Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,606 +0,0 @@
1
- import itertools
2
-
3
- import pytest
4
- import autoray as ar
5
- import numpy as np
6
- from numpy.testing import assert_allclose
7
-
8
- import quimb as qu
9
- import quimb.tensor as qtn
10
-
11
-
12
- class TestPEPSConstruct:
13
- @pytest.mark.parametrize("Lx", [3, 4, 5])
14
- @pytest.mark.parametrize("Ly", [3, 4, 5])
15
- def test_basic_rand(self, Lx, Ly):
16
- psi = qtn.PEPS.rand(Lx, Ly, bond_dim=4)
17
-
18
- assert psi.max_bond() == 4
19
- assert psi.Lx == Lx
20
- assert psi.Ly == Ly
21
- assert len(psi.tensor_map) == Lx * Ly
22
- assert psi.site_inds == tuple(
23
- f"k{i},{j}" for i in range(Lx) for j in range(Ly)
24
- )
25
- assert psi.site_tags == tuple(
26
- f"I{i},{j}" for i in range(Lx) for j in range(Ly)
27
- )
28
-
29
- assert psi.bond_size((1, 1), (1, 2)) == (4)
30
-
31
- for i in range(Lx):
32
- assert len(psi.select(f"X{i}").tensor_map) == Ly
33
- for j in range(Ly):
34
- assert len(psi.select(f"Y{j}").tensor_map) == Lx
35
-
36
- for i in range(Lx):
37
- for j in range(Ly):
38
- assert psi.phys_dim(i, j) == 2
39
- assert isinstance(psi[i, j], qtn.Tensor)
40
- assert isinstance(psi[f"I{i},{j}"], qtn.Tensor)
41
-
42
- if Lx == Ly == 3:
43
- psi_dense = psi.to_qarray(optimize="auto-hq")
44
- assert psi_dense.shape == (512, 1)
45
-
46
- psi.show()
47
- assert f"Lx={Lx}" in psi.__str__()
48
- assert f"Lx={Lx}" in psi.__repr__()
49
-
50
- def test_cyclic_edge_cases(self):
51
- peps = qtn.PEPS.rand(3, 3, bond_dim=1, cyclic=True)
52
- assert peps.is_cyclic_x()
53
- assert peps.is_cyclic_y()
54
- assert peps.num_indices == peps.num_tensors * 3
55
-
56
- def test_zeros(self):
57
- peps = qtn.PEPS.zeros(3, 3, cyclic=True, bond_dim=1)
58
- assert peps.num_tensors == 9
59
- assert peps.num_indices == 27
60
- assert_allclose(peps.to_dense(), np.zeros([512, 1]))
61
-
62
- def test_flatten(self):
63
- psi = qtn.PEPS.rand(3, 5, 3, seed=42)
64
- norm = psi.H & psi
65
- assert len(norm.tensors) == 30
66
- norm.flatten_()
67
- assert len(norm.tensors) == 15
68
- assert norm.max_bond() == 9
69
-
70
- def test_add_peps(self):
71
- pa = qtn.PEPS.rand(3, 4, 2)
72
- pb = qtn.PEPS.rand(3, 4, 3)
73
- pc = qtn.PEPS.rand(3, 4, 4)
74
- pab = pa + pb
75
- assert pab.max_bond() == 5
76
- assert pab @ pc == pytest.approx(pa @ pc + pb @ pc)
77
-
78
- @pytest.mark.parametrize("Lx", [3, 4, 5])
79
- @pytest.mark.parametrize("Ly", [3, 4, 5])
80
- def test_bond_coordinates(self, Lx, Ly):
81
- psi = qtn.PEPS.rand(Lx, Ly, bond_dim=1)
82
- all_bonds = tuple(psi.gen_bond_coos())
83
- assert len(all_bonds) == 2 * Lx * Ly - Lx - Ly
84
- he = tuple(psi.gen_horizontal_even_bond_coos())
85
- ho = tuple(psi.gen_horizontal_odd_bond_coos())
86
- ve = tuple(psi.gen_vertical_even_bond_coos())
87
- vo = tuple(psi.gen_vertical_odd_bond_coos())
88
- for p in (he, ho, ve, vo):
89
- assert len(set(p)) == len(p)
90
- # check there is no overlap at all
91
- sites = tuple(itertools.chain.from_iterable(he))
92
- assert len(set(sites)) == len(sites)
93
- # check all coordinates are generated
94
- assert set(itertools.chain(he, ho, ve, vo)) == set(all_bonds)
95
-
96
- @pytest.mark.parametrize(
97
- "where",
98
- [
99
- [(0, 0)],
100
- [(0, 1)],
101
- [(0, 2)],
102
- [(2, 2)],
103
- [(3, 2)],
104
- [(3, 1)],
105
- [(3, 0)],
106
- [(2, 0)],
107
- [(1, 1)],
108
- ],
109
- )
110
- @pytest.mark.parametrize("contract", [False, True])
111
- def test_gate_2d_single_site(self, where, contract):
112
- Lx = 4
113
- Ly = 3
114
- D = 2
115
-
116
- psi = qtn.PEPS.rand(Lx, Ly, bond_dim=D, seed=42, dtype=complex)
117
- psi_d = psi.to_qarray()
118
- G = qu.rand_matrix(2)
119
-
120
- # compute the exact dense reference
121
- dims = [[2] * Ly] * Lx
122
- IGI = qu.ikron(G, dims, where, sparse=True)
123
- xe = (psi_d.H @ IGI @ psi_d).item()
124
-
125
- tn = psi.H & psi.gate(G, where, contract=contract)
126
- assert len(tn.tensors) == 2 * Lx * Ly + int(not contract)
127
-
128
- assert tn ^ all == pytest.approx(xe)
129
-
130
- @pytest.mark.parametrize(
131
- "contract", [False, True, "split", "reduce-split"]
132
- )
133
- @pytest.mark.parametrize(
134
- "where",
135
- [
136
- [(1, 1), (2, 1)],
137
- [(3, 2), (2, 2)],
138
- [(0, 0), (1, 1)],
139
- [(3, 1), (1, 2)],
140
- ],
141
- )
142
- def test_gate_2d_two_site(self, where, contract):
143
- Lx = 4
144
- Ly = 3
145
- D = 2
146
-
147
- psi = qtn.PEPS.rand(Lx, Ly, bond_dim=D, seed=42, dtype=complex)
148
- psi_d = psi.to_qarray()
149
-
150
- # ikron can't tensor operators across non-adjacent subsytems
151
- # so we explicitly construct the gate as a sum of tensor components
152
- G_comps = [(qu.rand_matrix(2), qu.rand_matrix(2)) for _ in range(4)]
153
- G = sum(A & B for A, B in G_comps)
154
-
155
- # compute the exact dense reference
156
- dims = [[2] * Ly] * Lx
157
- IGI = sum(
158
- qu.ikron([A, B], dims, where, sparse=True) for A, B in G_comps
159
- )
160
-
161
- xe = (psi_d.H @ IGI @ psi_d).item()
162
-
163
- tn = psi.H & psi.gate(G, where, contract=contract)
164
- change = {False: 1, True: -1, "split": 0, "reduce-split": 0}[contract]
165
- assert len(tn.tensors) == 2 * Lx * Ly + change
166
-
167
- assert tn ^ all == pytest.approx(xe)
168
-
169
- @pytest.mark.parametrize(
170
- "propagate_tags", [False, True, "sites", "register"]
171
- )
172
- def test_gate_propagate_tags(self, propagate_tags):
173
- Lx = 4
174
- Ly = 3
175
- D = 1
176
- psi = qtn.PEPS.rand(Lx, Ly, D, tags="PSI0")
177
- psi.gate_(
178
- qu.rand_uni(4),
179
- [(1, 1), (1, 2)],
180
- tags="G1",
181
- propagate_tags=propagate_tags,
182
- )
183
- psi.gate_(
184
- qu.rand_uni(4),
185
- [(1, 2), (3, 2)],
186
- tags="G2",
187
- propagate_tags=propagate_tags,
188
- )
189
- if propagate_tags is False:
190
- assert set(psi["G1"].tags) == {"G1"}
191
- assert set(psi["G2"].tags) == {"G2"}
192
- if propagate_tags is True:
193
- tgs1 = {"I1,1", "I1,2", "G1", "PSI0", "Y1", "Y2", "X1"}
194
- assert set(psi["G1"][0].tags) == tgs1
195
- assert set(psi["G2"].tags) == tgs1 | {"G2", "I3,2", "X3", "Y2"}
196
- if propagate_tags == "sites":
197
- assert set(psi["G1"].tags) == {"G1", "I1,1", "I1,2"}
198
- assert set(psi["G2"].tags) == {"G2", "I1,1", "I1,2", "I3,2"}
199
- if propagate_tags == "register":
200
- assert set(psi["G1"].tags) == {"G1", "I1,1", "I1,2"}
201
- assert set(psi["G2"].tags) == {"G2", "I1,2", "I3,2"}
202
-
203
-
204
- class Test2DContract:
205
- @pytest.mark.parametrize("mode", ["mps", "projector", "full-bond"])
206
- def test_contract_boundary(self, mode):
207
- # make a large but cheap and easy (mostly positive) TN
208
- rng = np.random.default_rng(42)
209
- tn = qtn.TN2D_from_fill_fn(
210
- lambda shape: rng.uniform(low=-0.1, size=shape),
211
- Lx=8,
212
- Ly=8,
213
- D=2,
214
- )
215
- Zex = tn.contract(...)
216
- Z = tn.contract_boundary(max_bond=4, mode=mode)
217
- assert Z == pytest.approx(Zex, rel=1e-3)
218
-
219
- def test_contract_2d_one_layer_boundary(self):
220
- psi = qtn.PEPS.rand(4, 4, 3, seed=42)
221
- norm = psi.make_norm()
222
- xe = norm.contract(all, optimize="auto-hq")
223
- xt = norm.contract_boundary(max_bond=9)
224
- assert xt == pytest.approx(xe, rel=1e-2)
225
-
226
- def test_contract_2d_two_layer_boundary(self):
227
- psi = qtn.PEPS.rand(4, 4, 3, seed=42, tags="KET")
228
- norm = psi.make_norm()
229
- xe = norm.contract(all, optimize="auto-hq")
230
- xt = norm.contract_boundary(max_bond=27, layer_tags=["KET", "BRA"])
231
- assert xt == pytest.approx(xe, rel=1e-2)
232
-
233
- def test_contract_2d_full_bond(self):
234
- psi = qtn.PEPS.rand(4, 4, 3, seed=42, tags="KET")
235
- norm = psi.make_norm()
236
- xe = norm.contract(all, optimize="auto-hq")
237
- xt = norm.contract_boundary(max_bond=27, mode="full-bond")
238
- assert xt == pytest.approx(xe, rel=1e-2)
239
-
240
- @pytest.mark.parametrize("dims", [(10, 4), (4, 10)])
241
- def test_contract_boundary_stopping_criterion(self, dims):
242
- tn = qtn.TN2D_from_fill_fn(
243
- lambda shape: ar.lazy.Variable(shape=shape, backend="numpy"),
244
- *dims,
245
- D=2,
246
- )
247
- tn.contract_ctmrg_(4, cutoff=0.0, final_contract=False, progbar=True)
248
- assert tn.max_bond() == 4
249
- assert 16 <= tn.num_tensors <= 20
250
-
251
- @pytest.mark.parametrize("lazy", [False, True])
252
- def test_coarse_grain_basics(self, lazy):
253
- tn = qtn.TN2D_from_fill_fn(
254
- lambda shape: ar.lazy.Variable(shape, backend="numpy"),
255
- Lx=6,
256
- Ly=7,
257
- D=2,
258
- )
259
- tncg = tn.coarse_grain_hotrg("x", max_bond=3, cutoff=0.0, lazy=lazy)
260
- assert (tncg.Lx, tncg.Ly) == (3, 7)
261
- assert not tncg.outer_inds()
262
- assert tncg.max_bond() == 3
263
- assert "I4,0" not in tncg.tag_map
264
- assert "X5" not in tncg.tag_map
265
-
266
- tncg = tn.coarse_grain_hotrg("y", max_bond=3, cutoff=0.0, lazy=lazy)
267
- assert (tncg.Lx, tncg.Ly) == (6, 4)
268
- assert not tncg.outer_inds()
269
- assert tncg.max_bond() == 3
270
- assert "I0,5" not in tncg.tag_map
271
- assert "Y6" not in tncg.tag_map
272
-
273
- def test_contract_hotrg(self):
274
- tn = qtn.TN2D_classical_ising_partition_function(16, 16, 0.44)
275
- tn.contract_hotrg_(max_bond=5, progbar=True, equalize_norms=1.0)
276
- Zap = tn.item() * 10**tn.exponent
277
- assert Zap == pytest.approx(8.459419593253275e100, rel=2e-3)
278
-
279
- def test_contract_hotrg_two_layer_rand_peps(self):
280
- rng = np.random.default_rng(42)
281
- psi = qtn.PEPS.from_fill_fn(
282
- lambda shape: rng.uniform(low=-0.1, size=shape),
283
- Lx=7,
284
- Ly=5,
285
- bond_dim=2,
286
- )
287
- norm = psi.make_norm()
288
- xe = norm.contract(all, optimize="auto-hq")
289
- xt = norm.contract_hotrg(max_bond=5)
290
- assert xt == pytest.approx(xe, rel=1e-4)
291
-
292
- def test_ising_accuracy_regression(self):
293
- tn = qtn.TN2D_classical_ising_partition_function(16, 16, 0.44)
294
- for s in [("xmin",), ("xmax",), ("ymin",), ("ymax",)]:
295
- Zap = tn.contract_boundary(max_bond=8, sequence=s)
296
- assert Zap == pytest.approx(8.459419593253275e100, rel=2.2e-7)
297
- for s in [("xmin", "xmax"), ("ymin", "ymax")]:
298
- Zap = tn.contract_boundary(max_bond=8, sequence=s)
299
- assert Zap == pytest.approx(8.459419593253275e100, rel=3.9e-9)
300
-
301
- @pytest.mark.parametrize("mode", ["mps", "ctmrg", "hotrg"])
302
- def test_cdl_rand_large(self, mode):
303
- tn = qtn.TN2D_rand_hidden_loop(10, 10, seed=42, contract_sites=False)
304
- Zex = tn.contract(...)
305
- tn = qtn.TN2D_rand_hidden_loop(10, 10, seed=42, contract_sites=True)
306
-
307
- if mode == "mps":
308
- Z = tn.contract_boundary(max_bond=16)
309
- elif mode == "ctmrg":
310
- Z = tn.contract_ctmrg(max_bond=16)
311
- elif mode == "hotrg":
312
- Z = tn.contract_hotrg(max_bond=16)
313
-
314
- assert Z == pytest.approx(Zex, rel=1e-1)
315
-
316
- @pytest.mark.parametrize(
317
- "mode,two_layer",
318
- [
319
- ("mps", False),
320
- ("mps", True),
321
- ("full-bond", False),
322
- ],
323
- )
324
- def test_compute_x_envs(self, mode, two_layer):
325
- psi = qtn.PEPS.rand(5, 4, 2, seed=42, tags="KET")
326
- norm = psi.make_norm()
327
- ex = norm.contract(all)
328
-
329
- if two_layer:
330
- compress_opts = {
331
- "cutoff": 1e-6,
332
- "max_bond": 12,
333
- "mode": mode,
334
- "layer_tags": ["KET", "BRA"],
335
- }
336
- else:
337
- compress_opts = {"cutoff": 1e-6, "max_bond": 8, "mode": mode}
338
- row_envs = norm.compute_x_environments(**compress_opts)
339
-
340
- for i in range(norm.Lx):
341
- norm_i = (
342
- row_envs["xmin", i]
343
- & norm.select(norm.x_tag(i))
344
- & row_envs["xmax", i]
345
- )
346
- x = norm_i.contract(all)
347
- assert x == pytest.approx(ex, rel=1e-2)
348
-
349
- @pytest.mark.parametrize(
350
- "mode,two_layer",
351
- [
352
- ("mps", False),
353
- ("mps", True),
354
- ("full-bond", False),
355
- ],
356
- )
357
- def test_compute_y_envs(self, mode, two_layer):
358
- psi = qtn.PEPS.rand(4, 5, 2, seed=42, tags="KET")
359
- norm = psi.retag({"KET": "BRA"}).H | psi
360
- ex = norm.contract(all)
361
-
362
- if two_layer:
363
- compress_opts = {
364
- "cutoff": 1e-6,
365
- "max_bond": 12,
366
- "mode": mode,
367
- "layer_tags": ["KET", "BRA"],
368
- }
369
- else:
370
- compress_opts = {"cutoff": 1e-6, "max_bond": 8, "mode": mode}
371
- col_envs = norm.compute_y_environments(**compress_opts)
372
-
373
- for j in range(norm.Lx):
374
- norm_j = (
375
- col_envs["ymin", j]
376
- & norm.select(norm.y_tag(j))
377
- & col_envs["ymax", j]
378
- )
379
- x = norm_j.contract(all)
380
- assert x == pytest.approx(ex, rel=1e-2)
381
-
382
- def test_normalize(self):
383
- psi = qtn.PEPS.rand(4, 5, 2, seed=42)
384
- norm = (psi.H | psi).contract(all)
385
- assert norm != pytest.approx(1.0)
386
- psi.normalize_(balance_bonds=True, equalize_norms=True, cutoff=2e-3)
387
- norm = (psi.H | psi).contract(all)
388
- assert norm == pytest.approx(1.0, rel=0.01)
389
-
390
- @pytest.mark.parametrize("normalized", [False, True])
391
- @pytest.mark.parametrize("mode", ["mps", "full-bond"])
392
- def test_compute_local_expectation_one_sites(self, mode, normalized):
393
- peps = qtn.PEPS.rand(4, 3, 2, seed=42, dtype="complex")
394
-
395
- # reference
396
- k = peps.to_qarray()
397
- if normalized:
398
- qu.normalize(k)
399
- coos = list(itertools.product([0, 2, 3], [0, 1, 2]))
400
- terms = {coo: qu.rand_matrix(2) for coo in coos}
401
- dims = [[2] * 3] * 4
402
- A = sum(
403
- qu.ikron(A, dims, [coo], sparse=True) for coo, A in terms.items()
404
- )
405
- ex = qu.expec(A, k)
406
-
407
- opts = dict(cutoff=2e-3, max_bond=9, contract_optimize="auto-hq")
408
- e = peps.compute_local_expectation(
409
- terms, mode=mode, normalized=normalized, **opts
410
- )
411
-
412
- assert e == pytest.approx(ex, rel=1e-2)
413
-
414
- @pytest.mark.parametrize("normalized", [False, True])
415
- @pytest.mark.parametrize("mode", ["mps", "full-bond"])
416
- def test_compute_local_expectation_two_sites(self, mode, normalized):
417
- H = qu.ham_heis_2D(4, 3, sparse=True)
418
- Hij = qu.ham_heis(2, cyclic=False)
419
-
420
- peps = qtn.PEPS.rand(4, 3, 2, seed=42)
421
- k = peps.to_qarray()
422
-
423
- if normalized:
424
- qu.normalize(k)
425
- ex = qu.expec(H, k)
426
-
427
- opts = dict(
428
- mode=mode,
429
- normalized=normalized,
430
- cutoff=2e-3,
431
- max_bond=16,
432
- contract_optimize="auto-hq",
433
- )
434
-
435
- # compute 2x1 and 1x2 plaquettes separately
436
- hterms = {coos: Hij for coos in peps.gen_horizontal_bond_coos()}
437
- vterms = {coos: Hij for coos in peps.gen_vertical_bond_coos()}
438
-
439
- he = peps.compute_local_expectation(hterms, **opts)
440
- ve = peps.compute_local_expectation(vterms, **opts)
441
-
442
- assert he + ve == pytest.approx(ex, rel=1e-2)
443
-
444
- # compute all terms in 2x2 plaquettes
445
- terms_all = {**hterms, **vterms}
446
- e = peps.compute_local_expectation(terms_all, autogroup=False, **opts)
447
-
448
- assert e == pytest.approx(ex, rel=1e-2)
449
-
450
- def test_cyclic_basic(self):
451
- tn = qtn.TN2D_rand(Lx=3, Ly=4, D=2, cyclic=True)
452
- assert tn.is_cyclic_x()
453
- assert tn.is_cyclic_y()
454
- assert tn.num_indices == 2 * 3 * 4
455
- tn = qtn.TN2D_rand(Lx=3, Ly=4, D=2, cyclic=(False, True))
456
- assert not tn.is_cyclic_x()
457
- assert tn.is_cyclic_y()
458
- assert tn.num_indices == 2 * 3 * 4 - 4
459
- tn = qtn.TN2D_rand(Lx=3, Ly=4, D=2, cyclic=(True, False))
460
- assert tn.is_cyclic_x()
461
- assert not tn.is_cyclic_y()
462
- assert tn.num_indices == 2 * 3 * 4 - 3
463
- tn = qtn.TN2D_rand(Lx=3, Ly=4, D=2, cyclic=(False, False))
464
- assert not tn.is_cyclic_x()
465
- assert not tn.is_cyclic_y()
466
- assert tn.num_indices == 2 * 3 * 4 - 7
467
-
468
- @pytest.mark.parametrize("cyclicx", [False, True])
469
- @pytest.mark.parametrize("cyclicy", [False, True])
470
- @pytest.mark.parametrize("mode", ["mps", "hotrg", "ctmrg"])
471
- def test_cyclic_contract(self, cyclicx, cyclicy, mode):
472
- Lx = 5
473
- Ly = 6
474
- D = 2
475
- chi = 3
476
- tn = qtn.TN2D_rand(
477
- Lx,
478
- Ly,
479
- D,
480
- cyclic=(cyclicx, cyclicy),
481
- seed=42,
482
- dist="uniform",
483
- )
484
- Zex = tn.contract(...)
485
- if mode == "hotrg":
486
- Z = tn.contract_hotrg(chi)
487
- elif mode == "ctmrg":
488
- Z = tn.contract_ctmrg(chi)
489
- else:
490
- Z = tn.contract_boundary(chi, mode=mode)
491
- assert abs(1 - Z / Zex) < 1e-3
492
-
493
-
494
- class TestPEPO:
495
- @pytest.mark.parametrize("Lx", [3, 4, 5])
496
- @pytest.mark.parametrize("Ly", [3, 4, 5])
497
- def test_basic_rand(self, Lx, Ly):
498
- X = qtn.PEPO.rand_herm(Lx, Ly, bond_dim=4)
499
-
500
- assert X.max_bond() == 4
501
- assert X.Lx == Lx
502
- assert X.Ly == Ly
503
- assert len(X.tensor_map) == Lx * Ly
504
- assert X.upper_inds == tuple(
505
- f"k{i},{j}" for i in range(Lx) for j in range(Ly)
506
- )
507
- assert X.lower_inds == tuple(
508
- f"b{i},{j}" for i in range(Lx) for j in range(Ly)
509
- )
510
- assert X.site_tags == tuple(
511
- f"I{i},{j}" for i in range(Lx) for j in range(Ly)
512
- )
513
-
514
- assert X.bond_size((1, 1), (1, 2)) == (4)
515
-
516
- for i in range(Lx):
517
- assert len(X.select(f"X{i}").tensor_map) == Ly
518
- for j in range(Ly):
519
- assert len(X.select(f"Y{j}").tensor_map) == Lx
520
-
521
- for i in range(Lx):
522
- for j in range(Ly):
523
- assert X.phys_dim(i, j) == 2
524
- assert isinstance(X[i, j], qtn.Tensor)
525
- assert isinstance(X[f"I{i},{j}"], qtn.Tensor)
526
-
527
- if Lx == Ly == 3:
528
- X_dense = X.to_qarray(optimize="auto-hq")
529
- assert X_dense.shape == (512, 512)
530
- assert qu.isherm(X_dense)
531
-
532
- X.show()
533
- assert f"Lx={Lx}" in X.__str__()
534
- assert f"Lx={Lx}" in X.__repr__()
535
-
536
- def test_add_pepo(self):
537
- pa = qtn.PEPO.rand(3, 4, 2)
538
- pb = qtn.PEPO.rand(3, 4, 3)
539
- pc = qtn.PEPO.rand(3, 4, 4)
540
- pab = pa + pb
541
- assert pab.max_bond() == 5
542
- assert pab @ pc == pytest.approx(pa @ pc + pb @ pc)
543
-
544
- def test_apply_pepo(self):
545
- A = qtn.PEPO.rand(Lx=3, Ly=2, bond_dim=2, seed=1)
546
- x = qtn.PEPS.rand(Lx=3, Ly=2, bond_dim=2, seed=0)
547
- y = A.apply(x)
548
- assert y.num_indices == x.num_indices
549
- Ad = A.to_qarray()
550
- xd = x.to_qarray()
551
- yd = y.to_qarray()
552
- assert_allclose(Ad @ xd, yd)
553
- yc = A.apply(x, compress=True, max_bond=3)
554
- assert yc.max_bond() == 3
555
-
556
-
557
- class TestMisc:
558
- def test_calc_plaquette_sizes(self):
559
- from quimb.tensor.tensor_2d import calc_plaquette_sizes
560
-
561
- H2 = {None: qu.ham_heis(2)}
562
- ham = qtn.LocalHam2D(10, 10, H2)
563
- assert calc_plaquette_sizes(ham.terms.keys()) == ((1, 2), (2, 1))
564
- assert calc_plaquette_sizes(ham.terms.keys(), autogroup=False) == (
565
- (2, 2),
566
- )
567
- H2[(1, 1), (2, 2)] = 0.5 * qu.ham_heis(2)
568
- ham = qtn.LocalHam2D(10, 10, H2)
569
- assert calc_plaquette_sizes(ham.terms.keys()) == ((2, 2),)
570
- H2[(2, 2), (2, 4)] = 0.25 * qu.ham_heis(2)
571
- H2[(2, 4), (4, 4)] = 0.25 * qu.ham_heis(2)
572
- ham = qtn.LocalHam2D(10, 10, H2)
573
- assert calc_plaquette_sizes(ham.terms.keys()) == (
574
- (1, 3),
575
- (2, 2),
576
- (3, 1),
577
- )
578
- assert calc_plaquette_sizes(ham.terms.keys(), autogroup=False) == (
579
- (3, 3),
580
- )
581
-
582
- def test_calc_plaquette_map(self):
583
- from quimb.tensor.tensor_2d import calc_plaquette_map
584
-
585
- plaquettes = [
586
- # 2x2 plaquette covering all sites
587
- ((0, 0), (2, 2)),
588
- # horizontal plaquettes
589
- ((0, 0), (1, 2)),
590
- ((1, 0), (1, 2)),
591
- # vertical plaquettes
592
- ((0, 0), (2, 1)),
593
- ((0, 1), (2, 1)),
594
- ]
595
- assert calc_plaquette_map(plaquettes) == {
596
- (0, 0): ((0, 0), (2, 1)),
597
- (0, 1): ((0, 1), (2, 1)),
598
- (1, 0): ((1, 0), (1, 2)),
599
- (1, 1): ((1, 0), (1, 2)),
600
- ((0, 0), (0, 1)): ((0, 0), (1, 2)),
601
- ((0, 0), (1, 0)): ((0, 0), (2, 1)),
602
- ((0, 0), (1, 1)): ((0, 0), (2, 2)),
603
- ((0, 1), (1, 0)): ((0, 0), (2, 2)),
604
- ((0, 1), (1, 1)): ((0, 1), (2, 1)),
605
- ((1, 0), (1, 1)): ((1, 0), (1, 2)),
606
- }