj.svelte +18 -0
  32. biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
  33. biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
  34. biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
  35. biopipen/reports/common.svelte +15 -0
  36. biopipen/reports/protein/ProdigySummary.svelte +16 -0
  37. biopipen/reports/scrna/CellsDistribution.svelte +4 -39
  38. biopipen/reports/scrna/DimPlots.svelte +1 -1
  39. biopipen/reports/scrna/MarkersFinder.svelte +6 -126
  40. biopipen/reports/scrna/MetaMarkers.svelte +3 -75
  41. biopipen/reports/scrna/RadarPlots.svelte +4 -20
  42. biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +61 -22
  43. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +88 -82
  44. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +70 -10
  45. biopipen/reports/snp/PlinkCallRate.svelte +24 -0
  46. biopipen/reports/snp/PlinkFreq.svelte +18 -0
  47. biopipen/reports/snp/PlinkHWE.svelte +18 -0
  48. biopipen/reports/snp/PlinkHet.svelte +18 -0
  49. biopipen/reports/snp/PlinkIBD.svelte +18 -0
  50. biopipen/reports/tcr/CDR3AAPhyschem.svelte +19 -66
  51. biopipen/reports/tcr/ClonalStats.svelte +16 -0
  52. biopipen/reports/tcr/CloneResidency.svelte +3 -93
  53. biopipen/reports/tcr/Immunarch.svelte +4 -155
  54. biopipen/reports/tcr/TCRClusterStats.svelte +3 -45
  55. biopipen/reports/tcr/TESSA.svelte +11 -28
  56. biopipen/reports/utils/misc.liq +22 -7
  57. biopipen/scripts/bam/BamMerge.py +11 -15
  58. biopipen/scripts/bam/BamSampling.py +90 -0
  59. biopipen/scripts/bam/BamSort.py +141 -0
  60. biopipen/scripts/bam/BamSplitChroms.py +10 -10
  61. biopipen/scripts/bam/BamSubsetByBed.py +38 -0
  62. biopipen/scripts/bam/CNAClinic.R +41 -5
  63. biopipen/scripts/bam/CNVpytor.py +153 -54
  64. biopipen/scripts/bam/ControlFREEC.py +13 -14
  65. biopipen/scripts/bam/SamtoolsView.py +33 -0
  66. biopipen/scripts/bed/Bed2Vcf.py +5 -5
  67. biopipen/scripts/bed/BedConsensus.py +5 -5
  68. biopipen/scripts/bed/BedLiftOver.sh +6 -4
  69. biopipen/scripts/bed/BedtoolsIntersect.py +54 -0
  70. biopipen/scripts/bed/BedtoolsMakeWindows.py +47 -0
  71. biopipen/scripts/bed/BedtoolsMerge.py +4 -4
  72. biopipen/scripts/cellranger/CellRangerCount.py +138 -0
  73. biopipen/scripts/cellranger/CellRangerSummary.R +181 -0
  74. biopipen/scripts/cellranger/CellRangerVdj.py +112 -0
  75. biopipen/scripts/cnv/AneuploidyScore.R +55 -20
  76. biopipen/scripts/cnv/AneuploidyScoreSummary.R +221 -163
  77. biopipen/scripts/cnv/TMADScore.R +25 -9
  78. biopipen/scripts/cnv/TMADScoreSummary.R +57 -86
  79. biopipen/scripts/cnvkit/CNVkitAccess.py +7 -6
  80. biopipen/scripts/cnvkit/CNVkitAutobin.py +26 -18
  81. biopipen/scripts/cnvkit/CNVkitBatch.py +6 -6
  82. biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
  83. biopipen/scripts/cnvkit/CNVkitCoverage.py +4 -3
  84. biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
  85. biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
  86. biopipen/scripts/cnvkit/CNVkitGuessBaits.py +12 -8
  87. biopipen/scripts/cnvkit/CNVkitHeatmap.py +5 -5
  88. biopipen/scripts/cnvkit/CNVkitReference.py +6 -5
  89. biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
  90. biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
  91. biopipen/scripts/cnvkit/guess_baits.py +166 -93
  92. biopipen/scripts/delim/RowsBinder.R +1 -1
  93. biopipen/scripts/delim/SampleInfo.R +116 -118
  94. biopipen/scripts/gene/GeneNameConversion.R +67 -0
  95. biopipen/scripts/gene/GenePromoters.R +61 -0
  96. biopipen/scripts/gsea/Enrichr.R +5 -5
  97. biopipen/scripts/gsea/FGSEA.R +184 -50
  98. biopipen/scripts/gsea/GSEA.R +2 -2
  99. biopipen/scripts/gsea/PreRank.R +5 -5
  100. biopipen/scripts/misc/Config2File.py +2 -2
  101. biopipen/scripts/misc/Plot.R +80 -0
  102. biopipen/scripts/misc/Shell.sh +15 -0
  103. biopipen/scripts/misc/Str2File.py +2 -2
  104. biopipen/scripts/plot/Heatmap.R +3 -3
  105. biopipen/scripts/plot/Manhattan.R +147 -0
  106. biopipen/scripts/plot/QQPlot.R +146 -0
  107. biopipen/scripts/plot/ROC.R +88 -0
  108. biopipen/scripts/plot/Scatter.R +112 -0
  109. biopipen/scripts/plot/VennDiagram.R +5 -9
  110. biopipen/scripts/protein/MMCIF2PDB.py +33 -0
  111. biopipen/scripts/protein/PDB2Fasta.py +60 -0
  112. biopipen/scripts/protein/Prodigy.py +119 -0
  113. biopipen/scripts/protein/ProdigySummary.R +140 -0
  114. biopipen/scripts/protein/RMSD.py +178 -0
  115. biopipen/scripts/regulatory/MotifAffinityTest.R +102 -0
  116. biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +127 -0
  117. biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +104 -0
  118. biopipen/scripts/regulatory/MotifScan.py +159 -0
  119. biopipen/scripts/regulatory/VariantMotifPlot.R +78 -0
  120. biopipen/scripts/regulatory/motifs-common.R +324 -0
  121. biopipen/scripts/rnaseq/Simulation-ESCO.R +180 -0
  122. biopipen/scripts/rnaseq/Simulation-RUVcorr.R +45 -0
  123. biopipen/scripts/rnaseq/Simulation.R +21 -0
  124. biopipen/scripts/rnaseq/UnitConversion.R +325 -54
  125. biopipen/scripts/scrna/AnnData2Seurat.R +40 -0
  126. biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
  127. biopipen/scripts/scrna/CellCellCommunication.py +150 -0
  128. biopipen/scripts/scrna/CellCellCommunicationPlots.R +93 -0
  129. biopipen/scripts/scrna/CellSNPLite.py +30 -0
  130. biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +185 -0
  131. biopipen/scripts/scrna/CellTypeAnnotation-direct.R +68 -31
  132. biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +27 -22
  133. biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +28 -20
  134. biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +48 -25
  135. biopipen/scripts/scrna/CellTypeAnnotation.R +37 -1
  136. biopipen/scripts/scrna/CellsDistribution.R +456 -167
  137. biopipen/scripts/scrna/DimPlots.R +1 -1
  138. biopipen/scripts/scrna/ExprImputation-alra.R +109 -0
  139. biopipen/scripts/scrna/ExprImputation-rmagic.R +256 -0
  140. biopipen/scripts/scrna/{ExprImpution-scimpute.R → ExprImputation-scimpute.R} +8 -5
  141. biopipen/scripts/scrna/ExprImputation.R +7 -0
  142. biopipen/scripts/scrna/LoomTo10X.R +51 -0
  143. biopipen/scripts/scrna/MQuad.py +25 -0
  144. biopipen/scripts/scrna/MarkersFinder.R +679 -400
  145. biopipen/scripts/scrna/MetaMarkers.R +265 -161
  146. biopipen/scripts/scrna/ModuleScoreCalculator.R +66 -11
  147. biopipen/scripts/scrna/PseudoBulkDEG.R +678 -0
  148. biopipen/scripts/scrna/RadarPlots.R +355 -134
  149. biopipen/scripts/scrna/ScFGSEA.R +298 -100
  150. biopipen/scripts/scrna/ScSimulation.R +65 -0
  151. biopipen/scripts/scrna/ScVelo.py +617 -0
  152. biopipen/scripts/scrna/Seurat2AnnData.R +7 -0
  153. biopipen/scripts/scrna/SeuratClusterStats-clustree.R +87 -0
  154. biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +36 -30
  155. biopipen/scripts/scrna/SeuratClusterStats-features.R +138 -187
  156. biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +81 -0
  157. biopipen/scripts/scrna/SeuratClusterStats-stats.R +78 -89
  158. biopipen/scripts/scrna/SeuratClusterStats.R +47 -10
  159. biopipen/scripts/scrna/SeuratClustering.R +36 -233
  160. biopipen/scripts/scrna/SeuratLoading.R +2 -2
  161. biopipen/scripts/scrna/SeuratMap2Ref.R +84 -113
  162. biopipen/scripts/scrna/SeuratMetadataMutater.R +16 -6
  163. biopipen/scripts/scrna/SeuratPreparing.R +223 -173
  164. biopipen/scripts/scrna/SeuratSubClustering.R +64 -0
  165. biopipen/scripts/scrna/SeuratTo10X.R +27 -0
  166. biopipen/scripts/scrna/Slingshot.R +65 -0
  167. biopipen/scripts/scrna/Subset10X.R +2 -2
  168. biopipen/scripts/scrna/TopExpressingGenes.R +169 -135
  169. biopipen/scripts/scrna/celltypist-wrapper.py +195 -0
  170. biopipen/scripts/scrna/scvelo_paga.py +313 -0
  171. biopipen/scripts/scrna/seurat_anndata_conversion.py +98 -0
  172. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +447 -82
  173. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +348 -241
  174. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +188 -166
  175. biopipen/scripts/snp/MatrixEQTL.R +217 -0
  176. biopipen/scripts/snp/Plink2GTMat.py +148 -0
  177. biopipen/scripts/snp/PlinkCallRate.R +199 -0
  178. biopipen/scripts/snp/PlinkFilter.py +100 -0
  179. biopipen/scripts/snp/PlinkFreq.R +291 -0
  180. biopipen/scripts/snp/PlinkFromVcf.py +81 -0
  181. biopipen/scripts/snp/PlinkHWE.R +85 -0
  182. biopipen/scripts/snp/PlinkHet.R +96 -0
  183. biopipen/scripts/snp/PlinkIBD.R +196 -0
  184. biopipen/scripts/snp/PlinkSimulation.py +124 -0
  185. biopipen/scripts/snp/PlinkUpdateName.py +124 -0
  186. biopipen/scripts/stats/ChowTest.R +146 -0
  187. biopipen/scripts/stats/DiffCoexpr.R +152 -0
  188. biopipen/scripts/stats/LiquidAssoc.R +135 -0
  189. biopipen/scripts/stats/Mediation.R +108 -0
  190. biopipen/scripts/stats/MetaPvalue.R +130 -0
  191. biopipen/scripts/stats/MetaPvalue1.R +74 -0
  192. biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
  193. biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
  194. biopipen/scripts/tcr/Attach2Seurat.R +3 -2
  195. biopipen/scripts/tcr/CDR3AAPhyschem.R +211 -143
  196. biopipen/scripts/tcr/CDR3Clustering.R +343 -0
  197. biopipen/scripts/tcr/ClonalStats.R +526 -0
  198. biopipen/scripts/tcr/CloneResidency.R +255 -131
  199. biopipen/scripts/tcr/CloneSizeQQPlot.R +4 -4
  200. biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
  201. biopipen/scripts/tcr/GIANA/GIANA4.py +1362 -789
  202. biopipen/scripts/tcr/GIANA/query.py +164 -162
  203. biopipen/scripts/tcr/Immunarch-basic.R +31 -9
  204. biopipen/scripts/tcr/Immunarch-clonality.R +25 -5
  205. biopipen/scripts/tcr/Immunarch-diversity.R +352 -134
  206. biopipen/scripts/tcr/Immunarch-geneusage.R +45 -5
  207. biopipen/scripts/tcr/Immunarch-kmer.R +68 -8
  208. biopipen/scripts/tcr/Immunarch-overlap.R +84 -4
  209. biopipen/scripts/tcr/Immunarch-spectratyping.R +35 -6
  210. biopipen/scripts/tcr/Immunarch-tracking.R +38 -6
  211. biopipen/scripts/tcr/Immunarch-vjjunc.R +165 -0
  212. biopipen/scripts/tcr/Immunarch.R +63 -11
  213. biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
  214. biopipen/scripts/tcr/ImmunarchFilter.R +4 -4
  215. biopipen/scripts/tcr/ImmunarchLoading.R +38 -29
  216. biopipen/scripts/tcr/SampleDiversity.R +1 -1
  217. biopipen/scripts/tcr/ScRepCombiningExpression.R +40 -0
  218. biopipen/scripts/tcr/ScRepLoading.R +166 -0
  219. biopipen/scripts/tcr/TCRClusterStats.R +176 -22
  220. biopipen/scripts/tcr/TCRDock.py +110 -0
  221. biopipen/scripts/tcr/TESSA.R +102 -118
  222. biopipen/scripts/tcr/VJUsage.R +5 -5
  223. biopipen/scripts/tcr/immunarch-patched.R +142 -0
  224. biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
  225. biopipen/scripts/vcf/BcftoolsAnnotate.py +91 -0
  226. biopipen/scripts/vcf/BcftoolsFilter.py +90 -0
  227. biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
  228. biopipen/scripts/vcf/BcftoolsSort.py +113 -0
  229. biopipen/scripts/vcf/BcftoolsView.py +73 -0
  230. biopipen/scripts/vcf/TruvariBench.sh +14 -7
  231. biopipen/scripts/vcf/TruvariBenchSummary.R +16 -13
  232. biopipen/scripts/vcf/TruvariConsistency.R +1 -1
  233. biopipen/scripts/vcf/Vcf2Bed.py +2 -2
  234. biopipen/scripts/vcf/VcfAnno.py +11 -11
  235. biopipen/scripts/vcf/VcfDownSample.sh +22 -10
  236. biopipen/scripts/vcf/VcfFilter.py +5 -5
  237. biopipen/scripts/vcf/VcfFix.py +7 -7
  238. biopipen/scripts/vcf/VcfFix_utils.py +13 -4
  239. biopipen/scripts/vcf/VcfIndex.py +3 -3
  240. biopipen/scripts/vcf/VcfIntersect.py +3 -3
  241. biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
  242. biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
  243. biopipen/scripts/vcf/bcftools_utils.py +52 -0
  244. biopipen/scripts/web/Download.py +8 -4
  245. biopipen/scripts/web/DownloadList.py +5 -5
  246. biopipen/scripts/web/GCloudStorageDownloadBucket.py +82 -0
  247. biopipen/scripts/web/GCloudStorageDownloadFile.py +23 -0
  248. biopipen/scripts/web/gcloud_common.py +49 -0
  249. biopipen/utils/gene.py +108 -60
  250. biopipen/utils/misc.py +146 -20
  251. biopipen/utils/reference.py +64 -20
  252. biopipen/utils/reporter.py +177 -0
  253. biopipen/utils/vcf.py +1 -1
  254. biopipen-0.34.26.dist-info/METADATA +27 -0
  255. biopipen-0.34.26.dist-info/RECORD +292 -0
  256. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
  257. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +6 -2
  258. biopipen/ns/bcftools.py +0 -111
  259. biopipen/ns/scrna_basic.py +0 -255
  260. biopipen/reports/delim/SampleInfo.svelte +0 -36
  261. biopipen/reports/scrna/GeneExpressionInvistigation.svelte +0 -32
  262. biopipen/reports/scrna/ScFGSEA.svelte +0 -35
  263. biopipen/reports/scrna/SeuratClusterStats.svelte +0 -82
  264. biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -20
  265. biopipen/reports/scrna/SeuratPreparing.svelte +0 -38
  266. biopipen/reports/scrna/TopExpressingGenes.svelte +0 -55
  267. biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -31
  268. biopipen/reports/utils/gsea.liq +0 -110
  269. biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -42
  270. biopipen/scripts/bcftools/BcftoolsFilter.py +0 -79
  271. biopipen/scripts/bcftools/BcftoolsSort.py +0 -19
  272. biopipen/scripts/gene/GeneNameConversion.py +0 -66
  273. biopipen/scripts/scrna/ExprImpution-alra.R +0 -32
  274. biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -29
  275. biopipen/scripts/scrna/ExprImpution.R +0 -7
  276. biopipen/scripts/scrna/GeneExpressionInvistigation.R +0 -132
  277. biopipen/scripts/scrna/Write10X.R +0 -11
  278. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -150
  279. biopipen/scripts/tcr/TCRClustering.R +0 -280
  280. biopipen/utils/common_docstrs.py +0 -61
  281. biopipen/utils/gene.R +0 -49
  282. biopipen/utils/gsea.R +0 -193
  283. biopipen/utils/io.R +0 -20
  284. biopipen/utils/misc.R +0 -114
  285. biopipen/utils/mutate_helpers.R +0 -433
  286. biopipen/utils/plot.R +0 -173
  287. biopipen/utils/rnaseq.R +0 -48
  288. biopipen/utils/single_cell.R +0 -115
  289. biopipen-0.21.0.dist-info/METADATA +0 -22
  290. biopipen-0.21.0.dist-info/RECORD +0 -218
@@ -1,209 +1,259 @@
1
- source("{{biopipen_dir}}/utils/misc.R")
2
-
3
1
  library(Seurat)
4
2
  library(future)
5
3
  library(bracer)
6
- library(ggplot2)
7
- library(tidyseurat)
4
+ library(dplyr)
5
+ library(glue)
6
+ library(biopipen.utils)
7
+
8
+ metafile <- {{in.metafile | r}}
9
+ outfile <- {{out.outfile | r}}
10
+ joboutdir <- {{job.outdir | r}}
11
+ envs <- {{envs | r: todot = "-", skip = 1}}
12
+
13
+ if (isTRUE(envs$cache)) { envs$cache <- joboutdir }
8
14
 
9
- metafile = {{in.metafile | quote}}
10
- rdsfile = {{out.rdsfile | quote}}
11
- joboutdir = {{job.outdir | quote}}
12
- envs = {{envs | r}}
15
+ log <- get_logger()
16
+ reporter <- get_reporter()
13
17
 
14
18
  set.seed(8525)
15
- options(future.globals.maxSize = 80000 * 1024^2)
19
+ # 8TB
20
+ options(future.globals.maxSize = Inf)
21
+ options(future.rng.onMisuse="ignore")
22
+ options(Seurat.object.assay.version = "v5")
16
23
  plan(strategy = "multicore", workers = envs$ncores)
17
24
 
18
- metadata = read.table(
19
- metafile,
20
- header = TRUE,
21
- row.names = NULL,
22
- sep = "\t",
23
- check.names = FALSE
25
+ reporter$add(
26
+ list(
27
+ kind = "descr",
28
+ name = "Filters applied",
29
+ content = paste0(
30
+ "<p>Cell filters: ", html_escape(envs$cell_qc), "</p>",
31
+ "<p>Gene filters: </p>",
32
+ "<p>- Min Cells: ", envs$gene_qc$min_cells, "</p>",
33
+ "<p>- Excludes: ",
34
+ ifelse(is.null(envs$gene_qc$excludes), "Not set", paste(envs$gene_qc$excludes, collapse = ", ")),
35
+ "</p>"
36
+ )
37
+ ),
38
+ h1 = "Filters and QC"
24
39
  )
25
40
 
26
- meta_cols = colnames(metadata)
41
+ metadata <- tryCatch({
42
+ log$debug("Trying to read Seurat object from metafile ...")
43
+ read_obj(metafile)
44
+ }, error = function(e) {
45
+ log$debug("Failed to read Seurat object from metafile: {e$message}")
46
+ log$debug("Reading metafile as a table (sample info) ...")
47
+ read.table(
48
+ metafile,
49
+ header = TRUE,
50
+ row.names = NULL,
51
+ sep = "\t",
52
+ check.names = FALSE
53
+ )
54
+ })
55
+ is_seurat <- inherits(metadata, "Seurat")
56
+
57
+ meta_cols <- if (is_seurat) colnames(metadata@meta.data) else colnames(metadata)
27
58
  if (!"Sample" %in% meta_cols) {
28
- stop("Error: Column `Sample` is not found in metafile.")
59
+ stop("Error: Column `Sample` is not found in ", ifelse(is_seurat, "Seurat object's meta.data.", "metafile."))
29
60
  }
30
- if (!"RNAData" %in% meta_cols) {
61
+ if (!"RNAData" %in% meta_cols && !is_seurat) {
31
62
  stop("Error: Column `RNAData` is not found in metafile.")
32
63
  }
33
64
 
65
+ qcdir = file.path(joboutdir, "qc")
66
+ dir.create(qcdir, showWarnings = FALSE, recursive = TRUE)
34
67
 
35
- rename_files = function(e, sample, path) {
36
- tmpdatadir = file.path(joboutdir, "renamed", sample)
37
- if (dir.exists(tmpdatadir)) {
38
- unlink(tmpdatadir, recursive = TRUE)
39
- }
40
- dir.create(tmpdatadir, recursive = TRUE, showWarnings = FALSE)
41
- barcodefile = Sys.glob(file.path(path, "*barcodes.tsv.gz"))[1]
42
- file.symlink(
43
- normalizePath(barcodefile),
44
- file.path(tmpdatadir, "barcodes.tsv.gz")
45
- )
46
- genefile = glob(file.path(path, "*{genes,features}.tsv.gz"))[1]
47
- file.symlink(
48
- normalizePath(genefile),
49
- file.path(tmpdatadir, "features.tsv.gz")
50
- )
51
- matrixfile = Sys.glob(file.path(path, "*matrix.mtx.gz"))[1]
52
- file.symlink(
53
- normalizePath(matrixfile),
54
- file.path(tmpdatadir, "matrix.mtx.gz")
55
- )
56
- Read10X(data.dir = tmpdatadir)
57
- }
68
+ sobj <- LoadSeuratAndPerformQC(
69
+ metadata,
70
+ min_cells = envs$min_cells,
71
+ min_features = envs$min_features,
72
+ cell_qc = envs$cell_qc,
73
+ gene_qc = envs$gene_qc,
74
+ tmpdir = joboutdir,
75
+ log = log,
76
+ cache = envs$cache)
58
77
 
59
- load_sample = function(sample) {
60
- print(paste(" Loading sample:", sample, "..."))
61
- mdata = as.data.frame(metadata)[metadata$Sample == sample, , drop=TRUE]
62
- path = as.character(mdata$RNAData)
63
- if (is.na(path) || !is.character(path) || nchar(path) == 0) {
64
- warning(paste0("No path found for sample: ", sample))
65
- return (NULL)
66
- }
78
+ log$info("Saving and visualizing QC results ...")
79
+ cell_qc_df <- VizSeuratCellQC(sobj, plot_type = "table")
80
+ write.table(cell_qc_df, file = file.path(qcdir, "cell_qc.txt"),
81
+ row.names = FALSE, quote = FALSE, sep = "\t")
67
82
 
68
- # obj_list = list()
69
- if (dir.exists(path)) {
70
- exprs = tryCatch(
71
- # Read10X requires
72
- # - barcodes.tsv.gz
73
- # - genes.tsv.gz
74
- # - matrix.mtx.gz
75
- # But sometimes, they are prefixed with sample name
76
- # e.g.GSM4143656_SAM24345863-ln1.barcodes.tsv.gz
77
- { Read10X(data.dir = path) },
78
- error = function(e) rename_files(e, sample, path)
83
+ reporter$add(
84
+ list(
85
+ name = "Cell QC metrics",
86
+ contents = list(
87
+ list(
88
+ kind = "descr",
89
+ content = paste0(
90
+ "The table below show the number of cells in each sample that failed and passed the QC filters. ",
91
+ "The last row shows the total number of cells that failed and passed the QC filters across all samples. "
92
+ )
93
+ ),
94
+ list(kind = "table", src = file.path(qcdir, "cell_qc.txt"))
79
95
  )
80
- } else {
81
- exprs = Read10X_h5(path)
82
- }
83
- if ("Gene Expression" %in% names(exprs)) {
84
- exprs = exprs[["Gene Expression"]]
85
- }
86
- obj = CreateSeuratObject(counts=exprs, project=sample)
87
- # filter the cells that don't have any gene expressions
88
- cell_exprs = colSums(obj@assays$RNA)
89
- obj = subset(obj, cells = names(cell_exprs[cell_exprs > 0]))
90
- # obj = SCTransform(object=obj, return.only.var.genes=FALSE, verbose=FALSE)
91
- obj = RenameCells(obj, add.cell.id = sample)
92
- # Attach meta data
93
- for (mname in names(mdata)) {
94
- if (mname %in% c("RNAData", "TCRData")) { next }
95
- mdt = mdata[[mname]]
96
- if (is.factor(mdt)) { mdt = levels(mdt)[mdt] }
97
- obj[[mname]] = mdt
98
- }
99
- # obj_list[[sample]] = obj
100
-
101
- # obj_list
102
- obj
103
- }
96
+ ),
97
+ h1 = "Filters and QC",
98
+ h2 = "Cell-level Quality Control",
99
+ ui = "tabs"
100
+ )
104
101
 
105
- # Load data
106
- samples = as.character(metadata$Sample)
102
+ gene_qc_df <- VizSeuratGeneQC(sobj, plot_type = "table")
103
+ write.table(gene_qc_df, file = file.path(qcdir, "gene_qc.txt"),
104
+ row.names = FALSE, quote = FALSE, sep = "\t")
107
105
 
108
- print("- Reading samples individually ...")
109
- obj_list = lapply(samples, load_sample)
106
+ reporter$add(
107
+ list(
108
+ name = "Gene QC metrics",
109
+ contents = list(
110
+ list(
111
+ kind = "descr",
112
+ content = paste0(
113
+ "The table below show the number of genes in each sample that failed and passed the QC filters. ",
114
+ "The last row shows the final number of genes that failed and passed the QC filters across all samples. ",
115
+ "Any gene that failed the QC filters will be excluded in the merged Seurat object."
116
+ )
117
+ ),
118
+ list(kind = "table", src = file.path(qcdir, "gene_qc.txt")),
119
+ list(kind = "list", items = list(paste0(
120
+ "We may still end up with features slightly less than the final passed ones. ",
121
+ "For example, when SCTransform is used, the number of features may be less than the number of genes that passed the QC filters. ",
122
+ "This is because SCTransform selects the top N features based on variance. "
123
+ )))
124
+ )
125
+ ),
126
+ h1 = "Filters and QC",
127
+ h2 = "Gene-level Quality Control",
128
+ ui = "tabs"
129
+ )
110
130
 
111
- print("- Merging samples ...")
112
- if (length(obj_list) >= 2) {
113
- y = c()
114
- for (i in 2:length(obj_list)) y = c(y, obj_list[[i]])
115
- sobj = merge(obj_list[[1]], y)
116
- } else {
117
- sobj = obj_list[[1]]
131
+ for (pname in names(envs$qc_plots)) {
132
+ if (is.null(envs$qc_plots[[pname]])) next
133
+ log$info("- {pname} ...")
134
+ args <- envs$qc_plots[[pname]]
135
+ args$kind <- args$kind %||% "cell"
136
+ args$devpars <- args$devpars %||% list()
137
+ args$more_formats <- args$more_formats %||% character()
138
+ args$save_code <- args$save_code %||% FALSE
139
+ args$descr <- args$descr %||% pname
140
+ extract_vars(args, "kind", "devpars", "more_formats", "save_code", "descr")
141
+ if (kind == "gene") kind <- "gene_qc"
142
+ if (kind == "cell") kind <- "cell_qc"
143
+ args$object <- sobj
144
+ plot_fn <- if (kind == "cell_qc") {
145
+ gglogger::register(VizSeuratCellQC)
146
+ } else {
147
+ gglogger::register(VizSeuratGeneQC)
148
+ }
149
+ p <- do_call(plot_fn, args)
150
+ prefix <- file.path(qcdir, paste0(slugify(pname), ".", kind))
151
+ save_plot(p, prefix, devpars, formats = c("png", more_formats))
152
+ if (save_code) {
153
+ save_plotcode(p, prefix,
154
+ setup = c("library(biopipen.utils)", "load('data.RData')", "invisible(list2env(args, envir = .GlobalEnv))"),
155
+ "args",
156
+ auto_data_setup = FALSE)
157
+ }
158
+ reporter$add(
159
+ list(
160
+ name = pname,
161
+ contents = list(
162
+ list(kind = "descr", content = descr),
163
+ reporter$image(prefix, more_formats, save_code, kind = "image")
164
+ )
165
+ ),
166
+ h1 = "Filters and QC",
167
+ h2 = ifelse(kind == "cell_qc", "Cell-level Quality Control", "Gene-level Quality Control"),
168
+ ui = "tabs"
169
+ )
118
170
  }
119
171
 
120
- print("- Adding metadata for QC ...")
121
- sobj$percent.mt = PercentageFeatureSet(sobj, pattern = "^MT-")
122
- sobj$percent.ribo = PercentageFeatureSet(sobj, pattern = "^RP[SL]")
123
- sobj$percent.hb = PercentageFeatureSet(sobj, pattern = "^HB[^(P)]")
124
- sobj$percent.plat = PercentageFeatureSet(sobj, pattern = "PECAM1|PF4")
125
-
126
- dim_df = data.frame(When = "Before_QC", nCells = ncol(sobj), nGenes = nrow(sobj))
172
+ log$info("Filtering with QC criteria ...")
173
+ sobj <- FinishSeuratQC(sobj)
127
174
 
128
- if (is.null(envs$cell_qc) || length(envs$cell_qc) == 0) {
129
- warning("No cell QC criteria is provided. All cells will be kept.", immediate. = TRUE)
130
- envs$cell_qc = "TRUE"
131
- }
175
+ sobj <- RunSeuratTransformation(
176
+ sobj,
177
+ use_sct = envs$use_sct,
178
+ SCTransformArgs = envs$SCTransform,
179
+ NormalizeDataArgs = envs$NormalizeData,
180
+ FindVariableFeaturesArgs = envs$FindVariableFeatures,
181
+ ScaleDataArgs = envs$ScaleData,
182
+ RunPCAArgs = envs$RunPCA,
183
+ log = log,
184
+ cache = envs$cache
185
+ )
186
+ sobj <- RunSeuratIntegration(
187
+ sobj,
188
+ no_integration = envs$no_integration,
189
+ IntegrateLayersArgs = envs$IntegrateLayers,
190
+ log = log,
191
+ cache = envs$cache
192
+ )
132
193
 
133
- sobj = sobj %>% mutate(.QC = !!rlang::parse_expr(envs$cell_qc))
134
- feats = c("nFeature_RNA", "nCount_RNA", "percent.mt", "percent.ribo", "percent.hb", "percent.plat")
135
- plotsdir = file.path(joboutdir, "plots")
136
- dir.create(plotsdir, showWarnings = FALSE)
194
+ # This is the last step, doesn't need to be cached
195
+ if (!identical(envs$doublet_detector, "none")) {
196
+ dbldir <- file.path(joboutdir, "doublets")
197
+ dir.create(dbldir, showWarnings = FALSE, recursive = TRUE)
137
198
 
138
- # Violin plots
139
- print("- Plotting violin plots ...")
140
- for (feat in feats) {
141
- print(paste0(" ", feat, "..."))
142
- vln_p = VlnPlot(
199
+ sobj <- RunSeuratDoubletDetection(
143
200
  sobj,
144
- cols = rep("white", length(samples)),
145
- group.by = "Sample",
146
- features = feat,
147
- pt.size = 0) + NoLegend()
148
- vln_p$data$.QC = sobj@meta.data$.QC
149
- vln_p = vln_p + geom_jitter(
150
- aes(color = .QC),
151
- data = vln_p$data,
152
- position = position_jitterdodge(jitter.width = 0.4, dodge.width = 0.9)
153
- ) + scale_color_manual(values = c("black", "red"), breaks = c(TRUE, FALSE))
154
-
155
- png(
156
- file.path(plotsdir, paste0(feat, ".vln.png")),
157
- width = 800 + length(samples) * 15, height = 600, res = 100
201
+ tool = envs$doublet_detector,
202
+ DoubletFinderArgs = envs$DoubletFinder,
203
+ scDblFinderArgs = envs$scDblFinder,
204
+ filter = FALSE,
205
+ log = log,
206
+ cache = envs$cache
158
207
  )
159
- print(vln_p)
160
- dev.off()
161
- }
162
208
 
163
- # Scatter plots against nCount_RNA
164
- print("- Plotting scatter plots ...")
165
- for (feat in setdiff(feats, "nCount_RNA")) {
166
- print(paste0(" ", feat, "..."))
167
- scat_p = FeatureScatter(
168
- sobj,
169
- feature1 = "nCount_RNA",
170
- feature2 = feat,
171
- group.by = ".QC"
172
- ) +
173
- NoLegend() +
174
- scale_color_manual(values = c("black", "red"), breaks = c(TRUE, FALSE))
175
-
176
- png(
177
- file.path(plotsdir, paste0(feat, "-nCount_RNA.scatter.png")),
178
- width = 800, height = 600, res = 100
179
- )
180
- print(scat_p)
181
- dev.off()
182
- }
209
+ log$info("Visualizing doublet detection results ...")
210
+ if (identical(tolower(envs$doublet_detector), "doubletfinder")) {
211
+ p <- VizSeuratDoublets(sobj, plot_type = "pK", x_text_angle = 90)
212
+ save_plot(
213
+ p, file.path(dbldir, "doubletfinder_pk"),
214
+ devpars = list(res = 100, width = 800, height = 600),
215
+ formats = "png")
216
+ reporter$add(
217
+ list(
218
+ kind = "descr",
219
+ content = paste(
220
+ "The pK plot from DoubletFinder to select the optimal pK value.",
221
+ "See more at https://github.com/chris-mcginnis-ucsf/DoubletFinder"
222
+ )
223
+ ),
224
+ list(
225
+ kind = "image",
226
+ src = file.path(dbldir, "doubletfinder_pk.png")
227
+ ),
228
+ h1 = glue("Doublet detection using {envs$doublet_detector}"),
229
+ h2 = "BC metric vs pK"
230
+ )
231
+ }
183
232
 
184
- # Do the filtering
185
- print("- Filtering cells ...")
186
- sobj = sobj %>% filter(.QC)
187
- sobj$.QC = NULL
233
+ for (pt in c("dim", "pie")) {
234
+ p <- VizSeuratDoublets(sobj, plot_type = pt)
235
+ save_plot(p, file.path(dbldir, paste0("doublets_", pt)), formats = "png")
188
236
 
189
- print("- Filtering genes ...")
190
- if (is.list(envs$gene_qc)) {
191
- if ("min_cells" %in% names(envs$gene_qc)) {
192
- genes = rownames(sobj)[Matrix::rowSums(sobj) >= envs$gene_qc$min_cells]
193
- sobj = subset(sobj, features = genes)
237
+ reporter$add(
238
+ list(
239
+ src = file.path(dbldir, paste0("doublets_", pt, ".png")),
240
+ descr = ifelse(pt == "dim", "Dimention Reduction Plot", "Pie Chart")
241
+ ),
242
+ h1 = glue("Doublet detection using {envs$doublet_detector}"),
243
+ h2 = "Doublets distribution",
244
+ ui = "table_of_images"
245
+ )
194
246
  }
247
+
248
+ sobj <- subset(sobj, subset = !!sym(paste0(sobj@misc$doublets$tool, "_DropletType")) != "doublet")
195
249
  }
196
- dim_df = rbind(
197
- dim_df,
198
- data.frame(
199
- When = "After_Gene_QC",
200
- nCells = ncol(sobj),
201
- nGenes = nrow(sobj)
202
- )
203
- )
204
250
 
205
- write.table(dim_df, file = file.path(plotsdir, "dim.txt"),
206
- row.names = FALSE, quote = FALSE, sep = "\t")
251
+ if (!is.null(envs$mutaters) && length(envs$mutaters) > 0) {
252
+ log$info("Mutating metadata ...")
253
+ sobj@meta.data <- sobj@meta.data %>%
254
+ mutate(!!!lapply(envs$mutaters, rlang::parse_expr))
255
+ }
207
256
 
208
- print("- Saving results ...")
209
- saveRDS(sobj, rdsfile)
257
+ log$info("Saving QC'ed seurat object ...")
258
+ reporter$save(joboutdir)
259
+ save_obj(sobj, outfile)
@@ -0,0 +1,64 @@
1
+
2
+ library(Seurat)
3
+ library(future)
4
+ library(biopipen.utils)
5
+
6
+ set.seed(8525)
7
+
8
+ srtfile <- {{in.srtobj | r}}
9
+ outfile <- {{out.outfile | r}}
10
+ ncores <- {{envs.ncores | r}}
11
+ mutaters <- {{envs.mutaters | r}}
12
+ subset <- {{envs.subset | r}}
13
+ cache <- {{envs.cache | r}}
14
+ RunPCAArgs <- {{envs.RunPCA | r: todot = "-"}}
15
+ RunUMAPArgs <- {{envs.RunUMAP | r: todot = "-"}}
16
+ FindNeighborsArgs <- {{envs.FindNeighbors | r: todot = "-"}}
17
+ FindClustersArgs <- {{envs.FindClusters | r: todot = "-"}}
18
+ cases <- {{envs.cases | r}}
19
+
20
+ options(future.globals.maxSize = Inf)
21
+ plan(strategy = "multicore", workers = ncores)
22
+
23
+ log <- get_logger()
24
+
25
+ cases <- expand_cases(cases, defaults = list(
26
+ RunPCA = RunPCAArgs,
27
+ RunUMAP = RunUMAPArgs,
28
+ FindNeighbors = FindNeighborsArgs,
29
+ FindClusters = FindClustersArgs,
30
+ subset = subset
31
+ ))
32
+
33
+ if (isTRUE(cache)) {}
34
+
35
+ log$info("Reading Seurat object ...")
36
+ object <- read_obj(srtfile)
37
+
38
+ if (!is.null(mutaters) && length(mutaters) > 0) {
39
+ log$info("Mutating meta data ...")
40
+ object@meta.data <- mutate(
41
+ object@meta.data,
42
+ !!!lapply(mutaters, parse_expr)
43
+ )
44
+ }
45
+
46
+ for (name in names(cases)) {
47
+ case <- cases[[name]]
48
+ log$info("Processing case '{name}' ...")
49
+
50
+ object <- RunSeuratSubClustering(
51
+ object = object,
52
+ subset = case$subset,
53
+ name = name,
54
+ RunPCAArgs = case$RunPCAArgs,
55
+ RunUMAPArgs = case$RunUMAPArgs,
56
+ FindNeighborsArgs = case$FindNeighborsArgs,
57
+ FindClustersArgs = case$FindClustersArgs,
58
+ log = log,
59
+ cache = cache
60
+ )
61
+ }
62
+
63
+ log$info("Saving results ...")
64
+ biopipen.utils::save_obj(object, file = outfile)
@@ -0,0 +1,27 @@
1
+ library(DropletUtils)
2
+ library(Seurat)
3
+
4
+ srtobjfile = {{in.srtobj | r}}
5
+ outdir = {{out.outdir | r}}
6
+ version = {{envs.version | r}}
7
+ split_by = {{envs.split_by | r}}
8
+
9
+ srtobj = readRDS(srtobjfile)
10
+ if (!is.null(split_by)) {
11
+ # check if split_by is a valid column
12
+ if (is.null(srtobj[[split_by]])) {
13
+ stop(paste0("Column ", split_by, " not found in Seurat object"))
14
+ }
15
+
16
+ # split Seurat object by split_by column
17
+ objs <- SplitObject(srtobj, split.by = split_by)
18
+ for (s in names(objs)) {
19
+ counts <- GetAssayData(object = objs[[s]], layer = "counts")
20
+ odir <- file.path(outdir, s)
21
+ dir.create(odir, recursive = TRUE, showWarnings = FALSE)
22
+ write10xCounts(odir, counts, version = version, overwrite = TRUE)
23
+ }
24
+ } else {
25
+ counts = GetAssayData(object = srtobj, layer = "counts")
26
+ write10xCounts(outdir, counts, version = version, overwrite = TRUE)
27
+ }
@@ -0,0 +1,65 @@
1
+ library(rlang)
2
+ library(Seurat)
3
+ library(slingshot)
4
+ library(biopipen.utils)
5
+
6
+ sobjfile <- {{in.sobjfile | r}}
7
+ outfile <- {{out.outfile | r}}
8
+ group_by <- {{envs.group_by | r}}
9
+ reduction <- {{envs.reduction | r}}
10
+ dims <- {{envs.dims | r}}
11
+ start <- {{envs.start | r}}
12
+ end <- {{envs.end | r}}
13
+ prefix <- {{envs.prefix | r}}
14
+ reverse <- {{envs.reverse | r}}
15
+ align_start <- {{envs.align_start | r}}
16
+ seed <- {{envs.seed | r}}
17
+
18
+ set.seed(seed)
19
+
20
+ log <- get_logger()
21
+
22
+ log$info("Reading Seurat object ...")
23
+ srt <- read_obj(sobjfile)
24
+ group_by <- group_by %||% biopipen.utils::GetIdentityColumn(srt)
25
+
26
+ if (is.null(group_by) || !group_by %in% colnames(srt@meta.data)) {
27
+ stop(paste("Grouping column", group_by, "not found in the Seurat object"))
28
+ }
29
+
30
+ reduction <- reduction %||% DefaultDimReduc(srt)
31
+ dims <- biopipen.utils:::.expand_number(dims)
32
+
33
+ if (is.null(prefix)) {
34
+ prefix <- ""
35
+ } else {
36
+ prefix <- paste0(prefix, "_")
37
+ }
38
+
39
+ log$info("Filtering cells in NA group_by ...")
40
+ srt_sub <- srt[, !is.na(srt[[group_by, drop = TRUE]])]
41
+
42
+ log$info("Running Slingshot ...")
43
+ sl <- slingshot(
44
+ data = as.data.frame(srt_sub[[reduction]]@cell.embeddings[, dims]),
45
+ clusterLabels = as.character(srt_sub[[group_by, drop = TRUE]]),
46
+ start.clus = start, end.clus = end
47
+ )
48
+
49
+ df <- as.data.frame(slingPseudotime(sl))
50
+ colnames(df) <- paste0(prefix, colnames(df))
51
+ if (isTRUE(reverse)) {
52
+ if (isTRUE(align_start)) {
53
+ df <- apply(df, 2, function(x) max(x, na.rm = TRUE) - x)
54
+ } else {
55
+ df <- max(df, na.rm = TRUE) - df
56
+ }
57
+ }
58
+
59
+ srt <- AddMetaData(srt, metadata = df)
60
+ srt <- AddMetaData(srt, metadata = slingBranchID(sl), col.name = paste0(prefix, "BranchID"))
61
+
62
+ srt <- AddSeuratCommand(srt, "Slingshot", "slingshot(...)")
63
+
64
+ log$info("Saving Seurat object ...")
65
+ save_obj(srt, outfile)
@@ -1,7 +1,7 @@
1
1
  library(Matrix)
2
2
 
3
- indir = {{in.indir | quote}}
4
- outdir = {{out.outdir | quote}}
3
+ indir = {{in.indir | r}}
4
+ outdir = {{out.outdir | r}}
5
5
  envs = {{envs | r}}
6
6
 
7
7
  set.seed(envs$seed)