Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,816 +0,0 @@
1
- import math
2
- import itertools
3
-
4
- import pytest
5
- import numpy as np
6
- from numpy.testing import assert_allclose
7
-
8
- import quimb as qu
9
- import quimb.tensor as qtn
10
-
11
-
12
- def rand_reg_graph(reg, n, seed=None):
13
- import networkx as nx
14
-
15
- G = nx.random_regular_graph(reg, n, seed=seed)
16
- return G
17
-
18
-
19
- def graph_to_qsim(G, gamma0=-0.743043, beta0=0.754082):
20
- n = G.number_of_nodes()
21
-
22
- # add all the gates
23
- circ = f"{n}\n"
24
- for i in range(n):
25
- circ += f"H {i}\n"
26
- for i, j in G.edges:
27
- circ += f"Rzz {gamma0} {i} {j}\n"
28
- for i in range(n):
29
- circ += f"Rx {beta0} {i}\n"
30
-
31
- return circ
32
-
33
-
34
- def random_a2a_circ(L, depth, seed=42):
35
- rng = np.random.default_rng(seed)
36
-
37
- qubits = np.arange(L)
38
- gates = []
39
-
40
- for i in range(L):
41
- gates.append((0, "h", i))
42
-
43
- for d in range(depth):
44
- rng.shuffle(qubits)
45
-
46
- for i in range(0, L - 1, 2):
47
- g = rng.choice(["cx", "cy", "cz", "iswap"])
48
- gates.append((d, g, qubits[i], qubits[i + 1]))
49
-
50
- for q in qubits:
51
- g = rng.choice(["rx", "ry", "rz"])
52
- gates.append((d, g, rng.normal(1.0, 0.5), q))
53
-
54
- circ = qtn.Circuit(L)
55
- circ.apply_gates(gates)
56
-
57
- return circ
58
-
59
-
60
- def qft_circ(n, swaps=True, **circuit_opts):
61
- circ = qtn.Circuit(n, **circuit_opts)
62
-
63
- for i in range(n):
64
- circ.h(i)
65
- for j, m in zip(range(i + 1, n), itertools.count(2)):
66
- circ.cu1(2 * math.pi / 2**m, j, i)
67
-
68
- if swaps:
69
- for i in range(n // 2):
70
- circ.swap(i, n - i - 1)
71
-
72
- return circ
73
-
74
-
75
- def swappy_circ(n, depth):
76
- circ = qtn.Circuit(n)
77
-
78
- for d in range(depth):
79
- pairs = np.random.permutation(np.arange(n))
80
-
81
- for i in range(n // 2):
82
- qi = pairs[2 * i]
83
- qj = pairs[2 * i + 1]
84
-
85
- gate = np.random.choice(["FSIM", "SWAP"])
86
- if gate == "FSIM":
87
- params = np.random.randn(2)
88
- elif gate == "FSIMG":
89
- params = np.random.randn(5)
90
- else:
91
- params = ()
92
-
93
- circ.apply_gate(gate, *params, qi, qj)
94
-
95
- return circ
96
-
97
-
98
- def example_openqasm2_qft():
99
- return """
100
- // quantum Fourier transform
101
-
102
- OPENQASM 2.0;
103
- include "qelib1.inc";
104
-
105
- qreg q[4];
106
- creg c[4];
107
- x q[0];
108
- x q[2];
109
- barrier q;
110
- h q[0];
111
- cu1(pi/2) q[1],q[0];
112
- h q[1];
113
- cu1(pi/4) q[2],q[0];
114
- cu1(pi/2) q[2],q[1];
115
- /*
116
- This is a multi line comment.
117
- */
118
- h q[2];
119
- cu1(pi/8) q[3],q[0];
120
- cu1(pi/4) q[3],q[1];
121
- cu1(pi/2) q[3],q[2];
122
- h q[3];
123
-
124
- measure q -> c;
125
- """
126
-
127
-
128
- class TestCircuit:
129
- def test_prepare_GHZ(self):
130
- qc = qtn.Circuit(3)
131
- gates = [
132
- ("H", 0),
133
- ("H", 1),
134
- ("CNOT", 1, 2),
135
- ("CNOT", 0, 2),
136
- ("H", 0),
137
- ("H", 1),
138
- ("H", 2),
139
- ]
140
- qc.apply_gates(gates)
141
- assert qu.expec(qc.psi.to_dense(), qu.ghz_state(3)) == pytest.approx(1)
142
- counts = qc.simulate_counts(1024)
143
- assert len(counts) == 2
144
- assert "000" in counts
145
- assert "111" in counts
146
- assert counts["000"] + counts["111"] == 1024
147
-
148
- def test_from_qsim(self):
149
- G = rand_reg_graph(reg=3, n=18, seed=42)
150
- qsim = graph_to_qsim(G)
151
- qc = qtn.Circuit.from_qsim_str(qsim)
152
- assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
153
-
154
- def test_from_openqasm2(self):
155
- qc = qtn.Circuit.from_openqasm2_str(example_openqasm2_qft())
156
- assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
157
-
158
- def test_openqasm2_custom_gates(self):
159
- circ = qtn.Circuit.from_openqasm2_str(
160
- """
161
- OPENQASM 2.0;
162
- include "qelib1.inc";
163
- qreg q[3];
164
-
165
- gate hello a, b {
166
- h a;
167
- cx a, b;
168
- u3(0.1, 0.2, 0.3) b;
169
- }
170
-
171
- gate world(param1, θ) q
172
- {
173
- u2(θ / 2, param1) q;
174
- u2(param1, θ / 2) q;
175
- }
176
-
177
- hello q[0], q[1];
178
- world(0.1, 0.2) q[2];
179
- hello q[2], q[1];
180
- """
181
- )
182
- assert [g.label for g in circ.gates] == [
183
- "H",
184
- "CX",
185
- "U3",
186
- "U2",
187
- "U2",
188
- "H",
189
- "CX",
190
- "U3",
191
- ]
192
-
193
- def test_openqasm2_custom_nested_gates(self):
194
- circ = qtn.Circuit.from_openqasm2_str(
195
- """
196
- OPENQASM 2.0;
197
- include "qelib1.inc";
198
- qreg q[3];
199
-
200
- gate cphase(θ) a, b
201
- {
202
- U3(0, 0, θ / 2) a;
203
- CX a, b;
204
- U3(0, 0, -θ / 2) b;
205
- CX a, b;
206
- U3(0, 0, θ / 2) b;
207
- }
208
-
209
- gate doublecphase(θ) a, b, c {
210
- cphase(θ) a, b;
211
- cphase(θ) b, c;
212
- }
213
-
214
- doublecphase(0.1) q[0], q[1], q[2];
215
- doublecphase(0.2) q[2], q[0], q[1];
216
- """
217
- )
218
- assert [g.label for g in circ.gates] == [
219
- "U3",
220
- "CX",
221
- "U3",
222
- "CX",
223
- "U3",
224
- ] * 4
225
-
226
- @pytest.mark.parametrize(
227
- "Circ", [qtn.Circuit, qtn.CircuitMPS, qtn.CircuitDense]
228
- )
229
- def test_all_gate_methods(self, Circ):
230
- import random
231
-
232
- g_nq_np = [
233
- # single qubit
234
- ("x", 1, 0),
235
- ("y", 1, 0),
236
- ("z", 1, 0),
237
- ("s", 1, 0),
238
- ("t", 1, 0),
239
- ("h", 1, 0),
240
- ("iden", 1, 0),
241
- ("x_1_2", 1, 0),
242
- ("y_1_2", 1, 0),
243
- ("z_1_2", 1, 0),
244
- ("w_1_2", 1, 0),
245
- ("hz_1_2", 1, 0),
246
- # single qubit parametrizable
247
- ("rx", 1, 1),
248
- ("ry", 1, 1),
249
- ("rz", 1, 1),
250
- ("u3", 1, 3),
251
- ("u2", 1, 2),
252
- ("u1", 1, 1),
253
- ("phase", 1, 1),
254
- # two qubit
255
- ("cx", 2, 0),
256
- ("cy", 2, 0),
257
- ("cz", 2, 0),
258
- ("cnot", 2, 0),
259
- ("swap", 2, 0),
260
- ("iswap", 2, 0),
261
- # two qubit parametrizable
262
- ("rxx", 2, 1),
263
- ("ryy", 2, 1),
264
- ("rzz", 2, 1),
265
- ("crx", 2, 1),
266
- ("cry", 2, 1),
267
- ("crz", 2, 1),
268
- ("cu3", 2, 3),
269
- ("cu2", 2, 2),
270
- ("cu1", 2, 1),
271
- ("cphase", 2, 1),
272
- ("fsim", 2, 2),
273
- ("fsimg", 2, 5),
274
- ("givens", 2, 1),
275
- ("givens2", 2, 2),
276
- ("su4", 2, 15),
277
- ]
278
- random.shuffle(g_nq_np)
279
-
280
- psi0 = qtn.MPS_rand_state(2, 2)
281
- circ = Circ(2, psi0=psi0, tags="PSI0")
282
-
283
- for g, n_q, n_p in g_nq_np:
284
- args = [
285
- *np.random.uniform(0, 2 * np.pi, size=n_p),
286
- *np.random.choice([0, 1], replace=False, size=n_q),
287
- ]
288
- getattr(circ, g)(*args)
289
-
290
- assert circ.psi.H @ circ.psi == pytest.approx(1.0)
291
- assert abs((circ.psi.H & psi0) ^ all) < 0.99999999
292
-
293
- def test_su4(self):
294
- psi0 = qtn.MPS_rand_state(2, 2)
295
- circ_a = qtn.Circuit(psi0=psi0)
296
- params = qu.randn(15)
297
-
298
- circ_a.su4(*params, 0, 1)
299
- psi_a = circ_a.to_dense()
300
-
301
- circ_b = qtn.Circuit(psi0=psi0)
302
- (
303
- theta1,
304
- phi1,
305
- lamda1,
306
- theta2,
307
- phi2,
308
- lamda2,
309
- theta3,
310
- phi3,
311
- lamda3,
312
- theta4,
313
- phi4,
314
- lamda4,
315
- t1,
316
- t2,
317
- t3,
318
- ) = params
319
- circ_b.u3(theta1, phi1, lamda1, 0)
320
- circ_b.u3(theta2, phi2, lamda2, 1)
321
- circ_b.cnot(1, 0)
322
- circ_b.rz(t1, 0)
323
- circ_b.ry(t2, 1)
324
- circ_b.cnot(0, 1)
325
- circ_b.ry(t3, 1)
326
- circ_b.cnot(1, 0)
327
- circ_b.u3(theta3, phi3, lamda3, 0)
328
- circ_b.u3(theta4, phi4, lamda4, 1)
329
- psi_b = circ_b.to_dense()
330
-
331
- assert qu.fidelity(psi_a, psi_b) == pytest.approx(1.0)
332
-
333
- def test_three_qubit_gates(self):
334
- psi0 = qtn.MPS_rand_state(3, 2)
335
- circ = qtn.Circuit(psi0=psi0)
336
- circ.ccx(0, 1, 2)
337
- circ.cswap(2, 1, 0)
338
- circ.toffoli(0, 1, 2)
339
- circ.ccy(1, 0, 2)
340
- circ.ccz(1, 2, 0)
341
- circ.fredkin(2, 1, 0)
342
- psi = circ.psi.to_dense()
343
- assert qu.expec(psi, psi) == pytest.approx(1.0)
344
-
345
- def test_auto_split_gate(self):
346
- n = 3
347
- ops = [
348
- ("u3", 1.0, 2.0, 3.0, 0),
349
- ("u3", 2.0, 3.0, 1.0, 1),
350
- ("u3", 3.0, 1.0, 2.0, 2),
351
- ("cz", 0, 1),
352
- ("iswap", 1, 2),
353
- ("cx", 2, 0),
354
- ("iswap", 2, 1),
355
- ("h", 0),
356
- ("h", 1),
357
- ("h", 2),
358
- ]
359
- cnorm = qtn.Circuit(n, gate_opts=dict(contract="split-gate"))
360
- cnorm.apply_gates(ops)
361
- assert cnorm.psi.max_bond() == 4
362
-
363
- cswap = qtn.Circuit(n, gate_opts=dict(contract="swap-split-gate"))
364
- cswap.apply_gates(ops)
365
- assert cswap.psi.max_bond() == 4
366
-
367
- cauto = qtn.Circuit(n, gate_opts=dict(contract="auto-split-gate"))
368
- cauto.apply_gates(ops)
369
- assert cauto.psi.max_bond() == 2
370
-
371
- assert qu.fidelity(
372
- cnorm.psi.to_dense(), cswap.psi.to_dense()
373
- ) == pytest.approx(1.0)
374
- assert qu.fidelity(
375
- cswap.psi.to_dense(), cauto.psi.to_dense()
376
- ) == pytest.approx(1.0)
377
-
378
- @pytest.mark.parametrize("gate2", ["cx", "iswap"])
379
- def test_circuit_simplify_tensor_network(self, gate2):
380
- import random
381
- import itertools
382
-
383
- depth = n = 8
384
-
385
- circ = qtn.Circuit(n)
386
-
387
- def random_single_qubit_layer():
388
- return [
389
- (random.choice(["X_1_2", "Y_1_2", "W_1_2"]), i)
390
- for i in range(n)
391
- ]
392
-
393
- def even_two_qubit_layer():
394
- return [(gate2, i, i + 1) for i in range(0, n, 2)]
395
-
396
- def odd_two_qubit_layer():
397
- return [(gate2, i, i + 1) for i in range(1, n - 1, 2)]
398
-
399
- layering = itertools.cycle(
400
- [
401
- random_single_qubit_layer,
402
- even_two_qubit_layer,
403
- random_single_qubit_layer,
404
- odd_two_qubit_layer,
405
- ]
406
- )
407
-
408
- for i, layer_fn in zip(range(depth), layering):
409
- for g in layer_fn():
410
- circ.apply_gate(*g, gate_round=i)
411
-
412
- psif = qtn.MPS_computational_state("0" * n).squeeze_()
413
- tn = circ.psi & psif
414
-
415
- c = tn.contract(all)
416
- cw = tn.contraction_width()
417
-
418
- tn_s = tn.full_simplify()
419
- assert tn_s.num_tensors < tn.num_tensors
420
- assert tn_s.num_indices < tn.num_indices
421
- # need to specify output inds since we now have hyper edges
422
- c_s = tn_s.contract(all, output_inds=[])
423
- assert c_s == pytest.approx(c)
424
- cw_s = tn_s.contraction_width(output_inds=[])
425
- assert cw_s <= cw
426
-
427
- def test_amplitude(self):
428
- L = 5
429
- circ = random_a2a_circ(L, 3)
430
- psi = circ.to_dense()
431
-
432
- for i in range(2**L):
433
- b = f"{i:0>{L}b}"
434
- c = circ.amplitude(b)
435
- assert c == pytest.approx(psi[i, 0])
436
-
437
- def test_partial_trace(self):
438
- L = 5
439
- circ = random_a2a_circ(L, 3)
440
- psi = circ.to_dense()
441
- for i in range(L - 1):
442
- keep = (i, i + 1)
443
- assert_allclose(
444
- qu.partial_trace(psi, [2] * 5, keep=keep),
445
- circ.partial_trace(keep),
446
- atol=1e-12,
447
- )
448
-
449
- @pytest.mark.parametrize("group_size", (1, 2, 6))
450
- def test_sample(self, group_size):
451
- import collections
452
- from scipy.stats import power_divergence
453
-
454
- C = 2**10
455
- L = 5
456
- circ = random_a2a_circ(L, 3)
457
-
458
- psi = circ.to_dense()
459
- p_exp = abs(psi.reshape(-1)) ** 2
460
- f_exp = p_exp * C
461
-
462
- counts = collections.Counter(circ.sample(C, group_size=group_size))
463
- f_obs = np.zeros(2**L)
464
- for b, c in counts.items():
465
- f_obs[int(b, 2)] = c
466
-
467
- assert power_divergence(f_obs, f_exp)[0] < 100
468
-
469
- @pytest.mark.parametrize("group_size", (1, 3))
470
- def test_sample_gate_by_gate(self, group_size):
471
- import collections
472
- from scipy.stats import power_divergence
473
-
474
- C = 2**10
475
- L = 5
476
- circ = random_a2a_circ(L, 3)
477
-
478
- psi = circ.to_dense()
479
- p_exp = abs(psi.reshape(-1)) ** 2
480
- f_exp = p_exp * C
481
-
482
- counts = collections.Counter(
483
- circ.sample_gate_by_gate(C, group_size=group_size)
484
- )
485
- f_obs = np.zeros(2**L)
486
- for b, c in counts.items():
487
- f_obs[int(b, 2)] = c
488
-
489
- assert power_divergence(f_obs, f_exp)[0] < 100
490
-
491
- def test_sample_chaotic(self):
492
- import collections
493
- from scipy.stats import power_divergence
494
-
495
- C = 2**12
496
- L = 5
497
- reps = 3
498
- depth = 2
499
- goodnesses = [0] * 5
500
-
501
- for _ in range(reps):
502
- circ = random_a2a_circ(L, depth)
503
-
504
- psi = circ.to_dense()
505
- p_exp = abs(psi.reshape(-1)) ** 2
506
- f_exp = p_exp * C
507
-
508
- for num_marginal in [3, 4, 5]:
509
- counts = collections.Counter(
510
- circ.sample_chaotic(C, num_marginal, seed=666)
511
- )
512
- f_obs = np.zeros(2**L)
513
- for b, c in counts.items():
514
- f_obs[int(b, 2)] = c
515
-
516
- goodness = power_divergence(f_obs, f_exp)[0]
517
- goodnesses[num_marginal - 1] += goodness
518
-
519
- # assert average sampling goodness gets better with larger marginal
520
- assert sum(goodnesses[i] < goodnesses[i - 1] for i in range(1, L)) == 2
521
-
522
- def test_local_expectation(self):
523
- import random
524
-
525
- L = 5
526
- depth = 3
527
- circ = random_a2a_circ(L, depth)
528
- psi = circ.to_dense()
529
- for _ in range(10):
530
- G = qu.rand_matrix(4)
531
- i = random.randint(0, L - 2)
532
- where = (i, i + 1)
533
- x1 = qu.expec(qu.ikron(G, [2] * L, where), psi)
534
- x2 = circ.local_expectation(G, where)
535
- assert x1 == pytest.approx(x2)
536
-
537
- def test_local_expectation_multigate(self):
538
- circ = qtn.Circuit(2)
539
- circ.h(0)
540
- circ.cnot(0, 1)
541
- circ.y(1)
542
- Gs = [qu.kronpow(qu.pauli(s), 2) for s in "xyz"]
543
- exps = circ.local_expectation(Gs, [0, 1])
544
- assert exps[0] == pytest.approx(-1)
545
- assert exps[1] == pytest.approx(-1)
546
- assert exps[2] == pytest.approx(-1)
547
-
548
- def test_local_expectation_len1(self):
549
- circ = qtn.Circuit(1)
550
- circ.apply_gate("H", 0, gate_round=0)
551
- circ.local_expectation([qu.pauli("X")], (0,))
552
-
553
- def test_uni_to_dense(self):
554
- import cmath
555
-
556
- circ = qft_circ(3)
557
- U = circ.uni.to_dense()
558
- w = cmath.exp(2j * math.pi / 2**3)
559
- ex = 2 ** (-3 / 2) * np.array(
560
- [
561
- [w**0, w**0, w**0, w**0, w**0, w**0, w**0, w**0],
562
- [w**0, w**1, w**2, w**3, w**4, w**5, w**6, w**7],
563
- [w**0, w**2, w**4, w**6, w**0, w**2, w**4, w**6],
564
- [w**0, w**3, w**6, w**1, w**4, w**7, w**2, w**5],
565
- [w**0, w**4, w**0, w**4, w**0, w**4, w**0, w**4],
566
- [w**0, w**5, w**2, w**7, w**4, w**1, w**6, w**3],
567
- [w**0, w**6, w**4, w**2, w**0, w**6, w**4, w**2],
568
- [w**0, w**7, w**6, w**5, w**4, w**3, w**2, w**1],
569
- ]
570
- )
571
- assert_allclose(U, ex)
572
-
573
- def test_swap_lighcones(self):
574
- circ = qtn.Circuit(3)
575
- circ.x(0) # 0
576
- circ.x(1) # 1
577
- circ.x(2) # 2
578
- circ.swap(0, 1) # 3
579
- circ.cx(1, 2) # 4
580
- circ.cx(0, 1) # 5
581
- assert circ.get_reverse_lightcone_tags((2,)) == (
582
- "PSI0",
583
- "GATE_0",
584
- "GATE_2",
585
- "GATE_4",
586
- )
587
-
588
- def test_swappy_local_expecs(self):
589
- circ = swappy_circ(4, 4)
590
- Gs = [qu.rand_matrix(4) for _ in range(3)]
591
- pairs = [(0, 1), (1, 2), (2, 3)]
592
-
593
- psi = circ.to_dense()
594
- dims = [2] * 4
595
-
596
- exs = [
597
- qu.expec(qu.ikron(G, dims, pair), psi)
598
- for G, pair in zip(Gs, pairs)
599
- ]
600
- aps = [circ.local_expectation(G, pair) for G, pair in zip(Gs, pairs)]
601
-
602
- assert_allclose(exs, aps)
603
-
604
- @pytest.mark.parametrize(
605
- "name, densefn, nparam, nqubit",
606
- [
607
- ("rx", qu.Rx, 1, 1),
608
- ("ry", qu.Ry, 1, 1),
609
- ("rz", qu.Rz, 1, 1),
610
- ("u3", qu.U_gate, 3, 1),
611
- ("fsim", qu.fsim, 2, 2),
612
- ("fsimg", qu.fsimg, 5, 2),
613
- ],
614
- )
615
- def test_parametrized_gates_rx(self, name, densefn, nparam, nqubit):
616
- k0 = qu.rand_ket(2**nqubit)
617
- params = qu.randn(nparam)
618
- kf = densefn(*params) @ k0
619
- k0mps = qtn.MatrixProductState.from_dense(k0, [2] * nqubit)
620
- circ = qtn.Circuit(psi0=k0mps, gate_opts={"contract": False})
621
- getattr(circ, name)(*params, *range(nqubit), parametrize=True)
622
- tn = circ.psi
623
- assert isinstance(tn["GATE_0"], qtn.PTensor)
624
- assert_allclose(circ.to_dense(), kf)
625
-
626
- def test_apply_raw_gate(self):
627
- k0 = qu.rand_ket(4)
628
- psi0 = qtn.MatrixProductState.from_dense(k0, [2] * 2)
629
- circ = qtn.Circuit(psi0=psi0)
630
- U = qu.rand_uni(4)
631
- circ.apply_gate_raw(U, [0, 1], tags="UCUSTOM")
632
- assert len(circ.gates) == 1
633
- assert "UCUSTOM" in circ.psi.tags
634
- assert qu.fidelity(circ.to_dense(), U @ k0) == pytest.approx(1)
635
-
636
- def test_apply_controlled_gate_basic_equiv(self):
637
- circ = qtn.Circuit(3)
638
- circ.apply_gate("x", qubits=(2,), controls=(0, 1))
639
- U = circ.get_uni().to_dense()
640
- assert_allclose(U, qu.toffoli())
641
-
642
- circ = qtn.Circuit(3)
643
- circ.apply_gate("swap", qubits=(1, 2), controls=(0,))
644
- U = circ.get_uni().to_dense()
645
- assert_allclose(U, qu.fredkin())
646
-
647
- def test_multi_controlled_circuit(self):
648
- import random
649
-
650
- N = 10
651
- circ = qtn.Circuit(N)
652
- regs = list(range(N))
653
- random.shuffle(regs)
654
- circ.apply_gate("H", regs[0])
655
- for i in range(N - 1):
656
- circ.apply_gate("CNOT", regs[i], regs[i + 1])
657
- circ.apply_gate("X", N - 1, controls=range(N - 1))
658
- circ.apply_gate("SWAP", qubits=(N - 2, N - 1), controls=range(N - 2))
659
- (b,) = circ.sample(1, group_size=3)
660
- assert b[N - 2] == "0"
661
-
662
-
663
- class TestCircuitMPS:
664
- def test_from_qsim_mps_swapsplit(self):
665
- G = rand_reg_graph(reg=3, n=18, seed=42)
666
- qsim = graph_to_qsim(G)
667
- qc = qtn.CircuitMPS.from_qsim_str(qsim)
668
- assert len(qc.psi.tensors) == 18
669
- assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
670
-
671
- def test_multi_controlled_mps_circuit(self):
672
- N = 10
673
- rng = np.random.default_rng(42)
674
-
675
- gates = []
676
- for i in range(N):
677
- gates.append(
678
- qtn.Gate(
679
- "U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
680
- )
681
- )
682
- gates.append(
683
- qtn.Gate(
684
- "SU4",
685
- params=rng.uniform(0, 2 * np.pi, size=15),
686
- qubits=[6, 2],
687
- controls=[8, 3, 4, 0],
688
- )
689
- )
690
- for i in range(N):
691
- gates.append(
692
- qtn.Gate(
693
- "U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
694
- )
695
- )
696
- gates.append(
697
- qtn.Gate.from_raw(
698
- qu.rand_uni(2**3), qubits=[0, 9, 5], controls=[1, 2, 7]
699
- )
700
- )
701
-
702
- circ = qtn.Circuit(N=10)
703
- circ.apply_gates(gates)
704
- psi_lazy = circ.psi
705
- circ = qtn.CircuitMPS(N=10)
706
- circ.apply_gates(gates)
707
- mps = circ.psi
708
- assert mps.norm() == pytest.approx(1.0)
709
- assert mps.distance_normalized(psi_lazy) < 1e-6
710
-
711
- def test_mps_sampling(self):
712
- N = 6
713
- circ = qtn.CircuitMPS(N)
714
- circ.h(3)
715
- circ.cx(3, 2)
716
- circ.cx(2, 1)
717
- circ.cx(1, 0)
718
- circ.cx(0, 5)
719
- circ.cx(5, 4)
720
- circ.x(4)
721
- for x in circ.sample(10):
722
- assert x in {"000010", "111101"}
723
-
724
- def test_mps_sampling_seed(self):
725
- N = 1
726
- circ = qtn.CircuitMPS(N)
727
- circ.h(0)
728
- samples = list(circ.sample(10, seed=1234))
729
- assert len(set(samples)) == 2
730
-
731
- def test_permmps_sampling(self):
732
- N = 6
733
- circ = qtn.CircuitPermMPS(N)
734
- circ.h(3)
735
- circ.cx(3, 2)
736
- circ.cx(2, 1)
737
- circ.cx(1, 0)
738
- circ.cx(0, 5)
739
- circ.cx(5, 4)
740
- circ.x(4)
741
- assert circ.qubits != tuple(range(N))
742
- for x in circ.sample(10):
743
- assert x in {"000010", "111101"}
744
-
745
- def test_permmps_sampling_seed(self):
746
- N = 1
747
- circ = qtn.CircuitPermMPS(N)
748
- circ.h(0)
749
- samples = list(circ.sample(10, seed=1234))
750
- assert len(set(samples)) == 2
751
-
752
-
753
- class TestCircuitGen:
754
- @pytest.mark.parametrize(
755
- "ansatz,cyclic",
756
- [
757
- ("zigzag", False),
758
- ("brickwork", False),
759
- ("brickwork", True),
760
- ("rand", False),
761
- ("rand", True),
762
- ],
763
- )
764
- @pytest.mark.parametrize("n", [4, 5])
765
- def test_1D_ansatzes(self, ansatz, cyclic, n):
766
- depth = 3
767
- num_pairs = n if cyclic else n - 1
768
-
769
- fn = {
770
- "zigzag": qtn.circ_ansatz_1D_zigzag,
771
- "brickwork": qtn.circ_ansatz_1D_brickwork,
772
- "rand": qtn.circ_ansatz_1D_rand,
773
- }[ansatz]
774
-
775
- opts = dict(
776
- n=n,
777
- depth=3,
778
- gate_opts=dict(contract=False),
779
- )
780
- if cyclic:
781
- opts["cyclic"] = True
782
- if ansatz == "rand":
783
- opts["seed"] = 42
784
-
785
- circ = fn(**opts)
786
- tn = circ.uni
787
-
788
- # total number of entangling gates
789
- assert len(tn["CZ"]) == num_pairs * depth
790
-
791
- # number of entangling gates per pair
792
- for i in range(num_pairs):
793
- assert len(tn["CZ", f"I{i}", f"I{(i + 1) % n}"]) == depth
794
-
795
- assert all(isinstance(t, qtn.PTensor) for t in tn["U3"])
796
-
797
- def test_qaoa(self):
798
- G = rand_reg_graph(3, 10, seed=666)
799
- terms = {(i, j): 1.0 for i, j in G.edges}
800
- ZZ = qu.pauli("Z") & qu.pauli("Z")
801
-
802
- gammas = [-0.6]
803
- betas = [-0.4]
804
-
805
- circ1 = qtn.circ_qaoa(terms, 1, gammas, betas)
806
-
807
- energy1 = sum(circ1.local_expectation(ZZ, edge) for edge in terms)
808
- assert energy1 < -4
809
-
810
- gammas = [-0.4]
811
- betas = [0.3]
812
-
813
- circ2 = qtn.circ_qaoa(terms, 1, gammas, betas)
814
-
815
- energy2 = sum(circ2.local_expectation(ZZ, edge) for edge in terms)
816
- assert energy2 > 4