Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,293 +0,0 @@
1
- """Scipy based linear algebra.
2
- """
3
- import functools
4
-
5
- import numpy as np
6
- import scipy.sparse.linalg as spla
7
-
8
- import quimb as qu
9
-
10
-
11
- def maybe_sort_and_project(lk, vk, P, sort=True):
12
- if sort:
13
- sortinds = np.argsort(lk)
14
- lk, vk = lk[sortinds], vk[:, sortinds]
15
-
16
- # map eigenvectors out of subspace
17
- if P is not None:
18
- vk = P @ vk
19
-
20
- return lk, qu.qarray(vk)
21
-
22
-
23
- def eigs_scipy(
24
- A,
25
- k,
26
- *,
27
- B=None,
28
- which=None,
29
- return_vecs=True,
30
- sigma=None,
31
- isherm=True,
32
- sort=True,
33
- P=None,
34
- tol=None,
35
- backend=None,
36
- **eigs_opts,
37
- ):
38
- """Returns a few eigenpairs from a possibly sparse hermitian operator
39
-
40
- Parameters
41
- ----------
42
- A : array_like, sparse_matrix, LinearOperator or quimb.Lazy
43
- The operator to solve for.
44
- k : int
45
- Number of eigenpairs to return
46
- B : array_like, sparse_matrix, LinearOperator or quimb.Lazy, optional
47
- If given, the RHS operator (which should be positive) defining a
48
- generalized eigen problem.
49
- which : str, optional
50
- where in spectrum to take eigenvalues from (see
51
- :func:`scipy.sparse.linalg.eigsh`).
52
- return_vecs : bool, optional
53
- Whether to return the eigenvectors as well.
54
- sigma : float, optional
55
- Shift, if targeting interior eigenpairs.
56
- isherm : bool, optional
57
- Whether ``A`` is hermitian.
58
- P : array_like, sparse_matrix, LinearOperator or quimb.Lazy, optional
59
- Perform the eigensolve in the subspace defined by this projector.
60
- sort : bool, optional
61
- Whether to ensure the eigenvalues are sorted in ascending value.
62
- backend : None or 'primme', optional
63
- Which backend to use.
64
- eigs_opts
65
- Supplied to :func:`scipy.sparse.linalg.eigsh` or
66
- :func:`scipy.sparse.linalg.eigs`.
67
-
68
- Returns
69
- -------
70
- lk : (k,) array
71
- The eigenvalues.
72
- vk : (m, k) array
73
- Corresponding eigenvectors (if ``return_vecs=True``).
74
- """
75
- if isinstance(A, qu.Lazy):
76
- A = A()
77
- if isinstance(B, qu.Lazy):
78
- B = B()
79
- if isinstance(P, qu.Lazy):
80
- P = P()
81
-
82
- # avoid matrix like behaviour
83
- if isinstance(A, qu.qarray):
84
- A = A.toarray()
85
-
86
- # project into subspace
87
- if P is not None:
88
- A = qu.dag(P) @ (A @ P)
89
-
90
- # Options that might get passed that scipy doesn't support
91
- eigs_opts.pop("EPSType", None)
92
-
93
- # convert certain options for scipy
94
- settings = {
95
- "k": k,
96
- "M": B,
97
- "which": (
98
- "SA"
99
- if (which is None) and (sigma is None)
100
- else "LM"
101
- if (which is None) and (sigma is not None)
102
- # For target using shift-invert scipy requires 'LM' ->
103
- else "LM"
104
- if ("T" in which.upper()) and (sigma is not None)
105
- else which
106
- ),
107
- "sigma": sigma,
108
- "return_eigenvectors": return_vecs,
109
- "tol": 0 if tol is None else tol,
110
- }
111
-
112
- if backend is None:
113
- eigs = spla.eigsh if isherm else spla.eigs
114
- elif backend == "primme":
115
- import primme
116
-
117
- if isherm:
118
- eigs = primme.eigsh
119
- else:
120
- raise ValueError("Primme only for hermitian problems.")
121
-
122
- # primme requires a N * k initial space even if k == 1
123
- v0 = eigs_opts.get("v0", None)
124
- if (v0 is not None) and (v0.ndim == 1):
125
- eigs_opts["v0"] = v0.reshape(-1, 1)
126
-
127
- if return_vecs:
128
- lk, vk = eigs(A, **settings, **eigs_opts)
129
- vk = qu.qarray(vk)
130
- return maybe_sort_and_project(lk, vk, P, sort)
131
- else:
132
- lk = eigs(A, **settings, **eigs_opts)
133
- return np.sort(lk) if sort else lk
134
-
135
-
136
- def eigs_lobpcg(
137
- A,
138
- k,
139
- *,
140
- B=None,
141
- v0=None,
142
- which=None,
143
- return_vecs=True,
144
- sigma=None,
145
- isherm=True,
146
- P=None,
147
- sort=True,
148
- **lobpcg_opts,
149
- ):
150
- """Interface to scipy's lobpcg eigensolver, which can be good for
151
- generalized eigenproblems with matrix-free operators. Seems to a be a bit
152
- innacurate though (e.g. on the order of ~ 1e-6 for eigenvalues). Also only
153
- takes real, symmetric problems, targeting smallest eigenvalues (though
154
- scipy will soon have complex support, and its easy to add oneself).
155
-
156
- Note that the slepc eigensolver also has a lobpcg backend
157
- (``EPSType='lobpcg'``) which accepts complex input and is more accurate -
158
- though seems slower.
159
-
160
- Parameters
161
- ----------
162
- A : array_like, sparse_matrix, LinearOperator or callable
163
- The operator to solve for.
164
- k : int
165
- Number of eigenpairs to return
166
- B : array_like, sparse_matrix, LinearOperator or callable, optional
167
- If given, the RHS operator (which should be positive) defining a
168
- generalized eigen problem.
169
- v0 : array_like (d, k), optional
170
- The initial subspace to iterate with.
171
- which : {'SA', 'LA'}, optional
172
- Find the smallest or largest eigenvalues.
173
- return_vecs : bool, optional
174
- Whether to return the eigenvectors found.
175
- P : array_like, sparse_matrix, LinearOperator or callable, optional
176
- Perform the eigensolve in the subspace defined by this projector.
177
- sort : bool, optional
178
- Whether to ensure the eigenvalues are sorted in ascending value.
179
- lobpcg_opts
180
- Supplied to :func:`scipy.sparse.linagl.lobpcg`.
181
-
182
- Returns
183
- -------
184
- lk : array_like (k,)
185
- The eigenvalues.
186
- vk : array_like (d, k)
187
- The eigenvectors, if `return_vecs=True`.
188
-
189
- See Also
190
- --------
191
- eigs_scipy, eigs_numpy, eigs_slepc
192
- """
193
- if not isherm:
194
- raise ValueError("lobpcg can only solve symmetric problems.")
195
-
196
- if sigma is not None:
197
- raise ValueError("lobpcg can only solve extremal eigenvalues.")
198
-
199
- # remove invalid options for lobpcg
200
- lobpcg_opts.pop("ncv", None)
201
- lobpcg_opts.pop("EPSType", None)
202
-
203
- # convert some arguments and defaults
204
- lobpcg_opts.setdefault("maxiter", 30)
205
- if lobpcg_opts["maxiter"] is None:
206
- lobpcg_opts["maxiter"] = 30
207
- largest = {"SA": False, "LA": True}[which]
208
-
209
- if isinstance(A, qu.Lazy):
210
- A = A()
211
- if isinstance(B, qu.Lazy):
212
- B = B()
213
- if isinstance(P, qu.Lazy):
214
- P = P()
215
-
216
- # project into subspace
217
- if P is not None:
218
- A = qu.dag(P) @ (A @ P)
219
-
220
- # avoid matrix like behaviour
221
- if isinstance(A, qu.qarray):
222
- A = A.toarray()
223
-
224
- d = A.shape[0]
225
-
226
- # set up the initial subsspace to iterate with
227
- if v0 is None:
228
- v0 = qu.randn((d, k), dtype=A.dtype)
229
- else:
230
- # check if intial space should be projected too
231
- if P is not None and v0.shape[0] != d:
232
- v0 = qu.dag(P) @ v0
233
-
234
- v0 = v0.reshape(d, -1)
235
-
236
- # if not enough initial states given, flesh out with random
237
- if v0.shape[1] != k:
238
- v0 = np.hstack(v0, qu.randn((d, k - v0.shape[1]), dtype=A.dtype))
239
-
240
- lk, vk = spla.lobpcg(A=A, X=v0, B=B, largest=largest, **lobpcg_opts)
241
-
242
- if return_vecs:
243
- vk = qu.qarray(vk)
244
- return maybe_sort_and_project(lk, vk, P, sort)
245
- else:
246
- return np.sort(lk) if sort else lk
247
-
248
-
249
- def svds_scipy(A, k=6, *, return_vecs=True, backend=None, **svds_opts):
250
- """Compute a number of singular value pairs
251
-
252
- Parameters
253
- ----------
254
- A : (m, n) dense, sparse or linear operator.
255
- The operator to solve.
256
- k : int
257
- Number of requested singular values.
258
- return_vecs : bool, optional
259
- Whether to return the singular vectors.
260
-
261
- Returns
262
- -------
263
- U : (m, k) array
264
- Left singular vectors (if ``return_vecs=True``) as columns.
265
- s : (k,) array
266
- Singular values.
267
- VH : (k, n) array
268
- Right singular vectors (if ``return_vecs=True``) as rows.
269
- """
270
- settings = {"k": k, "return_singular_vectors": return_vecs, **svds_opts}
271
-
272
- # avoid matrix like behaviour
273
- if isinstance(A, qu.qarray):
274
- A = A.toarray()
275
-
276
- if backend is None:
277
- svds = spla.svds
278
- elif backend == "primme":
279
- import primme
280
-
281
- svds = primme.svds
282
-
283
- if return_vecs:
284
- uk, sk, vtk = svds(A, **settings)
285
- so = np.argsort(-sk)
286
- return qu.qarray(uk[:, so]), sk[so], qu.qarray(vtk[so, :])
287
- else:
288
- sk = svds(A, **settings)
289
- return sk[np.argsort(-sk)]
290
-
291
-
292
- eigs_primme = functools.partial(eigs_scipy, backend="primme")
293
- svds_primme = functools.partial(svds_scipy, backend="primme")