biopipen 0.21.0__py3-none-any.whl → 0.34.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (290) hide show
  1. biopipen/__init__.py +1 -1
  2. biopipen/core/config.toml +28 -0
  3. biopipen/core/filters.py +79 -4
  4. biopipen/core/proc.py +12 -3
  5. biopipen/core/testing.py +75 -3
  6. biopipen/ns/bam.py +148 -6
  7. biopipen/ns/bed.py +75 -0
  8. biopipen/ns/cellranger.py +186 -0
  9. biopipen/ns/cellranger_pipeline.py +126 -0
  10. biopipen/ns/cnv.py +19 -3
  11. biopipen/ns/cnvkit.py +1 -1
  12. biopipen/ns/cnvkit_pipeline.py +20 -12
  13. biopipen/ns/delim.py +34 -35
  14. biopipen/ns/gene.py +68 -23
  15. biopipen/ns/gsea.py +63 -37
  16. biopipen/ns/misc.py +39 -14
  17. biopipen/ns/plot.py +304 -1
  18. biopipen/ns/protein.py +183 -0
  19. biopipen/ns/regulatory.py +290 -0
  20. biopipen/ns/rnaseq.py +142 -5
  21. biopipen/ns/scrna.py +2053 -473
  22. biopipen/ns/scrna_metabolic_landscape.py +228 -382
  23. biopipen/ns/snp.py +659 -0
  24. biopipen/ns/stats.py +484 -0
  25. biopipen/ns/tcr.py +683 -98
  26. biopipen/ns/vcf.py +236 -2
  27. biopipen/ns/web.py +97 -6
  28. biopipen/reports/bam/CNVpytor.svelte +4 -9
  29. biopipen/reports/cellranger/CellRangerCount.svelte +18 -0
  30. biopipen/reports/cellranger/CellRangerSummary.svelte +16 -0
  31. biopipen/reports/cellranger/CellRangerVdj.svelte +18 -0
  32. biopipen/reports/cnvkit/CNVkitDiagram.svelte +1 -1
  33. biopipen/reports/cnvkit/CNVkitHeatmap.svelte +1 -1
  34. biopipen/reports/cnvkit/CNVkitScatter.svelte +1 -1
  35. biopipen/reports/common.svelte +15 -0
  36. biopipen/reports/protein/ProdigySummary.svelte +16 -0
  37. biopipen/reports/scrna/CellsDistribution.svelte +4 -39
  38. biopipen/reports/scrna/DimPlots.svelte +1 -1
  39. biopipen/reports/scrna/MarkersFinder.svelte +6 -126
  40. biopipen/reports/scrna/MetaMarkers.svelte +3 -75
  41. biopipen/reports/scrna/RadarPlots.svelte +4 -20
  42. biopipen/reports/scrna_metabolic_landscape/MetabolicFeatures.svelte +61 -22
  43. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayActivity.svelte +88 -82
  44. biopipen/reports/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.svelte +70 -10
  45. biopipen/reports/snp/PlinkCallRate.svelte +24 -0
  46. biopipen/reports/snp/PlinkFreq.svelte +18 -0
  47. biopipen/reports/snp/PlinkHWE.svelte +18 -0
  48. biopipen/reports/snp/PlinkHet.svelte +18 -0
  49. biopipen/reports/snp/PlinkIBD.svelte +18 -0
  50. biopipen/reports/tcr/CDR3AAPhyschem.svelte +19 -66
  51. biopipen/reports/tcr/ClonalStats.svelte +16 -0
  52. biopipen/reports/tcr/CloneResidency.svelte +3 -93
  53. biopipen/reports/tcr/Immunarch.svelte +4 -155
  54. biopipen/reports/tcr/TCRClusterStats.svelte +3 -45
  55. biopipen/reports/tcr/TESSA.svelte +11 -28
  56. biopipen/reports/utils/misc.liq +22 -7
  57. biopipen/scripts/bam/BamMerge.py +11 -15
  58. biopipen/scripts/bam/BamSampling.py +90 -0
  59. biopipen/scripts/bam/BamSort.py +141 -0
  60. biopipen/scripts/bam/BamSplitChroms.py +10 -10
  61. biopipen/scripts/bam/BamSubsetByBed.py +38 -0
  62. biopipen/scripts/bam/CNAClinic.R +41 -5
  63. biopipen/scripts/bam/CNVpytor.py +153 -54
  64. biopipen/scripts/bam/ControlFREEC.py +13 -14
  65. biopipen/scripts/bam/SamtoolsView.py +33 -0
  66. biopipen/scripts/bed/Bed2Vcf.py +5 -5
  67. biopipen/scripts/bed/BedConsensus.py +5 -5
  68. biopipen/scripts/bed/BedLiftOver.sh +6 -4
  69. biopipen/scripts/bed/BedtoolsIntersect.py +54 -0
  70. biopipen/scripts/bed/BedtoolsMakeWindows.py +47 -0
  71. biopipen/scripts/bed/BedtoolsMerge.py +4 -4
  72. biopipen/scripts/cellranger/CellRangerCount.py +138 -0
  73. biopipen/scripts/cellranger/CellRangerSummary.R +181 -0
  74. biopipen/scripts/cellranger/CellRangerVdj.py +112 -0
  75. biopipen/scripts/cnv/AneuploidyScore.R +55 -20
  76. biopipen/scripts/cnv/AneuploidyScoreSummary.R +221 -163
  77. biopipen/scripts/cnv/TMADScore.R +25 -9
  78. biopipen/scripts/cnv/TMADScoreSummary.R +57 -86
  79. biopipen/scripts/cnvkit/CNVkitAccess.py +7 -6
  80. biopipen/scripts/cnvkit/CNVkitAutobin.py +26 -18
  81. biopipen/scripts/cnvkit/CNVkitBatch.py +6 -6
  82. biopipen/scripts/cnvkit/CNVkitCall.py +3 -3
  83. biopipen/scripts/cnvkit/CNVkitCoverage.py +4 -3
  84. biopipen/scripts/cnvkit/CNVkitDiagram.py +5 -5
  85. biopipen/scripts/cnvkit/CNVkitFix.py +3 -3
  86. biopipen/scripts/cnvkit/CNVkitGuessBaits.py +12 -8
  87. biopipen/scripts/cnvkit/CNVkitHeatmap.py +5 -5
  88. biopipen/scripts/cnvkit/CNVkitReference.py +6 -5
  89. biopipen/scripts/cnvkit/CNVkitScatter.py +5 -5
  90. biopipen/scripts/cnvkit/CNVkitSegment.py +5 -5
  91. biopipen/scripts/cnvkit/guess_baits.py +166 -93
  92. biopipen/scripts/delim/RowsBinder.R +1 -1
  93. biopipen/scripts/delim/SampleInfo.R +116 -118
  94. biopipen/scripts/gene/GeneNameConversion.R +67 -0
  95. biopipen/scripts/gene/GenePromoters.R +61 -0
  96. biopipen/scripts/gsea/Enrichr.R +5 -5
  97. biopipen/scripts/gsea/FGSEA.R +184 -50
  98. biopipen/scripts/gsea/GSEA.R +2 -2
  99. biopipen/scripts/gsea/PreRank.R +5 -5
  100. biopipen/scripts/misc/Config2File.py +2 -2
  101. biopipen/scripts/misc/Plot.R +80 -0
  102. biopipen/scripts/misc/Shell.sh +15 -0
  103. biopipen/scripts/misc/Str2File.py +2 -2
  104. biopipen/scripts/plot/Heatmap.R +3 -3
  105. biopipen/scripts/plot/Manhattan.R +147 -0
  106. biopipen/scripts/plot/QQPlot.R +146 -0
  107. biopipen/scripts/plot/ROC.R +88 -0
  108. biopipen/scripts/plot/Scatter.R +112 -0
  109. biopipen/scripts/plot/VennDiagram.R +5 -9
  110. biopipen/scripts/protein/MMCIF2PDB.py +33 -0
  111. biopipen/scripts/protein/PDB2Fasta.py +60 -0
  112. biopipen/scripts/protein/Prodigy.py +119 -0
  113. biopipen/scripts/protein/ProdigySummary.R +140 -0
  114. biopipen/scripts/protein/RMSD.py +178 -0
  115. biopipen/scripts/regulatory/MotifAffinityTest.R +102 -0
  116. biopipen/scripts/regulatory/MotifAffinityTest_AtSNP.R +127 -0
  117. biopipen/scripts/regulatory/MotifAffinityTest_MotifBreakR.R +104 -0
  118. biopipen/scripts/regulatory/MotifScan.py +159 -0
  119. biopipen/scripts/regulatory/VariantMotifPlot.R +78 -0
  120. biopipen/scripts/regulatory/motifs-common.R +324 -0
  121. biopipen/scripts/rnaseq/Simulation-ESCO.R +180 -0
  122. biopipen/scripts/rnaseq/Simulation-RUVcorr.R +45 -0
  123. biopipen/scripts/rnaseq/Simulation.R +21 -0
  124. biopipen/scripts/rnaseq/UnitConversion.R +325 -54
  125. biopipen/scripts/scrna/AnnData2Seurat.R +40 -0
  126. biopipen/scripts/scrna/CCPlotR-patch.R +161 -0
  127. biopipen/scripts/scrna/CellCellCommunication.py +150 -0
  128. biopipen/scripts/scrna/CellCellCommunicationPlots.R +93 -0
  129. biopipen/scripts/scrna/CellSNPLite.py +30 -0
  130. biopipen/scripts/scrna/CellTypeAnnotation-celltypist.R +185 -0
  131. biopipen/scripts/scrna/CellTypeAnnotation-direct.R +68 -31
  132. biopipen/scripts/scrna/CellTypeAnnotation-hitype.R +27 -22
  133. biopipen/scripts/scrna/CellTypeAnnotation-sccatch.R +28 -20
  134. biopipen/scripts/scrna/CellTypeAnnotation-sctype.R +48 -25
  135. biopipen/scripts/scrna/CellTypeAnnotation.R +37 -1
  136. biopipen/scripts/scrna/CellsDistribution.R +456 -167
  137. biopipen/scripts/scrna/DimPlots.R +1 -1
  138. biopipen/scripts/scrna/ExprImputation-alra.R +109 -0
  139. biopipen/scripts/scrna/ExprImputation-rmagic.R +256 -0
  140. biopipen/scripts/scrna/{ExprImpution-scimpute.R → ExprImputation-scimpute.R} +8 -5
  141. biopipen/scripts/scrna/ExprImputation.R +7 -0
  142. biopipen/scripts/scrna/LoomTo10X.R +51 -0
  143. biopipen/scripts/scrna/MQuad.py +25 -0
  144. biopipen/scripts/scrna/MarkersFinder.R +679 -400
  145. biopipen/scripts/scrna/MetaMarkers.R +265 -161
  146. biopipen/scripts/scrna/ModuleScoreCalculator.R +66 -11
  147. biopipen/scripts/scrna/PseudoBulkDEG.R +678 -0
  148. biopipen/scripts/scrna/RadarPlots.R +355 -134
  149. biopipen/scripts/scrna/ScFGSEA.R +298 -100
  150. biopipen/scripts/scrna/ScSimulation.R +65 -0
  151. biopipen/scripts/scrna/ScVelo.py +617 -0
  152. biopipen/scripts/scrna/Seurat2AnnData.R +7 -0
  153. biopipen/scripts/scrna/SeuratClusterStats-clustree.R +87 -0
  154. biopipen/scripts/scrna/SeuratClusterStats-dimplots.R +36 -30
  155. biopipen/scripts/scrna/SeuratClusterStats-features.R +138 -187
  156. biopipen/scripts/scrna/SeuratClusterStats-ngenes.R +81 -0
  157. biopipen/scripts/scrna/SeuratClusterStats-stats.R +78 -89
  158. biopipen/scripts/scrna/SeuratClusterStats.R +47 -10
  159. biopipen/scripts/scrna/SeuratClustering.R +36 -233
  160. biopipen/scripts/scrna/SeuratLoading.R +2 -2
  161. biopipen/scripts/scrna/SeuratMap2Ref.R +84 -113
  162. biopipen/scripts/scrna/SeuratMetadataMutater.R +16 -6
  163. biopipen/scripts/scrna/SeuratPreparing.R +223 -173
  164. biopipen/scripts/scrna/SeuratSubClustering.R +64 -0
  165. biopipen/scripts/scrna/SeuratTo10X.R +27 -0
  166. biopipen/scripts/scrna/Slingshot.R +65 -0
  167. biopipen/scripts/scrna/Subset10X.R +2 -2
  168. biopipen/scripts/scrna/TopExpressingGenes.R +169 -135
  169. biopipen/scripts/scrna/celltypist-wrapper.py +195 -0
  170. biopipen/scripts/scrna/scvelo_paga.py +313 -0
  171. biopipen/scripts/scrna/seurat_anndata_conversion.py +98 -0
  172. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeatures.R +447 -82
  173. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayActivity.R +348 -241
  174. biopipen/scripts/scrna_metabolic_landscape/MetabolicPathwayHeterogeneity.R +188 -166
  175. biopipen/scripts/snp/MatrixEQTL.R +217 -0
  176. biopipen/scripts/snp/Plink2GTMat.py +148 -0
  177. biopipen/scripts/snp/PlinkCallRate.R +199 -0
  178. biopipen/scripts/snp/PlinkFilter.py +100 -0
  179. biopipen/scripts/snp/PlinkFreq.R +291 -0
  180. biopipen/scripts/snp/PlinkFromVcf.py +81 -0
  181. biopipen/scripts/snp/PlinkHWE.R +85 -0
  182. biopipen/scripts/snp/PlinkHet.R +96 -0
  183. biopipen/scripts/snp/PlinkIBD.R +196 -0
  184. biopipen/scripts/snp/PlinkSimulation.py +124 -0
  185. biopipen/scripts/snp/PlinkUpdateName.py +124 -0
  186. biopipen/scripts/stats/ChowTest.R +146 -0
  187. biopipen/scripts/stats/DiffCoexpr.R +152 -0
  188. biopipen/scripts/stats/LiquidAssoc.R +135 -0
  189. biopipen/scripts/stats/Mediation.R +108 -0
  190. biopipen/scripts/stats/MetaPvalue.R +130 -0
  191. biopipen/scripts/stats/MetaPvalue1.R +74 -0
  192. biopipen/scripts/tcgamaf/Maf2Vcf.py +2 -2
  193. biopipen/scripts/tcgamaf/MafAddChr.py +2 -2
  194. biopipen/scripts/tcr/Attach2Seurat.R +3 -2
  195. biopipen/scripts/tcr/CDR3AAPhyschem.R +211 -143
  196. biopipen/scripts/tcr/CDR3Clustering.R +343 -0
  197. biopipen/scripts/tcr/ClonalStats.R +526 -0
  198. biopipen/scripts/tcr/CloneResidency.R +255 -131
  199. biopipen/scripts/tcr/CloneSizeQQPlot.R +4 -4
  200. biopipen/scripts/tcr/GIANA/GIANA.py +1356 -797
  201. biopipen/scripts/tcr/GIANA/GIANA4.py +1362 -789
  202. biopipen/scripts/tcr/GIANA/query.py +164 -162
  203. biopipen/scripts/tcr/Immunarch-basic.R +31 -9
  204. biopipen/scripts/tcr/Immunarch-clonality.R +25 -5
  205. biopipen/scripts/tcr/Immunarch-diversity.R +352 -134
  206. biopipen/scripts/tcr/Immunarch-geneusage.R +45 -5
  207. biopipen/scripts/tcr/Immunarch-kmer.R +68 -8
  208. biopipen/scripts/tcr/Immunarch-overlap.R +84 -4
  209. biopipen/scripts/tcr/Immunarch-spectratyping.R +35 -6
  210. biopipen/scripts/tcr/Immunarch-tracking.R +38 -6
  211. biopipen/scripts/tcr/Immunarch-vjjunc.R +165 -0
  212. biopipen/scripts/tcr/Immunarch.R +63 -11
  213. biopipen/scripts/tcr/Immunarch2VDJtools.R +2 -2
  214. biopipen/scripts/tcr/ImmunarchFilter.R +4 -4
  215. biopipen/scripts/tcr/ImmunarchLoading.R +38 -29
  216. biopipen/scripts/tcr/SampleDiversity.R +1 -1
  217. biopipen/scripts/tcr/ScRepCombiningExpression.R +40 -0
  218. biopipen/scripts/tcr/ScRepLoading.R +166 -0
  219. biopipen/scripts/tcr/TCRClusterStats.R +176 -22
  220. biopipen/scripts/tcr/TCRDock.py +110 -0
  221. biopipen/scripts/tcr/TESSA.R +102 -118
  222. biopipen/scripts/tcr/VJUsage.R +5 -5
  223. biopipen/scripts/tcr/immunarch-patched.R +142 -0
  224. biopipen/scripts/tcr/vdjtools-patch.sh +1 -1
  225. biopipen/scripts/vcf/BcftoolsAnnotate.py +91 -0
  226. biopipen/scripts/vcf/BcftoolsFilter.py +90 -0
  227. biopipen/scripts/vcf/BcftoolsMerge.py +31 -0
  228. biopipen/scripts/vcf/BcftoolsSort.py +113 -0
  229. biopipen/scripts/vcf/BcftoolsView.py +73 -0
  230. biopipen/scripts/vcf/TruvariBench.sh +14 -7
  231. biopipen/scripts/vcf/TruvariBenchSummary.R +16 -13
  232. biopipen/scripts/vcf/TruvariConsistency.R +1 -1
  233. biopipen/scripts/vcf/Vcf2Bed.py +2 -2
  234. biopipen/scripts/vcf/VcfAnno.py +11 -11
  235. biopipen/scripts/vcf/VcfDownSample.sh +22 -10
  236. biopipen/scripts/vcf/VcfFilter.py +5 -5
  237. biopipen/scripts/vcf/VcfFix.py +7 -7
  238. biopipen/scripts/vcf/VcfFix_utils.py +13 -4
  239. biopipen/scripts/vcf/VcfIndex.py +3 -3
  240. biopipen/scripts/vcf/VcfIntersect.py +3 -3
  241. biopipen/scripts/vcf/VcfLiftOver.sh +5 -0
  242. biopipen/scripts/vcf/VcfSplitSamples.py +4 -4
  243. biopipen/scripts/vcf/bcftools_utils.py +52 -0
  244. biopipen/scripts/web/Download.py +8 -4
  245. biopipen/scripts/web/DownloadList.py +5 -5
  246. biopipen/scripts/web/GCloudStorageDownloadBucket.py +82 -0
  247. biopipen/scripts/web/GCloudStorageDownloadFile.py +23 -0
  248. biopipen/scripts/web/gcloud_common.py +49 -0
  249. biopipen/utils/gene.py +108 -60
  250. biopipen/utils/misc.py +146 -20
  251. biopipen/utils/reference.py +64 -20
  252. biopipen/utils/reporter.py +177 -0
  253. biopipen/utils/vcf.py +1 -1
  254. biopipen-0.34.26.dist-info/METADATA +27 -0
  255. biopipen-0.34.26.dist-info/RECORD +292 -0
  256. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/WHEEL +1 -1
  257. {biopipen-0.21.0.dist-info → biopipen-0.34.26.dist-info}/entry_points.txt +6 -2
  258. biopipen/ns/bcftools.py +0 -111
  259. biopipen/ns/scrna_basic.py +0 -255
  260. biopipen/reports/delim/SampleInfo.svelte +0 -36
  261. biopipen/reports/scrna/GeneExpressionInvistigation.svelte +0 -32
  262. biopipen/reports/scrna/ScFGSEA.svelte +0 -35
  263. biopipen/reports/scrna/SeuratClusterStats.svelte +0 -82
  264. biopipen/reports/scrna/SeuratMap2Ref.svelte +0 -20
  265. biopipen/reports/scrna/SeuratPreparing.svelte +0 -38
  266. biopipen/reports/scrna/TopExpressingGenes.svelte +0 -55
  267. biopipen/reports/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.svelte +0 -31
  268. biopipen/reports/utils/gsea.liq +0 -110
  269. biopipen/scripts/bcftools/BcftoolsAnnotate.py +0 -42
  270. biopipen/scripts/bcftools/BcftoolsFilter.py +0 -79
  271. biopipen/scripts/bcftools/BcftoolsSort.py +0 -19
  272. biopipen/scripts/gene/GeneNameConversion.py +0 -66
  273. biopipen/scripts/scrna/ExprImpution-alra.R +0 -32
  274. biopipen/scripts/scrna/ExprImpution-rmagic.R +0 -29
  275. biopipen/scripts/scrna/ExprImpution.R +0 -7
  276. biopipen/scripts/scrna/GeneExpressionInvistigation.R +0 -132
  277. biopipen/scripts/scrna/Write10X.R +0 -11
  278. biopipen/scripts/scrna_metabolic_landscape/MetabolicFeaturesIntraSubset.R +0 -150
  279. biopipen/scripts/tcr/TCRClustering.R +0 -280
  280. biopipen/utils/common_docstrs.py +0 -61
  281. biopipen/utils/gene.R +0 -49
  282. biopipen/utils/gsea.R +0 -193
  283. biopipen/utils/io.R +0 -20
  284. biopipen/utils/misc.R +0 -114
  285. biopipen/utils/mutate_helpers.R +0 -433
  286. biopipen/utils/plot.R +0 -173
  287. biopipen/utils/rnaseq.R +0 -48
  288. biopipen/utils/single_cell.R +0 -115
  289. biopipen-0.21.0.dist-info/METADATA +0 -22
  290. biopipen-0.21.0.dist-info/RECORD +0 -218
@@ -0,0 +1,343 @@
1
+ library(dplyr)
2
+ library(tidyr)
3
+ library(tibble)
4
+ library(glue)
5
+ library(biopipen.utils)
6
+
7
+ screpfile <- {{in.screpfile | r}}
8
+ outdir <- normalizePath({{job.outdir | r}})
9
+ outfile <- {{out.outfile | r}}
10
+
11
+ tool <- {{envs.tool | r}}
12
+ python <- {{envs.python | r}}
13
+ within_sample <- {{envs.within_sample | r}}
14
+ args <- {{envs.args | r}}
15
+ chain <- {{envs.chain | r}}
16
+ type <- {{envs.type | r}}
17
+
18
+ setwd(outdir)
19
+
20
+ log <- get_logger()
21
+
22
+ log$info("Reading input file ...")
23
+ obj <- read_obj(screpfile)
24
+ is_seurat <- inherits(obj, "Seurat")
25
+
26
+
27
+ get_type <- function() {
28
+ if (!is_seurat) {
29
+ for (sample in names(obj)) {
30
+ for (gene in obj[[sample]]$CTgene) {
31
+ if (grepl("^TRB", gene) || grepl("^TRG", gene) || grepl("^TRA", gene) || grepl("^TRD", gene)) {
32
+ return("TCR")
33
+ } else if (grepl("^IGH", gene) || grepl("^IGK", gene) || grepl("^IGL", gene)) {
34
+ return("BCR")
35
+ }
36
+ }
37
+ }
38
+ } else {
39
+ for (gene in obj@meta.data$CTgene) {
40
+ if (grepl("^TRB", gene) || grepl("^TRG", gene) || grepl("^TRA", gene) || grepl("^TRD", gene)) {
41
+ return("TCR")
42
+ } else if (grepl("^IGH", gene) || grepl("^IGK", gene) || grepl("^IGL", gene)) {
43
+ return("BCR")
44
+ }
45
+ }
46
+ }
47
+ stop("Cannot determine the type of the data (TCR or BCR). Please set envs.type to 'TCR' or 'BCR'.")
48
+ }
49
+
50
+ if (type == "auto") {
51
+ type <- get_type()
52
+ log$info("Auto-detected data type: {type}")
53
+ }
54
+
55
+ get_cdr3aa_df <- function() {
56
+ if (!is_seurat) {
57
+ out <- NULL
58
+ for (sample in names(obj)) {
59
+ df <- data.frame(
60
+ Sample = sample,
61
+ Barcode = obj[[sample]]$barcode
62
+ )
63
+ if (chain == "both") {
64
+ df$CDR3.aa <- obj[[sample]]$CTaa
65
+ } else if ((type == "BCR" && chain == "heavy") || (type == "TCR" && chain == "light")) {
66
+ df$CDR3.aa <- obj[[sample]]$cdr3_aa1
67
+ } else if ((type == "BCR" && chain == "light") || (type == "TCR" && chain == "heavy")) {
68
+ df$CDR3.aa <- obj[[sample]]$cdr3_aa2
69
+ } else {
70
+ stop(paste("Unknown chain:", chain, "for", type))
71
+ }
72
+ out <- rbind(out, df)
73
+ }
74
+ } else {
75
+ out <- obj@meta.data
76
+ out$Barcode <- rownames(out)
77
+ out <- out %>% filter(!is.na(CTaa))
78
+ if (grepl("_", out$CTaa[1])) {
79
+ if (chain == "both") {
80
+ out$CDR3.aa <- out$CTaa
81
+ } else {
82
+ out <- separate(out, CTaa, into = c("first", "second"), sep = "_")
83
+ if ((type == "BCR" && chain == "heavy") || (type == "TCR" && chain == "light")) {
84
+ out$CDR3.aa <- out$first
85
+ } else if ((type == "BCR" && chain == "light") || (type == "TCR" && chain == "heavy")) {
86
+ out$CDR3.aa <- out$second
87
+ } else {
88
+ stop(paste("Unknown chain:", chain, "for", type))
89
+ }
90
+ }
91
+ } else {
92
+ out$CDR3.aa <- out$CTaa
93
+ }
94
+ out <- select(out, Sample, Barcode, CDR3.aa)
95
+ }
96
+
97
+ # Sample, Barcode, CDR3.aa
98
+ out
99
+ }
100
+ cdr3aa_df = get_cdr3aa_df()
101
+
102
+ prepare_clustcr = function(clustcr_dir) {
103
+ clustering_args = ""
104
+ for (name in names(args)) {
105
+ value = args[[name]]
106
+ if (is.logical(value)) {
107
+ value = tools::toTitleCase(as.character(value))
108
+ } else if (is.character(value)) {
109
+ value = paste0("'", value, "'")
110
+ }
111
+ clustering_args = paste(name, "=", value)
112
+ }
113
+ clustcr_source = '
114
+ import sys
115
+ import atexit
116
+
117
+ import pandas as pd
118
+ from scipy import sparse as scipy_sparse
119
+
120
+
121
+ @atexit.register
122
+ def clustcr_exit():
123
+ import pandas as pd
124
+ import numpy
125
+ import scipy
126
+ import sklearn
127
+ import matplotlib
128
+ sys.stderr.write("Session info:\\n")
129
+ sys.stderr.write(f"- pandas: {pd.__version__}\\n")
130
+ sys.stderr.write(f"- numpy: {numpy.__version__}\\n")
131
+ sys.stderr.write(f"- scipy: {scipy.__version__}\\n")
132
+ sys.stderr.write(f"- sklearn: {sklearn.__version__}\\n")
133
+ sys.stderr.write(f"- matplotlib: {matplotlib.__version__}\\n")
134
+
135
+
136
+ # Monkey-patch scipy.sparse.isspmatrix to adopt latest scipy v1.14
137
+ # If not, an error is raised:
138
+ # numpy.linalg.LinAlgError: 0-dimensional array given.
139
+ # Array must be at least two-dimensional
140
+ scipy_sparse.isspmatrix = lambda x: isinstance(
141
+ x,
142
+ (
143
+ scipy_sparse.spmatrix,
144
+ scipy_sparse.csr_array,
145
+ scipy_sparse.csr_matrix,
146
+ scipy_sparse.csc_array,
147
+ scipy_sparse.csc_matrix,
148
+ ),
149
+ )
150
+
151
+
152
+ import clustcr # noqa: #402
153
+
154
+ clustcr_dir, clustcr_infile = sys.argv[1:3]
155
+ cdr3df = pd.read_csv(clustcr_infile, index_col=None)
156
+ cdr3 = cdr3df.iloc[:, 0]
157
+
158
+ clustering = clustcr.Clustering()
159
+ output = clustering.fit(cdr3)
160
+ output.clusters_df.to_csv(clustcr_dir + "/clusters.txt", sep="\t", index=False)
161
+ '
162
+ clustcr_file = file.path(clustcr_dir, "_clustcr.py")
163
+ cat(sprintf(clustcr_source, clustering_args), file=clustcr_file)
164
+ clustcr_file
165
+ }
166
+
167
+ clean_clustcr_output = function(clustcr_outfile) {
168
+ clustcr_out = read.delim2(clustcr_outfile, header=TRUE, row.names = NULL)
169
+ colnames(clustcr_out) = c("CDR3.aa", "CDR3_Cluster")
170
+ out = left_join(cdr3aa_df, distinct(clustcr_out), by=c(cdr3seq4clustering = "CDR3.aa")) %>%
171
+ mutate(
172
+ CDR3_Cluster = if_else(
173
+ is.na(CDR3_Cluster),
174
+ paste0("S_", row_number()),
175
+ paste0("M_", as.character(CDR3_Cluster))
176
+ )
177
+ )
178
+
179
+ if (within_sample) {
180
+ out <- mutate(out, CDR3_Cluster = paste0(Sample, ".", CDR3_Cluster))
181
+ }
182
+
183
+ # This join would result in more rows than dplyr can handle
184
+ # left_join(cdr3aa_df, out, by = "CDR3.aa")
185
+ out <- out[match(cdr3aa_df$CDR3.aa, out$CDR3.aa), , drop=FALSE]
186
+ cbind(cdr3aa_df, out[, setdiff(colnames(out), "CDR3.aa"), drop=FALSE])
187
+ }
188
+
189
+ run_clustcr = function() {
190
+ log$info("Running ClusTCR ...")
191
+ clustcr_dir = file.path(outdir, "ClusTCR_Output")
192
+ dir.create(clustcr_dir, showWarnings = FALSE)
193
+ clustcr_file = prepare_clustcr(clustcr_dir)
194
+ clustcr_input = prepare_input()
195
+ clustcr_cmd = paste(
196
+ python,
197
+ clustcr_file,
198
+ clustcr_dir,
199
+ clustcr_input
200
+ )
201
+ print("Running:")
202
+ print(clustcr_cmd)
203
+ log$debug("- Running command: {clustcr_cmd}")
204
+ rc = system(clustcr_cmd)
205
+ if (rc != 0) {
206
+ quit(status=rc)
207
+ }
208
+ clustcr_outfile = file.path(clustcr_dir, "clusters.txt")
209
+ clean_clustcr_output(clustcr_outfile)
210
+ }
211
+
212
+ prepare_giana = function() {
213
+ biopipen_dir <- get_biopipen_dir(python)
214
+ giana_srcdir = file.path(biopipen_dir, "scripts", "tcr", "GIANA")
215
+
216
+ # # The source code of GIANA is downloaded now to giana_srcdir
217
+ # giana_file = file.path(giana_srcdir, "GIANA.py")
218
+ # giana4_file = file.path(giana_srcdir, "GIANA4.py")
219
+ # giana_query = file.path(giana_srcdir, "query.py")
220
+ # giana_trbv = file.path(giana_srcdir, "Imgt_Human_TRBV.fasta")
221
+ # if (!file.exists(giana_file)) {
222
+ # download.file(paste(giana_repo, "GIANA4.1.py", sep="/"), giana_file)
223
+ # download.file(paste(giana_repo, "GIANA4.py", sep="/"), giana4_file)
224
+ # download.file(paste(giana_repo, "query.py", sep="/"), giana_query)
225
+ # download.file(paste(giana_repo, "Imgt_Human_TRBV.fasta", sep="/"), giana_trbv)
226
+ # }
227
+
228
+ giana_srcdir
229
+ }
230
+
231
+ prepare_input = function() {
232
+ cdr3aa_df$cdr3seq4clustering <<- gsub("[^A-Z]", "", cdr3aa_df$CDR3.aa) # Remove non-amino acid characters
233
+ cdr3 <- unique(cdr3aa_df$cdr3seq4clustering)
234
+
235
+ # cdr3 = distinct(cdr3, aminoAcid, vMaxResolved)
236
+
237
+ cdr3file = file.path(outdir, "cdr3.csv")
238
+ write.table(
239
+ data.frame(CDR3.aa=cdr3),
240
+ cdr3file,
241
+ row.names=FALSE, col.names=TRUE, quote=FALSE
242
+ )
243
+ cdr3file
244
+ }
245
+
246
+ clean_giana_output = function(giana_outfile) {
247
+ # generate an output file with columns:
248
+ # CDR3.aa, CDR3_Cluster, V.name, Sample
249
+ # If sequence doesn't exist in the input file,
250
+ # Then a unique cluster id is assigned to it.
251
+ giana_out = read.delim2(giana_outfile, header=FALSE, comment.char = "#", row.names = NULL)[, 1:2, drop=FALSE]
252
+ colnames(giana_out) = c("CDR3.aa", "CDR3_Cluster")
253
+ out = left_join(cdr3aa_df, distinct(giana_out), by=c(cdr3seq4clustering = "CDR3.aa")) %>%
254
+ mutate(
255
+ CDR3_Cluster = if_else(
256
+ is.na(CDR3_Cluster),
257
+ paste0("S_", row_number()),
258
+ paste0("M_", as.character(CDR3_Cluster))
259
+ )
260
+ )
261
+
262
+ if (within_sample) {
263
+ out <- mutate(out, CDR3_Cluster = paste0(Sample, ".", CDR3_Cluster))
264
+ }
265
+
266
+ # This join would result in more rows than dplyr can handle
267
+ # left_join(cdr3aa_df, out, by = "CDR3.aa")
268
+ out <- out[match(cdr3aa_df$CDR3.aa, out$CDR3.aa), , drop=FALSE]
269
+ cbind(cdr3aa_df, out[, setdiff(colnames(out), "CDR3.aa"), drop=FALSE])
270
+ }
271
+
272
+ run_giana = function() {
273
+ log$info("Running GIANA ...")
274
+ giana_srcdir = prepare_giana()
275
+ giana_input = prepare_input()
276
+ giana_outdir = file.path(outdir, "GIANA_Output")
277
+ dir.create(giana_outdir, showWarnings = FALSE)
278
+ args_str = ""
279
+ for (argname in names(args)) {
280
+ argvalue = args[[argname]]
281
+ if (!startsWith(argname, "-")) {
282
+ if (nchar(argname) == 1) {
283
+ argname = paste0("-", argname)
284
+ } else {
285
+ argname = paste0("--", argname)
286
+ }
287
+ }
288
+ if (isTRUE(argvalue) || toupper(as.character(argvalue)) == "TRUE") {
289
+ argvalue = ""
290
+ } else {
291
+ argvalue = as.character(argvalue)
292
+ }
293
+ args_str = paste(args_str, argname, argvalue)
294
+ }
295
+ giana_cmd = paste(
296
+ python,
297
+ file.path(giana_srcdir, "GIANA.py"),
298
+ "-f", giana_input,
299
+ "-o", giana_outdir,
300
+ "-v", # TRBV mutation not supported
301
+ args_str
302
+ )
303
+ print("Running:")
304
+ print(giana_cmd)
305
+ log$debug("- Running command: {giana_cmd}")
306
+ rc = system(giana_cmd)
307
+ if (rc != 0) {
308
+ quit(status=rc)
309
+ }
310
+ giana_outfile = file.path(giana_outdir, "cdr3--RotationEncodingBL62.txt")
311
+ clean_giana_output(giana_outfile)
312
+ }
313
+
314
+ attach_to_obj = function(obj, out) {
315
+ out <- as.data.frame(out)
316
+ rownames(out) <- out$Barcode
317
+ if (is_seurat) {
318
+ # Attach results to Seurat object
319
+ obj@meta.data$CDR3_Cluster <- out[rownames(obj@meta.data), "CDR3_Cluster"]
320
+ } else {
321
+ # Attach results to the list of data frames
322
+ for (sample in names(obj)) {
323
+ sout <- filter(out, Sample == sample)
324
+ obj[[sample]]$CDR3_Cluster <- sout[obj[[sample]]$barcode, "CDR3_Cluster"]
325
+ }
326
+ }
327
+ obj
328
+ }
329
+
330
+
331
+ if (tolower(tool) == "clustcr") {
332
+ out = run_clustcr()
333
+ } else if (tolower(tool) == "giana") {
334
+ out = run_giana()
335
+ } else {
336
+ stop(paste("Unknown tool:", tool))
337
+ }
338
+
339
+ log$info("Attaching results to the input object ...")
340
+ out <- attach_to_obj(obj, out)
341
+
342
+ log$info("Saving results ...")
343
+ save_obj(out, outfile)