biopipen 0.21.0__py3-none-any.whl → 0.34.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (290) hide show
  1. biopipen/__init__.py +1 -1
  2. biopipen/core/config.toml +28 -0
  3. biopipen/core/filters.py +79 -4
  4. biopipen/core/proc.py +12 -3
  5. biopipen/core/testing.py +75 -3
  6. biopipen/ns/bam.py +148 -6
  7. biopipen/ns/bed.py +75 -0
  8. biopipen/ns/cellranger.py +186 -0
  9. biopipen/ns/cellranger_pipeline.py +126 -0
  10. biopipen/ns/cnv.py +19 -3
  11. biopipen/ns/cnvkit.py +1 -1
  12. biopipen/ns/cnvkit_pipeline.py +20 -12
  13. biopipen/ns/delim.py +34 -35
  14. biopipen/ns/gene.py +68 -23
  15. biopipen/ns/gsea.py +63 -37
  16. biopipen/ns/misc.py +39 -14
  17. biopipen/ns/plot.py +304 -1
  18. biopipen/ns/protein.py +183 -0
  19. biopipen/ns/regulatory.py +290 -0
  20. biopipen/ns/rnaseq.py +142 -5
  21. biopipen/ns/scrna.py +2053 -473
  22. biopipen/ns/scrna_metabolic_landscape.py +228 -382
  23. biopipen/ns/snp.py +659 -0
  24. biopipen/ns/stats.py +484 -0
  25. biopipen/ns/tcr.py +683 -98
  26. biopipen/ns/vcf.py +236 -2
  27. biopipen/ns/web.py +97 -6
  28. biopipen/reports/bam/CNVpytor.svelte +4 -9
  29. biopipen/reports/cellranger/CellRangerCount.svelte +18 -0
  30. biopipen/reports/cellranger/CellRangerSummary.svelte +16 -0
  31. biopipen/reports/cellranger/CellRangerVdj.svelte +18 -0
  32. biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
  33. biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
  34. biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
  35. biopipen/reports/common.svelte +15 -0
  36. biopipen/reports/protein/ProdigySummary.svelte +16 -0
  37. biopipen/reports/scrna/CellsDistribution.svelte +4 -39
  38. biopipen/reports/scrna/DimPlots.svelte +1 -1
  39. biopipen/reports/scrna/MarkersFinder.svelte +6 -126
  40. biopipen/reports/scrna/MetaMarkers.svelte +3 -75
  41. biopipen/reports/scrna/RadarPlots.svelte +4 -20
  42. biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +61 -22
  43. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +88 -82
  44. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +70 -10
  45. biopipen/reports/snp/PlinkCallRate.svelte +24 -0
  46. biopipen/reports/snp/PlinkFreq.svelte +18 -0
  47. biopipen/reports/snp/PlinkHWE.svelte +18 -0
  48. biopipen/reports/snp/PlinkHet.svelte +18 -0
  49. biopipen/reports/snp/PlinkIBD.svelte +18 -0
  50. biopipen/reports/tcr/CDR3AAPhyschem.svelte +19 -66
  51. biopipen/reports/tcr/ClonalStats.svelte +16 -0
  52. biopipen/reports/tcr/CloneResidency.svelte +3 -93
  53. biopipen/reports/tcr/Immunarch.svelte +4 -155
  54. biopipen/reports/tcr/TCRClusterStats.svelte +3 -45
  55. biopipen/reports/tcr/TESSA.svelte +11 -28
  56. biopipen/reports/utils/misc.liq +22 -7
  57. biopipen/scripts/bam/BamMerge.py +11 -15
  58. biopipen/scripts/bam/BamSampling.py +90 -0
  59. biopipen/scripts/bam/BamSort.py +141 -0
  60. biopipen/scripts/bam/BamSplitChroms.py +10 -10
  61. biopipen/scripts/bam/BamSubsetByBed.py +38 -0
  62. biopipen/scripts/bam/CNAClinic.R +41 -5
  63. biopipen/scripts/bam/CNVpytor.py +153 -54
  64. biopipen/scripts/bam/ControlFREEC.py +13 -14
  65. biopipen/scripts/bam/SamtoolsView.py +33 -0
  66. biopipen/scripts/bed/Bed2Vcf.py +5 -5
  67. biopipen/scripts/bed/BedConsensus.py +5 -5
  68. biopipen/scripts/bed/BedLiftOver.sh +6 -4
  69. biopipen/scripts/bed/BedtoolsIntersect.py +54 -0
  70. biopipen/scripts/bed/BedtoolsMakeWindows.py +47 -0
  71. biopipen/scripts/bed/BedtoolsMerge.py +4 -4
  72. biopipen/scripts/cellranger/CellRangerCount.py +138 -0
  73. biopipen/scripts/cellranger/CellRangerSummary.R +181 -0
  74. biopipen/scripts/cellranger/CellRangerVdj.py +112 -0
  75. biopipen/scripts/cnv/AneuploidyScore.R +55 -20
  76. biopipen/scripts/cnv/AneuploidyScoreSummary.R +221 -163
  77. biopipen/scripts/cnv/TMADScore.R +25 -9
  78. biopipen/scripts/cnv/TMADScoreSummary.R +57 -86
  79. biopipen/scripts/cnvkit/CNVkitAccess.py +7 -6
  80. biopipen/scripts/cnvkit/CNVkitAutobin.py +26 -18
  81. biopipen/scripts/cnvkit/CNVkitBatch.py +6 -6
  82. biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
  83. biopipen/scripts/cnvkit/CNVkitCoverage.py +4 -3
  84. biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
  85. biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
  86. biopipen/scripts/cnvkit/CNVkitGuessBaits.py +12 -8
  87. biopipen/scripts/cnvkit/CNVkitHeatmap.py +5 -5
  88. biopipen/scripts/cnvkit/CNVkitReference.py +6 -5
  89. biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
  90. biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
  91. biopipen/scripts/cnvkit/guess_baits.py +166 -93
  92. biopipen/scripts/delim/RowsBinder.R +1 -1
  93. biopipen/scripts/delim/SampleInfo.R +116 -118
  94. biopipen/scripts/gene/GeneNameConversion.R +67 -0
  95. biopipen/scripts/gene/GenePromoters.R +61 -0
  96. biopipen/scripts/gsea/Enrichr.R +5 -5
  97. biopipen/scripts/gsea/FGSEA.R +184 -50
  98. biopipen/scripts/gsea/GSEA.R +2 -2
  99. biopipen/scripts/gsea/PreRank.R +5 -5
  100. biopipen/scripts/misc/Config2File.py +2 -2
  101. biopipen/scripts/misc/Plot.R +80 -0
  102. biopipen/scripts/misc/Shell.sh +15 -0
  103. biopipen/scripts/misc/Str2File.py +2 -2
  104. biopipen/scripts/plot/Heatmap.R +3 -3
  105. biopipen/scripts/plot/Manhattan.R +147 -0
  106. biopipen/scripts/plot/QQPlot.R +146 -0
  107. biopipen/scripts/plot/ROC.R +88 -0
  108. biopipen/scripts/plot/Scatter.R +112 -0
  109. biopipen/scripts/plot/VennDiagram.R +5 -9
  110. biopipen/scripts/protein/MMCIF2PDB.py +33 -0
  111. biopipen/scripts/protein/PDB2Fasta.py +60 -0
  112. biopipen/scripts/protein/Prodigy.py +119 -0
  113. biopipen/scripts/protein/ProdigySummary.R +140 -0
  114. biopipen/scripts/protein/RMSD.py +178 -0
  115. biopipen/scripts/regulatory/MotifAffinityTest.R +102 -0
  116. biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +127 -0
  117. biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +104 -0
  118. biopipen/scripts/regulatory/MotifScan.py +159 -0
  119. biopipen/scripts/regulatory/VariantMotifPlot.R +78 -0
  120. biopipen/scripts/regulatory/motifs-common.R +324 -0
  121. biopipen/scripts/rnaseq/Simulation-ESCO.R +180 -0
  122. biopipen/scripts/rnaseq/Simulation-RUVcorr.R +45 -0
  123. biopipen/scripts/rnaseq/Simulation.R +21 -0
  124. biopipen/scripts/rnaseq/UnitConversion.R +325 -54
  125. biopipen/scripts/scrna/AnnData2Seurat.R +40 -0
  126. biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
  127. biopipen/scripts/scrna/CellCellCommunication.py +150 -0
  128. biopipen/scripts/scrna/CellCellCommunicationPlots.R +93 -0
  129. biopipen/scripts/scrna/CellSNPLite.py +30 -0
  130. biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +185 -0
  131. biopipen/scripts/scrna/CellTypeAnnotation-direct.R +68 -31
  132. biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +27 -22
  133. biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +28 -20
  134. biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +48 -25
  135. biopipen/scripts/scrna/CellTypeAnnotation.R +37 -1
  136. biopipen/scripts/scrna/CellsDistribution.R +456 -167
  137. biopipen/scripts/scrna/DimPlots.R +1 -1
  138. biopipen/scripts/scrna/ExprImputation-alra.R +109 -0
  139. biopipen/scripts/scrna/ExprImputation-rmagic.R +256 -0
  140. biopipen/scripts/scrna/{ExprImpution-scimpute.R → ExprImputation-scimpute.R} +8 -5
  141. biopipen/scripts/scrna/ExprImputation.R +7 -0
  142. biopipen/scripts/scrna/LoomTo10X.R +51 -0
  143. biopipen/scripts/scrna/MQuad.py +25 -0
  144. biopipen/scripts/scrna/MarkersFinder.R +679 -400
  145. biopipen/scripts/scrna/MetaMarkers.R +265 -161
  146. biopipen/scripts/scrna/ModuleScoreCalculator.R +66 -11
  147. biopipen/scripts/scrna/PseudoBulkDEG.R +678 -0
  148. biopipen/scripts/scrna/RadarPlots.R +355 -134
  149. biopipen/scripts/scrna/ScFGSEA.R +298 -100
  150. biopipen/scripts/scrna/ScSimulation.R +65 -0
  151. biopipen/scripts/scrna/ScVelo.py +617 -0
  152. biopipen/scripts/scrna/Seurat2AnnData.R +7 -0
  153. biopipen/scripts/scrna/SeuratClusterStats-clustree.R +87 -0
  154. biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +36 -30
  155. biopipen/scripts/scrna/SeuratClusterStats-features.R +138 -187
  156. biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +81 -0
  157. biopipen/scripts/scrna/SeuratClusterStats-stats.R +78 -89
  158. biopipen/scripts/scrna/SeuratClusterStats.R +47 -10
  159. biopipen/scripts/scrna/SeuratClustering.R +36 -233
  160. biopipen/scripts/scrna/SeuratLoading.R +2 -2
  161. biopipen/scripts/scrna/SeuratMap2Ref.R +84 -113
  162. biopipen/scripts/scrna/SeuratMetadataMutater.R +16 -6
  163. biopipen/scripts/scrna/SeuratPreparing.R +223 -173
  164. biopipen/scripts/scrna/SeuratSubClustering.R +64 -0
  165. biopipen/scripts/scrna/SeuratTo10X.R +27 -0
  166. biopipen/scripts/scrna/Slingshot.R +65 -0
  167. biopipen/scripts/scrna/Subset10X.R +2 -2
  168. biopipen/scripts/scrna/TopExpressingGenes.R +169 -135
  169. biopipen/scripts/scrna/celltypist-wrapper.py +195 -0
  170. biopipen/scripts/scrna/scvelo_paga.py +313 -0
  171. biopipen/scripts/scrna/seurat_anndata_conversion.py +98 -0
  172. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +447 -82
  173. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +348 -241
  174. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +188 -166
  175. biopipen/scripts/snp/MatrixEQTL.R +217 -0
  176. biopipen/scripts/snp/Plink2GTMat.py +148 -0
  177. biopipen/scripts/snp/PlinkCallRate.R +199 -0
  178. biopipen/scripts/snp/PlinkFilter.py +100 -0
  179. biopipen/scripts/snp/PlinkFreq.R +291 -0
  180. biopipen/scripts/snp/PlinkFromVcf.py +81 -0
  181. biopipen/scripts/snp/PlinkHWE.R +85 -0
  182. biopipen/scripts/snp/PlinkHet.R +96 -0
  183. biopipen/scripts/snp/PlinkIBD.R +196 -0
  184. biopipen/scripts/snp/PlinkSimulation.py +124 -0
  185. biopipen/scripts/snp/PlinkUpdateName.py +124 -0
  186. biopipen/scripts/stats/ChowTest.R +146 -0
  187. biopipen/scripts/stats/DiffCoexpr.R +152 -0
  188. biopipen/scripts/stats/LiquidAssoc.R +135 -0
  189. biopipen/scripts/stats/Mediation.R +108 -0
  190. biopipen/scripts/stats/MetaPvalue.R +130 -0
  191. biopipen/scripts/stats/MetaPvalue1.R +74 -0
  192. biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
  193. biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
  194. biopipen/scripts/tcr/Attach2Seurat.R +3 -2
  195. biopipen/scripts/tcr/CDR3AAPhyschem.R +211 -143
  196. biopipen/scripts/tcr/CDR3Clustering.R +343 -0
  197. biopipen/scripts/tcr/ClonalStats.R +526 -0
  198. biopipen/scripts/tcr/CloneResidency.R +255 -131
  199. biopipen/scripts/tcr/CloneSizeQQPlot.R +4 -4
  200. biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
  201. biopipen/scripts/tcr/GIANA/GIANA4.py +1362 -789
  202. biopipen/scripts/tcr/GIANA/query.py +164 -162
  203. biopipen/scripts/tcr/Immunarch-basic.R +31 -9
  204. biopipen/scripts/tcr/Immunarch-clonality.R +25 -5
  205. biopipen/scripts/tcr/Immunarch-diversity.R +352 -134
  206. biopipen/scripts/tcr/Immunarch-geneusage.R +45 -5
  207. biopipen/scripts/tcr/Immunarch-kmer.R +68 -8
  208. biopipen/scripts/tcr/Immunarch-overlap.R +84 -4
  209. biopipen/scripts/tcr/Immunarch-spectratyping.R +35 -6
  210. biopipen/scripts/tcr/Immunarch-tracking.R +38 -6
  211. biopipen/scripts/tcr/Immunarch-vjjunc.R +165 -0
  212. biopipen/scripts/tcr/Immunarch.R +63 -11
  213. biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
  214. biopipen/scripts/tcr/ImmunarchFilter.R +4 -4
  215. biopipen/scripts/tcr/ImmunarchLoading.R +38 -29
  216. biopipen/scripts/tcr/SampleDiversity.R +1 -1
  217. biopipen/scripts/tcr/ScRepCombiningExpression.R +40 -0
  218. biopipen/scripts/tcr/ScRepLoading.R +166 -0
  219. biopipen/scripts/tcr/TCRClusterStats.R +176 -22
  220. biopipen/scripts/tcr/TCRDock.py +110 -0
  221. biopipen/scripts/tcr/TESSA.R +102 -118
  222. biopipen/scripts/tcr/VJUsage.R +5 -5
  223. biopipen/scripts/tcr/immunarch-patched.R +142 -0
  224. biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
  225. biopipen/scripts/vcf/BcftoolsAnnotate.py +91 -0
  226. biopipen/scripts/vcf/BcftoolsFilter.py +90 -0
  227. biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
  228. biopipen/scripts/vcf/BcftoolsSort.py +113 -0
  229. biopipen/scripts/vcf/BcftoolsView.py +73 -0
  230. biopipen/scripts/vcf/TruvariBench.sh +14 -7
  231. biopipen/scripts/vcf/TruvariBenchSummary.R +16 -13
  232. biopipen/scripts/vcf/TruvariConsistency.R +1 -1
  233. biopipen/scripts/vcf/Vcf2Bed.py +2 -2
  234. biopipen/scripts/vcf/VcfAnno.py +11 -11
  235. biopipen/scripts/vcf/VcfDownSample.sh +22 -10
  236. biopipen/scripts/vcf/VcfFilter.py +5 -5
  237. biopipen/scripts/vcf/VcfFix.py +7 -7
  238. biopipen/scripts/vcf/VcfFix_utils.py +13 -4
  239. biopipen/scripts/vcf/VcfIndex.py +3 -3
  240. biopipen/scripts/vcf/VcfIntersect.py +3 -3
  241. biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
  242. biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
  243. biopipen/scripts/vcf/bcftools_utils.py +52 -0
  244. biopipen/scripts/web/Download.py +8 -4
  245. biopipen/scripts/web/DownloadList.py +5 -5
  246. biopipen/scripts/web/GCloudStorageDownloadBucket.py +82 -0
  247. biopipen/scripts/web/GCloudStorageDownloadFile.py +23 -0
  248. biopipen/scripts/web/gcloud_common.py +49 -0
  249. biopipen/utils/gene.py +108 -60
  250. biopipen/utils/misc.py +146 -20
  251. biopipen/utils/reference.py +64 -20
  252. biopipen/utils/reporter.py +177 -0
  253. biopipen/utils/vcf.py +1 -1
  254. biopipen-0.34.26.dist-info/METADATA +27 -0
  255. biopipen-0.34.26.dist-info/RECORD +292 -0
  256. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
  257. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +6 -2
  258. biopipen/ns/bcftools.py +0 -111
  259. biopipen/ns/scrna_basic.py +0 -255
  260. biopipen/reports/delim/SampleInfo.svelte +0 -36
  261. biopipen/reports/scrna/GeneExpressionInvistigation.svelte +0 -32
  262. biopipen/reports/scrna/ScFGSEA.svelte +0 -35
  263. biopipen/reports/scrna/SeuratClusterStats.svelte +0 -82
  264. biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -20
  265. biopipen/reports/scrna/SeuratPreparing.svelte +0 -38
  266. biopipen/reports/scrna/TopExpressingGenes.svelte +0 -55
  267. biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -31
  268. biopipen/reports/utils/gsea.liq +0 -110
  269. biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -42
  270. biopipen/scripts/bcftools/BcftoolsFilter.py +0 -79
  271. biopipen/scripts/bcftools/BcftoolsSort.py +0 -19
  272. biopipen/scripts/gene/GeneNameConversion.py +0 -66
  273. biopipen/scripts/scrna/ExprImpution-alra.R +0 -32
  274. biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -29
  275. biopipen/scripts/scrna/ExprImpution.R +0 -7
  276. biopipen/scripts/scrna/GeneExpressionInvistigation.R +0 -132
  277. biopipen/scripts/scrna/Write10X.R +0 -11
  278. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -150
  279. biopipen/scripts/tcr/TCRClustering.R +0 -280
  280. biopipen/utils/common_docstrs.py +0 -61
  281. biopipen/utils/gene.R +0 -49
  282. biopipen/utils/gsea.R +0 -193
  283. biopipen/utils/io.R +0 -20
  284. biopipen/utils/misc.R +0 -114
  285. biopipen/utils/mutate_helpers.R +0 -433
  286. biopipen/utils/plot.R +0 -173
  287. biopipen/utils/rnaseq.R +0 -48
  288. biopipen/utils/single_cell.R +0 -115
  289. biopipen-0.21.0.dist-info/METADATA +0 -22
  290. biopipen-0.21.0.dist-info/RECORD +0 -218
@@ -0,0 +1,617 @@
1
+ from __future__ import annotations
2
+ import os
3
+ import warnings
4
+ from pathlib import Path
5
+
6
+ from diot import Diot # type: ignore[import]
7
+ import scanpy as sc
8
+ import scvelo as scv
9
+ import numpy as np
10
+ import matplotlib
11
+ matplotlib.use('Agg')
12
+ import matplotlib.pyplot as plt
13
+ from biopipen.utils.misc import logger, require_package
14
+ from biopipen.scripts.scrna.seurat_anndata_conversion import (
15
+ convert_seurat_to_anndata,
16
+ convert_anndata_to_seurat,
17
+ )
18
+
19
+ require_package("scvelo", ">=0.3.3")
20
+ from biopipen.scripts.scrna import scvelo_paga # noqa: F401
21
+
22
+ warnings.simplefilter("ignore", category=UserWarning)
23
+ warnings.simplefilter("ignore", category=FutureWarning)
24
+ warnings.simplefilter("ignore", category=DeprecationWarning)
25
+
26
+
27
+ def SCVELO(
28
+ adata,
29
+ group_by,
30
+ dirpath,
31
+ logger,
32
+ palette=None,
33
+ linear_reduction=None,
34
+ nonlinear_reduction=None,
35
+ basis=None,
36
+ mode=["deterministic", "stochastic", "dynamical"],
37
+ fitting_by="stochastic",
38
+ min_shared_counts=30,
39
+ n_pcs=30,
40
+ n_neighbors=30,
41
+ stream_smooth=None,
42
+ stream_density=2,
43
+ arrow_size=5,
44
+ arrow_length=5,
45
+ arrow_density=0.5,
46
+ denoise=False,
47
+ denoise_topn=3,
48
+ kinetics=False,
49
+ kinetics_topn=100,
50
+ calculate_velocity_genes=False,
51
+ top_n=6,
52
+ ncores=1,
53
+ dpi=100,
54
+ fileprefix="",
55
+ ):
56
+ os.chdir(os.path.expanduser(dirpath))
57
+ if linear_reduction is None:
58
+ sc.pp.pca(adata, n_comps=n_pcs)
59
+ linear_reduction = "X_pca"
60
+ elif linear_reduction not in adata.obsm.keys():
61
+ logger.warning(
62
+ f"Linear reduction '{linear_reduction}' not found in adata.obsm. "
63
+ "Running PCA to generate it."
64
+ )
65
+ sc.pp.pca(adata, n_comps=n_pcs)
66
+ linear_reduction = "X_pca"
67
+
68
+ if basis is None:
69
+ if nonlinear_reduction is not None:
70
+ basis = nonlinear_reduction
71
+ else:
72
+ basis = "basis"
73
+ adata.obsm["X_basis"] = adata.obsm[linear_reduction][
74
+ :, 0:2
75
+ ]
76
+ scv.pl.utils.check_basis(adata, basis)
77
+
78
+ if "spliced" not in adata.layers.keys():
79
+ raise ValueError("'spliced' data must be provided.")
80
+
81
+ if "unspliced" not in adata.layers.keys():
82
+ raise ValueError("'unspliced' data must be provided.")
83
+
84
+ if type(mode) is str:
85
+ mode = [mode]
86
+
87
+ mode.append(fitting_by)
88
+ if kinetics is True or denoise is True:
89
+ mode.append("dynamical")
90
+
91
+ mode = list(set(mode))
92
+ if "dynamical" in mode:
93
+ mode.sort(key="dynamical".__eq__)
94
+
95
+ adata.obs[group_by] = adata.obs[group_by].astype(dtype="category")
96
+ scv.pl.proportions(adata, groupby=group_by, save=False, show=False)
97
+
98
+ plt.savefig(
99
+ ".".join(filter(None, [fileprefix, "proportions.png"])), dpi=dpi
100
+ )
101
+
102
+ logger.info("- Filtering and normalizing data ...")
103
+ scv.pp.filter_and_normalize(adata, min_shared_counts=min_shared_counts)
104
+
105
+ logger.info("- Running moments ...")
106
+ # adata.var['highly_variable_genes'].astype(bool)
107
+ # adata.var['highly_variable_genes'].fillna(False, inplace=True)
108
+ scv.pp.moments(
109
+ adata, n_pcs=n_pcs, n_neighbors=n_neighbors, use_rep=linear_reduction
110
+ )
111
+
112
+ highly_variable_genes = adata.var["highly_variable_genes"].index.tolist()
113
+ adata.uns["layer_features_RNA"] = highly_variable_genes
114
+ adata.uns["layer_features_spliced"] = highly_variable_genes
115
+ adata.uns["layer_features_unspliced"] = highly_variable_genes
116
+
117
+ for m in mode:
118
+ vkey_list = [m]
119
+ dk_list = [False]
120
+ gene_subset_list = [None]
121
+ autoscale_list = [True]
122
+
123
+ logger.info(f"- mode: {m}")
124
+ adata.uns["layer_features_" + m] = highly_variable_genes
125
+ adata.uns["layer_features_variance_" + m] = highly_variable_genes
126
+ if m == "dynamical":
127
+ adata2 = adata[:, adata.var[fitting_by + "_genes"]].copy()
128
+ Ms = adata2.layers["Ms"]
129
+ Mu = adata2.layers["Mu"]
130
+ adata2.layers.clear()
131
+ adata2.layers["Ms"] = Ms
132
+ adata2.layers["Mu"] = Mu
133
+ connectivities = adata2.obsp["connectivities"]
134
+ adata2.obsp.clear()
135
+ adata2.obsp["connectivities"] = connectivities
136
+ adata.uns["layer_features_Ms"] = highly_variable_genes
137
+ adata.uns["layer_features_Mu"] = highly_variable_genes
138
+
139
+ scv.tl.recover_dynamics(
140
+ adata2,
141
+ var_names=fitting_by + "_genes",
142
+ use_raw=False,
143
+ n_jobs=ncores,
144
+ )
145
+
146
+ var_add = [
147
+ i
148
+ for i in list(adata2.var.columns)
149
+ if not i in list(adata.var.columns)
150
+ ]
151
+ adata.var = adata.var.merge(
152
+ adata2.var[var_add], how="left", left_index=True, right_index=True
153
+ )
154
+ adata.uns["recover_dynamics"] = adata2.uns["recover_dynamics"]
155
+
156
+ adata.varm["loss"] = np.empty(
157
+ (adata.shape[1], adata2.varm["loss"].shape[1])
158
+ )
159
+ adata.varm["loss"][:] = np.nan
160
+ adata.varm["loss"][adata.var[fitting_by + "_genes"], :] = adata2.varm[
161
+ "loss"
162
+ ]
163
+
164
+ empty_layer = np.empty((adata.layers["spliced"].shape))
165
+ empty_layer[:] = np.nan
166
+ adata.layers["fit_t"] = adata.layers["fit_tau"] = adata.layers[
167
+ "fit_tau_"
168
+ ] = empty_layer
169
+ adata.layers["fit_t"][:, adata.var[fitting_by + "_genes"]] = (
170
+ adata2.layers["fit_t"]
171
+ )
172
+ adata.layers["fit_tau"][:, adata.var[fitting_by + "_genes"]] = (
173
+ adata2.layers["fit_tau"]
174
+ )
175
+ adata.layers["fit_tau_"][:, adata.var[fitting_by + "_genes"]] = (
176
+ adata2.layers["fit_tau_"]
177
+ )
178
+ adata.uns["layer_features_fit_t"] = highly_variable_genes
179
+ adata.uns["layer_features_fit_tau"] = highly_variable_genes
180
+ adata.uns["layer_features_fit_tau_"] = highly_variable_genes
181
+
182
+ if kinetics is True:
183
+ vkey_list.append("dynamical_kinetics")
184
+ dk_list.append(True)
185
+ gene_subset_list.append(None)
186
+ autoscale_list.append(True)
187
+ top_genes = (
188
+ adata.var["fit_likelihood"]
189
+ .sort_values(ascending=False)
190
+ .index[:kinetics_topn]
191
+ )
192
+ scv.tl.differential_kinetic_test(
193
+ adata, var_names=top_genes, groupby=group_by
194
+ )
195
+
196
+ if denoise is True:
197
+ vkey_list.append("dynamical_denoise")
198
+ dk_list.append(False)
199
+ gene_subset_list.append(
200
+ adata.var["fit_likelihood"]
201
+ .sort_values(ascending=False)
202
+ .index[:denoise_topn]
203
+ )
204
+ autoscale_list.append(False)
205
+ adata.layers["dynamical_denoise"] = adata.layers[m] + np.random.normal(
206
+ adata.layers[m], scale=adata.layers["Ms"].std(0)
207
+ )
208
+ adata.uns["layer_features_dynamical_denoise"] = highly_variable_genes
209
+
210
+ for i in range(len(vkey_list)):
211
+ vkey = vkey_list[i]
212
+ dk = dk_list[i]
213
+ gene_subset = gene_subset_list[i]
214
+ autoscale = autoscale_list[i]
215
+
216
+ # Velocity graph
217
+ scv.tl.velocity(adata, mode=m, vkey=vkey, diff_kinetics=dk)
218
+ scv.tl.velocity_graph(
219
+ adata,
220
+ vkey=vkey,
221
+ gene_subset=gene_subset,
222
+ n_neighbors=n_neighbors,
223
+ n_jobs=ncores,
224
+ )
225
+ if m == "dynamical":
226
+ adata.var["velocity_genes"] = adata.var[m + "_genes"]
227
+ adata.layers["velocity"] = adata.layers[m]
228
+ adata.layers["variance_u"] = adata.layers[m + "_u"]
229
+ adata.uns["layer_features_velocity"] = highly_variable_genes
230
+ adata.uns["layer_features_variance_u"] = highly_variable_genes
231
+ adata.uns["layer_features_dynamical_u"] = highly_variable_genes
232
+ else:
233
+ adata.var["velocity_gamma"] = adata.var[m + "_gamma"]
234
+ adata.var["velocity_r2"] = adata.var[m + "_r2"]
235
+ adata.var["velocity_genes"] = adata.var[m + "_genes"]
236
+ adata.layers["velocity"] = adata.layers[m]
237
+ # adata.layers["variance_velocity"] = adata.layers["variance_" + m]
238
+ adata.uns["layer_features_velocity"] = highly_variable_genes
239
+
240
+ # Velocity embedding
241
+ scv.tl.velocity_embedding(
242
+ adata, basis=basis, vkey=vkey, autoscale=autoscale
243
+ )
244
+ scv.pl.velocity_embedding_stream(
245
+ adata,
246
+ vkey=vkey,
247
+ basis=basis,
248
+ title=vkey,
249
+ color=group_by,
250
+ palette=palette,
251
+ smooth=stream_smooth,
252
+ density=stream_density,
253
+ legend_loc="none",
254
+ save=False,
255
+ show=False,
256
+ )
257
+ plt.savefig(
258
+ ".".join(filter(None, [fileprefix, vkey + "_stream.png"])),
259
+ dpi=dpi,
260
+ )
261
+
262
+ scv.pl.velocity_embedding(
263
+ adata,
264
+ vkey=vkey,
265
+ basis=basis,
266
+ title=vkey,
267
+ color=group_by,
268
+ palette=palette,
269
+ arrow_length=arrow_length,
270
+ arrow_size=arrow_size,
271
+ density=arrow_density,
272
+ linewidth=0.3,
273
+ save=False,
274
+ show=False,
275
+ )
276
+ plt.savefig(
277
+ ".".join(filter(None, [fileprefix, vkey + "_arrow.png"])),
278
+ dpi=dpi,
279
+ )
280
+
281
+ scv.pl.velocity_embedding_grid(
282
+ adata,
283
+ vkey=vkey,
284
+ basis=basis,
285
+ title=vkey,
286
+ color=group_by,
287
+ palette=palette,
288
+ arrow_length=arrow_length / 2,
289
+ arrow_size=arrow_size / 2,
290
+ density=arrow_density * 2,
291
+ save=False,
292
+ show=False,
293
+ )
294
+ plt.savefig(
295
+ ".".join(
296
+ filter(None, [fileprefix, vkey + "_embedding_grid.png"])
297
+ ),
298
+ dpi=dpi,
299
+ )
300
+
301
+ # Velocity confidence
302
+ scv.tl.velocity_confidence(adata, vkey=vkey)
303
+ scv.pl.scatter(
304
+ adata,
305
+ basis=basis,
306
+ title=vkey + " length",
307
+ color=vkey + "_length",
308
+ cmap="coolwarm",
309
+ save=False,
310
+ show=False,
311
+ )
312
+ plt.savefig(
313
+ ".".join(filter(None, [fileprefix, vkey + "_length.png"])),
314
+ dpi=dpi,
315
+ )
316
+
317
+ scv.pl.scatter(
318
+ adata,
319
+ basis=basis,
320
+ title=vkey + " confidence",
321
+ color=vkey + "_confidence",
322
+ cmap="magma",
323
+ save=False,
324
+ show=False,
325
+ )
326
+ plt.savefig(
327
+ ".".join(filter(None, [fileprefix, vkey + "_confidence.png"])),
328
+ dpi=dpi,
329
+ )
330
+
331
+ # Terminal states
332
+ for term in [
333
+ "root_cells",
334
+ "end_points",
335
+ vkey + "_root_cells",
336
+ vkey + "_end_points",
337
+ ]:
338
+ if term in adata.obs.columns:
339
+ adata.obs.drop(term, axis=1, inplace=True)
340
+
341
+ scv.tl.terminal_states(
342
+ adata,
343
+ vkey=vkey,
344
+ )
345
+ for term in ["root_cells", "end_points"]:
346
+ adata.obs[vkey + "_" + term] = adata.obs[term]
347
+ adata.obs.drop(term, axis=1, inplace=True)
348
+
349
+ # scv.pl.scatter(adata,basis=basis,title=vkey+" terminal_states",color_gradients=[vkey+'_root_cells', vkey+'_end_points'], legend_loc="best", save=False, show=False)
350
+ # if show_plot is True:
351
+ # plt.show()
352
+ # if save:
353
+ # plt.savefig('.'.join(filter(None, [fileprefix, vkey+"_terminal_states.png"])), dpi=dpi)
354
+
355
+ # Pseudotime
356
+ scv.tl.velocity_pseudotime(
357
+ adata,
358
+ vkey=vkey,
359
+ root_key=vkey + "_root_cells",
360
+ end_key=vkey + "_end_points",
361
+ )
362
+ scv.pl.scatter(
363
+ adata,
364
+ basis=basis,
365
+ title=vkey + " pseudotime",
366
+ color=vkey + "_pseudotime",
367
+ cmap="cividis",
368
+ save=False,
369
+ show=False,
370
+ )
371
+ plt.savefig(
372
+ ".".join(filter(None, [fileprefix, vkey + "_pseudotime.png"])),
373
+ dpi=dpi,
374
+ )
375
+
376
+ # Latent time
377
+ if m == "dynamical":
378
+ scv.tl.latent_time(
379
+ adata,
380
+ vkey=vkey,
381
+ root_key=vkey + "_root_cells",
382
+ end_key=vkey + "_end_points",
383
+ )
384
+ scv.pl.scatter(
385
+ adata,
386
+ basis=basis,
387
+ title=vkey + " latent time",
388
+ color="latent_time",
389
+ color_map="cividis",
390
+ save=False,
391
+ show=False,
392
+ )
393
+ plt.savefig(
394
+ ".".join(
395
+ filter(None, [fileprefix, vkey + "_latent_time.png"])
396
+ ),
397
+ dpi=dpi,
398
+ )
399
+
400
+ # PAGA
401
+ adata.uns["neighbors"]["distances"] = adata.obsp["distances"]
402
+ adata.uns["neighbors"]["connectivities"] = adata.obsp["connectivities"]
403
+ scv.tl.paga(
404
+ adata,
405
+ groups=group_by,
406
+ vkey=vkey,
407
+ root_key=vkey + "_root_cells",
408
+ end_key=vkey + "_end_points",
409
+ )
410
+ scv.pl.paga(
411
+ adata,
412
+ title=vkey + " PAGA (" + group_by + ")",
413
+ node_colors=palette,
414
+ basis=basis,
415
+ alpha=0.5,
416
+ min_edge_width=2,
417
+ node_size_scale=1.5, # type: ignore
418
+ legend_loc="none",
419
+ save=False,
420
+ show=False,
421
+ )
422
+ plt.savefig(
423
+ ".".join(filter(None, [fileprefix, vkey + "_paga.png"])),
424
+ dpi=dpi,
425
+ )
426
+
427
+ # Velocity genes
428
+ if calculate_velocity_genes is True:
429
+ if m != "dynamical":
430
+ scv.tl.rank_velocity_genes(adata, vkey=vkey, groupby=group_by)
431
+ adata.var[vkey + "_score"] = adata.var["spearmans_score"]
432
+ df1 = scv.get_df(adata.uns["rank_velocity_genes"]["names"])
433
+ adata.uns["rank_" + vkey + "_genenames"] = df1
434
+ df2 = scv.get_df(adata.uns["rank_velocity_genes"]["scores"])
435
+ adata.uns["rank_" + vkey + "_genescores"] = df2
436
+ del adata.uns["rank_velocity_genes"]
437
+ else:
438
+ scv.tl.rank_dynamical_genes(adata, groupby=group_by)
439
+ df1 = scv.get_df(adata.uns["rank_dynamical_genes"]["names"])
440
+ adata.uns["rank_" + vkey + "_genenames"] = df1
441
+ df2 = scv.get_df(adata.uns["rank_dynamical_genes"]["scores"])
442
+ adata.uns["rank_" + vkey + "_genescores"] = df2
443
+ del adata.uns["rank_dynamical_genes"]
444
+
445
+ for cluster in df1.columns:
446
+ # df1[0:1].values.ravel()[:12] ### by row
447
+
448
+ scv.pl.scatter(
449
+ adata,
450
+ color=group_by,
451
+ palette=palette,
452
+ basis=df1[cluster].values[:top_n],
453
+ vkey=vkey,
454
+ size=10,
455
+ linewidth=2,
456
+ alpha=1,
457
+ ylabel="cluster: " + cluster + "\nunspliced",
458
+ add_linfit=True,
459
+ add_rug=True,
460
+ add_outline=True,
461
+ ncols=3,
462
+ frameon=True,
463
+ save=False,
464
+ show=False,
465
+ )
466
+ plt.savefig(
467
+ ".".join(
468
+ filter(
469
+ None,
470
+ [fileprefix, cluster, vkey + "_genes1.png"],
471
+ )
472
+ ),
473
+ dpi=dpi,
474
+ )
475
+
476
+ scv.pl.velocity(
477
+ adata,
478
+ color=group_by,
479
+ var_names=df1[cluster].values[:top_n],
480
+ vkey=vkey,
481
+ size=10,
482
+ linewidth=2,
483
+ alpha=1,
484
+ ylabel="cluster: " + cluster + "\nunspliced",
485
+ add_outline=True,
486
+ basis=basis,
487
+ color_map=["Blues", "YlOrRd"],
488
+ ncols=2,
489
+ save=False,
490
+ show=False,
491
+ )
492
+ plt.savefig(
493
+ ".".join(
494
+ filter(
495
+ None,
496
+ [fileprefix, cluster, vkey + "_genes2.png"],
497
+ )
498
+ ),
499
+ dpi=dpi,
500
+ )
501
+
502
+ try:
503
+ adata.__dict__["_raw"].__dict__["_var"] = (
504
+ adata.__dict__["_raw"]
505
+ .__dict__["_var"]
506
+ .rename(columns={"_index": "features"})
507
+ )
508
+ except:
509
+ pass
510
+
511
+ return adata
512
+
513
+
514
+ sobjfile: str = {{in.sobjfile | quote}} # pyright: ignore # noqa: E999
515
+ outfile: str = {{out.outfile | quote}} # pyright: ignore # noqa: E999
516
+ outdir: str = os.path.dirname(outfile)
517
+
518
+ ncores: int = {{envs.ncores | repr}} # pyright: ignore # noqa: E999
519
+ group_by: str | None = {{envs.group_by | repr}} # pyright: ignore # noqa: E999
520
+ mode: str | list[str] = {{envs.mode | repr}} # pyright: ignore # noqa: E999
521
+ fitting_by: str = {{envs.fitting_by | repr}} # pyright: ignore # noqa: E999
522
+ min_shared_counts: int = {{envs.min_shared_counts | repr}} # pyright: ignore # noqa: E999
523
+ n_pcs: int = {{envs.n_pcs | repr}} # pyright: ignore # noqa: E999
524
+ n_neighbors: int = {{envs.n_neighbors | repr}} # pyright: ignore # noqa: E999
525
+ denoise: bool = {{envs.denoise | repr}} # pyright: ignore # noqa: E999
526
+ denoise_topn: int = {{envs.denoise_topn | repr}} # pyright: ignore # noqa: E999
527
+ kinetics: bool = {{envs.kinetics | repr}} # pyright: ignore # noqa: E999
528
+ kinetics_topn: int = {{envs.kinetics_topn | repr}} # pyright: ignore # noqa: E999
529
+ calculate_velocity_genes: bool = {{envs.calculate_velocity_genes | repr}} # pyright: ignore # noqa: E999
530
+ top_n: int = {{envs.top_n | repr}} # pyright: ignore # noqa: E999
531
+ rscript: str = {{envs.rscript | repr}} # pyright: ignore # noqa: E999
532
+
533
+
534
+ if sobjfile.endswith(".h5ad"):
535
+ h5ad_file = Path(sobjfile)
536
+ else:
537
+ h5ad_file = Path(outfile).with_suffix(".input.h5ad")
538
+ logger.info("Converting Seurat object to AnnData (h5ad) format...")
539
+ seurat_ident_col = convert_seurat_to_anndata(
540
+ input_file=sobjfile,
541
+ output_file=h5ad_file,
542
+ rscript=rscript,
543
+ return_ident_col=not group_by,
544
+ )
545
+ group_by = group_by or seurat_ident_col
546
+
547
+ if group_by is None:
548
+ group_by = "seurat_clusters"
549
+ logger.warning(
550
+ "`envs.group_by` is not provided. "
551
+ "Using 'seurat_clusters' as the default groupby column. "
552
+ "It is recommended to provide the `envs.group_by` parameter."
553
+ )
554
+
555
+ logger.info(f"Reading AnnData (h5ad) file ...")
556
+ adata = sc.read_h5ad(h5ad_file)
557
+
558
+ if group_by not in adata.obs.columns:
559
+ raise ValueError(
560
+ f"The group_by column envs.group_by = '{group_by}' is not found in the AnnData object."
561
+ )
562
+
563
+ logger.info(f"Running scVelo analysis ...")
564
+
565
+ if isinstance(mode, str):
566
+ mode = [mode]
567
+
568
+ if not all([m in ["deterministic","stochastic","dynamical"] for m in mode]):
569
+ raise ValueError(
570
+ "The 'envs.mode' parameter must be one or more of 'deterministic', 'stochastic', or 'dynamical'."
571
+ )
572
+
573
+ if not fitting_by in ["deterministic","stochastic"]:
574
+ raise ValueError(
575
+ "The 'envs.fitting_by' parameter must be either 'deterministic' or 'stochastic'."
576
+ )
577
+
578
+ adata = SCVELO(
579
+ adata=adata,
580
+ group_by=group_by,
581
+ dirpath=outdir,
582
+ linear_reduction="X_pca",
583
+ mode=mode,
584
+ fitting_by=fitting_by,
585
+ min_shared_counts=min_shared_counts,
586
+ n_pcs=n_pcs,
587
+ n_neighbors=n_neighbors,
588
+ stream_smooth=None,
589
+ stream_density=2,
590
+ arrow_size=5,
591
+ arrow_length=5,
592
+ arrow_density=0.5,
593
+ denoise=denoise,
594
+ denoise_topn=denoise_topn,
595
+ kinetics=kinetics,
596
+ kinetics_topn=kinetics_topn,
597
+ calculate_velocity_genes=calculate_velocity_genes,
598
+ top_n=top_n,
599
+ ncores=ncores,
600
+ logger=logger,
601
+ )
602
+
603
+ if outfile.endswith(".h5ad"):
604
+ h5ad_file = Path(outfile)
605
+ else:
606
+ h5ad_file = Path(outfile).with_suffix(".output.h5ad")
607
+
608
+ logger.info(f"Writing object to AnnData (h5ad) file ...")
609
+ adata.write_h5ad(h5ad_file)
610
+
611
+ if not outfile.endswith(".h5ad"):
612
+ logger.info(f"Converting AnnData (h5ad) file to Seurat format ...")
613
+ convert_anndata_to_seurat(
614
+ input_file=h5ad_file,
615
+ output_file=outfile,
616
+ rscript=rscript,
617
+ )
@@ -0,0 +1,7 @@
1
+ library(biopipen.utils)
2
+
3
+ sobjfile <- {{in.sobjfile | r}}
4
+ outfile <- {{out.outfile | r}}
5
+ assay <- {{envs.assay | r}}
6
+
7
+ ConvertSeuratToAnnData(sobjfile, outfile = outfile, assay = assay)