Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,316 +0,0 @@
1
- """Belief propagation for standard tensor networks. This:
2
-
3
- - assumes no hyper indices, only standard bonds.
4
- - assumes a single ('dense') tensor per site
5
- - works directly on the '1-norm' i.e. scalar tensor network
6
-
7
- This is the simplest version of belief propagation, and is useful for
8
- simple investigations.
9
- """
10
-
11
- import autoray as ar
12
-
13
- from quimb.tensor.contraction import array_contract
14
- from quimb.utils import oset
15
-
16
- from .bp_common import (
17
- BeliefPropagationCommon,
18
- combine_local_contractions,
19
- )
20
- from .hd1bp import (
21
- compute_all_tensor_messages_tree,
22
- )
23
-
24
-
25
- def initialize_messages(tn, fill_fn=None):
26
-
27
- backend = ar.infer_backend(next(t.data for t in tn))
28
- _sum = ar.get_lib_fn(backend, "sum")
29
-
30
- messages = {}
31
- for ix, tids in tn.ind_map.items():
32
- if len(tids) != 2:
33
- continue
34
- tida, tidb = tids
35
-
36
- for tid_from, tid_to in [(tida, tidb), (tidb, tida)]:
37
- t_from = tn.tensor_map[tid_from]
38
- if fill_fn is not None:
39
- d = t_from.ind_size(ix)
40
- m = fill_fn((d,))
41
- else:
42
- m = array_contract(
43
- arrays=(t_from.data,),
44
- inputs=(tuple(range(t_from.ndim)),),
45
- output=(t_from.inds.index(ix),),
46
- )
47
- messages[ix, tid_to] = m / _sum(m)
48
-
49
- return messages
50
-
51
-
52
- class D1BP(BeliefPropagationCommon):
53
- """Dense (as in one tensor per site) 1-norm (as in for 'classical' systems)
54
- belief propagation algorithm. Allows message reuse. This version assumes no
55
- hyper indices (i.e. a standard tensor network). This is the simplest
56
- version of belief propagation.
57
-
58
- Parameters
59
- ----------
60
- tn : TensorNetwork
61
- The tensor network to run BP on.
62
- messages : dict[(str, int), array_like], optional
63
- The initial messages to use, effectively defaults to all ones if not
64
- specified.
65
- damping : float, optional
66
- The damping factor to use, 0.0 means no damping.
67
- update : {'sequential', 'parallel'}, optional
68
- Whether to update messages sequentially or in parallel.
69
- local_convergence : bool, optional
70
- Whether to allow messages to locally converge - i.e. if all their
71
- input messages have converged then stop updating them.
72
- fill_fn : callable, optional
73
- If specified, use this function to fill in the initial messages.
74
-
75
- Attributes
76
- ----------
77
- tn : TensorNetwork
78
- The target tensor network.
79
- messages : dict[(str, int), array_like]
80
- The current messages. The key is a tuple of the index and tensor id
81
- that the message is being sent to.
82
- key_pairs : dict[(str, int), (str, int)]
83
- A dictionary mapping the key of a message to the key of the message
84
- propagating in the opposite direction.
85
- """
86
-
87
- def __init__(
88
- self,
89
- tn,
90
- messages=None,
91
- damping=0.0,
92
- update="sequential",
93
- local_convergence=True,
94
- message_init_function=None,
95
- ):
96
- self.tn = tn
97
- self.damping = damping
98
- self.local_convergence = local_convergence
99
- self.update = update
100
-
101
- self.backend = next(t.backend for t in tn)
102
- _abs = ar.get_lib_fn(self.backend, "abs")
103
- _sum = ar.get_lib_fn(self.backend, "sum")
104
-
105
- def _normalize(x):
106
- return x / _sum(x)
107
-
108
- def _distance(x, y):
109
- return _sum(_abs(x - y))
110
-
111
- self._normalize = _normalize
112
- self._distance = _distance
113
-
114
- if messages is None:
115
- self.messages = initialize_messages(self.tn, message_init_function)
116
- else:
117
- self.messages = messages
118
-
119
- # record which messages touch which tids, for efficient updates
120
- self.touched = oset()
121
- self.key_pairs = {}
122
- for ix, tids in tn.ind_map.items():
123
- if len(tids) != 2:
124
- continue
125
- tida, tidb = tids
126
- self.key_pairs[ix, tidb] = (ix, tida)
127
- self.key_pairs[ix, tida] = (ix, tidb)
128
-
129
- def iterate(self, tol=5e-6):
130
- if (not self.local_convergence) or (not self.touched):
131
- # assume if asked to iterate that we want to check all messages
132
- self.touched = oset(self.tn.tensor_map)
133
-
134
- ncheck = len(self.touched)
135
- nconv = 0
136
- max_mdiff = -1.0
137
- new_touched = oset()
138
-
139
- def _compute_ms(tid):
140
- t = self.tn.tensor_map[tid]
141
- new_ms = compute_all_tensor_messages_tree(
142
- t.data,
143
- [self.messages[ix, tid] for ix in t.inds],
144
- self.backend,
145
- )
146
- new_ms = [self._normalize(m) for m in new_ms]
147
- new_ks = [self.key_pairs[ix, tid] for ix in t.inds]
148
-
149
- return new_ks, new_ms
150
-
151
- def _update_m(key, data):
152
- nonlocal nconv, max_mdiff
153
-
154
- m = self.messages[key]
155
- if self.damping != 0.0:
156
- data = (1 - self.damping) * data + self.damping * m
157
-
158
- mdiff = float(self._distance(m, data))
159
- if mdiff > tol:
160
- # mark distination tid for update
161
- new_touched.add(key[1])
162
- else:
163
- nconv += 1
164
-
165
- max_mdiff = max(max_mdiff, mdiff)
166
- self.messages[key] = data
167
-
168
- if self.update == "sequential":
169
- # compute each new message and immediately re-insert it
170
- while self.touched:
171
- tid = self.touched.pop()
172
- keys, new_ms = _compute_ms(tid)
173
- for key, data in zip(keys, new_ms):
174
- _update_m(key, data)
175
-
176
- elif self.update == "parallel":
177
- new_data = {}
178
- # compute all new messages
179
- while self.touched:
180
- tid = self.touched.pop()
181
- keys, new_ms = _compute_ms(tid)
182
- for key, data in zip(keys, new_ms):
183
- new_data[key] = data
184
- # insert all new messages
185
- for key, data in new_data.items():
186
- _update_m(key, data)
187
-
188
- self.touched = new_touched
189
- return nconv, ncheck, max_mdiff
190
-
191
- def normalize_messages(self):
192
- """Normalize all messages such that for each bond `<m_i|m_j> = 1` and
193
- `<m_i|m_i> = <m_j|m_j>` (but in general != 1).
194
- """
195
- for ix, tids in self.tn.ind_map.items():
196
- if len(tids) != 2:
197
- continue
198
- tida, tidb = tids
199
- mi = self.messages[ix, tida]
200
- mj = self.messages[ix, tidb]
201
- nij = abs(mi @ mj)**0.5
202
- nii = (mi @ mi)**0.25
203
- njj = (mj @ mj)**0.25
204
- self.messages[ix, tida] = mi / (nij * nii / njj)
205
- self.messages[ix, tidb] = mj / (nij * njj / nii)
206
-
207
- def get_gauged_tn(self):
208
- """Gauge the original TN by inserting the BP-approximated transfer
209
- matrix eigenvectors, which may be complex. The BP-contraction of this
210
- gauged network is then simply the product of zeroth entries of each
211
- tensor.
212
- """
213
- tng = self.tn.copy()
214
- for ind, tids in self.tn.ind_map.items():
215
- tida, tidb = tids
216
- ka = (ind, tida)
217
- kb = (ind, tidb)
218
- ma = self.messages[ka]
219
- mb = self.messages[kb]
220
-
221
- el, ev = ar.do('linalg.eig', ar.do('outer', ma, mb))
222
- k = ar.do('argsort', -ar.do('abs', el))
223
- ev = ev[:, k]
224
- Uinv = ev
225
- U = ar.do('linalg.inv', ev)
226
- tng._insert_gauge_tids(U, tida, tidb, Uinv)
227
- return tng
228
-
229
- def contract(self, strip_exponent=False):
230
- tvals = []
231
- for tid, t in self.tn.tensor_map.items():
232
- arrays = [t.data]
233
- inputs = [tuple(range(t.ndim))]
234
- for i, ix in enumerate(t.inds):
235
- m = self.messages[ix, tid]
236
- arrays.append(m)
237
- inputs.append((i,))
238
- tvals.append(
239
- array_contract(
240
- arrays=arrays,
241
- inputs=inputs,
242
- output=(),
243
- )
244
- )
245
-
246
- mvals = []
247
- for ix, tids in self.tn.ind_map.items():
248
- if len(tids) != 2:
249
- continue
250
- tida, tidb = tids
251
- mvals.append(
252
- self.messages[ix, tida] @ self.messages[ix, tidb]
253
- )
254
-
255
- return combine_local_contractions(
256
- tvals, mvals, self.backend, strip_exponent=strip_exponent
257
- )
258
-
259
-
260
-
261
- def contract_d1bp(
262
- tn,
263
- max_iterations=1000,
264
- tol=5e-6,
265
- damping=0.0,
266
- update="sequential",
267
- local_convergence=True,
268
- strip_exponent=False,
269
- info=None,
270
- progbar=False,
271
- **contract_opts,
272
- ):
273
- """Estimate the contraction of standard tensor network ``tn`` using dense
274
- 1-norm belief propagation.
275
-
276
- Parameters
277
- ----------
278
- tn : TensorNetwork
279
- The tensor network to contract, it should have no dangling or hyper
280
- indices.
281
- max_iterations : int, optional
282
- The maximum number of iterations to run for.
283
- tol : float, optional
284
- The convergence tolerance for messages.
285
- damping : float, optional
286
- The damping parameter to use, defaults to no damping.
287
- update : {'sequential', 'parallel'}, optional
288
- Whether to update messages sequentially or in parallel.
289
- local_convergence : bool, optional
290
- Whether to allow messages to locally converge - i.e. if all their
291
- input messages have converged then stop updating them.
292
- strip_exponent : bool, optional
293
- Whether to strip the exponent from the final result. If ``True``
294
- then the returned result is ``(mantissa, exponent)``.
295
- info : dict, optional
296
- If specified, update this dictionary with information about the
297
- belief propagation run.
298
- progbar : bool, optional
299
- Whether to show a progress bar.
300
- """
301
- bp = D1BP(
302
- tn,
303
- damping=damping,
304
- local_convergence=local_convergence,
305
- update=update,
306
- **contract_opts,
307
- )
308
- bp.run(
309
- max_iterations=max_iterations,
310
- tol=tol,
311
- info=info,
312
- progbar=progbar,
313
- )
314
- return bp.contract(
315
- strip_exponent=strip_exponent,
316
- )