Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,388 +0,0 @@
1
- import pytest
2
-
3
- import numpy as np
4
- from numpy.testing import assert_allclose
5
-
6
- from quimb import (
7
- ham_heis,
8
- expec,
9
- plus,
10
- is_eigenvector,
11
- eigh,
12
- heisenberg_energy,
13
- )
14
-
15
- from quimb.tensor import (
16
- MPS_rand_state,
17
- MPS_product_state,
18
- MPS_computational_state,
19
- MPO_ham_ising,
20
- MPO_ham_XY,
21
- MPO_ham_heis,
22
- MPO_ham_mbl,
23
- MovingEnvironment,
24
- DMRG1,
25
- DMRG2,
26
- DMRGX,
27
- SpinHam1D,
28
- )
29
-
30
-
31
- np.random.seed(42)
32
-
33
-
34
- class TestMovingEnvironment:
35
- def test_bsz1_start_left(self):
36
- tn = MPS_rand_state(6, bond_dim=7)
37
- env = MovingEnvironment(tn, begin="left", bsz=1)
38
- assert env.pos == 0
39
- assert len(env().tensors) == 3
40
- env.move_right()
41
- assert env.pos == 1
42
- assert len(env().tensors) == 3
43
- env.move_right()
44
- assert env.pos == 2
45
- assert len(env().tensors) == 3
46
- env.move_to(5)
47
- assert env.pos == 5
48
- assert len(env().tensors) == 3
49
-
50
- def test_bsz1_start_right(self):
51
- tn = MPS_rand_state(6, bond_dim=7)
52
- env = MovingEnvironment(tn, begin="right", bsz=1)
53
- assert env.pos == 5
54
- assert len(env().tensors) == 3
55
- env.move_left()
56
- assert env.pos == 4
57
- assert len(env().tensors) == 3
58
- env.move_left()
59
- assert env.pos == 3
60
- assert len(env().tensors) == 3
61
- env.move_to(0)
62
- assert env.pos == 0
63
- assert len(env().tensors) == 3
64
-
65
- def test_bsz2_start_left(self):
66
- tn = MPS_rand_state(6, bond_dim=7)
67
- env = MovingEnvironment(tn, begin="left", bsz=2)
68
- assert len(env().tensors) == 4
69
- env.move_right()
70
- assert len(env().tensors) == 4
71
- env.move_right()
72
- assert len(env().tensors) == 4
73
- with pytest.raises(ValueError):
74
- env.move_to(5)
75
- env.move_to(4)
76
- assert env.pos == 4
77
- assert len(env().tensors) == 4
78
-
79
- def test_bsz2_start_right(self):
80
- tn = MPS_rand_state(6, bond_dim=7)
81
- env = MovingEnvironment(tn, begin="right", bsz=2)
82
- assert env.pos == 4
83
- assert len(env().tensors) == 4
84
- env.move_left()
85
- assert env.pos == 3
86
- assert len(env().tensors) == 4
87
- env.move_left()
88
- assert env.pos == 2
89
- assert len(env().tensors) == 4
90
- with pytest.raises(ValueError):
91
- env.move_to(-1)
92
- env.move_to(0)
93
- assert env.pos == 0
94
- assert len(env().tensors) == 4
95
-
96
- @pytest.mark.parametrize("n", [20, 19])
97
- @pytest.mark.parametrize("bsz", [1, 2])
98
- @pytest.mark.parametrize("ssz", [1 / 2, 1.0])
99
- def test_cyclic_moving_env_init_left(self, n, bsz, ssz):
100
- nenv = 2
101
- p = MPS_rand_state(n, 4, cyclic=True)
102
- norm = p.H & p
103
- mes = MovingEnvironment(
104
- norm, begin="left", bsz=bsz, cyclic=True, ssz=ssz
105
- )
106
- assert len(mes.envs) == n // 2 + n % 2
107
- assert mes.pos == 0
108
- assert len(mes.envs[0].tensors) == 2 * bsz + nenv
109
- assert len(mes.envs[n // 2 - 1].tensors) == 2 * bsz + 1
110
- assert n // 2 + n % 2 not in mes.envs
111
- assert n - 1 not in mes.envs
112
-
113
- for i in range(1, 2 * n):
114
- mes.move_right()
115
- assert mes.pos == i % n
116
- cur_env = mes()
117
- assert len(cur_env.tensors) == 2 * bsz + nenv
118
- assert (cur_env ^ all) == pytest.approx(1.0)
119
-
120
- @pytest.mark.parametrize("n", [20, 19])
121
- @pytest.mark.parametrize("bsz", [1, 2])
122
- @pytest.mark.parametrize("ssz", [1 / 2, 1.0])
123
- def test_cyclic_moving_env_init_right(self, n, bsz, ssz):
124
- p = MPS_rand_state(n, 4, cyclic=True)
125
- norm = p.H | p
126
- mes = MovingEnvironment(
127
- norm, begin="right", bsz=bsz, cyclic=True, ssz=ssz
128
- )
129
- assert len(mes.envs) == n // 2 + n % 2
130
- assert mes.pos == n - 1
131
- assert len(mes.envs[n - 1].tensors) == 2 * bsz + 2
132
- assert len(mes.envs[n - n // 2].tensors) == 2 * bsz + 1
133
- assert 0 not in mes.envs
134
- assert n // 2 - 1 not in mes.envs
135
-
136
- for i in reversed(range(-n, n - 1)):
137
- mes.move_left()
138
- assert mes.pos == i % n
139
- cur_env = mes()
140
- assert len(cur_env.tensors) == 2 * bsz + 2
141
- assert (cur_env ^ all) == pytest.approx(1.0)
142
-
143
-
144
- class TestDMRG1:
145
- def test_single_explicit_sweep(self):
146
- h = MPO_ham_heis(5)
147
- dmrg = DMRG1(h, bond_dims=3)
148
- assert dmrg._k[0].dtype == float
149
-
150
- energy_tn = dmrg._b | dmrg.ham | dmrg._k
151
-
152
- e0 = energy_tn ^ ...
153
- assert abs(e0.imag) < 1e-13
154
-
155
- de1 = dmrg.sweep_right()
156
- e1 = energy_tn ^ ...
157
- assert_allclose(de1, e1)
158
- assert abs(e1.imag) < 1e-13
159
-
160
- de2 = dmrg.sweep_right()
161
- e2 = energy_tn ^ ...
162
- assert_allclose(de2, e2)
163
- assert abs(e2.imag) < 1e-13
164
-
165
- # state is already left canonized after right sweep
166
- de3 = dmrg.sweep_left(canonize=False)
167
- e3 = energy_tn ^ ...
168
- assert_allclose(de3, e3)
169
- assert abs(e2.imag) < 1e-13
170
-
171
- de4 = dmrg.sweep_left()
172
- e4 = energy_tn ^ ...
173
- assert_allclose(de4, e4)
174
- assert abs(e2.imag) < 1e-13
175
-
176
- # test still normalized
177
- assert dmrg._k[0].dtype == float
178
- dmrg._k.align_(dmrg._b)
179
- assert_allclose(abs(dmrg._b @ dmrg._k), 1)
180
-
181
- assert e1.real < e0.real
182
- assert e2.real < e1.real
183
- assert e3.real < e2.real
184
- assert e4.real < e3.real
185
-
186
- @pytest.mark.parametrize("dense", [False, True])
187
- @pytest.mark.parametrize("MPO_ham", [MPO_ham_XY, MPO_ham_heis])
188
- @pytest.mark.parametrize("cyclic", [False, True])
189
- def test_ground_state_matches(self, dense, MPO_ham, cyclic):
190
- n = 10
191
-
192
- tol = 3e-2 if cyclic else 1e-4
193
-
194
- h = MPO_ham(n, cyclic=cyclic)
195
- dmrg = DMRG1(h, bond_dims=[4, 8, 12])
196
- dmrg.opts["local_eig_ham_dense"] = dense
197
- dmrg.opts["periodic_segment_size"] = 1.0
198
- dmrg.opts["periodic_nullspace_fudge_factor"] = 1e-6
199
- assert dmrg.solve(tol=tol / 10, verbosity=1)
200
- assert dmrg.state.cyclic == cyclic
201
- eff_e, mps_gs = dmrg.energy, dmrg.state
202
- mps_gs_dense = mps_gs.to_qarray()
203
-
204
- assert_allclose(mps_gs_dense.H @ mps_gs_dense, 1.0, rtol=tol)
205
-
206
- h_dense = h.to_qarray()
207
-
208
- # check against dense form
209
- actual_e, gs = eigh(h_dense, k=1)
210
- assert_allclose(actual_e, eff_e, rtol=tol)
211
- assert_allclose(abs(expec(mps_gs_dense, gs)), 1.0, rtol=tol)
212
-
213
- # check against actual MPO_ham
214
- if MPO_ham is MPO_ham_XY:
215
- ham_dense = ham_heis(
216
- n, cyclic=cyclic, j=(1.0, 1.0, 0.0), sparse=True
217
- )
218
- elif MPO_ham is MPO_ham_heis:
219
- ham_dense = ham_heis(n, cyclic=cyclic, sparse=True)
220
-
221
- actual_e, gs = eigh(ham_dense, k=1)
222
- assert_allclose(actual_e, eff_e, rtol=tol)
223
- assert_allclose(abs(expec(mps_gs_dense, gs)), 1.0, rtol=tol)
224
-
225
- def test_ising_and_MPS_product_state(self):
226
- h = MPO_ham_ising(6, bx=2.0, j=0.1)
227
- dmrg = DMRG1(h, bond_dims=8)
228
- assert dmrg.solve(verbosity=1)
229
- eff_e, mps_gs = dmrg.energy, dmrg.state
230
- mps_gs_dense = mps_gs.to_qarray()
231
- assert_allclose(mps_gs_dense.H @ mps_gs_dense, 1.0)
232
-
233
- # check against dense
234
- h_dense = h.to_qarray()
235
- actual_e, gs = eigh(h_dense, k=1)
236
- assert_allclose(actual_e, eff_e)
237
- assert_allclose(abs(expec(mps_gs_dense, gs)), 1.0)
238
-
239
- exp_gs = MPS_product_state([plus()] * 6)
240
- assert_allclose(abs(exp_gs.H @ mps_gs), 1.0, rtol=1e-3)
241
-
242
-
243
- class TestDMRG2:
244
- @pytest.mark.parametrize("dense", [False, True])
245
- @pytest.mark.parametrize("MPO_ham", [MPO_ham_XY, MPO_ham_heis])
246
- @pytest.mark.parametrize("cyclic", [False, True])
247
- def test_matches_exact(self, dense, MPO_ham, cyclic):
248
- n = 6
249
- h = MPO_ham(n, cyclic=cyclic)
250
-
251
- tol = 3e-2 if cyclic else 1e-4
252
-
253
- dmrg = DMRG2(h, bond_dims=[4, 8, 12])
254
- assert dmrg._k[0].dtype == float
255
- dmrg.opts["local_eig_ham_dense"] = dense
256
- dmrg.opts["periodic_segment_size"] = 1.0
257
- dmrg.opts["periodic_nullspace_fudge_factor"] = 1e-6
258
-
259
- assert dmrg.solve(tol=tol / 10, verbosity=1)
260
-
261
- # XXX: need to dispatch SLEPc eigh on real input
262
- # assert dmrg._k[0].dtype == float
263
-
264
- eff_e, mps_gs = dmrg.energy, dmrg.state
265
- mps_gs_dense = mps_gs.to_qarray()
266
-
267
- assert_allclose(expec(mps_gs_dense, mps_gs_dense), 1.0, rtol=tol)
268
-
269
- h_dense = h.to_qarray()
270
-
271
- # check against dense form
272
- actual_e, gs = eigh(h_dense, k=1)
273
- assert_allclose(actual_e, eff_e, rtol=tol)
274
- assert_allclose(abs(expec(mps_gs_dense, gs)), 1.0, rtol=tol)
275
-
276
- # check against actual MPO_ham
277
- if MPO_ham is MPO_ham_XY:
278
- ham_dense = ham_heis(n, cyclic=cyclic, j=(1.0, 1.0, 0.0))
279
- elif MPO_ham is MPO_ham_heis:
280
- ham_dense = ham_heis(n, cyclic=cyclic)
281
-
282
- actual_e, gs = eigh(ham_dense, k=1)
283
- assert_allclose(actual_e, eff_e, rtol=tol)
284
- assert_allclose(abs(expec(mps_gs_dense, gs)), 1.0, rtol=tol)
285
-
286
- def test_cyclic_solve_big_with_segmenting(self):
287
- n = 150
288
- ham = MPO_ham_heis(n, cyclic=True)
289
- dmrg = DMRG2(ham, bond_dims=range(10, 30, 2))
290
- dmrg.opts["periodic_segment_size"] = 1 / 3
291
- assert dmrg.solve(tol=1, verbosity=2)
292
- assert dmrg.energy == pytest.approx(heisenberg_energy(n), 1e-3)
293
-
294
- @pytest.mark.parametrize(
295
- "dtype", [np.float32, np.float64, np.complex64, np.complex128]
296
- )
297
- def test_dtypes(self, dtype):
298
- H = MPO_ham_heis(8).astype(dtype)
299
- dmrg = DMRG2(H)
300
- dmrg.opts["local_eig_backend"] = "scipy"
301
- dmrg.solve(max_sweeps=3)
302
- (res_dtype,) = {t.dtype for t in dmrg.state}
303
- assert res_dtype == dtype
304
-
305
- def test_total_size_2(self):
306
- N = 2
307
- builder = SpinHam1D(1 / 2)
308
- for i in range(N - 1):
309
- builder[i, i + 1] += 1.0, "Z", "Z"
310
-
311
- H = builder.build_mpo(N)
312
- dmrg = DMRG2(H)
313
- dmrg.solve(verbosity=1)
314
- assert dmrg.energy == pytest.approx(-1 / 4)
315
-
316
- def test_variable_bond_ham(self):
317
- import quimb as qu
318
-
319
- HB = SpinHam1D(1 / 2)
320
- HB[0, 1] += 0.6, "Z", "Z"
321
- HB[1, 2] += 0.7, "Z", "Z"
322
- HB[1, 2] += 0.8, "X", "X"
323
- HB[2, 3] += 0.9, "Y", "Y"
324
-
325
- H_mpo = HB.build_mpo(4)
326
- H_sps = HB.build_sparse(4)
327
-
328
- assert H_mpo.bond_sizes() == [3, 4, 3]
329
-
330
- Sx, Sy, Sz = map(qu.spin_operator, "xyz")
331
- H_explicit = (
332
- qu.ikron(0.6 * Sz & Sz, [2, 2, 2, 2], [0, 1])
333
- + qu.ikron(0.7 * Sz & Sz, [2, 2, 2, 2], [1, 2])
334
- + qu.ikron(0.8 * Sx & Sx, [2, 2, 2, 2], [1, 2])
335
- + qu.ikron(0.9 * Sy & Sy, [2, 2, 2, 2], [2, 3])
336
- )
337
-
338
- assert_allclose(H_explicit, H_mpo.to_qarray())
339
- assert_allclose(H_explicit, H_sps.toarray())
340
-
341
-
342
- class TestDMRGX:
343
- def test_explicit_sweeps(self):
344
- n = 8
345
- chi = 16
346
- ham = MPO_ham_mbl(n, dh=4, seed=42)
347
- p0 = MPS_rand_state(n, 2).expand_bond_dimension(chi)
348
-
349
- b0 = p0.H
350
- p0.align_(ham, b0)
351
- en0 = (p0 & ham & b0) ^ ...
352
- dmrgx = DMRGX(ham, p0, chi)
353
- dmrgx.sweep_right()
354
- en1 = dmrgx.sweep_left(canonize=False)
355
- assert en0 != en1
356
-
357
- dmrgx.sweep_right(canonize=False)
358
- en = dmrgx.sweep_right(canonize=True)
359
-
360
- # check normalized
361
- assert_allclose(dmrgx._k.H @ dmrgx._k, 1.0)
362
-
363
- k = dmrgx._k.to_qarray()
364
- h = ham.to_qarray()
365
- el, ev = eigh(h)
366
-
367
- # check variance very low
368
- assert np.abs((k.H @ h @ h @ k) - (k.H @ h @ k) ** 2) < 1e-12
369
-
370
- # check exactly one eigenvalue matched well
371
- assert np.sum(np.abs(el - en) < 1e-12) == 1
372
-
373
- # check exactly one eigenvector is matched with high fidelity
374
- ovlps = (ev.H @ k).toarray() ** 2
375
- big_ovlps = ovlps[ovlps > 1e-12]
376
- assert_allclose(big_ovlps, [1])
377
-
378
- # check fully
379
- assert is_eigenvector(k, h, tol=1e-10)
380
-
381
- def test_solve_bigger(self):
382
- n = 14
383
- chi = 16
384
- ham = MPO_ham_mbl(n, dh=8, seed=42)
385
- p0 = MPS_computational_state("00110111000101")
386
- dmrgx = DMRGX(ham, p0, chi)
387
- assert dmrgx.solve(tol=1e-5, sweep_sequence="R")
388
- assert dmrgx.state[0].dtype == float
@@ -1,63 +0,0 @@
1
- from math import log2
2
- import pytest
3
- import numpy as np
4
- from numpy.testing import assert_allclose
5
-
6
- from quimb import (
7
- seed_rand,
8
- approx_spectral_function,
9
- eigvalsh,
10
- logneg_subsys,
11
- )
12
- from quimb.tensor import MPO_rand_herm, MPO_ham_heis, DMRG2
13
- from quimb.tensor.tensor_approx_spectral import construct_lanczos_tridiag_MPO
14
-
15
-
16
- np.random.seed(42)
17
-
18
-
19
- # XXX: these all need improvement
20
-
21
-
22
- class TestMPOSpectralApprox:
23
- def test_constructing_tridiag_works(self):
24
- A = MPO_rand_herm(10, 7)
25
- for _ in construct_lanczos_tridiag_MPO(A, 5):
26
- pass
27
-
28
- @pytest.mark.parametrize("fn", [abs, np.cos, lambda x: np.sin(x) ** 2])
29
- def test_approx_fn(self, fn):
30
- A = MPO_rand_herm(10, 7, normalize=True)
31
- xe = sum(fn(eigvalsh(A.to_dense())))
32
- xf = approx_spectral_function(A, fn, tol=0.1, verbosity=2)
33
- assert_allclose(xe, xf, rtol=0.5)
34
-
35
- def test_realistic(self):
36
- seed_rand(42)
37
- ham = MPO_ham_heis(20)
38
- dmrg = DMRG2(ham, bond_dims=[2, 4])
39
- dmrg.solve()
40
- rho_ab = dmrg.state.partial_trace_to_mpo(range(6, 14))
41
- xf = approx_spectral_function(
42
- rho_ab, lambda x: x, tol=0.1, verbosity=2
43
- )
44
- assert_allclose(1.0, xf, rtol=0.6, atol=0.001)
45
-
46
- def test_realistic_ent(self):
47
- n = 12
48
- sysa, sysb = range(3, 6), range(6, 8)
49
- sysab = (*sysa, *sysb)
50
-
51
- ham = MPO_ham_heis(n)
52
- dmrg = DMRG2(ham, bond_dims=[10])
53
- dmrg.solve()
54
-
55
- psi0 = dmrg.state.to_dense()
56
- lne = logneg_subsys(psi0, [2] * n, sysa=sysa, sysb=sysb)
57
-
58
- rho_ab = dmrg.state.partial_trace_to_mpo(sysab, rescale_sites=True)
59
- rho_ab_pt = rho_ab.partial_transpose(range(3))
60
- lnx = log2(
61
- approx_spectral_function(rho_ab_pt, abs, tol=0.1, verbosity=2)
62
- )
63
- assert_allclose(lne, lnx, rtol=0.6, atol=0.1)