biopipen 0.21.0__py3-none-any.whl → 0.34.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (290) hide show
  1. biopipen/__init__.py +1 -1
  2. biopipen/core/config.toml +28 -0
  3. biopipen/core/filters.py +79 -4
  4. biopipen/core/proc.py +12 -3
  5. biopipen/core/testing.py +75 -3
  6. biopipen/ns/bam.py +148 -6
  7. biopipen/ns/bed.py +75 -0
  8. biopipen/ns/cellranger.py +186 -0
  9. biopipen/ns/cellranger_pipeline.py +126 -0
  10. biopipen/ns/cnv.py +19 -3
  11. biopipen/ns/cnvkit.py +1 -1
  12. biopipen/ns/cnvkit_pipeline.py +20 -12
  13. biopipen/ns/delim.py +34 -35
  14. biopipen/ns/gene.py +68 -23
  15. biopipen/ns/gsea.py +63 -37
  16. biopipen/ns/misc.py +39 -14
  17. biopipen/ns/plot.py +304 -1
  18. biopipen/ns/protein.py +183 -0
  19. biopipen/ns/regulatory.py +290 -0
  20. biopipen/ns/rnaseq.py +142 -5
  21. biopipen/ns/scrna.py +2053 -473
  22. biopipen/ns/scrna_metabolic_landscape.py +228 -382
  23. biopipen/ns/snp.py +659 -0
  24. biopipen/ns/stats.py +484 -0
  25. biopipen/ns/tcr.py +683 -98
  26. biopipen/ns/vcf.py +236 -2
  27. biopipen/ns/web.py +97 -6
  28. biopipen/reports/bam/CNVpytor.svelte +4 -9
  29. biopipen/reports/cellranger/CellRangerCount.svelte +18 -0
  30. biopipen/reports/cellranger/CellRangerSummary.svelte +16 -0
  31. biopipen/reports/cellranger/CellRangerVdj.svelte +18 -0
  32. biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
  33. biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
  34. biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
  35. biopipen/reports/common.svelte +15 -0
  36. biopipen/reports/protein/ProdigySummary.svelte +16 -0
  37. biopipen/reports/scrna/CellsDistribution.svelte +4 -39
  38. biopipen/reports/scrna/DimPlots.svelte +1 -1
  39. biopipen/reports/scrna/MarkersFinder.svelte +6 -126
  40. biopipen/reports/scrna/MetaMarkers.svelte +3 -75
  41. biopipen/reports/scrna/RadarPlots.svelte +4 -20
  42. biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +61 -22
  43. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +88 -82
  44. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +70 -10
  45. biopipen/reports/snp/PlinkCallRate.svelte +24 -0
  46. biopipen/reports/snp/PlinkFreq.svelte +18 -0
  47. biopipen/reports/snp/PlinkHWE.svelte +18 -0
  48. biopipen/reports/snp/PlinkHet.svelte +18 -0
  49. biopipen/reports/snp/PlinkIBD.svelte +18 -0
  50. biopipen/reports/tcr/CDR3AAPhyschem.svelte +19 -66
  51. biopipen/reports/tcr/ClonalStats.svelte +16 -0
  52. biopipen/reports/tcr/CloneResidency.svelte +3 -93
  53. biopipen/reports/tcr/Immunarch.svelte +4 -155
  54. biopipen/reports/tcr/TCRClusterStats.svelte +3 -45
  55. biopipen/reports/tcr/TESSA.svelte +11 -28
  56. biopipen/reports/utils/misc.liq +22 -7
  57. biopipen/scripts/bam/BamMerge.py +11 -15
  58. biopipen/scripts/bam/BamSampling.py +90 -0
  59. biopipen/scripts/bam/BamSort.py +141 -0
  60. biopipen/scripts/bam/BamSplitChroms.py +10 -10
  61. biopipen/scripts/bam/BamSubsetByBed.py +38 -0
  62. biopipen/scripts/bam/CNAClinic.R +41 -5
  63. biopipen/scripts/bam/CNVpytor.py +153 -54
  64. biopipen/scripts/bam/ControlFREEC.py +13 -14
  65. biopipen/scripts/bam/SamtoolsView.py +33 -0
  66. biopipen/scripts/bed/Bed2Vcf.py +5 -5
  67. biopipen/scripts/bed/BedConsensus.py +5 -5
  68. biopipen/scripts/bed/BedLiftOver.sh +6 -4
  69. biopipen/scripts/bed/BedtoolsIntersect.py +54 -0
  70. biopipen/scripts/bed/BedtoolsMakeWindows.py +47 -0
  71. biopipen/scripts/bed/BedtoolsMerge.py +4 -4
  72. biopipen/scripts/cellranger/CellRangerCount.py +138 -0
  73. biopipen/scripts/cellranger/CellRangerSummary.R +181 -0
  74. biopipen/scripts/cellranger/CellRangerVdj.py +112 -0
  75. biopipen/scripts/cnv/AneuploidyScore.R +55 -20
  76. biopipen/scripts/cnv/AneuploidyScoreSummary.R +221 -163
  77. biopipen/scripts/cnv/TMADScore.R +25 -9
  78. biopipen/scripts/cnv/TMADScoreSummary.R +57 -86
  79. biopipen/scripts/cnvkit/CNVkitAccess.py +7 -6
  80. biopipen/scripts/cnvkit/CNVkitAutobin.py +26 -18
  81. biopipen/scripts/cnvkit/CNVkitBatch.py +6 -6
  82. biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
  83. biopipen/scripts/cnvkit/CNVkitCoverage.py +4 -3
  84. biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
  85. biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
  86. biopipen/scripts/cnvkit/CNVkitGuessBaits.py +12 -8
  87. biopipen/scripts/cnvkit/CNVkitHeatmap.py +5 -5
  88. biopipen/scripts/cnvkit/CNVkitReference.py +6 -5
  89. biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
  90. biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
  91. biopipen/scripts/cnvkit/guess_baits.py +166 -93
  92. biopipen/scripts/delim/RowsBinder.R +1 -1
  93. biopipen/scripts/delim/SampleInfo.R +116 -118
  94. biopipen/scripts/gene/GeneNameConversion.R +67 -0
  95. biopipen/scripts/gene/GenePromoters.R +61 -0
  96. biopipen/scripts/gsea/Enrichr.R +5 -5
  97. biopipen/scripts/gsea/FGSEA.R +184 -50
  98. biopipen/scripts/gsea/GSEA.R +2 -2
  99. biopipen/scripts/gsea/PreRank.R +5 -5
  100. biopipen/scripts/misc/Config2File.py +2 -2
  101. biopipen/scripts/misc/Plot.R +80 -0
  102. biopipen/scripts/misc/Shell.sh +15 -0
  103. biopipen/scripts/misc/Str2File.py +2 -2
  104. biopipen/scripts/plot/Heatmap.R +3 -3
  105. biopipen/scripts/plot/Manhattan.R +147 -0
  106. biopipen/scripts/plot/QQPlot.R +146 -0
  107. biopipen/scripts/plot/ROC.R +88 -0
  108. biopipen/scripts/plot/Scatter.R +112 -0
  109. biopipen/scripts/plot/VennDiagram.R +5 -9
  110. biopipen/scripts/protein/MMCIF2PDB.py +33 -0
  111. biopipen/scripts/protein/PDB2Fasta.py +60 -0
  112. biopipen/scripts/protein/Prodigy.py +119 -0
  113. biopipen/scripts/protein/ProdigySummary.R +140 -0
  114. biopipen/scripts/protein/RMSD.py +178 -0
  115. biopipen/scripts/regulatory/MotifAffinityTest.R +102 -0
  116. biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +127 -0
  117. biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +104 -0
  118. biopipen/scripts/regulatory/MotifScan.py +159 -0
  119. biopipen/scripts/regulatory/VariantMotifPlot.R +78 -0
  120. biopipen/scripts/regulatory/motifs-common.R +324 -0
  121. biopipen/scripts/rnaseq/Simulation-ESCO.R +180 -0
  122. biopipen/scripts/rnaseq/Simulation-RUVcorr.R +45 -0
  123. biopipen/scripts/rnaseq/Simulation.R +21 -0
  124. biopipen/scripts/rnaseq/UnitConversion.R +325 -54
  125. biopipen/scripts/scrna/AnnData2Seurat.R +40 -0
  126. biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
  127. biopipen/scripts/scrna/CellCellCommunication.py +150 -0
  128. biopipen/scripts/scrna/CellCellCommunicationPlots.R +93 -0
  129. biopipen/scripts/scrna/CellSNPLite.py +30 -0
  130. biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +185 -0
  131. biopipen/scripts/scrna/CellTypeAnnotation-direct.R +68 -31
  132. biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +27 -22
  133. biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +28 -20
  134. biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +48 -25
  135. biopipen/scripts/scrna/CellTypeAnnotation.R +37 -1
  136. biopipen/scripts/scrna/CellsDistribution.R +456 -167
  137. biopipen/scripts/scrna/DimPlots.R +1 -1
  138. biopipen/scripts/scrna/ExprImputation-alra.R +109 -0
  139. biopipen/scripts/scrna/ExprImputation-rmagic.R +256 -0
  140. biopipen/scripts/scrna/{ExprImpution-scimpute.R → ExprImputation-scimpute.R} +8 -5
  141. biopipen/scripts/scrna/ExprImputation.R +7 -0
  142. biopipen/scripts/scrna/LoomTo10X.R +51 -0
  143. biopipen/scripts/scrna/MQuad.py +25 -0
  144. biopipen/scripts/scrna/MarkersFinder.R +679 -400
  145. biopipen/scripts/scrna/MetaMarkers.R +265 -161
  146. biopipen/scripts/scrna/ModuleScoreCalculator.R +66 -11
  147. biopipen/scripts/scrna/PseudoBulkDEG.R +678 -0
  148. biopipen/scripts/scrna/RadarPlots.R +355 -134
  149. biopipen/scripts/scrna/ScFGSEA.R +298 -100
  150. biopipen/scripts/scrna/ScSimulation.R +65 -0
  151. biopipen/scripts/scrna/ScVelo.py +617 -0
  152. biopipen/scripts/scrna/Seurat2AnnData.R +7 -0
  153. biopipen/scripts/scrna/SeuratClusterStats-clustree.R +87 -0
  154. biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +36 -30
  155. biopipen/scripts/scrna/SeuratClusterStats-features.R +138 -187
  156. biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +81 -0
  157. biopipen/scripts/scrna/SeuratClusterStats-stats.R +78 -89
  158. biopipen/scripts/scrna/SeuratClusterStats.R +47 -10
  159. biopipen/scripts/scrna/SeuratClustering.R +36 -233
  160. biopipen/scripts/scrna/SeuratLoading.R +2 -2
  161. biopipen/scripts/scrna/SeuratMap2Ref.R +84 -113
  162. biopipen/scripts/scrna/SeuratMetadataMutater.R +16 -6
  163. biopipen/scripts/scrna/SeuratPreparing.R +223 -173
  164. biopipen/scripts/scrna/SeuratSubClustering.R +64 -0
  165. biopipen/scripts/scrna/SeuratTo10X.R +27 -0
  166. biopipen/scripts/scrna/Slingshot.R +65 -0
  167. biopipen/scripts/scrna/Subset10X.R +2 -2
  168. biopipen/scripts/scrna/TopExpressingGenes.R +169 -135
  169. biopipen/scripts/scrna/celltypist-wrapper.py +195 -0
  170. biopipen/scripts/scrna/scvelo_paga.py +313 -0
  171. biopipen/scripts/scrna/seurat_anndata_conversion.py +98 -0
  172. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +447 -82
  173. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +348 -241
  174. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +188 -166
  175. biopipen/scripts/snp/MatrixEQTL.R +217 -0
  176. biopipen/scripts/snp/Plink2GTMat.py +148 -0
  177. biopipen/scripts/snp/PlinkCallRate.R +199 -0
  178. biopipen/scripts/snp/PlinkFilter.py +100 -0
  179. biopipen/scripts/snp/PlinkFreq.R +291 -0
  180. biopipen/scripts/snp/PlinkFromVcf.py +81 -0
  181. biopipen/scripts/snp/PlinkHWE.R +85 -0
  182. biopipen/scripts/snp/PlinkHet.R +96 -0
  183. biopipen/scripts/snp/PlinkIBD.R +196 -0
  184. biopipen/scripts/snp/PlinkSimulation.py +124 -0
  185. biopipen/scripts/snp/PlinkUpdateName.py +124 -0
  186. biopipen/scripts/stats/ChowTest.R +146 -0
  187. biopipen/scripts/stats/DiffCoexpr.R +152 -0
  188. biopipen/scripts/stats/LiquidAssoc.R +135 -0
  189. biopipen/scripts/stats/Mediation.R +108 -0
  190. biopipen/scripts/stats/MetaPvalue.R +130 -0
  191. biopipen/scripts/stats/MetaPvalue1.R +74 -0
  192. biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
  193. biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
  194. biopipen/scripts/tcr/Attach2Seurat.R +3 -2
  195. biopipen/scripts/tcr/CDR3AAPhyschem.R +211 -143
  196. biopipen/scripts/tcr/CDR3Clustering.R +343 -0
  197. biopipen/scripts/tcr/ClonalStats.R +526 -0
  198. biopipen/scripts/tcr/CloneResidency.R +255 -131
  199. biopipen/scripts/tcr/CloneSizeQQPlot.R +4 -4
  200. biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
  201. biopipen/scripts/tcr/GIANA/GIANA4.py +1362 -789
  202. biopipen/scripts/tcr/GIANA/query.py +164 -162
  203. biopipen/scripts/tcr/Immunarch-basic.R +31 -9
  204. biopipen/scripts/tcr/Immunarch-clonality.R +25 -5
  205. biopipen/scripts/tcr/Immunarch-diversity.R +352 -134
  206. biopipen/scripts/tcr/Immunarch-geneusage.R +45 -5
  207. biopipen/scripts/tcr/Immunarch-kmer.R +68 -8
  208. biopipen/scripts/tcr/Immunarch-overlap.R +84 -4
  209. biopipen/scripts/tcr/Immunarch-spectratyping.R +35 -6
  210. biopipen/scripts/tcr/Immunarch-tracking.R +38 -6
  211. biopipen/scripts/tcr/Immunarch-vjjunc.R +165 -0
  212. biopipen/scripts/tcr/Immunarch.R +63 -11
  213. biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
  214. biopipen/scripts/tcr/ImmunarchFilter.R +4 -4
  215. biopipen/scripts/tcr/ImmunarchLoading.R +38 -29
  216. biopipen/scripts/tcr/SampleDiversity.R +1 -1
  217. biopipen/scripts/tcr/ScRepCombiningExpression.R +40 -0
  218. biopipen/scripts/tcr/ScRepLoading.R +166 -0
  219. biopipen/scripts/tcr/TCRClusterStats.R +176 -22
  220. biopipen/scripts/tcr/TCRDock.py +110 -0
  221. biopipen/scripts/tcr/TESSA.R +102 -118
  222. biopipen/scripts/tcr/VJUsage.R +5 -5
  223. biopipen/scripts/tcr/immunarch-patched.R +142 -0
  224. biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
  225. biopipen/scripts/vcf/BcftoolsAnnotate.py +91 -0
  226. biopipen/scripts/vcf/BcftoolsFilter.py +90 -0
  227. biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
  228. biopipen/scripts/vcf/BcftoolsSort.py +113 -0
  229. biopipen/scripts/vcf/BcftoolsView.py +73 -0
  230. biopipen/scripts/vcf/TruvariBench.sh +14 -7
  231. biopipen/scripts/vcf/TruvariBenchSummary.R +16 -13
  232. biopipen/scripts/vcf/TruvariConsistency.R +1 -1
  233. biopipen/scripts/vcf/Vcf2Bed.py +2 -2
  234. biopipen/scripts/vcf/VcfAnno.py +11 -11
  235. biopipen/scripts/vcf/VcfDownSample.sh +22 -10
  236. biopipen/scripts/vcf/VcfFilter.py +5 -5
  237. biopipen/scripts/vcf/VcfFix.py +7 -7
  238. biopipen/scripts/vcf/VcfFix_utils.py +13 -4
  239. biopipen/scripts/vcf/VcfIndex.py +3 -3
  240. biopipen/scripts/vcf/VcfIntersect.py +3 -3
  241. biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
  242. biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
  243. biopipen/scripts/vcf/bcftools_utils.py +52 -0
  244. biopipen/scripts/web/Download.py +8 -4
  245. biopipen/scripts/web/DownloadList.py +5 -5
  246. biopipen/scripts/web/GCloudStorageDownloadBucket.py +82 -0
  247. biopipen/scripts/web/GCloudStorageDownloadFile.py +23 -0
  248. biopipen/scripts/web/gcloud_common.py +49 -0
  249. biopipen/utils/gene.py +108 -60
  250. biopipen/utils/misc.py +146 -20
  251. biopipen/utils/reference.py +64 -20
  252. biopipen/utils/reporter.py +177 -0
  253. biopipen/utils/vcf.py +1 -1
  254. biopipen-0.34.26.dist-info/METADATA +27 -0
  255. biopipen-0.34.26.dist-info/RECORD +292 -0
  256. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
  257. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +6 -2
  258. biopipen/ns/bcftools.py +0 -111
  259. biopipen/ns/scrna_basic.py +0 -255
  260. biopipen/reports/delim/SampleInfo.svelte +0 -36
  261. biopipen/reports/scrna/GeneExpressionInvistigation.svelte +0 -32
  262. biopipen/reports/scrna/ScFGSEA.svelte +0 -35
  263. biopipen/reports/scrna/SeuratClusterStats.svelte +0 -82
  264. biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -20
  265. biopipen/reports/scrna/SeuratPreparing.svelte +0 -38
  266. biopipen/reports/scrna/TopExpressingGenes.svelte +0 -55
  267. biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -31
  268. biopipen/reports/utils/gsea.liq +0 -110
  269. biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -42
  270. biopipen/scripts/bcftools/BcftoolsFilter.py +0 -79
  271. biopipen/scripts/bcftools/BcftoolsSort.py +0 -19
  272. biopipen/scripts/gene/GeneNameConversion.py +0 -66
  273. biopipen/scripts/scrna/ExprImpution-alra.R +0 -32
  274. biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -29
  275. biopipen/scripts/scrna/ExprImpution.R +0 -7
  276. biopipen/scripts/scrna/GeneExpressionInvistigation.R +0 -132
  277. biopipen/scripts/scrna/Write10X.R +0 -11
  278. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -150
  279. biopipen/scripts/tcr/TCRClustering.R +0 -280
  280. biopipen/utils/common_docstrs.py +0 -61
  281. biopipen/utils/gene.R +0 -49
  282. biopipen/utils/gsea.R +0 -193
  283. biopipen/utils/io.R +0 -20
  284. biopipen/utils/misc.R +0 -114
  285. biopipen/utils/mutate_helpers.R +0 -433
  286. biopipen/utils/plot.R +0 -173
  287. biopipen/utils/rnaseq.R +0 -48
  288. biopipen/utils/single_cell.R +0 -115
  289. biopipen-0.21.0.dist-info/METADATA +0 -22
  290. biopipen-0.21.0.dist-info/RECORD +0 -218
@@ -0,0 +1,147 @@
1
+ {{ biopipen_dir | joinpaths: "utils", "misc.R" | source_r }}
2
+
3
+ library(rlang)
4
+ library(ggmanh)
5
+
6
+ infile <- {{in.infile | r}}
7
+ outfile <- {{out.outfile | r}}
8
+ chrom_col <- {{envs.chrom_col | r}}
9
+ pos_col <- {{envs.pos_col | r}}
10
+ pval_col <- {{envs.pval_col | r}}
11
+ label_col <- {{envs.label_col | r}}
12
+ devpars <- {{envs.devpars | r}}
13
+ title <- {{envs.title | r}}
14
+ ylabel <- {{envs.ylabel | r}}
15
+ rescale <- {{envs.rescale | r}}
16
+ rescale_ratio_threshold <- {{envs.rescale_ratio_threshold | r}}
17
+ signif <- {{envs.signif | r}}
18
+ hicolors <- {{envs.hicolors | r}}
19
+ thin_n <- {{envs.thin_n | r}}
20
+ thin_bins <- {{envs.thin_bins | r}}
21
+ zoom <- {{envs.zoom | r}}
22
+ zoom_devpars <- {{envs.zoom_devpars | r}}
23
+ chroms <- {{envs.chroms | r}}
24
+ args <- {{envs.args | r: todot="-"}}
25
+
26
+ data <- read.table(infile, header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names = FALSE)
27
+
28
+ # normalize columns
29
+ cnames <- colnames(data)
30
+ if (is.numeric(chrom_col)) { chrom_col <- cnames[chrom_col] }
31
+ if (is.numeric(pos_col)) { pos_col <- cnames[pos_col] }
32
+ if (is.numeric(pval_col)) { pval_col <- cnames[pval_col] }
33
+ if (is.numeric(label_col)) { label_col <- cnames[label_col] }
34
+
35
+ # normalize chroms
36
+ norm_chroms <- function(chrs) {
37
+ chrs <- as.character(chrs)
38
+ if (length(chrs) == 1 && grepl(",", chrs)) {
39
+ chrs <- trimws(unlist(strsplit(chrs, ",")))
40
+ }
41
+ if (length(chrs) > 1) {
42
+ return(unique(unlist(sapply(chrs, function(chr) norm_chroms(chr)))))
43
+ }
44
+ if (!grepl("-", chrs)) { return(chrs) }
45
+
46
+ # expand chr1-22 -> chr1, chr2, ..., chr22
47
+ # chr1-22 -> 'chr1', '22'
48
+ chrs <- unlist(strsplit(chrs, "-"))
49
+ if (length(chrs) != 2) {
50
+ stop(paste0("Invalid chroms: ", chrs))
51
+ }
52
+ # detect prefix
53
+ prefix1 <- gsub("[0-9]", "", chrs[1])
54
+ prefix2 <- gsub("[0-9]", "", chrs[2])
55
+ if (nchar(prefix2) > 0 && prefix1 != prefix2) {
56
+ stop(paste0("Invalid chroms: ", chrs, " (prefix mismatch)"))
57
+ }
58
+ chr_a <- as.integer(substring(chrs[1], nchar(prefix1) + 1))
59
+ chr_b <- as.integer(substring(chrs[2], nchar(prefix2) + 1))
60
+ chr_min <- min(chr_a, chr_b)
61
+ chr_max <- max(chr_a, chr_b)
62
+ return(paste0(prefix1, chr_min:chr_max))
63
+ }
64
+
65
+ log_info("Preparing data for plotting ...")
66
+ if (length(chroms) == 1 && chroms == "auto") {
67
+ chroms <- unique(data[[chrom_col]])
68
+ } else {
69
+ chroms <- norm_chroms(chroms)
70
+ }
71
+
72
+ # prepare data
73
+ mp_prep_args = list()
74
+ if (length(signif) == 1 && is.character(signif)) {
75
+ signif <- as.numeric(trimws(unlist(strsplit(signif, ","))))
76
+ }
77
+ siglevel <- min(signif)
78
+ if (!is.null(label_col)) {
79
+ data$.label <- ifelse(data[[pval_col]] < siglevel, data[[label_col]], "")
80
+ }
81
+ if (!is.null(hicolors)) {
82
+ sig_str <- "Significant"
83
+ nsig_str <- "Not significant"
84
+ data$.highlight <- ifelse(data[[pval_col]] < siglevel, sig_str, nsig_str)
85
+ if (length(hicolors) == 1) { hicolors <- c(hicolors, "grey") }
86
+ names(hicolors) <- c(sig_str, nsig_str)
87
+ mp_prep_args$highlight.colname <- ".highlight"
88
+ mp_prep_args$highlight.col <- hicolors
89
+ }
90
+ mp_prep_args$x <- data
91
+ mp_prep_args$chr.colname <- chrom_col
92
+ mp_prep_args$pos.colname <- pos_col
93
+ mp_prep_args$pval.colname <- pval_col
94
+ mp_prep_args$chr.order <- chroms
95
+ if (!is.null(thin_n) && thin_n > 0) {
96
+ mp_prep_args$thin.n <- thin_n
97
+ mp_prep_args$thin.bins <- thin_bins
98
+ }
99
+
100
+ mpdata <- do_call(manhattan_data_preprocess, mp_prep_args)
101
+
102
+ # plot
103
+ log_info("Plotting Manhattan plot ...")
104
+ args$x <- mpdata
105
+ args$signif <- signif
106
+ args$plot.title <- title
107
+ args$rescale <- rescale
108
+ args$rescale.ratio.threshold <- rescale_ratio_threshold
109
+ args$y.label <- ylabel
110
+ if (!is.null(hicolors)) { args$color.by.highlight <- TRUE }
111
+ if (!is.null(label_col)) { args$label.colname <- ".label" }
112
+ g <- do_call(manhattan_plot, args)
113
+
114
+ png(outfile, width=devpars$width, height=devpars$height, res=devpars$res)
115
+ print(g)
116
+ dev.off()
117
+
118
+ # zoom into chromosomes
119
+ all_chroms <- as.character(unique(mpdata$data[[mpdata$chr.colname]]))
120
+ if (!is.null(zoom)) {
121
+ log_info("Zooming into chromosomes ...")
122
+ zoom <- norm_chroms(zoom)
123
+ for (z in zoom) {
124
+ if (!z %in% all_chroms) {
125
+ log_warn("- {z}: not found in data")
126
+ next
127
+ }
128
+ log_info("- {z}")
129
+ args_z <- args
130
+ args_z$chromosome <- z
131
+ args_z$plot.title <- paste0(title, " (", z, ")")
132
+ args_z$x.label <- "Position"
133
+ g_z <- do_call(manhattan_plot, args_z)
134
+ outfile_z <- gsub("\\.png$", paste0("-", z, ".png"), outfile)
135
+ zm_devpars <- zoom_devpars
136
+ zm_devpars$res <- zm_devpars$res %||% devpars$res
137
+ zm_devpars$height <- zm_devpars$height %||% devpars$height
138
+ png(
139
+ outfile_z,
140
+ width=zm_devpars$width,
141
+ height=zm_devpars$height,
142
+ res=zm_devpars$res
143
+ )
144
+ print(g_z)
145
+ dev.off()
146
+ }
147
+ }
@@ -0,0 +1,146 @@
1
+ {{ biopipen_dir | joinpaths: "utils", "misc.R" | source_r }}
2
+
3
+ library(rlang)
4
+ library(stats)
5
+ library(ggplot2)
6
+ library(ggprism)
7
+ library(qqplotr)
8
+
9
+ theme_set(theme_prism())
10
+
11
+ infile <- {{in.infile | r}}
12
+ theorfile <- {{in.theorfile | r}}
13
+ outfile <- {{out.outfile | r}}
14
+ val_col <- {{envs.val_col | r}}
15
+ theor_col <- {{envs.theor_col | r}}
16
+ theor_trans <- {{envs.theor_trans | r}}
17
+ theor_funs <- {{envs.theor_funs | r}}
18
+ devpars <- {{envs.devpars | r}}
19
+ title <- {{envs.title | r}}
20
+ xlabel <- {{envs.xlabel | r}}
21
+ ylabel <- {{envs.ylabel | r}}
22
+ kind <- {{envs.kind | r}}
23
+ trans <- {{envs.trans | r}}
24
+ args <- {{envs.args | r}}
25
+ band_args <- {{envs.band | r}}
26
+ line_args <- {{envs.line | r}}
27
+ point_args <- {{envs.point | r}}
28
+ ggs <- {{envs.ggs | r}}
29
+
30
+ .eval_fun <- function(fun) {
31
+ if (is.character(fun)) {
32
+ fun <- trimws(fun)
33
+ if (grepl("^-\\s*[a-zA-Z\\.][0-9a-zA-Z\\._]*$", fun)) {
34
+ fun <- trimws(substring(fun, 2))
35
+ fun <- eval(parse(text = fun))
36
+ return(function(x) -fun(x))
37
+ } else {
38
+ return(eval(parse(text = fun)))
39
+ }
40
+ } else {
41
+ return(fun)
42
+ }
43
+ }
44
+
45
+ indata <- read.table(infile, header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names = FALSE)
46
+ if (is.numeric(val_col)) {
47
+ val_col <- colnames(indata)[val_col]
48
+ }
49
+ if (!is.null(trans)) {
50
+ trans <- .eval_fun(trans)
51
+ indata[[val_col]] <- trans(indata[[val_col]])
52
+ }
53
+
54
+ if (!is.null(theor_col)) {
55
+ if (is.numeric(theor_col)) {
56
+ theor_col <- colnames(theor)[theor_col]
57
+ }
58
+
59
+ if (!is.null(theorfile)) {
60
+ theor <- read.table(theorfile, header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names = FALSE)
61
+ theor_vals <- theor[[theor_col]]
62
+ } else {
63
+ theor_vals <- indata[[theor_col]]
64
+ }
65
+
66
+ if (!is.null(theor_trans)) {
67
+ theor_trans <- .eval_fun(theor_trans)
68
+ theor_vals <- theor_trans(theor_vals)
69
+ }
70
+ theor_vals <- sort(na.omit(theor_vals))
71
+ }
72
+
73
+ band_fun <- ifelse(kind == "pp", stat_pp_band, stat_qq_band)
74
+ line_fun <- ifelse(kind == "pp", stat_pp_line, stat_qq_line)
75
+ point_fun <- ifelse(kind == "pp", stat_pp_point, stat_qq_point)
76
+
77
+ for (fun in names(theor_funs)) {
78
+ assign(fun, .eval_fun(theor_funs[[fun]]))
79
+ }
80
+
81
+ if (!is.null(band_args) || isFALSE(band_args)) {
82
+ if (isTRUE(band_args$disabled)) {
83
+ band_args <- NULL
84
+ } else {
85
+ band_args$disabled <- NULL
86
+ band_args <- list_update(band_args, args)
87
+ if (band_args$distribution == "custom") {
88
+ band_args$dparams <- band_args$dparams %||% list()
89
+ band_args$dparams$values <- theor_vals
90
+ }
91
+ }
92
+ }
93
+ if (!is.null(line_args) || isFALSE(line_args)) {
94
+ if (isTRUE(line_args$disabled)) {
95
+ line_args <- NULL
96
+ } else {
97
+ line_args$disabled <- NULL
98
+ line_args <- list_update(line_args, args)
99
+ if (line_args$distribution == "custom") {
100
+ line_args$dparams <- line_args$dparams %||% list()
101
+ line_args$dparams$values <- theor_vals
102
+ }
103
+ }
104
+ }
105
+ if (!is.null(point_args) || isFALSE(point_args)) {
106
+ if (isTRUE(point_args$disabled)) {
107
+ point_args <- NULL
108
+ } else {
109
+ point_args$disabled <- NULL
110
+ point_args <- list_update(point_args, args)
111
+ if (point_args$distribution == "custom") {
112
+ point_args$dparams <- point_args$dparams %||% list()
113
+ point_args$dparams$values <- theor_vals
114
+ }
115
+ }
116
+ }
117
+
118
+ title <- title %||% waiver()
119
+ xlabel <- xlabel %||% waiver()
120
+ ylabel <- ylabel %||% waiver()
121
+
122
+ indata <- indata[complete.cases(indata), , drop = FALSE]
123
+ indata <- indata[order(indata[[val_col]]), , drop = FALSE]
124
+
125
+ p <- ggplot(data = indata, mapping = aes(sample = !!sym(val_col))) +
126
+ labs(title = title, x = xlabel, y = ylabel)
127
+
128
+ if (!is.null(band_args)) {
129
+ p <- p + do_call(band_fun, band_args)
130
+ }
131
+ if (!is.null(line_args)) {
132
+ p <- p + do_call(line_fun, line_args)
133
+ }
134
+ if (!is.null(point_args)) {
135
+ p <- p + do_call(point_fun, point_args)
136
+ }
137
+
138
+ if (!is.null(ggs)) {
139
+ for (gg in ggs) {
140
+ p <- p + eval(parse(text = gg))
141
+ }
142
+ }
143
+
144
+ png(outfile, width=devpars$width, height=devpars$height, res=devpars$res)
145
+ print(p)
146
+ dev.off()
@@ -0,0 +1,88 @@
1
+
2
+ {{ biopipen_dir | joinpaths: "utils", "misc.R" | source_r }}
3
+
4
+ library(rlang)
5
+ library(ggplot2)
6
+ library(plotROC)
7
+
8
+ infile <- {{in.infile | r}}
9
+ outfile <- {{out.outfile | r}}
10
+ joboutdir <- {{job.outdir | r}}
11
+ noids <- {{envs.noids | r}}
12
+ pos_label <- {{envs.pos_label | r}}
13
+ ci <- {{envs.ci | r}}
14
+ devpars <- {{envs.devpars | r}}
15
+ show_auc <- {{envs.show_auc | r}}
16
+ args <- {{envs.args | r: todot="-"}}
17
+ style_roc_args <- {{envs.style_roc | r: todot="-"}}
18
+ if (!is.null(style_roc_args$theme)) {
19
+ style_roc_args$theme <- eval(parse(text=style_roc_args$theme))
20
+ }
21
+
22
+ data <- read.table(infile, header=TRUE, sep="\t", row.names = NULL, check.names = FALSE, stringsAsFactors=FALSE)
23
+ if (!noids) {
24
+ data <- data[, -1]
25
+ }
26
+
27
+ # Normalize the first column (labels) into 0 and 1.
28
+ # If they are not 0/1, use pos_label to determine the positive class.
29
+ label_col <- colnames(data)[1]
30
+ if (is.character(data[[label_col]])) {
31
+ data[[label_col]] <- as.numeric(data[[label_col]] == pos_label)
32
+ }
33
+
34
+ models <- colnames(data)[2:ncol(data)]
35
+
36
+ if (length(models) > 1) {
37
+ # pivot longer the models, and put the model names into the column 'model'
38
+ data <- melt_roc(data, label_col, colnames(data)[2:ncol(data)])
39
+ } else {
40
+ data <- data.frame(
41
+ D = data[[label_col]],
42
+ M = data[[models]],
43
+ name = rep(models, nrow(data))
44
+ )
45
+ }
46
+
47
+ # Plot the ROC curve
48
+ p <- ggplot(data, aes(d = D, m = M, color = name))
49
+
50
+ if (isTRUE(ci)) {
51
+ p <- p + do.call(geom_rocci, args)
52
+ } else {
53
+ p <- p + do.call(geom_roc, args)
54
+ }
55
+
56
+ p <- p + do.call(style_roc, style_roc_args)
57
+ p <- p + scale_color_biopipen()
58
+
59
+ if (length(models) > 1) {
60
+ p <- p + theme(legend.title = element_blank())
61
+ } else {
62
+ p <- p + theme(legend.position = "none")
63
+ }
64
+
65
+ aucs = calc_auc(p)
66
+ write.table(aucs, file=file.path(joboutdir, "aucs.tsv"), sep="\t", quote=FALSE, row.names=FALSE)
67
+
68
+ if (show_auc) {
69
+ aucs = split(aucs$AUC, aucs$name)
70
+ if (length(aucs) > 1) {
71
+ # Add AUC values to the legend items
72
+ p <- p +
73
+ scale_color_manual(
74
+ values = pal_biopipen()(length(models)),
75
+ labels = sapply(models, function(m) paste(m, " (AUC =", round(aucs[[m]], 2), ")")),
76
+ breaks = models)
77
+ } else {
78
+ p <- p +
79
+ geom_text(
80
+ x = 0.8, y = 0.2, label = paste("AUC =", round(unlist(aucs), 2)),
81
+ color = "black", size = 4)
82
+ }
83
+ }
84
+
85
+ devpars$filename <- outfile
86
+ do.call(png, devpars)
87
+ print(p)
88
+ dev.off()
@@ -0,0 +1,112 @@
1
+ {{ biopipen_dir | joinpaths: "utils", "misc.R" | source_r }}
2
+
3
+ library(ggpmisc)
4
+ library(rlang)
5
+ library(ggplot2)
6
+ library(ggprism)
7
+
8
+ theme_set(theme_prism())
9
+
10
+ infile <- {{in.infile | r}}
11
+ outfile <- {{out.outfile | r}}
12
+ x_col <- {{envs.x_col | r}}
13
+ y_col <- {{envs.y_col | r}}
14
+ devpars <- {{envs.devpars | r}}
15
+ args <- {{envs.args | r}}
16
+ ggs <- {{envs.ggs | r}}
17
+ formula <- {{envs.formula | r}}
18
+ mapping <- {{envs.mapping | r}}
19
+ stats <- {{envs.stats | r}}
20
+
21
+ .ensure_r <- function(ex, recursive=TRUE) {
22
+ if (is.character(ex)) {
23
+ ex <- trimws(ex)
24
+ if (grepl("^-\\s*[a-zA-Z\\.][0-9a-zA-Z\\._]*$", ex)) {
25
+ ex <- trimws(substring(ex, 2))
26
+ ex <- eval(parse(text = ex))
27
+ return(function(x) -ex(x))
28
+ } else {
29
+ return(eval(parse(text = ex)))
30
+ }
31
+ } else if (is.list(ex) && recursive) {
32
+ return(lapply(ex, .ensure_r, recursive=TRUE))
33
+ } else {
34
+ return(ex)
35
+ }
36
+ }
37
+
38
+ .merge_aes <- function(aes1, aes2) {
39
+ if (is.null(aes1)) {
40
+ return(aes2)
41
+ }
42
+ if (is.null(aes2)) {
43
+ return(aes1)
44
+ }
45
+ merged <- c(aes1, aes2) # list
46
+ out <- list()
47
+ for (key in names(merged)) {
48
+ if (is.null(out[[key]])) {
49
+ out[[key]] <- merged[[key]]
50
+ } else {
51
+ log_warn(paste("Overwriting mapping key:", key))
52
+ }
53
+ }
54
+ return(do.call(aes, out))
55
+ }
56
+
57
+ if (is.null(formula)) {
58
+ stop("Formula must be provided")
59
+ }
60
+ if (!is.null(mapping)) {
61
+ if (startsWith(mapping, "(") && endsWith(mapping, ")")) {
62
+ mapping <- paste0("aes", mapping)
63
+ } else if (!startsWith(mapping, "aes(")) {
64
+ mapping <- paste0("aes(", mapping, ")")
65
+ }
66
+ mapping <- .ensure_r(mapping)
67
+ }
68
+ formula <- as.formula(formula)
69
+
70
+ indata <- read.table(infile, header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names = FALSE)
71
+ if (is.numeric(x_col)) {
72
+ x_col <- colnames(indata)[x_col]
73
+ }
74
+ if (is.numeric(y_col)) {
75
+ y_col <- colnames(indata)[y_col]
76
+ }
77
+
78
+ args <- lapply(args, .ensure_r)
79
+ args$mapping <- .merge_aes(args$mapping, mapping)
80
+
81
+ if (!is.null(stats)) {
82
+ stats <- lapply(stats, .ensure_r)
83
+ }
84
+
85
+ p <- ggplot(indata, aes(x = !!sym(x_col), y = !!sym(y_col))) +
86
+ do.call(geom_point, args)
87
+
88
+ for (stat in names(stats)) {
89
+ if (startsWith(stat, "stat_")) {
90
+ stat <- substring(stat, 6)
91
+ }
92
+ if (grepl("#", stat)) {
93
+ st <- paste0("stat_", strsplit(stat, "#")[[1]][1])
94
+ } else {
95
+ st <- paste0("stat_", stat)
96
+ }
97
+ stats[[stat]]$formula <- stats[[stat]]$formula %||% formula
98
+ stats[[stat]]$mapping <- .merge_aes(stats[[stat]]$mapping, mapping)
99
+ p <- p + do.call(st, stats[[stat]])
100
+ }
101
+
102
+ if (!is.null(ggs)) {
103
+ for (gg in ggs) {
104
+ p <- p + eval(parse(text = gg))
105
+ }
106
+ }
107
+
108
+ p <- p + scale_color_biopipen()
109
+
110
+ png(outfile, width=devpars$width, height=devpars$height, res=devpars$res)
111
+ print(p)
112
+ dev.off()
@@ -1,10 +1,8 @@
1
- library(dplyr)
1
+ {{ biopipen_dir | joinpaths: "utils", "io.R" | source_r }}
2
+ {{ biopipen_dir | joinpaths: "utils", "plot.R" | source_r }}
2
3
 
3
- source("{{biopipen_dir}}/utils/io.R")
4
- source("{{biopipen_dir}}/utils/plot.R")
5
-
6
- infile = {{in.infile | quote}}
7
- outfile = {{out.outfile | quote}}
4
+ infile = {{in.infile | r}}
5
+ outfile = {{out.outfile | r}}
8
6
  inopts = {{envs.inopts | r}}
9
7
  intype = {{envs.intype | r}}
10
8
  devpars = {{envs.devpars | r}}
@@ -18,9 +16,7 @@ if (intype == "raw") {
18
16
  indata = lapply(indata, function(x) unlist(strsplit(x, ",", fixed=TRUE)))
19
17
  } else { # computed
20
18
  elems = rownames(indata)
21
- indata = indata %>%
22
- mutate(across(everything(), function(x) elems[as.logical(x)])) %>%
23
- as.list()
19
+ indata = apply(indata, 2, function(x) elems[as.logical(x)])
24
20
  }
25
21
 
26
22
  plotVenn(
@@ -0,0 +1,33 @@
1
+ from pathlib import Path
2
+ from shutil import which
3
+ from diot import Diot # noqa: F401
4
+ from biopipen.utils.misc import run_command, dict_to_cli_args
5
+
6
+ infile: str = {{in.infile | quote}} # pyright: ignore # noqa
7
+ outfile: str = {{out.outfile | quote}} # pyright: ignore
8
+ envs: dict = {{envs | repr}} # pyright: ignore
9
+ tool: str = envs.pop("tool", "maxit")
10
+ maxit: str = envs.pop("maxit", "maxit")
11
+ beem = envs.pop("beem", "BeEM")
12
+
13
+ if tool == "maxit":
14
+ maxit_found = which(maxit)
15
+ if not maxit_found:
16
+ raise ValueError(f"maxit executable not found: {maxit}")
17
+
18
+ maxit_exe = Path(maxit_found).expanduser().resolve()
19
+ rcsbroot = maxit_exe.parent.parent
20
+ envs["input"] = infile
21
+ envs["output"] = outfile
22
+ envs["o"] = 2
23
+ envs["log"] = Path(outfile).with_suffix(".log")
24
+ run_command([maxit, *dict_to_cli_args(envs, prefix="-")], fg=True, env={"RCSBROOT": rcsbroot})
25
+
26
+ else:
27
+ outfile: Path = Path(outfile) # type: ignore
28
+ envs["_"] = infile
29
+ envs["p"] = outfile.parent.joinpath(outfile.stem)
30
+ envs["outfmt"] = 3
31
+ args = dict_to_cli_args(envs, prefix="-", sep="=")
32
+
33
+ run_command([beem, *args], fg=True)
@@ -0,0 +1,60 @@
1
+ # """
2
+ # LICENSE
3
+
4
+ # GNU General Public License v2.0
5
+
6
+ # The code is based on the script from:
7
+ # https://github.com/kad-ecoli/pdb2fasta/blob/master/pdb2fasta.py
8
+
9
+ # The original code is licensed under GNU General Public License v2.0.
10
+ # The original code is modified by biopipen developers to fit the biopipen.
11
+ # """
12
+ from __future__ import annotations
13
+ import re
14
+ from collections import defaultdict
15
+ from pathlib import Path
16
+
17
+ infile: str = {{in.infile | quote}} # pyright: ignore # noqa: E999
18
+ outfile: str = {{out.outfile | quote}} # pyright: ignore
19
+ chains: str | list | None = {{envs.chains | repr}} # pyright: ignore
20
+ wrap: int = {{envs.wrap | repr}} # pyright: ignore
21
+
22
+ if isinstance(chains, str):
23
+ chains = [chain.strip() for chain in chains.split(",")]
24
+
25
+ aa3to1 = {
26
+ 'ALA':'A', 'VAL':'V', 'PHE':'F', 'PRO':'P', 'MET':'M',
27
+ 'ILE':'I', 'LEU':'L', 'ASP':'D', 'GLU':'E', 'LYS':'K',
28
+ 'ARG':'R', 'SER':'S', 'THR':'T', 'TYR':'Y', 'HIS':'H',
29
+ 'CYS':'C', 'ASN':'N', 'GLN':'Q', 'TRP':'W', 'GLY':'G',
30
+ 'MSE':'M',
31
+ }
32
+
33
+ ca_pattern = re.compile(
34
+ r"^ATOM\s{2,6}\d{1,5}\s{2}CA\s[\sA]([A-Z]{3})\s([\s\w])|^HETATM\s{0,4}\d{1,5}\s{2}CA\s[\sA](MSE)\s([\s\w])" # noqa: W605
35
+ )
36
+
37
+ filename = Path(infile).stem
38
+ chain_dict = defaultdict(str)
39
+
40
+ with open(infile, 'r') as fp:
41
+ for line in fp:
42
+ if line.startswith("ENDMDL"):
43
+ break
44
+
45
+ match_list = ca_pattern.findall(line)
46
+ if match_list:
47
+ resn = match_list[0][0] + match_list[0][2]
48
+ chain = match_list[0][1] + match_list[0][3]
49
+ if chains is None or chain in chains:
50
+ chain_dict[chain] += aa3to1[resn]
51
+
52
+ with open(outfile, 'w') as fp:
53
+ for chain in chain_dict:
54
+ fp.write(f">{filename}:{chain}\n")
55
+ sequence = chain_dict[chain]
56
+ if wrap > 0:
57
+ for i in range(0, len(sequence), 80):
58
+ fp.write(sequence[i:i+80] + "\n")
59
+ else:
60
+ fp.write(sequence + "\n")