Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +0 -3
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +3 -3
- trajectree/fock_optics/utils.py +6 -6
- trajectree/trajectory.py +2 -2
- {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
- trajectree-0.0.2.dist-info/RECORD +16 -0
- trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
- trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
- trajectree/quimb/docs/conf.py +0 -158
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
- trajectree/quimb/quimb/__init__.py +0 -507
- trajectree/quimb/quimb/calc.py +0 -1491
- trajectree/quimb/quimb/core.py +0 -2279
- trajectree/quimb/quimb/evo.py +0 -712
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +0 -129
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
- trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
- trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
- trajectree/quimb/quimb/experimental/schematic.py +0 -7
- trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
- trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
- trajectree/quimb/quimb/gates.py +0 -36
- trajectree/quimb/quimb/gen/__init__.py +0 -2
- trajectree/quimb/quimb/gen/operators.py +0 -1167
- trajectree/quimb/quimb/gen/rand.py +0 -713
- trajectree/quimb/quimb/gen/states.py +0 -479
- trajectree/quimb/quimb/linalg/__init__.py +0 -6
- trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
- trajectree/quimb/quimb/linalg/autoblock.py +0 -258
- trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
- trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
- trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
- trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
- trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
- trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
- trajectree/quimb/quimb/schematic.py +0 -1518
- trajectree/quimb/quimb/tensor/__init__.py +0 -401
- trajectree/quimb/quimb/tensor/array_ops.py +0 -610
- trajectree/quimb/quimb/tensor/circuit.py +0 -4824
- trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
- trajectree/quimb/quimb/tensor/contraction.py +0 -336
- trajectree/quimb/quimb/tensor/decomp.py +0 -1255
- trajectree/quimb/quimb/tensor/drawing.py +0 -1646
- trajectree/quimb/quimb/tensor/fitting.py +0 -385
- trajectree/quimb/quimb/tensor/geometry.py +0 -583
- trajectree/quimb/quimb/tensor/interface.py +0 -114
- trajectree/quimb/quimb/tensor/networking.py +0 -1058
- trajectree/quimb/quimb/tensor/optimize.py +0 -1818
- trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
- trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
- trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
- trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
- trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
- trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
- trajectree/quimb/quimb/utils.py +0 -892
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +0 -501
- trajectree/quimb/tests/test_calc.py +0 -788
- trajectree/quimb/tests/test_core.py +0 -847
- trajectree/quimb/tests/test_evo.py +0 -565
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +0 -361
- trajectree/quimb/tests/test_gen/test_rand.py +0 -296
- trajectree/quimb/tests/test_gen/test_states.py +0 -261
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
- trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
- trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
- trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
- trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
- trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
- trajectree/quimb/tests/test_utils.py +0 -85
- trajectree-0.0.1.dist-info/RECORD +0 -126
- {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
- {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
|
@@ -1,571 +0,0 @@
|
|
|
1
|
-
"""Hyper dense belief propagation for arbitrary `quimb` tensor networks. This
|
|
2
|
-
is the classic 1-norm version of belief propagation, which treats the tensor
|
|
3
|
-
network directly as a factor graph. Messages are processed one at a time.
|
|
4
|
-
|
|
5
|
-
TODO:
|
|
6
|
-
|
|
7
|
-
- [ ] implement 'touching', so that only necessary messages are updated
|
|
8
|
-
- [ ] implement sequential update
|
|
9
|
-
|
|
10
|
-
"""
|
|
11
|
-
import autoray as ar
|
|
12
|
-
import quimb.tensor as qtn
|
|
13
|
-
|
|
14
|
-
from .bp_common import (
|
|
15
|
-
BeliefPropagationCommon,
|
|
16
|
-
compute_all_index_marginals_from_messages,
|
|
17
|
-
contract_hyper_messages,
|
|
18
|
-
initialize_hyper_messages,
|
|
19
|
-
prod,
|
|
20
|
-
)
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def compute_all_hyperind_messages_prod(ms, smudge_factor=1e-12):
|
|
24
|
-
"""Given set of messages ``ms`` incident to a single index, compute the
|
|
25
|
-
corresponding next output messages, using the 'product' implementation.
|
|
26
|
-
"""
|
|
27
|
-
if len(ms) == 2:
|
|
28
|
-
# shortcut for 2 messages
|
|
29
|
-
return [ms[1], ms[0]]
|
|
30
|
-
|
|
31
|
-
x = prod(ms)
|
|
32
|
-
return [x / (m + smudge_factor) for m in ms]
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
def compute_all_hyperind_messages_tree(ms):
|
|
36
|
-
"""Given set of messages ``ms`` incident to a single index, compute the
|
|
37
|
-
corresponding next output messages, using the 'tree' implementation.
|
|
38
|
-
"""
|
|
39
|
-
ndim = len(ms)
|
|
40
|
-
if len(ms) == 2:
|
|
41
|
-
# shortcut for 2 messages
|
|
42
|
-
return [ms[1], ms[0]]
|
|
43
|
-
|
|
44
|
-
mouts = [None for _ in range(ndim)]
|
|
45
|
-
queue = [(tuple(range(ndim)), 1, ms)]
|
|
46
|
-
|
|
47
|
-
while queue:
|
|
48
|
-
js, x, ms = queue.pop()
|
|
49
|
-
|
|
50
|
-
ndim = len(ms)
|
|
51
|
-
if ndim == 1:
|
|
52
|
-
# reached single message
|
|
53
|
-
mouts[js[0]] = x
|
|
54
|
-
continue
|
|
55
|
-
elif ndim == 2:
|
|
56
|
-
# shortcut for 2 messages left
|
|
57
|
-
mouts[js[0]] = x * ms[1]
|
|
58
|
-
mouts[js[1]] = ms[0] * x
|
|
59
|
-
continue
|
|
60
|
-
|
|
61
|
-
# else split in two and contract each half
|
|
62
|
-
k = ndim // 2
|
|
63
|
-
jl, jr = js[:k], js[k:]
|
|
64
|
-
ml, mr = ms[:k], ms[k:]
|
|
65
|
-
|
|
66
|
-
# contract the right messages to get new left array
|
|
67
|
-
xl = prod((*mr, x))
|
|
68
|
-
|
|
69
|
-
# contract the left messages to get new right array
|
|
70
|
-
xr = prod((*ml, x))
|
|
71
|
-
|
|
72
|
-
# add the queue for possible further halving
|
|
73
|
-
queue.append((jl, xl, ml))
|
|
74
|
-
queue.append((jr, xr, mr))
|
|
75
|
-
|
|
76
|
-
return mouts
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
def compute_all_tensor_messages_shortcuts(x, ms, ndim):
|
|
80
|
-
if ndim == 2:
|
|
81
|
-
# shortcut for 2 messages
|
|
82
|
-
return [x @ ms[1], ms[0] @ x]
|
|
83
|
-
elif ndim == 1:
|
|
84
|
-
# shortcut for single message
|
|
85
|
-
return [x]
|
|
86
|
-
elif ndim == 0:
|
|
87
|
-
# shortcut for no messages
|
|
88
|
-
return []
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
def compute_all_tensor_messages_prod(
|
|
92
|
-
x,
|
|
93
|
-
ms,
|
|
94
|
-
backend=None,
|
|
95
|
-
smudge_factor=1e-12,
|
|
96
|
-
):
|
|
97
|
-
"""Given set of messages ``ms`` incident to tensor with data ``x``, compute
|
|
98
|
-
the corresponding next output messages, using the 'prod' implementation.
|
|
99
|
-
"""
|
|
100
|
-
ndim = len(ms)
|
|
101
|
-
if ndim <= 2:
|
|
102
|
-
return compute_all_tensor_messages_shortcuts(x, ms, ndim)
|
|
103
|
-
|
|
104
|
-
js = tuple(range(ndim))
|
|
105
|
-
|
|
106
|
-
mx = qtn.array_contract(
|
|
107
|
-
arrays=(x, *ms), inputs=(js, *((j,) for j in js)), output=js
|
|
108
|
-
)
|
|
109
|
-
mouts = []
|
|
110
|
-
|
|
111
|
-
for j, g in enumerate(ms):
|
|
112
|
-
mouts.append(
|
|
113
|
-
qtn.array_contract(
|
|
114
|
-
arrays=(mx, 1 / (g + smudge_factor)),
|
|
115
|
-
inputs=(js, (j,)),
|
|
116
|
-
output=(j,),
|
|
117
|
-
backend=backend,
|
|
118
|
-
)
|
|
119
|
-
)
|
|
120
|
-
|
|
121
|
-
return mouts
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
def compute_all_tensor_messages_tree(x, ms, backend=None):
|
|
125
|
-
"""Given set of messages ``ms`` incident to tensor with data ``x``, compute
|
|
126
|
-
the corresponding next output messages, using the 'tree' implementation.
|
|
127
|
-
"""
|
|
128
|
-
ndim = len(ms)
|
|
129
|
-
if ndim <= 2:
|
|
130
|
-
return compute_all_tensor_messages_shortcuts(x, ms, ndim)
|
|
131
|
-
|
|
132
|
-
mouts = [None for _ in range(ndim)]
|
|
133
|
-
queue = [(tuple(range(ndim)), x, ms)]
|
|
134
|
-
|
|
135
|
-
while queue:
|
|
136
|
-
js, x, ms = queue.pop()
|
|
137
|
-
|
|
138
|
-
ndim = len(ms)
|
|
139
|
-
if ndim == 1:
|
|
140
|
-
# reached single message
|
|
141
|
-
mouts[js[0]] = x
|
|
142
|
-
continue
|
|
143
|
-
elif ndim == 2:
|
|
144
|
-
# shortcut for 2 messages left
|
|
145
|
-
mouts[js[0]] = x @ ms[1]
|
|
146
|
-
mouts[js[1]] = ms[0] @ x
|
|
147
|
-
continue
|
|
148
|
-
|
|
149
|
-
# else split in two and contract each half
|
|
150
|
-
k = ndim // 2
|
|
151
|
-
jl, jr = js[:k], js[k:]
|
|
152
|
-
ml, mr = ms[:k], ms[k:]
|
|
153
|
-
|
|
154
|
-
# contract the right messages to get new left array
|
|
155
|
-
xl = qtn.array_contract(
|
|
156
|
-
arrays=(x, *mr),
|
|
157
|
-
inputs=(js, *((j,) for j in jr)),
|
|
158
|
-
output=jl,
|
|
159
|
-
backend=backend,
|
|
160
|
-
)
|
|
161
|
-
|
|
162
|
-
# contract the left messages to get new right array
|
|
163
|
-
xr = qtn.array_contract(
|
|
164
|
-
arrays=(x, *ml),
|
|
165
|
-
inputs=(js, *((j,) for j in jl)),
|
|
166
|
-
output=jr,
|
|
167
|
-
backend=backend,
|
|
168
|
-
)
|
|
169
|
-
|
|
170
|
-
# add the queue for possible further halving
|
|
171
|
-
queue.append((jl, xl, ml))
|
|
172
|
-
queue.append((jr, xr, mr))
|
|
173
|
-
|
|
174
|
-
return mouts
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
def iterate_belief_propagation_basic(
|
|
178
|
-
tn,
|
|
179
|
-
messages,
|
|
180
|
-
damping=None,
|
|
181
|
-
smudge_factor=1e-12,
|
|
182
|
-
tol=None,
|
|
183
|
-
):
|
|
184
|
-
"""Run a single iteration of belief propagation. This is the basic version
|
|
185
|
-
that does not vectorize contractions.
|
|
186
|
-
|
|
187
|
-
Parameters
|
|
188
|
-
----------
|
|
189
|
-
tn : TensorNetwork
|
|
190
|
-
The tensor network to run BP on.
|
|
191
|
-
messages : dict
|
|
192
|
-
The current messages. For every index and tensor id pair, there should
|
|
193
|
-
be a message to and from with keys ``(ix, tid)`` and ``(tid, ix)``.
|
|
194
|
-
smudge_factor : float, optional
|
|
195
|
-
A small number to add to the denominator of messages to avoid division
|
|
196
|
-
by zero. Note when this happens the numerator will also be zero.
|
|
197
|
-
|
|
198
|
-
Returns
|
|
199
|
-
-------
|
|
200
|
-
new_messages : dict
|
|
201
|
-
The new messages.
|
|
202
|
-
"""
|
|
203
|
-
backend = ar.infer_backend(next(iter(messages.values())))
|
|
204
|
-
|
|
205
|
-
# _sum = ar.get_lib_fn(backend, "sum")
|
|
206
|
-
# n.b. at small sizes python sum is faster than numpy sum
|
|
207
|
-
_sum = ar.get_lib_fn(backend, "sum")
|
|
208
|
-
# _max = ar.get_lib_fn(backend, "max")
|
|
209
|
-
_abs = ar.get_lib_fn(backend, "abs")
|
|
210
|
-
|
|
211
|
-
def _normalize_and_insert(k, m, max_dm):
|
|
212
|
-
# normalize and insert
|
|
213
|
-
m = m / _sum(m)
|
|
214
|
-
|
|
215
|
-
old_m = messages[k]
|
|
216
|
-
|
|
217
|
-
if damping is not None:
|
|
218
|
-
# mix old and new
|
|
219
|
-
m = damping * old_m + (1 - damping) * m
|
|
220
|
-
|
|
221
|
-
# compare to the old messages
|
|
222
|
-
dm = _sum(_abs(m - old_m))
|
|
223
|
-
max_dm = max(dm, max_dm)
|
|
224
|
-
|
|
225
|
-
# set and return the max diff so far
|
|
226
|
-
messages[k] = m
|
|
227
|
-
return max_dm
|
|
228
|
-
|
|
229
|
-
max_dm = 0.0
|
|
230
|
-
|
|
231
|
-
# hyper index messages
|
|
232
|
-
for ix, tids in tn.ind_map.items():
|
|
233
|
-
ms = compute_all_hyperind_messages_prod(
|
|
234
|
-
[messages[tid, ix] for tid in tids], smudge_factor
|
|
235
|
-
)
|
|
236
|
-
for tid, m in zip(tids, ms):
|
|
237
|
-
max_dm = _normalize_and_insert((ix, tid), m, max_dm)
|
|
238
|
-
|
|
239
|
-
# tensor messages
|
|
240
|
-
for tid, t in tn.tensor_map.items():
|
|
241
|
-
inds = t.inds
|
|
242
|
-
ms = compute_all_tensor_messages_tree(
|
|
243
|
-
t.data,
|
|
244
|
-
[messages[ix, tid] for ix in inds],
|
|
245
|
-
)
|
|
246
|
-
for ix, m in zip(inds, ms):
|
|
247
|
-
max_dm = _normalize_and_insert((tid, ix), m, max_dm)
|
|
248
|
-
|
|
249
|
-
return messages, max_dm
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
class HD1BP(BeliefPropagationCommon):
|
|
253
|
-
"""Object interface for hyper, dense, 1-norm belief propagation. This is
|
|
254
|
-
standard belief propagation in tensor network form.
|
|
255
|
-
|
|
256
|
-
Parameters
|
|
257
|
-
----------
|
|
258
|
-
tn : TensorNetwork
|
|
259
|
-
The tensor network to run BP on.
|
|
260
|
-
messages : dict, optional
|
|
261
|
-
Initial messages to use, if not given then uniform messages are used.
|
|
262
|
-
smudge_factor : float, optional
|
|
263
|
-
A small number to add to the denominator of messages to avoid division
|
|
264
|
-
by zero. Note when this happens the numerator will also be zero.
|
|
265
|
-
"""
|
|
266
|
-
|
|
267
|
-
def __init__(
|
|
268
|
-
self,
|
|
269
|
-
tn,
|
|
270
|
-
messages=None,
|
|
271
|
-
damping=None,
|
|
272
|
-
smudge_factor=1e-12,
|
|
273
|
-
):
|
|
274
|
-
self.tn = tn
|
|
275
|
-
self.backend = next(t.backend for t in tn)
|
|
276
|
-
self.smudge_factor = smudge_factor
|
|
277
|
-
self.damping = damping
|
|
278
|
-
if messages is None:
|
|
279
|
-
messages = initialize_hyper_messages(
|
|
280
|
-
tn, smudge_factor=smudge_factor
|
|
281
|
-
)
|
|
282
|
-
self.messages = messages
|
|
283
|
-
|
|
284
|
-
def iterate(self, **kwargs):
|
|
285
|
-
self.messages, max_dm = iterate_belief_propagation_basic(
|
|
286
|
-
self.tn,
|
|
287
|
-
self.messages,
|
|
288
|
-
damping=self.damping,
|
|
289
|
-
smudge_factor=self.smudge_factor,
|
|
290
|
-
**kwargs,
|
|
291
|
-
)
|
|
292
|
-
return None, None, max_dm
|
|
293
|
-
|
|
294
|
-
def get_gauged_tn(self):
|
|
295
|
-
"""Assuming the supplied tensor network has no hyper or dangling
|
|
296
|
-
indices, gauge it by inserting the BP-approximated transfer matrix
|
|
297
|
-
eigenvectors, which may be complex. The BP-contraction of this gauged
|
|
298
|
-
network is then simply the product of zeroth entries of each tensor.
|
|
299
|
-
"""
|
|
300
|
-
tng = self.tn.copy()
|
|
301
|
-
for ind, tids in self.tn.ind_map.items():
|
|
302
|
-
tida, tidb = tids
|
|
303
|
-
ka = (ind, tida)
|
|
304
|
-
kb = (ind, tidb)
|
|
305
|
-
ma = self.messages[ka]
|
|
306
|
-
mb = self.messages[kb]
|
|
307
|
-
|
|
308
|
-
el, ev = ar.do('linalg.eig', ar.do('outer', ma, mb))
|
|
309
|
-
k = ar.do('argsort', -ar.do('abs', el))
|
|
310
|
-
ev = ev[:, k]
|
|
311
|
-
Uinv = ev
|
|
312
|
-
U = ar.do('linalg.inv', ev)
|
|
313
|
-
tng._insert_gauge_tids(U, tida, tidb, Uinv)
|
|
314
|
-
return tng
|
|
315
|
-
|
|
316
|
-
def contract(self, strip_exponent=False):
|
|
317
|
-
"""Estimate the total contraction, i.e. the exponential of the 'Bethe
|
|
318
|
-
free entropy'.
|
|
319
|
-
"""
|
|
320
|
-
return contract_hyper_messages(
|
|
321
|
-
self.tn,
|
|
322
|
-
self.messages,
|
|
323
|
-
strip_exponent=strip_exponent,
|
|
324
|
-
backend=self.backend,
|
|
325
|
-
)
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
def contract_hd1bp(
|
|
329
|
-
tn,
|
|
330
|
-
messages=None,
|
|
331
|
-
max_iterations=1000,
|
|
332
|
-
tol=5e-6,
|
|
333
|
-
damping=0.0,
|
|
334
|
-
smudge_factor=1e-12,
|
|
335
|
-
strip_exponent=False,
|
|
336
|
-
info=None,
|
|
337
|
-
progbar=False,
|
|
338
|
-
):
|
|
339
|
-
"""Estimate the contraction of ``tn`` with hyper, vectorized, 1-norm
|
|
340
|
-
belief propagation, via the exponential of the Bethe free entropy.
|
|
341
|
-
|
|
342
|
-
Parameters
|
|
343
|
-
----------
|
|
344
|
-
tn : TensorNetwork
|
|
345
|
-
The tensor network to run BP on, can have hyper indices.
|
|
346
|
-
messages : dict, optional
|
|
347
|
-
Initial messages to use, if not given then uniform messages are used.
|
|
348
|
-
max_iterations : int, optional
|
|
349
|
-
The maximum number of iterations to perform.
|
|
350
|
-
tol : float, optional
|
|
351
|
-
The convergence tolerance for messages.
|
|
352
|
-
damping : float, optional
|
|
353
|
-
The damping factor to use, 0.0 means no damping.
|
|
354
|
-
smudge_factor : float, optional
|
|
355
|
-
A small number to add to the denominator of messages to avoid division
|
|
356
|
-
by zero. Note when this happens the numerator will also be zero.
|
|
357
|
-
strip_exponent : bool, optional
|
|
358
|
-
Whether to strip the exponent from the final result. If ``True``
|
|
359
|
-
then the returned result is ``(mantissa, exponent)``.
|
|
360
|
-
info : dict, optional
|
|
361
|
-
If specified, update this dictionary with information about the
|
|
362
|
-
belief propagation run.
|
|
363
|
-
progbar : bool, optional
|
|
364
|
-
Whether to show a progress bar.
|
|
365
|
-
|
|
366
|
-
Returns
|
|
367
|
-
-------
|
|
368
|
-
scalar or (scalar, float)
|
|
369
|
-
"""
|
|
370
|
-
bp = HD1BP(
|
|
371
|
-
tn,
|
|
372
|
-
messages=messages,
|
|
373
|
-
damping=damping,
|
|
374
|
-
smudge_factor=smudge_factor,
|
|
375
|
-
)
|
|
376
|
-
bp.run(
|
|
377
|
-
max_iterations=max_iterations,
|
|
378
|
-
tol=tol,
|
|
379
|
-
info=info,
|
|
380
|
-
progbar=progbar,
|
|
381
|
-
)
|
|
382
|
-
return bp.contract(strip_exponent=strip_exponent)
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
def run_belief_propagation_hd1bp(
|
|
386
|
-
tn,
|
|
387
|
-
messages=None,
|
|
388
|
-
max_iterations=1000,
|
|
389
|
-
tol=5e-6,
|
|
390
|
-
damping=0.0,
|
|
391
|
-
smudge_factor=1e-12,
|
|
392
|
-
info=None,
|
|
393
|
-
progbar=False,
|
|
394
|
-
):
|
|
395
|
-
"""Run belief propagation on a tensor network until it converges. This
|
|
396
|
-
is the basic version that does not vectorize contractions.
|
|
397
|
-
|
|
398
|
-
Parameters
|
|
399
|
-
----------
|
|
400
|
-
tn : TensorNetwork
|
|
401
|
-
The tensor network to run BP on.
|
|
402
|
-
messages : dict, optional
|
|
403
|
-
The current messages. For every index and tensor id pair, there should
|
|
404
|
-
be a message to and from with keys ``(ix, tid)`` and ``(tid, ix)``.
|
|
405
|
-
If not given, then messages are initialized as uniform.
|
|
406
|
-
max_iterations : int, optional
|
|
407
|
-
The maximum number of iterations to run for.
|
|
408
|
-
tol : float, optional
|
|
409
|
-
The convergence tolerance.
|
|
410
|
-
smudge_factor : float, optional
|
|
411
|
-
A small number to add to the denominator of messages to avoid division
|
|
412
|
-
by zero. Note when this happens the numerator will also be zero.
|
|
413
|
-
info : dict, optional
|
|
414
|
-
If specified, update this dictionary with information about the
|
|
415
|
-
belief propagation run.
|
|
416
|
-
progbar : bool, optional
|
|
417
|
-
Whether to show a progress bar.
|
|
418
|
-
|
|
419
|
-
Returns
|
|
420
|
-
-------
|
|
421
|
-
messages : dict
|
|
422
|
-
The final messages.
|
|
423
|
-
converged : bool
|
|
424
|
-
Whether the algorithm converged.
|
|
425
|
-
"""
|
|
426
|
-
bp = HD1BP(
|
|
427
|
-
tn, messages=messages, damping=damping, smudge_factor=smudge_factor
|
|
428
|
-
)
|
|
429
|
-
bp.run(max_iterations=max_iterations, tol=tol, info=info, progbar=progbar)
|
|
430
|
-
return bp.messages, bp.converged
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
def sample_hd1bp(
|
|
434
|
-
tn,
|
|
435
|
-
messages=None,
|
|
436
|
-
output_inds=None,
|
|
437
|
-
max_iterations=1000,
|
|
438
|
-
tol=1e-2,
|
|
439
|
-
damping=0.0,
|
|
440
|
-
smudge_factor=1e-12,
|
|
441
|
-
bias=False,
|
|
442
|
-
seed=None,
|
|
443
|
-
progbar=False,
|
|
444
|
-
):
|
|
445
|
-
"""Sample all indices of a tensor network using repeated belief propagation
|
|
446
|
-
runs and decimation.
|
|
447
|
-
|
|
448
|
-
Parameters
|
|
449
|
-
----------
|
|
450
|
-
tn : TensorNetwork
|
|
451
|
-
The tensor network to sample.
|
|
452
|
-
messages : dict, optional
|
|
453
|
-
The current messages. For every index and tensor id pair, there should
|
|
454
|
-
be a message to and from with keys ``(ix, tid)`` and ``(tid, ix)``.
|
|
455
|
-
If not given, then messages are initialized as uniform.
|
|
456
|
-
output_inds : sequence of str, optional
|
|
457
|
-
The indices to sample. If not given, then all indices are sampled.
|
|
458
|
-
max_iterations : int, optional
|
|
459
|
-
The maximum number of iterations for each message passing run.
|
|
460
|
-
tol : float, optional
|
|
461
|
-
The convergence tolerance for each message passing run.
|
|
462
|
-
smudge_factor : float, optional
|
|
463
|
-
A small number to add to each message to avoid zeros. Making this large
|
|
464
|
-
is similar to adding a temperature, which can aid convergence but
|
|
465
|
-
likely produces less accurate marginals.
|
|
466
|
-
bias : bool or float, optional
|
|
467
|
-
Whether to bias the sampling towards the largest marginal. If ``False``
|
|
468
|
-
(the default), then indices are sampled proportional to their
|
|
469
|
-
marginals. If ``True``, then each index is 'sampled' to be its largest
|
|
470
|
-
weight value always. If a float, then the local probability
|
|
471
|
-
distribution is raised to this power before sampling.
|
|
472
|
-
thread_pool : bool, int or ThreadPoolExecutor, optional
|
|
473
|
-
Whether to use a thread pool for parallelization. If an integer, then
|
|
474
|
-
this is the number of threads to use. If ``True``, then the number of
|
|
475
|
-
threads is set to the number of cores. If a ``ThreadPoolExecutor``,
|
|
476
|
-
then this is used directly.
|
|
477
|
-
seed : int, optional
|
|
478
|
-
A random seed to use for the sampling.
|
|
479
|
-
progbar : bool, optional
|
|
480
|
-
Whether to show a progress bar.
|
|
481
|
-
|
|
482
|
-
Returns
|
|
483
|
-
-------
|
|
484
|
-
config : dict[str, int]
|
|
485
|
-
The sample configuration, mapping indices to values.
|
|
486
|
-
tn_config : TensorNetwork
|
|
487
|
-
The tensor network with all index values (or just those in
|
|
488
|
-
`output_inds` if supllied) selected. Contracting this tensor network
|
|
489
|
-
(which will just be a sequence of scalars if all index values have been
|
|
490
|
-
sampled) gives the weight of the sample, e.g. should be 1 for a SAT
|
|
491
|
-
problem and valid assignment.
|
|
492
|
-
omega : float
|
|
493
|
-
The probability of choosing this sample (i.e. product of marginal
|
|
494
|
-
values). Useful possibly for importance sampling.
|
|
495
|
-
"""
|
|
496
|
-
import numpy as np
|
|
497
|
-
|
|
498
|
-
rng = np.random.default_rng(seed)
|
|
499
|
-
|
|
500
|
-
tn_config = tn.copy()
|
|
501
|
-
|
|
502
|
-
if messages is None:
|
|
503
|
-
messages = initialize_hyper_messages(tn_config)
|
|
504
|
-
|
|
505
|
-
if output_inds is None:
|
|
506
|
-
output_inds = tn_config.ind_map.keys()
|
|
507
|
-
output_inds = set(output_inds)
|
|
508
|
-
|
|
509
|
-
config = {}
|
|
510
|
-
omega = 1.0
|
|
511
|
-
|
|
512
|
-
if progbar:
|
|
513
|
-
import tqdm
|
|
514
|
-
|
|
515
|
-
pbar = tqdm.tqdm(total=len(output_inds))
|
|
516
|
-
else:
|
|
517
|
-
pbar = None
|
|
518
|
-
|
|
519
|
-
while output_inds:
|
|
520
|
-
messages, _ = run_belief_propagation_hd1bp(
|
|
521
|
-
tn_config,
|
|
522
|
-
messages,
|
|
523
|
-
max_iterations=max_iterations,
|
|
524
|
-
tol=tol,
|
|
525
|
-
damping=damping,
|
|
526
|
-
smudge_factor=smudge_factor,
|
|
527
|
-
progbar=True,
|
|
528
|
-
)
|
|
529
|
-
|
|
530
|
-
marginals = compute_all_index_marginals_from_messages(
|
|
531
|
-
tn_config, messages
|
|
532
|
-
)
|
|
533
|
-
|
|
534
|
-
# choose most peaked marginal
|
|
535
|
-
ix, p = max(
|
|
536
|
-
(m for m in marginals.items() if m[0] in output_inds),
|
|
537
|
-
key=lambda ix_p: max(ix_p[1]),
|
|
538
|
-
)
|
|
539
|
-
|
|
540
|
-
if bias is False:
|
|
541
|
-
# sample the value according to the marginal
|
|
542
|
-
v = rng.choice(np.arange(p.size), p=p)
|
|
543
|
-
elif bias is True:
|
|
544
|
-
v = np.argmax(p)
|
|
545
|
-
# in some sense omega is really 1.0 here
|
|
546
|
-
else:
|
|
547
|
-
# bias towards larger marginals by raising to a power
|
|
548
|
-
p = p**bias
|
|
549
|
-
p /= np.sum(p)
|
|
550
|
-
v = np.random.choice(np.arange(p.size), p=p)
|
|
551
|
-
|
|
552
|
-
omega *= p[v]
|
|
553
|
-
config[ix] = v
|
|
554
|
-
|
|
555
|
-
# clean up messages
|
|
556
|
-
for tid in tn_config.ind_map[ix]:
|
|
557
|
-
del messages[ix, tid]
|
|
558
|
-
del messages[tid, ix]
|
|
559
|
-
|
|
560
|
-
# remove index
|
|
561
|
-
tn_config.isel_({ix: v})
|
|
562
|
-
output_inds.remove(ix)
|
|
563
|
-
|
|
564
|
-
if progbar:
|
|
565
|
-
pbar.update(1)
|
|
566
|
-
pbar.set_description(f"{ix}->{v}", refresh=False)
|
|
567
|
-
|
|
568
|
-
if progbar:
|
|
569
|
-
pbar.close()
|
|
570
|
-
|
|
571
|
-
return config, tn_config, omega
|