Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
File without changes
@@ -1,501 +0,0 @@
1
- from pytest import fixture, mark, raises
2
- import numpy as np
3
- from numpy.testing import assert_allclose
4
- import scipy.sparse as sp
5
-
6
- from quimb import (
7
- qu,
8
- rand_matrix,
9
- rand_ket,
10
- )
11
- from quimb.core import (
12
- qarray,
13
- ensure_qarray,
14
- issparse,
15
- isdense,
16
- isket,
17
- isop,
18
- isbra,
19
- isvec,
20
- isherm,
21
- mul,
22
- dot,
23
- vdot,
24
- rdot,
25
- ldmul,
26
- rdmul,
27
- outer,
28
- explt,
29
- make_immutable,
30
- realify,
31
- dot_sparse,
32
- par_dot_csr_matvec,
33
- kron_dense,
34
- kron_sparse,
35
- )
36
- from quimb.core import kron, kronpow
37
-
38
-
39
- # ----------------------------- FIXTURES ------------------------------------ #
40
-
41
- _SPARSE_FORMATS = ("csr", "bsr", "csc", "coo")
42
- _TEST_SZ = 4
43
-
44
-
45
- @fixture
46
- def mat_d():
47
- return rand_matrix(_TEST_SZ)
48
-
49
-
50
- @fixture
51
- def mat_d2():
52
- return rand_matrix(_TEST_SZ)
53
-
54
-
55
- @fixture
56
- def mat_d3():
57
- return rand_matrix(_TEST_SZ)
58
-
59
-
60
- @fixture
61
- def mat_s():
62
- return rand_matrix(_TEST_SZ, sparse=True, density=0.5)
63
-
64
-
65
- @fixture
66
- def mat_s2():
67
- return rand_matrix(_TEST_SZ, sparse=True, density=0.5)
68
-
69
-
70
- @fixture
71
- def ket_d():
72
- return rand_ket(_TEST_SZ)
73
-
74
-
75
- @fixture
76
- def ket_d2():
77
- return rand_ket(_TEST_SZ)
78
-
79
-
80
- @fixture
81
- def l1d():
82
- return np.random.randn(_TEST_SZ) + 1.0j * np.random.randn(_TEST_SZ)
83
-
84
-
85
- @fixture
86
- def mat_s_nnz():
87
- return rand_matrix(_TEST_SZ, sparse=True, density=0.75)
88
-
89
-
90
- # --------------------------------------------------------------------------- #
91
- # TESTS #
92
- # --------------------------------------------------------------------------- #
93
-
94
-
95
- class TestMakeImmutable:
96
- def test_dense(self):
97
- mat = qu([[1, 2], [3, 4]])
98
- make_immutable(mat)
99
- with raises(ValueError):
100
- mat[-1, -1] = 1
101
-
102
- @mark.parametrize("stype", _SPARSE_FORMATS)
103
- def test_sparse(self, stype):
104
- mat = qu([[1, 2], [3, 4]], stype=stype)
105
- make_immutable(mat)
106
- if stype in {"csr", "csc"}:
107
- with raises(ValueError):
108
- mat[-1, -1] = 1
109
-
110
-
111
- class TestEnsureQarray:
112
- def test_ensure_qarray(self):
113
- def foo(n):
114
- return np.random.randn(n, n)
115
-
116
- a = foo(2)
117
- assert not isinstance(a, qarray)
118
-
119
- @ensure_qarray
120
- def foo2(n):
121
- return np.random.randn(n, n)
122
-
123
- a = foo2(2)
124
- assert isinstance(a, qarray)
125
-
126
-
127
- class TestRealify:
128
- def test_realify(self):
129
- def foo(a, b):
130
- return a + 1j * b
131
-
132
- a = foo(1, 1e-15)
133
- assert a.real == 1
134
- assert a.imag == 1e-15
135
-
136
- @realify
137
- def foo2(a, b):
138
- return a + 1j * b
139
-
140
- a = foo2(1, 1e-15)
141
- assert a.real == 1
142
- assert a.imag == 0
143
-
144
- def test_wrong_type(self):
145
- @realify
146
- def foo(a, b):
147
- return str(a) + str(b)
148
-
149
- assert foo(1, 2) == "12"
150
-
151
-
152
- class TestShapes:
153
- def test_sparse(self):
154
- x = np.array([[1], [0]])
155
- assert not issparse(x)
156
- assert isdense(x)
157
- x = sp.csr_matrix(x)
158
- assert issparse(x)
159
-
160
- def test_ket(self):
161
- x = np.array([[1], [0]])
162
- assert isket(x)
163
- assert not isbra(x)
164
- assert not isop(x)
165
- assert isvec(x)
166
- x = sp.csr_matrix(x)
167
- assert isket(x)
168
- assert isvec(x)
169
- assert not isbra(x)
170
- assert not isop(x)
171
-
172
- def test_bra(self):
173
- x = np.array([[1, 0]])
174
- assert not isket(x)
175
- assert isbra(x)
176
- assert not isop(x)
177
- assert isvec(x)
178
- x = sp.csr_matrix(x)
179
- assert not isket(x)
180
- assert isbra(x)
181
- assert not isop(x)
182
- assert isvec(x)
183
-
184
- def test_op(self):
185
- x = np.array([[1, 0], [0, 0]])
186
- assert not isket(x)
187
- assert not isbra(x)
188
- assert isop(x)
189
- assert not isvec(x)
190
- x = sp.csr_matrix(x)
191
- assert not isket(x)
192
- assert not isbra(x)
193
- assert isop(x)
194
- assert not isvec(x)
195
-
196
- def test_isherm(self):
197
- a = np.array([[1.0, 2.0 + 3.0j], [2.0 - 3.0j, 1.0]])
198
- assert isherm(a)
199
- a = np.array([[1.0, 2.0 - 3.0j], [2.0 - 3.0j, 1.0]])
200
- assert not isherm(a)
201
-
202
- def test_isherm_sparse(self):
203
- a = sp.csr_matrix([[1.0, 2.0 + 3.0j], [2.0 - 3.0j, 1.0]])
204
- assert isherm(a)
205
- a = sp.csr_matrix([[1.0, 2.0 - 3.0j], [2.0 - 3.0j, 1.0]])
206
- assert not isherm(a)
207
-
208
-
209
- class TestMul:
210
- def test_mul_dense_same(self, mat_d, mat_d2):
211
- ca = mul(mat_d, mat_d2)
212
- assert isinstance(ca, qarray)
213
- cn = np.multiply(mat_d, mat_d2)
214
- assert_allclose(ca, cn)
215
-
216
- def test_mul_broadcast(self, mat_d, ket_d):
217
- ca = mul(mat_d, ket_d)
218
- assert isinstance(ca, qarray)
219
- cn = np.multiply(mat_d, ket_d)
220
- assert_allclose(ca, cn)
221
- ca = mul(mat_d.H, ket_d)
222
- assert isinstance(ca, qarray)
223
- cn = np.multiply(mat_d.H, ket_d)
224
- assert_allclose(ca, cn)
225
-
226
- def test_mul_sparse(self, mat_s, mat_s2):
227
- cq = mul(mat_s, mat_s2)
228
- cn = mat_s.toarray() * mat_s2.toarray()
229
- assert issparse(cq)
230
- assert_allclose(cq.toarray(), cn)
231
- cq = mul(mat_s2.toarray(), mat_s)
232
- cn = mat_s2.toarray() * mat_s.toarray()
233
- assert issparse(cq)
234
- assert_allclose(cq.toarray(), cn)
235
-
236
- def test_mul_sparse_broadcast(self, mat_s, ket_d):
237
- ca = mul(mat_s, ket_d)
238
- cn = np.multiply(mat_s.toarray(), ket_d)
239
- assert_allclose(ca.toarray(), cn)
240
- ca = mul(mat_s.H, ket_d)
241
- cn = np.multiply(mat_s.H.toarray(), ket_d)
242
- assert_allclose(ca.toarray(), cn)
243
-
244
-
245
- class TestDot:
246
- def test_dot_matrix(self, mat_d, mat_d2):
247
- ca = dot(mat_d, mat_d2)
248
- assert isinstance(ca, qarray)
249
- cn = mat_d @ mat_d2
250
- assert_allclose(ca, cn)
251
-
252
- def test_dot_ket(self, mat_d, ket_d):
253
- ca = dot(mat_d, ket_d)
254
- assert isinstance(ca, qarray)
255
- cn = mat_d @ ket_d
256
- assert_allclose(ca, cn)
257
-
258
- def test_dot_sparse_sparse(self, mat_s, mat_s2):
259
- cq = dot(mat_s, mat_s2)
260
- cn = mat_s @ mat_s2
261
- assert issparse(cq)
262
- assert_allclose(cq.toarray(), cn.toarray())
263
-
264
- def test_dot_sparse_dense(self, mat_s, ket_d):
265
- cq = dot(mat_s, ket_d)
266
- assert isinstance(cq, qarray)
267
- cq = mat_s @ ket_d
268
- assert isinstance(cq, qarray)
269
- try:
270
- cn = mat_s._matmul_vector(ket_d)
271
- except AttributeError:
272
- cn = mat_s._mul_vector(ket_d)
273
- assert not issparse(cq)
274
- assert isdense(cq)
275
- assert_allclose(cq.toarray().ravel(), cn)
276
-
277
- def test_dot_sparse_dense_ket(self, mat_s, ket_d):
278
- cq = dot(mat_s, ket_d)
279
- cn = mat_s @ ket_d
280
- assert not issparse(cq)
281
- assert isdense(cq)
282
- assert isket(cq)
283
- assert_allclose(cq.toarray(), cn)
284
-
285
- def test_par_dot_csr_matvec(self, mat_s, ket_d):
286
- x = par_dot_csr_matvec(mat_s, ket_d)
287
- y = dot_sparse(mat_s, ket_d)
288
- assert x.dtype == complex
289
- assert x.shape == (_TEST_SZ, 1)
290
- assert isinstance(x, qarray)
291
- assert_allclose(x, y)
292
-
293
- def test_par_dot_csr_matvec_Array(self, mat_s, ket_d):
294
- x = par_dot_csr_matvec(mat_s, np.asarray(ket_d).reshape(-1))
295
- y = dot_sparse(mat_s, ket_d)
296
- assert x.dtype == complex
297
- assert x.shape == (_TEST_SZ,)
298
- assert_allclose(y, x.reshape(-1, 1))
299
-
300
-
301
- class TestAccelVdot:
302
- def test_accel_vdot(self, ket_d, ket_d2):
303
- ca = vdot(ket_d, ket_d2)
304
- cn = (ket_d.H @ ket_d2)[0, 0]
305
- assert_allclose(ca, cn)
306
-
307
-
308
- class TestAccelRdot:
309
- def test_accel_rdot(self, ket_d, ket_d2):
310
- cq = rdot(ket_d.H, ket_d2)
311
- cn = (ket_d.H @ ket_d2)[0, 0]
312
- assert_allclose(cq, cn)
313
-
314
-
315
- class TestFastDiagMul:
316
- def test_ldmul_small(self, mat_d, l1d):
317
- a = ldmul(l1d, mat_d)
318
- b = np.diag(l1d) @ mat_d
319
- assert isinstance(a, qarray)
320
- assert_allclose(a, b)
321
-
322
- def test_ldmul_large(self):
323
- vec = np.random.randn(501)
324
- mat = rand_matrix(501)
325
- a = ldmul(vec, mat)
326
- b = np.diag(vec) @ mat
327
- assert isinstance(a, qarray)
328
- assert_allclose(a, b)
329
-
330
- def test_ldmul_sparse(self, mat_s, l1d):
331
- assert issparse(mat_s)
332
- a = ldmul(l1d, mat_s)
333
- b = np.diag(l1d) @ mat_s.toarray()
334
- assert issparse(a)
335
- assert_allclose(a.toarray(), b)
336
-
337
- def test_rdmul_small(self, mat_d, l1d):
338
- a = rdmul(mat_d, l1d)
339
- b = mat_d @ np.diag(l1d)
340
- assert isinstance(a, qarray)
341
- assert_allclose(a, b)
342
-
343
- def test_rdmul_large(self):
344
- vec = np.random.randn(501)
345
- mat = rand_matrix(501)
346
- a = rdmul(mat, vec)
347
- b = mat @ np.diag(vec)
348
- assert isinstance(a, qarray)
349
- assert_allclose(a, b)
350
-
351
- def test_rdmul_sparse(self, mat_s, l1d):
352
- a = rdmul(mat_s, l1d)
353
- b = mat_s.toarray() @ np.diag(l1d)
354
- assert issparse(a)
355
- assert_allclose(a.toarray(), b)
356
-
357
-
358
- class TestOuter:
359
- def test_outer_ket_ket(self, ket_d, ket_d2):
360
- c = outer(ket_d, ket_d2)
361
- assert isinstance(c, qarray)
362
- d = np.multiply(ket_d, ket_d2.T)
363
- assert_allclose(c, d)
364
-
365
- def test_outer_ket_bra(self, ket_d, ket_d2):
366
- c = outer(ket_d, ket_d2.H)
367
- assert isinstance(c, qarray)
368
- d = np.multiply(ket_d, ket_d2.H)
369
- assert_allclose(c, d)
370
-
371
- def test_outer_bra_ket(self, ket_d, ket_d2):
372
- c = outer(ket_d.H, ket_d2)
373
- assert isinstance(c, qarray)
374
- d = np.multiply(ket_d.H.T, ket_d2.T)
375
- assert_allclose(c, d)
376
-
377
- def test_outer_bra_bra(self, ket_d, ket_d2):
378
- c = outer(ket_d.H, ket_d2.H)
379
- assert isinstance(c, qarray)
380
- d = np.multiply(ket_d.H.T, ket_d2.H)
381
- assert_allclose(c, d)
382
-
383
-
384
- class TestExplt:
385
- def test_small(self):
386
- evals = np.random.randn(3)
387
- en = np.exp(-1.0j * evals * 7)
388
- eq = explt(evals, 7)
389
- assert_allclose(eq, en)
390
-
391
-
392
- # --------------------------------------------------------------------------- #
393
- # Kronecker (tensor) product tests #
394
- # --------------------------------------------------------------------------- #
395
-
396
-
397
- class TestKron:
398
- @mark.parametrize("big", [False, True])
399
- def test_kron_dense(self, mat_d, mat_d2, big):
400
- x = kron_dense(mat_d, mat_d2, par_thresh=0 if big else 1e100)
401
- assert mat_d.shape == (_TEST_SZ, _TEST_SZ)
402
- assert mat_d2.shape == (_TEST_SZ, _TEST_SZ)
403
- xn = np.kron(mat_d, mat_d2)
404
- assert_allclose(x, xn)
405
- assert isinstance(x, qarray)
406
-
407
- def test_kron_multi_args(self, mat_d, mat_d2, mat_d3):
408
- assert_allclose(kron(mat_d), mat_d)
409
- assert_allclose(
410
- kron(mat_d, mat_d2, mat_d3),
411
- np.kron(np.kron(mat_d, mat_d2), mat_d3),
412
- )
413
-
414
- def test_kron_mixed_types(self, mat_d, mat_s):
415
- assert_allclose(
416
- kron(mat_d, mat_s).toarray(),
417
- (sp.kron(mat_d, mat_s, "csr")).toarray(),
418
- )
419
- assert_allclose(
420
- kron(mat_s, mat_s).toarray(),
421
- (sp.kron(mat_s, mat_s, "csr")).toarray(),
422
- )
423
-
424
-
425
- class TestKronSparseFormats:
426
- def test_sparse_sparse_auto(self, mat_s):
427
- c = kron_sparse(mat_s, mat_s)
428
- assert c.format == "csr"
429
-
430
- def test_sparse_dense_auto(self, mat_s, mat_d):
431
- c = kron_sparse(mat_s, mat_d)
432
- assert c.format == "bsr"
433
-
434
- def test_dense_sparse_auto(self, mat_s, mat_d):
435
- c = kron_sparse(mat_d, mat_s)
436
- assert c.format == "csr"
437
-
438
- def test_sparse_sparsennz(self, mat_s, mat_s_nnz):
439
- c = kron_sparse(mat_s, mat_s_nnz)
440
- assert c.format == "csr"
441
-
442
- @mark.parametrize("stype", _SPARSE_FORMATS)
443
- def test_sparse_sparse_to_sformat(self, mat_s, stype):
444
- c = kron_sparse(mat_s, mat_s, stype=stype)
445
- assert c.format == stype
446
-
447
- @mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
448
- def test_many_args_dense_last(self, mat_s, mat_s2, mat_d, stype):
449
- c = kron(mat_s, mat_s2, mat_d, stype=stype)
450
- assert c.format == (stype if stype is not None else "bsr")
451
-
452
- @mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
453
- def test_many_args_dense_not_last(self, mat_s, mat_s2, mat_d, stype):
454
- c = kron(mat_d, mat_s, mat_s2, stype=stype)
455
- assert c.format == (stype if stype is not None else "csr")
456
- c = kron(mat_s, mat_d, mat_s2, stype=stype)
457
- assert c.format == (stype if stype is not None else "csr")
458
-
459
- @mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
460
- def test_many_args_dense_last_coo_construct(
461
- self, mat_s, mat_s2, mat_d, stype
462
- ):
463
- c = kron(mat_s, mat_s2, mat_d, stype=stype, coo_build=True)
464
- assert c.format == (stype if stype is not None else "csr")
465
-
466
- @mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
467
- def test_many_args_dense_not_last_coo_construct(
468
- self, mat_s, mat_s2, mat_d, stype
469
- ):
470
- c = kron(mat_s, mat_d, mat_s2, stype=stype, coo_build=True)
471
- assert c.format == (stype if stype is not None else "csr")
472
- c = kron(mat_d, mat_s, mat_s2, stype=stype, coo_build=True)
473
- assert c.format == (stype if stype is not None else "csr")
474
-
475
-
476
- class TestKronPow:
477
- def test_dense(self, mat_d):
478
- x = mat_d & mat_d & mat_d
479
- y = kronpow(mat_d, 3)
480
- assert_allclose(x, y)
481
-
482
- def test_sparse(self, mat_s):
483
- x = mat_s & mat_s & mat_s
484
- y = kronpow(mat_s, 3)
485
- assert_allclose(x.toarray(), y.toarray())
486
-
487
- @mark.parametrize("stype", _SPARSE_FORMATS)
488
- def test_sparse_formats(self, stype, mat_s):
489
- x = mat_s & mat_s & mat_s
490
- y = kronpow(mat_s, 3, stype=stype)
491
- assert y.format == stype
492
- assert_allclose(x.toarray(), y.toarray())
493
-
494
- @mark.parametrize("sformat_in", _SPARSE_FORMATS)
495
- @mark.parametrize("stype", (None,) + _SPARSE_FORMATS)
496
- def test_sparse_formats_coo_construct(self, sformat_in, stype, mat_s):
497
- mat_s = mat_s.asformat(sformat_in)
498
- x = mat_s & mat_s & mat_s
499
- y = kronpow(mat_s, 3, stype=stype, coo_build=True)
500
- assert y.format == stype if stype is not None else "sformat_in"
501
- assert_allclose(x.toarray(), y.toarray())