Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,258 +0,0 @@
1
- """Numba accelerated functions for finding charge sectors and subselecting
2
- submatrices.
3
- """
4
-
5
- import numpy as np
6
- import numba
7
-
8
- from ..core import njit, pnjit, qarray
9
-
10
-
11
- @njit
12
- def get_nz(A): # pragma: no cover
13
- return np.nonzero(A)
14
-
15
-
16
- @njit
17
- def compute_blocks(ix, jx, d): # pragma: no cover
18
- """Find the charge sectors (blocks in matrix terms) given element
19
- coordinates ``ix`` and ``jx`` and total size ``d``.
20
-
21
- Parameters
22
- ----------
23
- ix : array of int
24
- The row coordinates of non-zero elements.
25
- jx : array of int
26
- The column coordinates of non-zero elements.
27
- d : int
28
- The total size of the operator.
29
-
30
- Returns
31
- -------
32
- sectors : list[list[int]]
33
- The list of charge sectors. Each element is itself a sorted list of the
34
- basis numbers that make up that sector. The permutation that would
35
- block diagonalize the operator is then ``np.concatenate(sectors)``.
36
-
37
- Examples
38
- --------
39
-
40
- >>> H = ham_hubbard_hardcore(4, sparse=True)
41
- >>> ix, jx = H.nonzero()
42
- >>> d = H.shape[0]
43
- >>> sectors = compute_blocks(ix, jx, d)
44
- >>> sectors
45
- [[0], [1, 2, 4, 8], [3, 5, 6, 9, 10, 12], [7, 11, 13, 14], [15]]
46
- """
47
- groups = []
48
-
49
- # go through actual nz -> these define edges of a graph and we are
50
- # looking for all connected components (disconnected subgraphs)
51
- for i, j in zip(ix, jx):
52
- merge = []
53
- for g, group in enumerate(groups):
54
- if i in group:
55
- group.add(j)
56
- merge.append(g)
57
- elif j in group:
58
- group.add(i)
59
- merge.append(g)
60
-
61
- if len(merge) == 0:
62
- # new group
63
- groups.append({i, j})
64
-
65
- elif len(merge) > 1:
66
- # merge groups
67
- group0 = groups[merge[0]]
68
- for g in merge[-1:0:-1]:
69
- # XXX: just popping here causes numba big problems?
70
- # so we clear and filter empty groups later
71
- other_group = groups[g]
72
- group0.update(other_group)
73
- other_group.clear()
74
-
75
- # make sure kernel added as subspace
76
- for i in range(d):
77
- for group in groups:
78
- if i in group:
79
- break
80
- else: # no break
81
- groups.append({i})
82
-
83
- # sort indices in each group and groups by first element
84
- return sorted([sorted(g) for g in groups if g])
85
-
86
-
87
- @pnjit
88
- def subselect(A, p): # pragma: no cover
89
- """Select only the intersection of rows and columns of ``A`` matching the
90
- basis indices ``p``. Faster than double numpy slicing.
91
-
92
- Parameters
93
- ----------
94
- A : 2D-array
95
- Dense matrix to select from.
96
- p : sequence of int
97
- The basis indices to select.
98
-
99
- Returns
100
- -------
101
- B : 2D-array
102
- The matrix, of size ``(len(p), len(p))``.
103
-
104
- Examples
105
- --------
106
- >>> A = np.arange(25).reshape(5, 5)
107
- >>> A
108
- array([[ 0, 1, 2, 3, 4],
109
- [ 5, 6, 7, 8, 9],
110
- [10, 11, 12, 13, 14],
111
- [15, 16, 17, 18, 19],
112
- [20, 21, 22, 23, 24]])
113
-
114
- >>> subselect(A, [1, 3])
115
- array([[ 6, 8],
116
- [16, 18]])
117
- """
118
- dp = len(p)
119
- out = np.empty((dp, dp), dtype=A.dtype)
120
-
121
- for i in numba.prange(dp):
122
- for j in numba.prange(dp):
123
- out[i, j] = A[p[i], p[j]]
124
-
125
- return out
126
-
127
-
128
- @pnjit
129
- def subselect_set(A, B, p): # pragma: no cover
130
- """Set only the intersection of rows and colums of ``A`` matching the
131
- basis indices ``p`` to ``B``.
132
-
133
- Parameters
134
- ----------
135
- A : array with shape (d, d)
136
- The matrix to set elements in.
137
- B : array with shape (dp, dp)
138
- The matrix to set elements from.
139
- p : sequence of size dp
140
- The basis indices.
141
-
142
- Examples
143
- --------
144
- >>> A = np.zeros((5, 5))
145
- >>> B = np.random.randn(3, 3)
146
- >>> p = [0, 2, 4]
147
- >>> subselect_set(A, B, p)
148
- array([[-0.31888218, 0. , 0.39293245, 0. , 0.21822712],
149
- [ 0. , 0. , 0. , 0. , 0. ],
150
- [ 0.66674486, 0. , 1.03388035, 0. , 1.7319345 ],
151
- [ 0. , 0. , 0. , 0. , 0. ],
152
- [-0.94542733, 0. , -0.37211882, 0. , 0.51951555]])
153
- """
154
- dp = len(p)
155
-
156
- for i in numba.prange(dp):
157
- for j in numba.prange(dp):
158
- A[p[i], p[j]] = B[i, j]
159
-
160
-
161
- # XXX: want to cache this eventaully -> need parallel+cache numba support?
162
- @njit
163
- def _eigh_autoblocked(A, sort=True): # pragma: no cover
164
- d = A.shape[0]
165
-
166
- # allocate output arrays
167
- el = np.empty(d)
168
- ev = np.zeros_like(A)
169
-
170
- # find non-zero elements and group into charge sectors
171
- ix, jx = get_nz(A)
172
- gs = compute_blocks(ix, jx, d)
173
- gs = [np.array(g) for g in gs]
174
-
175
- # diagonalize each charge sector seperately
176
- for g in gs:
177
- ng = len(g)
178
-
179
- # check if trivial
180
- if ng == 1:
181
- el[g[0]] = A[g[0], g[0]].real
182
- ev[g[0], g[0]] = 1.0
183
- continue
184
-
185
- # else diagonalize just the block
186
- sub_el, sub_ev = np.linalg.eigh(subselect(A, g))
187
-
188
- # set the correct eigenpairs in the output
189
- el[g] = sub_el
190
- subselect_set(ev, sub_ev, g)
191
-
192
- # sort into ascending eigenvalue order
193
- if sort:
194
- so = np.argsort(el)
195
- el[:] = el[so]
196
- ev[:, :] = ev[:, so]
197
-
198
- return el, ev
199
-
200
-
201
- # XXX: want to cache this eventaully -> need parallel+cache numba support?
202
- @njit
203
- def _eigvalsh_autoblocked(A, sort=True): # pragma: no cover
204
- # as above but ignore eigenvector for extra speed
205
- d = A.shape[0]
206
-
207
- el = np.empty(d)
208
-
209
- ix, jx = get_nz(A)
210
- gs = compute_blocks(ix, jx, d)
211
- gs = [np.array(g) for g in gs]
212
-
213
- for _, g in enumerate(gs):
214
- if len(g) == 1:
215
- el[g[0]] = A[g[0], g[0]]
216
- continue
217
-
218
- el[g] = np.linalg.eigvalsh(subselect(A, g))
219
-
220
- if sort:
221
- return np.sort(el)
222
-
223
- return el
224
-
225
-
226
- def eigensystem_autoblocked(A, sort=True, return_vecs=True, isherm=True):
227
- """Perform Hermitian eigen-decomposition, automatically identifying and
228
- exploiting symmetries appearing in the current basis as block diagonals
229
- formed via permutation of rows and columns. The whole process is
230
- accelerated using ``numba``.
231
-
232
- Parameters
233
- ----------
234
- A : array_like
235
- The operator to eigen-decompose.
236
- sort : bool, optional
237
- Whether to sort into ascending order, default True.
238
- isherm : bool, optional
239
- Whether ``A`` is hermitian, default True.
240
- return_vecs : bool, optional
241
- Whether to return the eigenvectors, default True.
242
-
243
- Returns
244
- -------
245
- evals : 1D-array
246
- The eigenvalues.
247
- evecs : qarray
248
- If ``return_vecs=True``, the eigenvectors.
249
- """
250
- if not isherm:
251
- err_msg = "Non-hermitian autoblocking not implemented yet."
252
- raise NotImplementedError(err_msg)
253
-
254
- if not return_vecs:
255
- return _eigvalsh_autoblocked(A, sort=sort)
256
-
257
- el, ev = _eigh_autoblocked(A, sort=sort)
258
- return el, qarray(ev)