Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +0 -3
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +3 -3
- trajectree/fock_optics/utils.py +6 -6
- trajectree/trajectory.py +2 -2
- {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
- trajectree-0.0.2.dist-info/RECORD +16 -0
- trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
- trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
- trajectree/quimb/docs/conf.py +0 -158
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
- trajectree/quimb/quimb/__init__.py +0 -507
- trajectree/quimb/quimb/calc.py +0 -1491
- trajectree/quimb/quimb/core.py +0 -2279
- trajectree/quimb/quimb/evo.py +0 -712
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +0 -129
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
- trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
- trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
- trajectree/quimb/quimb/experimental/schematic.py +0 -7
- trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
- trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
- trajectree/quimb/quimb/gates.py +0 -36
- trajectree/quimb/quimb/gen/__init__.py +0 -2
- trajectree/quimb/quimb/gen/operators.py +0 -1167
- trajectree/quimb/quimb/gen/rand.py +0 -713
- trajectree/quimb/quimb/gen/states.py +0 -479
- trajectree/quimb/quimb/linalg/__init__.py +0 -6
- trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
- trajectree/quimb/quimb/linalg/autoblock.py +0 -258
- trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
- trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
- trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
- trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
- trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
- trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
- trajectree/quimb/quimb/schematic.py +0 -1518
- trajectree/quimb/quimb/tensor/__init__.py +0 -401
- trajectree/quimb/quimb/tensor/array_ops.py +0 -610
- trajectree/quimb/quimb/tensor/circuit.py +0 -4824
- trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
- trajectree/quimb/quimb/tensor/contraction.py +0 -336
- trajectree/quimb/quimb/tensor/decomp.py +0 -1255
- trajectree/quimb/quimb/tensor/drawing.py +0 -1646
- trajectree/quimb/quimb/tensor/fitting.py +0 -385
- trajectree/quimb/quimb/tensor/geometry.py +0 -583
- trajectree/quimb/quimb/tensor/interface.py +0 -114
- trajectree/quimb/quimb/tensor/networking.py +0 -1058
- trajectree/quimb/quimb/tensor/optimize.py +0 -1818
- trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
- trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
- trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
- trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
- trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
- trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
- trajectree/quimb/quimb/utils.py +0 -892
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +0 -501
- trajectree/quimb/tests/test_calc.py +0 -788
- trajectree/quimb/tests/test_core.py +0 -847
- trajectree/quimb/tests/test_evo.py +0 -565
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +0 -361
- trajectree/quimb/tests/test_gen/test_rand.py +0 -296
- trajectree/quimb/tests/test_gen/test_states.py +0 -261
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
- trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
- trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
- trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
- trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
- trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
- trajectree/quimb/tests/test_utils.py +0 -85
- trajectree-0.0.1.dist-info/RECORD +0 -126
- {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
- {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
|
@@ -1,816 +0,0 @@
|
|
|
1
|
-
import math
|
|
2
|
-
import itertools
|
|
3
|
-
|
|
4
|
-
import pytest
|
|
5
|
-
import numpy as np
|
|
6
|
-
from numpy.testing import assert_allclose
|
|
7
|
-
|
|
8
|
-
import quimb as qu
|
|
9
|
-
import quimb.tensor as qtn
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
def rand_reg_graph(reg, n, seed=None):
|
|
13
|
-
import networkx as nx
|
|
14
|
-
|
|
15
|
-
G = nx.random_regular_graph(reg, n, seed=seed)
|
|
16
|
-
return G
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def graph_to_qsim(G, gamma0=-0.743043, beta0=0.754082):
|
|
20
|
-
n = G.number_of_nodes()
|
|
21
|
-
|
|
22
|
-
# add all the gates
|
|
23
|
-
circ = f"{n}\n"
|
|
24
|
-
for i in range(n):
|
|
25
|
-
circ += f"H {i}\n"
|
|
26
|
-
for i, j in G.edges:
|
|
27
|
-
circ += f"Rzz {gamma0} {i} {j}\n"
|
|
28
|
-
for i in range(n):
|
|
29
|
-
circ += f"Rx {beta0} {i}\n"
|
|
30
|
-
|
|
31
|
-
return circ
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
def random_a2a_circ(L, depth, seed=42):
|
|
35
|
-
rng = np.random.default_rng(seed)
|
|
36
|
-
|
|
37
|
-
qubits = np.arange(L)
|
|
38
|
-
gates = []
|
|
39
|
-
|
|
40
|
-
for i in range(L):
|
|
41
|
-
gates.append((0, "h", i))
|
|
42
|
-
|
|
43
|
-
for d in range(depth):
|
|
44
|
-
rng.shuffle(qubits)
|
|
45
|
-
|
|
46
|
-
for i in range(0, L - 1, 2):
|
|
47
|
-
g = rng.choice(["cx", "cy", "cz", "iswap"])
|
|
48
|
-
gates.append((d, g, qubits[i], qubits[i + 1]))
|
|
49
|
-
|
|
50
|
-
for q in qubits:
|
|
51
|
-
g = rng.choice(["rx", "ry", "rz"])
|
|
52
|
-
gates.append((d, g, rng.normal(1.0, 0.5), q))
|
|
53
|
-
|
|
54
|
-
circ = qtn.Circuit(L)
|
|
55
|
-
circ.apply_gates(gates)
|
|
56
|
-
|
|
57
|
-
return circ
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
def qft_circ(n, swaps=True, **circuit_opts):
|
|
61
|
-
circ = qtn.Circuit(n, **circuit_opts)
|
|
62
|
-
|
|
63
|
-
for i in range(n):
|
|
64
|
-
circ.h(i)
|
|
65
|
-
for j, m in zip(range(i + 1, n), itertools.count(2)):
|
|
66
|
-
circ.cu1(2 * math.pi / 2**m, j, i)
|
|
67
|
-
|
|
68
|
-
if swaps:
|
|
69
|
-
for i in range(n // 2):
|
|
70
|
-
circ.swap(i, n - i - 1)
|
|
71
|
-
|
|
72
|
-
return circ
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
def swappy_circ(n, depth):
|
|
76
|
-
circ = qtn.Circuit(n)
|
|
77
|
-
|
|
78
|
-
for d in range(depth):
|
|
79
|
-
pairs = np.random.permutation(np.arange(n))
|
|
80
|
-
|
|
81
|
-
for i in range(n // 2):
|
|
82
|
-
qi = pairs[2 * i]
|
|
83
|
-
qj = pairs[2 * i + 1]
|
|
84
|
-
|
|
85
|
-
gate = np.random.choice(["FSIM", "SWAP"])
|
|
86
|
-
if gate == "FSIM":
|
|
87
|
-
params = np.random.randn(2)
|
|
88
|
-
elif gate == "FSIMG":
|
|
89
|
-
params = np.random.randn(5)
|
|
90
|
-
else:
|
|
91
|
-
params = ()
|
|
92
|
-
|
|
93
|
-
circ.apply_gate(gate, *params, qi, qj)
|
|
94
|
-
|
|
95
|
-
return circ
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
def example_openqasm2_qft():
|
|
99
|
-
return """
|
|
100
|
-
// quantum Fourier transform
|
|
101
|
-
|
|
102
|
-
OPENQASM 2.0;
|
|
103
|
-
include "qelib1.inc";
|
|
104
|
-
|
|
105
|
-
qreg q[4];
|
|
106
|
-
creg c[4];
|
|
107
|
-
x q[0];
|
|
108
|
-
x q[2];
|
|
109
|
-
barrier q;
|
|
110
|
-
h q[0];
|
|
111
|
-
cu1(pi/2) q[1],q[0];
|
|
112
|
-
h q[1];
|
|
113
|
-
cu1(pi/4) q[2],q[0];
|
|
114
|
-
cu1(pi/2) q[2],q[1];
|
|
115
|
-
/*
|
|
116
|
-
This is a multi line comment.
|
|
117
|
-
*/
|
|
118
|
-
h q[2];
|
|
119
|
-
cu1(pi/8) q[3],q[0];
|
|
120
|
-
cu1(pi/4) q[3],q[1];
|
|
121
|
-
cu1(pi/2) q[3],q[2];
|
|
122
|
-
h q[3];
|
|
123
|
-
|
|
124
|
-
measure q -> c;
|
|
125
|
-
"""
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
class TestCircuit:
|
|
129
|
-
def test_prepare_GHZ(self):
|
|
130
|
-
qc = qtn.Circuit(3)
|
|
131
|
-
gates = [
|
|
132
|
-
("H", 0),
|
|
133
|
-
("H", 1),
|
|
134
|
-
("CNOT", 1, 2),
|
|
135
|
-
("CNOT", 0, 2),
|
|
136
|
-
("H", 0),
|
|
137
|
-
("H", 1),
|
|
138
|
-
("H", 2),
|
|
139
|
-
]
|
|
140
|
-
qc.apply_gates(gates)
|
|
141
|
-
assert qu.expec(qc.psi.to_dense(), qu.ghz_state(3)) == pytest.approx(1)
|
|
142
|
-
counts = qc.simulate_counts(1024)
|
|
143
|
-
assert len(counts) == 2
|
|
144
|
-
assert "000" in counts
|
|
145
|
-
assert "111" in counts
|
|
146
|
-
assert counts["000"] + counts["111"] == 1024
|
|
147
|
-
|
|
148
|
-
def test_from_qsim(self):
|
|
149
|
-
G = rand_reg_graph(reg=3, n=18, seed=42)
|
|
150
|
-
qsim = graph_to_qsim(G)
|
|
151
|
-
qc = qtn.Circuit.from_qsim_str(qsim)
|
|
152
|
-
assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
|
|
153
|
-
|
|
154
|
-
def test_from_openqasm2(self):
|
|
155
|
-
qc = qtn.Circuit.from_openqasm2_str(example_openqasm2_qft())
|
|
156
|
-
assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
|
|
157
|
-
|
|
158
|
-
def test_openqasm2_custom_gates(self):
|
|
159
|
-
circ = qtn.Circuit.from_openqasm2_str(
|
|
160
|
-
"""
|
|
161
|
-
OPENQASM 2.0;
|
|
162
|
-
include "qelib1.inc";
|
|
163
|
-
qreg q[3];
|
|
164
|
-
|
|
165
|
-
gate hello a, b {
|
|
166
|
-
h a;
|
|
167
|
-
cx a, b;
|
|
168
|
-
u3(0.1, 0.2, 0.3) b;
|
|
169
|
-
}
|
|
170
|
-
|
|
171
|
-
gate world(param1, θ) q
|
|
172
|
-
{
|
|
173
|
-
u2(θ / 2, param1) q;
|
|
174
|
-
u2(param1, θ / 2) q;
|
|
175
|
-
}
|
|
176
|
-
|
|
177
|
-
hello q[0], q[1];
|
|
178
|
-
world(0.1, 0.2) q[2];
|
|
179
|
-
hello q[2], q[1];
|
|
180
|
-
"""
|
|
181
|
-
)
|
|
182
|
-
assert [g.label for g in circ.gates] == [
|
|
183
|
-
"H",
|
|
184
|
-
"CX",
|
|
185
|
-
"U3",
|
|
186
|
-
"U2",
|
|
187
|
-
"U2",
|
|
188
|
-
"H",
|
|
189
|
-
"CX",
|
|
190
|
-
"U3",
|
|
191
|
-
]
|
|
192
|
-
|
|
193
|
-
def test_openqasm2_custom_nested_gates(self):
|
|
194
|
-
circ = qtn.Circuit.from_openqasm2_str(
|
|
195
|
-
"""
|
|
196
|
-
OPENQASM 2.0;
|
|
197
|
-
include "qelib1.inc";
|
|
198
|
-
qreg q[3];
|
|
199
|
-
|
|
200
|
-
gate cphase(θ) a, b
|
|
201
|
-
{
|
|
202
|
-
U3(0, 0, θ / 2) a;
|
|
203
|
-
CX a, b;
|
|
204
|
-
U3(0, 0, -θ / 2) b;
|
|
205
|
-
CX a, b;
|
|
206
|
-
U3(0, 0, θ / 2) b;
|
|
207
|
-
}
|
|
208
|
-
|
|
209
|
-
gate doublecphase(θ) a, b, c {
|
|
210
|
-
cphase(θ) a, b;
|
|
211
|
-
cphase(θ) b, c;
|
|
212
|
-
}
|
|
213
|
-
|
|
214
|
-
doublecphase(0.1) q[0], q[1], q[2];
|
|
215
|
-
doublecphase(0.2) q[2], q[0], q[1];
|
|
216
|
-
"""
|
|
217
|
-
)
|
|
218
|
-
assert [g.label for g in circ.gates] == [
|
|
219
|
-
"U3",
|
|
220
|
-
"CX",
|
|
221
|
-
"U3",
|
|
222
|
-
"CX",
|
|
223
|
-
"U3",
|
|
224
|
-
] * 4
|
|
225
|
-
|
|
226
|
-
@pytest.mark.parametrize(
|
|
227
|
-
"Circ", [qtn.Circuit, qtn.CircuitMPS, qtn.CircuitDense]
|
|
228
|
-
)
|
|
229
|
-
def test_all_gate_methods(self, Circ):
|
|
230
|
-
import random
|
|
231
|
-
|
|
232
|
-
g_nq_np = [
|
|
233
|
-
# single qubit
|
|
234
|
-
("x", 1, 0),
|
|
235
|
-
("y", 1, 0),
|
|
236
|
-
("z", 1, 0),
|
|
237
|
-
("s", 1, 0),
|
|
238
|
-
("t", 1, 0),
|
|
239
|
-
("h", 1, 0),
|
|
240
|
-
("iden", 1, 0),
|
|
241
|
-
("x_1_2", 1, 0),
|
|
242
|
-
("y_1_2", 1, 0),
|
|
243
|
-
("z_1_2", 1, 0),
|
|
244
|
-
("w_1_2", 1, 0),
|
|
245
|
-
("hz_1_2", 1, 0),
|
|
246
|
-
# single qubit parametrizable
|
|
247
|
-
("rx", 1, 1),
|
|
248
|
-
("ry", 1, 1),
|
|
249
|
-
("rz", 1, 1),
|
|
250
|
-
("u3", 1, 3),
|
|
251
|
-
("u2", 1, 2),
|
|
252
|
-
("u1", 1, 1),
|
|
253
|
-
("phase", 1, 1),
|
|
254
|
-
# two qubit
|
|
255
|
-
("cx", 2, 0),
|
|
256
|
-
("cy", 2, 0),
|
|
257
|
-
("cz", 2, 0),
|
|
258
|
-
("cnot", 2, 0),
|
|
259
|
-
("swap", 2, 0),
|
|
260
|
-
("iswap", 2, 0),
|
|
261
|
-
# two qubit parametrizable
|
|
262
|
-
("rxx", 2, 1),
|
|
263
|
-
("ryy", 2, 1),
|
|
264
|
-
("rzz", 2, 1),
|
|
265
|
-
("crx", 2, 1),
|
|
266
|
-
("cry", 2, 1),
|
|
267
|
-
("crz", 2, 1),
|
|
268
|
-
("cu3", 2, 3),
|
|
269
|
-
("cu2", 2, 2),
|
|
270
|
-
("cu1", 2, 1),
|
|
271
|
-
("cphase", 2, 1),
|
|
272
|
-
("fsim", 2, 2),
|
|
273
|
-
("fsimg", 2, 5),
|
|
274
|
-
("givens", 2, 1),
|
|
275
|
-
("givens2", 2, 2),
|
|
276
|
-
("su4", 2, 15),
|
|
277
|
-
]
|
|
278
|
-
random.shuffle(g_nq_np)
|
|
279
|
-
|
|
280
|
-
psi0 = qtn.MPS_rand_state(2, 2)
|
|
281
|
-
circ = Circ(2, psi0=psi0, tags="PSI0")
|
|
282
|
-
|
|
283
|
-
for g, n_q, n_p in g_nq_np:
|
|
284
|
-
args = [
|
|
285
|
-
*np.random.uniform(0, 2 * np.pi, size=n_p),
|
|
286
|
-
*np.random.choice([0, 1], replace=False, size=n_q),
|
|
287
|
-
]
|
|
288
|
-
getattr(circ, g)(*args)
|
|
289
|
-
|
|
290
|
-
assert circ.psi.H @ circ.psi == pytest.approx(1.0)
|
|
291
|
-
assert abs((circ.psi.H & psi0) ^ all) < 0.99999999
|
|
292
|
-
|
|
293
|
-
def test_su4(self):
|
|
294
|
-
psi0 = qtn.MPS_rand_state(2, 2)
|
|
295
|
-
circ_a = qtn.Circuit(psi0=psi0)
|
|
296
|
-
params = qu.randn(15)
|
|
297
|
-
|
|
298
|
-
circ_a.su4(*params, 0, 1)
|
|
299
|
-
psi_a = circ_a.to_dense()
|
|
300
|
-
|
|
301
|
-
circ_b = qtn.Circuit(psi0=psi0)
|
|
302
|
-
(
|
|
303
|
-
theta1,
|
|
304
|
-
phi1,
|
|
305
|
-
lamda1,
|
|
306
|
-
theta2,
|
|
307
|
-
phi2,
|
|
308
|
-
lamda2,
|
|
309
|
-
theta3,
|
|
310
|
-
phi3,
|
|
311
|
-
lamda3,
|
|
312
|
-
theta4,
|
|
313
|
-
phi4,
|
|
314
|
-
lamda4,
|
|
315
|
-
t1,
|
|
316
|
-
t2,
|
|
317
|
-
t3,
|
|
318
|
-
) = params
|
|
319
|
-
circ_b.u3(theta1, phi1, lamda1, 0)
|
|
320
|
-
circ_b.u3(theta2, phi2, lamda2, 1)
|
|
321
|
-
circ_b.cnot(1, 0)
|
|
322
|
-
circ_b.rz(t1, 0)
|
|
323
|
-
circ_b.ry(t2, 1)
|
|
324
|
-
circ_b.cnot(0, 1)
|
|
325
|
-
circ_b.ry(t3, 1)
|
|
326
|
-
circ_b.cnot(1, 0)
|
|
327
|
-
circ_b.u3(theta3, phi3, lamda3, 0)
|
|
328
|
-
circ_b.u3(theta4, phi4, lamda4, 1)
|
|
329
|
-
psi_b = circ_b.to_dense()
|
|
330
|
-
|
|
331
|
-
assert qu.fidelity(psi_a, psi_b) == pytest.approx(1.0)
|
|
332
|
-
|
|
333
|
-
def test_three_qubit_gates(self):
|
|
334
|
-
psi0 = qtn.MPS_rand_state(3, 2)
|
|
335
|
-
circ = qtn.Circuit(psi0=psi0)
|
|
336
|
-
circ.ccx(0, 1, 2)
|
|
337
|
-
circ.cswap(2, 1, 0)
|
|
338
|
-
circ.toffoli(0, 1, 2)
|
|
339
|
-
circ.ccy(1, 0, 2)
|
|
340
|
-
circ.ccz(1, 2, 0)
|
|
341
|
-
circ.fredkin(2, 1, 0)
|
|
342
|
-
psi = circ.psi.to_dense()
|
|
343
|
-
assert qu.expec(psi, psi) == pytest.approx(1.0)
|
|
344
|
-
|
|
345
|
-
def test_auto_split_gate(self):
|
|
346
|
-
n = 3
|
|
347
|
-
ops = [
|
|
348
|
-
("u3", 1.0, 2.0, 3.0, 0),
|
|
349
|
-
("u3", 2.0, 3.0, 1.0, 1),
|
|
350
|
-
("u3", 3.0, 1.0, 2.0, 2),
|
|
351
|
-
("cz", 0, 1),
|
|
352
|
-
("iswap", 1, 2),
|
|
353
|
-
("cx", 2, 0),
|
|
354
|
-
("iswap", 2, 1),
|
|
355
|
-
("h", 0),
|
|
356
|
-
("h", 1),
|
|
357
|
-
("h", 2),
|
|
358
|
-
]
|
|
359
|
-
cnorm = qtn.Circuit(n, gate_opts=dict(contract="split-gate"))
|
|
360
|
-
cnorm.apply_gates(ops)
|
|
361
|
-
assert cnorm.psi.max_bond() == 4
|
|
362
|
-
|
|
363
|
-
cswap = qtn.Circuit(n, gate_opts=dict(contract="swap-split-gate"))
|
|
364
|
-
cswap.apply_gates(ops)
|
|
365
|
-
assert cswap.psi.max_bond() == 4
|
|
366
|
-
|
|
367
|
-
cauto = qtn.Circuit(n, gate_opts=dict(contract="auto-split-gate"))
|
|
368
|
-
cauto.apply_gates(ops)
|
|
369
|
-
assert cauto.psi.max_bond() == 2
|
|
370
|
-
|
|
371
|
-
assert qu.fidelity(
|
|
372
|
-
cnorm.psi.to_dense(), cswap.psi.to_dense()
|
|
373
|
-
) == pytest.approx(1.0)
|
|
374
|
-
assert qu.fidelity(
|
|
375
|
-
cswap.psi.to_dense(), cauto.psi.to_dense()
|
|
376
|
-
) == pytest.approx(1.0)
|
|
377
|
-
|
|
378
|
-
@pytest.mark.parametrize("gate2", ["cx", "iswap"])
|
|
379
|
-
def test_circuit_simplify_tensor_network(self, gate2):
|
|
380
|
-
import random
|
|
381
|
-
import itertools
|
|
382
|
-
|
|
383
|
-
depth = n = 8
|
|
384
|
-
|
|
385
|
-
circ = qtn.Circuit(n)
|
|
386
|
-
|
|
387
|
-
def random_single_qubit_layer():
|
|
388
|
-
return [
|
|
389
|
-
(random.choice(["X_1_2", "Y_1_2", "W_1_2"]), i)
|
|
390
|
-
for i in range(n)
|
|
391
|
-
]
|
|
392
|
-
|
|
393
|
-
def even_two_qubit_layer():
|
|
394
|
-
return [(gate2, i, i + 1) for i in range(0, n, 2)]
|
|
395
|
-
|
|
396
|
-
def odd_two_qubit_layer():
|
|
397
|
-
return [(gate2, i, i + 1) for i in range(1, n - 1, 2)]
|
|
398
|
-
|
|
399
|
-
layering = itertools.cycle(
|
|
400
|
-
[
|
|
401
|
-
random_single_qubit_layer,
|
|
402
|
-
even_two_qubit_layer,
|
|
403
|
-
random_single_qubit_layer,
|
|
404
|
-
odd_two_qubit_layer,
|
|
405
|
-
]
|
|
406
|
-
)
|
|
407
|
-
|
|
408
|
-
for i, layer_fn in zip(range(depth), layering):
|
|
409
|
-
for g in layer_fn():
|
|
410
|
-
circ.apply_gate(*g, gate_round=i)
|
|
411
|
-
|
|
412
|
-
psif = qtn.MPS_computational_state("0" * n).squeeze_()
|
|
413
|
-
tn = circ.psi & psif
|
|
414
|
-
|
|
415
|
-
c = tn.contract(all)
|
|
416
|
-
cw = tn.contraction_width()
|
|
417
|
-
|
|
418
|
-
tn_s = tn.full_simplify()
|
|
419
|
-
assert tn_s.num_tensors < tn.num_tensors
|
|
420
|
-
assert tn_s.num_indices < tn.num_indices
|
|
421
|
-
# need to specify output inds since we now have hyper edges
|
|
422
|
-
c_s = tn_s.contract(all, output_inds=[])
|
|
423
|
-
assert c_s == pytest.approx(c)
|
|
424
|
-
cw_s = tn_s.contraction_width(output_inds=[])
|
|
425
|
-
assert cw_s <= cw
|
|
426
|
-
|
|
427
|
-
def test_amplitude(self):
|
|
428
|
-
L = 5
|
|
429
|
-
circ = random_a2a_circ(L, 3)
|
|
430
|
-
psi = circ.to_dense()
|
|
431
|
-
|
|
432
|
-
for i in range(2**L):
|
|
433
|
-
b = f"{i:0>{L}b}"
|
|
434
|
-
c = circ.amplitude(b)
|
|
435
|
-
assert c == pytest.approx(psi[i, 0])
|
|
436
|
-
|
|
437
|
-
def test_partial_trace(self):
|
|
438
|
-
L = 5
|
|
439
|
-
circ = random_a2a_circ(L, 3)
|
|
440
|
-
psi = circ.to_dense()
|
|
441
|
-
for i in range(L - 1):
|
|
442
|
-
keep = (i, i + 1)
|
|
443
|
-
assert_allclose(
|
|
444
|
-
qu.partial_trace(psi, [2] * 5, keep=keep),
|
|
445
|
-
circ.partial_trace(keep),
|
|
446
|
-
atol=1e-12,
|
|
447
|
-
)
|
|
448
|
-
|
|
449
|
-
@pytest.mark.parametrize("group_size", (1, 2, 6))
|
|
450
|
-
def test_sample(self, group_size):
|
|
451
|
-
import collections
|
|
452
|
-
from scipy.stats import power_divergence
|
|
453
|
-
|
|
454
|
-
C = 2**10
|
|
455
|
-
L = 5
|
|
456
|
-
circ = random_a2a_circ(L, 3)
|
|
457
|
-
|
|
458
|
-
psi = circ.to_dense()
|
|
459
|
-
p_exp = abs(psi.reshape(-1)) ** 2
|
|
460
|
-
f_exp = p_exp * C
|
|
461
|
-
|
|
462
|
-
counts = collections.Counter(circ.sample(C, group_size=group_size))
|
|
463
|
-
f_obs = np.zeros(2**L)
|
|
464
|
-
for b, c in counts.items():
|
|
465
|
-
f_obs[int(b, 2)] = c
|
|
466
|
-
|
|
467
|
-
assert power_divergence(f_obs, f_exp)[0] < 100
|
|
468
|
-
|
|
469
|
-
@pytest.mark.parametrize("group_size", (1, 3))
|
|
470
|
-
def test_sample_gate_by_gate(self, group_size):
|
|
471
|
-
import collections
|
|
472
|
-
from scipy.stats import power_divergence
|
|
473
|
-
|
|
474
|
-
C = 2**10
|
|
475
|
-
L = 5
|
|
476
|
-
circ = random_a2a_circ(L, 3)
|
|
477
|
-
|
|
478
|
-
psi = circ.to_dense()
|
|
479
|
-
p_exp = abs(psi.reshape(-1)) ** 2
|
|
480
|
-
f_exp = p_exp * C
|
|
481
|
-
|
|
482
|
-
counts = collections.Counter(
|
|
483
|
-
circ.sample_gate_by_gate(C, group_size=group_size)
|
|
484
|
-
)
|
|
485
|
-
f_obs = np.zeros(2**L)
|
|
486
|
-
for b, c in counts.items():
|
|
487
|
-
f_obs[int(b, 2)] = c
|
|
488
|
-
|
|
489
|
-
assert power_divergence(f_obs, f_exp)[0] < 100
|
|
490
|
-
|
|
491
|
-
def test_sample_chaotic(self):
|
|
492
|
-
import collections
|
|
493
|
-
from scipy.stats import power_divergence
|
|
494
|
-
|
|
495
|
-
C = 2**12
|
|
496
|
-
L = 5
|
|
497
|
-
reps = 3
|
|
498
|
-
depth = 2
|
|
499
|
-
goodnesses = [0] * 5
|
|
500
|
-
|
|
501
|
-
for _ in range(reps):
|
|
502
|
-
circ = random_a2a_circ(L, depth)
|
|
503
|
-
|
|
504
|
-
psi = circ.to_dense()
|
|
505
|
-
p_exp = abs(psi.reshape(-1)) ** 2
|
|
506
|
-
f_exp = p_exp * C
|
|
507
|
-
|
|
508
|
-
for num_marginal in [3, 4, 5]:
|
|
509
|
-
counts = collections.Counter(
|
|
510
|
-
circ.sample_chaotic(C, num_marginal, seed=666)
|
|
511
|
-
)
|
|
512
|
-
f_obs = np.zeros(2**L)
|
|
513
|
-
for b, c in counts.items():
|
|
514
|
-
f_obs[int(b, 2)] = c
|
|
515
|
-
|
|
516
|
-
goodness = power_divergence(f_obs, f_exp)[0]
|
|
517
|
-
goodnesses[num_marginal - 1] += goodness
|
|
518
|
-
|
|
519
|
-
# assert average sampling goodness gets better with larger marginal
|
|
520
|
-
assert sum(goodnesses[i] < goodnesses[i - 1] for i in range(1, L)) == 2
|
|
521
|
-
|
|
522
|
-
def test_local_expectation(self):
|
|
523
|
-
import random
|
|
524
|
-
|
|
525
|
-
L = 5
|
|
526
|
-
depth = 3
|
|
527
|
-
circ = random_a2a_circ(L, depth)
|
|
528
|
-
psi = circ.to_dense()
|
|
529
|
-
for _ in range(10):
|
|
530
|
-
G = qu.rand_matrix(4)
|
|
531
|
-
i = random.randint(0, L - 2)
|
|
532
|
-
where = (i, i + 1)
|
|
533
|
-
x1 = qu.expec(qu.ikron(G, [2] * L, where), psi)
|
|
534
|
-
x2 = circ.local_expectation(G, where)
|
|
535
|
-
assert x1 == pytest.approx(x2)
|
|
536
|
-
|
|
537
|
-
def test_local_expectation_multigate(self):
|
|
538
|
-
circ = qtn.Circuit(2)
|
|
539
|
-
circ.h(0)
|
|
540
|
-
circ.cnot(0, 1)
|
|
541
|
-
circ.y(1)
|
|
542
|
-
Gs = [qu.kronpow(qu.pauli(s), 2) for s in "xyz"]
|
|
543
|
-
exps = circ.local_expectation(Gs, [0, 1])
|
|
544
|
-
assert exps[0] == pytest.approx(-1)
|
|
545
|
-
assert exps[1] == pytest.approx(-1)
|
|
546
|
-
assert exps[2] == pytest.approx(-1)
|
|
547
|
-
|
|
548
|
-
def test_local_expectation_len1(self):
|
|
549
|
-
circ = qtn.Circuit(1)
|
|
550
|
-
circ.apply_gate("H", 0, gate_round=0)
|
|
551
|
-
circ.local_expectation([qu.pauli("X")], (0,))
|
|
552
|
-
|
|
553
|
-
def test_uni_to_dense(self):
|
|
554
|
-
import cmath
|
|
555
|
-
|
|
556
|
-
circ = qft_circ(3)
|
|
557
|
-
U = circ.uni.to_dense()
|
|
558
|
-
w = cmath.exp(2j * math.pi / 2**3)
|
|
559
|
-
ex = 2 ** (-3 / 2) * np.array(
|
|
560
|
-
[
|
|
561
|
-
[w**0, w**0, w**0, w**0, w**0, w**0, w**0, w**0],
|
|
562
|
-
[w**0, w**1, w**2, w**3, w**4, w**5, w**6, w**7],
|
|
563
|
-
[w**0, w**2, w**4, w**6, w**0, w**2, w**4, w**6],
|
|
564
|
-
[w**0, w**3, w**6, w**1, w**4, w**7, w**2, w**5],
|
|
565
|
-
[w**0, w**4, w**0, w**4, w**0, w**4, w**0, w**4],
|
|
566
|
-
[w**0, w**5, w**2, w**7, w**4, w**1, w**6, w**3],
|
|
567
|
-
[w**0, w**6, w**4, w**2, w**0, w**6, w**4, w**2],
|
|
568
|
-
[w**0, w**7, w**6, w**5, w**4, w**3, w**2, w**1],
|
|
569
|
-
]
|
|
570
|
-
)
|
|
571
|
-
assert_allclose(U, ex)
|
|
572
|
-
|
|
573
|
-
def test_swap_lighcones(self):
|
|
574
|
-
circ = qtn.Circuit(3)
|
|
575
|
-
circ.x(0) # 0
|
|
576
|
-
circ.x(1) # 1
|
|
577
|
-
circ.x(2) # 2
|
|
578
|
-
circ.swap(0, 1) # 3
|
|
579
|
-
circ.cx(1, 2) # 4
|
|
580
|
-
circ.cx(0, 1) # 5
|
|
581
|
-
assert circ.get_reverse_lightcone_tags((2,)) == (
|
|
582
|
-
"PSI0",
|
|
583
|
-
"GATE_0",
|
|
584
|
-
"GATE_2",
|
|
585
|
-
"GATE_4",
|
|
586
|
-
)
|
|
587
|
-
|
|
588
|
-
def test_swappy_local_expecs(self):
|
|
589
|
-
circ = swappy_circ(4, 4)
|
|
590
|
-
Gs = [qu.rand_matrix(4) for _ in range(3)]
|
|
591
|
-
pairs = [(0, 1), (1, 2), (2, 3)]
|
|
592
|
-
|
|
593
|
-
psi = circ.to_dense()
|
|
594
|
-
dims = [2] * 4
|
|
595
|
-
|
|
596
|
-
exs = [
|
|
597
|
-
qu.expec(qu.ikron(G, dims, pair), psi)
|
|
598
|
-
for G, pair in zip(Gs, pairs)
|
|
599
|
-
]
|
|
600
|
-
aps = [circ.local_expectation(G, pair) for G, pair in zip(Gs, pairs)]
|
|
601
|
-
|
|
602
|
-
assert_allclose(exs, aps)
|
|
603
|
-
|
|
604
|
-
@pytest.mark.parametrize(
|
|
605
|
-
"name, densefn, nparam, nqubit",
|
|
606
|
-
[
|
|
607
|
-
("rx", qu.Rx, 1, 1),
|
|
608
|
-
("ry", qu.Ry, 1, 1),
|
|
609
|
-
("rz", qu.Rz, 1, 1),
|
|
610
|
-
("u3", qu.U_gate, 3, 1),
|
|
611
|
-
("fsim", qu.fsim, 2, 2),
|
|
612
|
-
("fsimg", qu.fsimg, 5, 2),
|
|
613
|
-
],
|
|
614
|
-
)
|
|
615
|
-
def test_parametrized_gates_rx(self, name, densefn, nparam, nqubit):
|
|
616
|
-
k0 = qu.rand_ket(2**nqubit)
|
|
617
|
-
params = qu.randn(nparam)
|
|
618
|
-
kf = densefn(*params) @ k0
|
|
619
|
-
k0mps = qtn.MatrixProductState.from_dense(k0, [2] * nqubit)
|
|
620
|
-
circ = qtn.Circuit(psi0=k0mps, gate_opts={"contract": False})
|
|
621
|
-
getattr(circ, name)(*params, *range(nqubit), parametrize=True)
|
|
622
|
-
tn = circ.psi
|
|
623
|
-
assert isinstance(tn["GATE_0"], qtn.PTensor)
|
|
624
|
-
assert_allclose(circ.to_dense(), kf)
|
|
625
|
-
|
|
626
|
-
def test_apply_raw_gate(self):
|
|
627
|
-
k0 = qu.rand_ket(4)
|
|
628
|
-
psi0 = qtn.MatrixProductState.from_dense(k0, [2] * 2)
|
|
629
|
-
circ = qtn.Circuit(psi0=psi0)
|
|
630
|
-
U = qu.rand_uni(4)
|
|
631
|
-
circ.apply_gate_raw(U, [0, 1], tags="UCUSTOM")
|
|
632
|
-
assert len(circ.gates) == 1
|
|
633
|
-
assert "UCUSTOM" in circ.psi.tags
|
|
634
|
-
assert qu.fidelity(circ.to_dense(), U @ k0) == pytest.approx(1)
|
|
635
|
-
|
|
636
|
-
def test_apply_controlled_gate_basic_equiv(self):
|
|
637
|
-
circ = qtn.Circuit(3)
|
|
638
|
-
circ.apply_gate("x", qubits=(2,), controls=(0, 1))
|
|
639
|
-
U = circ.get_uni().to_dense()
|
|
640
|
-
assert_allclose(U, qu.toffoli())
|
|
641
|
-
|
|
642
|
-
circ = qtn.Circuit(3)
|
|
643
|
-
circ.apply_gate("swap", qubits=(1, 2), controls=(0,))
|
|
644
|
-
U = circ.get_uni().to_dense()
|
|
645
|
-
assert_allclose(U, qu.fredkin())
|
|
646
|
-
|
|
647
|
-
def test_multi_controlled_circuit(self):
|
|
648
|
-
import random
|
|
649
|
-
|
|
650
|
-
N = 10
|
|
651
|
-
circ = qtn.Circuit(N)
|
|
652
|
-
regs = list(range(N))
|
|
653
|
-
random.shuffle(regs)
|
|
654
|
-
circ.apply_gate("H", regs[0])
|
|
655
|
-
for i in range(N - 1):
|
|
656
|
-
circ.apply_gate("CNOT", regs[i], regs[i + 1])
|
|
657
|
-
circ.apply_gate("X", N - 1, controls=range(N - 1))
|
|
658
|
-
circ.apply_gate("SWAP", qubits=(N - 2, N - 1), controls=range(N - 2))
|
|
659
|
-
(b,) = circ.sample(1, group_size=3)
|
|
660
|
-
assert b[N - 2] == "0"
|
|
661
|
-
|
|
662
|
-
|
|
663
|
-
class TestCircuitMPS:
|
|
664
|
-
def test_from_qsim_mps_swapsplit(self):
|
|
665
|
-
G = rand_reg_graph(reg=3, n=18, seed=42)
|
|
666
|
-
qsim = graph_to_qsim(G)
|
|
667
|
-
qc = qtn.CircuitMPS.from_qsim_str(qsim)
|
|
668
|
-
assert len(qc.psi.tensors) == 18
|
|
669
|
-
assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
|
|
670
|
-
|
|
671
|
-
def test_multi_controlled_mps_circuit(self):
|
|
672
|
-
N = 10
|
|
673
|
-
rng = np.random.default_rng(42)
|
|
674
|
-
|
|
675
|
-
gates = []
|
|
676
|
-
for i in range(N):
|
|
677
|
-
gates.append(
|
|
678
|
-
qtn.Gate(
|
|
679
|
-
"U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
|
|
680
|
-
)
|
|
681
|
-
)
|
|
682
|
-
gates.append(
|
|
683
|
-
qtn.Gate(
|
|
684
|
-
"SU4",
|
|
685
|
-
params=rng.uniform(0, 2 * np.pi, size=15),
|
|
686
|
-
qubits=[6, 2],
|
|
687
|
-
controls=[8, 3, 4, 0],
|
|
688
|
-
)
|
|
689
|
-
)
|
|
690
|
-
for i in range(N):
|
|
691
|
-
gates.append(
|
|
692
|
-
qtn.Gate(
|
|
693
|
-
"U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
|
|
694
|
-
)
|
|
695
|
-
)
|
|
696
|
-
gates.append(
|
|
697
|
-
qtn.Gate.from_raw(
|
|
698
|
-
qu.rand_uni(2**3), qubits=[0, 9, 5], controls=[1, 2, 7]
|
|
699
|
-
)
|
|
700
|
-
)
|
|
701
|
-
|
|
702
|
-
circ = qtn.Circuit(N=10)
|
|
703
|
-
circ.apply_gates(gates)
|
|
704
|
-
psi_lazy = circ.psi
|
|
705
|
-
circ = qtn.CircuitMPS(N=10)
|
|
706
|
-
circ.apply_gates(gates)
|
|
707
|
-
mps = circ.psi
|
|
708
|
-
assert mps.norm() == pytest.approx(1.0)
|
|
709
|
-
assert mps.distance_normalized(psi_lazy) < 1e-6
|
|
710
|
-
|
|
711
|
-
def test_mps_sampling(self):
|
|
712
|
-
N = 6
|
|
713
|
-
circ = qtn.CircuitMPS(N)
|
|
714
|
-
circ.h(3)
|
|
715
|
-
circ.cx(3, 2)
|
|
716
|
-
circ.cx(2, 1)
|
|
717
|
-
circ.cx(1, 0)
|
|
718
|
-
circ.cx(0, 5)
|
|
719
|
-
circ.cx(5, 4)
|
|
720
|
-
circ.x(4)
|
|
721
|
-
for x in circ.sample(10):
|
|
722
|
-
assert x in {"000010", "111101"}
|
|
723
|
-
|
|
724
|
-
def test_mps_sampling_seed(self):
|
|
725
|
-
N = 1
|
|
726
|
-
circ = qtn.CircuitMPS(N)
|
|
727
|
-
circ.h(0)
|
|
728
|
-
samples = list(circ.sample(10, seed=1234))
|
|
729
|
-
assert len(set(samples)) == 2
|
|
730
|
-
|
|
731
|
-
def test_permmps_sampling(self):
|
|
732
|
-
N = 6
|
|
733
|
-
circ = qtn.CircuitPermMPS(N)
|
|
734
|
-
circ.h(3)
|
|
735
|
-
circ.cx(3, 2)
|
|
736
|
-
circ.cx(2, 1)
|
|
737
|
-
circ.cx(1, 0)
|
|
738
|
-
circ.cx(0, 5)
|
|
739
|
-
circ.cx(5, 4)
|
|
740
|
-
circ.x(4)
|
|
741
|
-
assert circ.qubits != tuple(range(N))
|
|
742
|
-
for x in circ.sample(10):
|
|
743
|
-
assert x in {"000010", "111101"}
|
|
744
|
-
|
|
745
|
-
def test_permmps_sampling_seed(self):
|
|
746
|
-
N = 1
|
|
747
|
-
circ = qtn.CircuitPermMPS(N)
|
|
748
|
-
circ.h(0)
|
|
749
|
-
samples = list(circ.sample(10, seed=1234))
|
|
750
|
-
assert len(set(samples)) == 2
|
|
751
|
-
|
|
752
|
-
|
|
753
|
-
class TestCircuitGen:
|
|
754
|
-
@pytest.mark.parametrize(
|
|
755
|
-
"ansatz,cyclic",
|
|
756
|
-
[
|
|
757
|
-
("zigzag", False),
|
|
758
|
-
("brickwork", False),
|
|
759
|
-
("brickwork", True),
|
|
760
|
-
("rand", False),
|
|
761
|
-
("rand", True),
|
|
762
|
-
],
|
|
763
|
-
)
|
|
764
|
-
@pytest.mark.parametrize("n", [4, 5])
|
|
765
|
-
def test_1D_ansatzes(self, ansatz, cyclic, n):
|
|
766
|
-
depth = 3
|
|
767
|
-
num_pairs = n if cyclic else n - 1
|
|
768
|
-
|
|
769
|
-
fn = {
|
|
770
|
-
"zigzag": qtn.circ_ansatz_1D_zigzag,
|
|
771
|
-
"brickwork": qtn.circ_ansatz_1D_brickwork,
|
|
772
|
-
"rand": qtn.circ_ansatz_1D_rand,
|
|
773
|
-
}[ansatz]
|
|
774
|
-
|
|
775
|
-
opts = dict(
|
|
776
|
-
n=n,
|
|
777
|
-
depth=3,
|
|
778
|
-
gate_opts=dict(contract=False),
|
|
779
|
-
)
|
|
780
|
-
if cyclic:
|
|
781
|
-
opts["cyclic"] = True
|
|
782
|
-
if ansatz == "rand":
|
|
783
|
-
opts["seed"] = 42
|
|
784
|
-
|
|
785
|
-
circ = fn(**opts)
|
|
786
|
-
tn = circ.uni
|
|
787
|
-
|
|
788
|
-
# total number of entangling gates
|
|
789
|
-
assert len(tn["CZ"]) == num_pairs * depth
|
|
790
|
-
|
|
791
|
-
# number of entangling gates per pair
|
|
792
|
-
for i in range(num_pairs):
|
|
793
|
-
assert len(tn["CZ", f"I{i}", f"I{(i + 1) % n}"]) == depth
|
|
794
|
-
|
|
795
|
-
assert all(isinstance(t, qtn.PTensor) for t in tn["U3"])
|
|
796
|
-
|
|
797
|
-
def test_qaoa(self):
|
|
798
|
-
G = rand_reg_graph(3, 10, seed=666)
|
|
799
|
-
terms = {(i, j): 1.0 for i, j in G.edges}
|
|
800
|
-
ZZ = qu.pauli("Z") & qu.pauli("Z")
|
|
801
|
-
|
|
802
|
-
gammas = [-0.6]
|
|
803
|
-
betas = [-0.4]
|
|
804
|
-
|
|
805
|
-
circ1 = qtn.circ_qaoa(terms, 1, gammas, betas)
|
|
806
|
-
|
|
807
|
-
energy1 = sum(circ1.local_expectation(ZZ, edge) for edge in terms)
|
|
808
|
-
assert energy1 < -4
|
|
809
|
-
|
|
810
|
-
gammas = [-0.4]
|
|
811
|
-
betas = [0.3]
|
|
812
|
-
|
|
813
|
-
circ2 = qtn.circ_qaoa(terms, 1, gammas, betas)
|
|
814
|
-
|
|
815
|
-
energy2 = sum(circ2.local_expectation(ZZ, edge) for edge in terms)
|
|
816
|
-
assert energy2 > 4
|