Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,788 +0,0 @@
1
- import pytest
2
- import itertools
3
- import math
4
- import numpy as np
5
- from numpy.testing import assert_allclose
6
- import quimb as qu
7
-
8
-
9
- @pytest.fixture
10
- def p1():
11
- return qu.rand_rho(3)
12
-
13
-
14
- @pytest.fixture
15
- def p2():
16
- return qu.rand_rho(3)
17
-
18
-
19
- @pytest.fixture
20
- def k1():
21
- return qu.rand_ket(3)
22
-
23
-
24
- @pytest.fixture
25
- def k2():
26
- return qu.rand_ket(3)
27
-
28
-
29
- @pytest.fixture
30
- def orthog_ks():
31
- p = qu.rand_rho(3)
32
- v = qu.eigvecsh(p)
33
- return (v[:, [0]], v[:, [1]], v[:, [2]])
34
-
35
-
36
- # --------------------------------------------------------------------------- #
37
- # TESTS #
38
- # --------------------------------------------------------------------------- #
39
-
40
-
41
- class TestFidelity:
42
- def test_both_pure(self, k1, k2):
43
- f = qu.fidelity(k1, k1)
44
- assert_allclose(f, 1.0)
45
- f = qu.fidelity(k1, k2)
46
- assert f > 0 and f < 1
47
-
48
- def test_both_mixed(self, p1, p2):
49
- f = qu.fidelity(qu.eye(3) / 3, qu.eye(3) / 3)
50
- assert_allclose(f, 1.0)
51
- f = qu.fidelity(p1, p1)
52
- assert_allclose(f, 1.0)
53
- f = qu.fidelity(p1, p2)
54
- assert f > 0 and f < 1
55
-
56
- def test_orthog_pure(self, orthog_ks):
57
- k1, k2, k3 = orthog_ks
58
- for (
59
- s1,
60
- s2,
61
- ) in (
62
- [k1, k2],
63
- [k2, k3],
64
- [k3, k1],
65
- [k1 @ k1.H, k2],
66
- [k1, k2 @ k2.H],
67
- [k3 @ k3.H, k2],
68
- [k3, k2 @ k2.H],
69
- [k1 @ k1.H, k3],
70
- [k1, k3 @ k3.H],
71
- [k1 @ k1.H, k2 @ k2.H],
72
- [k2 @ k2.H, k3 @ k3.H],
73
- [k1 @ k1.H, k3 @ k3.H],
74
- ):
75
- f = qu.fidelity(s1, s2)
76
- assert_allclose(f, 0.0, atol=1e-6)
77
-
78
-
79
- class TestPurify:
80
- def test_d2(self):
81
- rho = qu.eye(2) / 2
82
- psi = qu.purify(rho)
83
- assert qu.expec(psi, qu.bell_state("phi+")) > 1 - 1e-14
84
-
85
- def test_pure(self):
86
- rho = qu.up(qtype="dop")
87
- psi = qu.purify(rho)
88
- assert abs(qu.concurrence(psi)) < 1e-14
89
-
90
-
91
- class TestDephase:
92
- @pytest.mark.parametrize("rand_rank", [None, 0.3, 2])
93
- def test_basic(self, rand_rank):
94
- rho = qu.rand_rho(9)
95
- ln = qu.logneg(rho, [3, 3])
96
- for p in (0.2, 0.5, 0.8, 1.0):
97
- rho_d = qu.dephase(rho, p, rand_rank=rand_rank)
98
- assert qu.logneg(rho_d, [3, 3]) <= ln
99
- assert rho_d.tr() == pytest.approx(1.0)
100
-
101
-
102
- class TestKrausOp:
103
- @pytest.mark.parametrize("stack", [False, True])
104
- def test_depolarize(self, stack):
105
- rho = qu.rand_rho(2)
106
- I, X, Y, Z = (qu.pauli(s) for s in "IXYZ")
107
- es = [qu.expec(rho, A) for A in (X, Y, Z)]
108
- p = 0.1
109
- Ek = [
110
- (1 - p) ** 0.5 * I,
111
- (p / 3) ** 0.5 * X,
112
- (p / 3) ** 0.5 * Y,
113
- (p / 3) ** 0.5 * Z,
114
- ]
115
- if stack:
116
- Ek = np.stack(Ek, axis=0)
117
- sigma = qu.kraus_op(rho, Ek, check=True)
118
- es2 = [qu.expec(sigma, A) for A in (X, Y, Z)]
119
- assert qu.tr(sigma) == pytest.approx(1.0)
120
- assert all(abs(e2) < abs(e) for e, e2 in zip(es, es2))
121
- sig_exp = sum(E @ rho @ qu.dag(E) for E in Ek)
122
- assert_allclose(sig_exp, sigma)
123
-
124
- def test_subsystem(self):
125
- rho = qu.rand_rho(6)
126
- dims = [3, 2]
127
- I, X, Y, Z = (qu.pauli(s) for s in "IXYZ")
128
- mi_i = qu.mutual_information(rho, dims)
129
- p = 0.1
130
- Ek = [
131
- (1 - p) ** 0.5 * I,
132
- (p / 3) ** 0.5 * X,
133
- (p / 3) ** 0.5 * Y,
134
- (p / 3) ** 0.5 * Z,
135
- ]
136
-
137
- with pytest.raises(ValueError):
138
- qu.kraus_op(
139
- rho, qu.randn((3, 2, 2)), check=True, dims=dims, where=1
140
- )
141
-
142
- sigma = qu.kraus_op(rho, Ek, check=True, dims=dims, where=1)
143
- mi_f = qu.mutual_information(sigma, dims)
144
- assert mi_f < mi_i
145
- assert qu.tr(sigma) == pytest.approx(1.0)
146
- sig_exp = sum(
147
- (qu.eye(3) & E) @ rho @ qu.dag(qu.eye(3) & E) for E in Ek
148
- )
149
- assert_allclose(sig_exp, sigma)
150
-
151
- def test_multisubsystem(self):
152
- qu.seed_rand(42)
153
- dims = [2, 2, 2]
154
- IIX = qu.ikron(qu.rand_matrix(2), dims, 2)
155
- dcmp = qu.pauli_decomp(IIX, mode="c")
156
- for p, x in dcmp.items():
157
- if abs(x) < 1e-12:
158
- assert (p[0] != "I") or (p[1] != "I")
159
- else:
160
- assert p[0] == p[1] == "I"
161
- K = qu.rand_iso(3 * 4, 4).reshape(3, 4, 4)
162
- KIIXK = qu.kraus_op(IIX, K, dims=dims, where=[0, 2], check=True)
163
- dcmp = qu.pauli_decomp(KIIXK, mode="c")
164
- for p, x in dcmp.items():
165
- if abs(x) > 1e-12:
166
- assert (p == "III") or p[1] == "I"
167
-
168
- @pytest.mark.parametrize("subsystem", [(0, 1), (1, 2), (2, 0)])
169
- def test_multisubsytem_kraus_identity(self, subsystem):
170
- n = 3
171
- qu.seed_rand(7)
172
- rho = qu.rand_rho(2**n)
173
- Ek = np.array([qu.eye(2 ** len(subsystem))])
174
- sigma = qu.kraus_op(rho, Ek, dims=[2] * n, where=[0, 1], check=True)
175
- assert qu.fidelity(rho, sigma) == pytest.approx(1.0)
176
-
177
-
178
- class TestProjector:
179
- def test_simple(self):
180
- Z = qu.pauli("Z")
181
- P = qu.projector(Z & Z)
182
- uu = qu.dop(qu.up()) & qu.dop(qu.up())
183
- dd = qu.dop(qu.down()) & qu.dop(qu.down())
184
- assert_allclose(P, uu + dd)
185
- assert qu.expec(P, qu.bell_state("phi+")) == pytest.approx(1.0)
186
- assert qu.expec(P, qu.bell_state("psi+")) == pytest.approx(0.0)
187
-
188
-
189
- class TestMeasure:
190
- def test_pure(self):
191
- psi = qu.bell_state("psi-")
192
- IZ = qu.pauli("I") & qu.pauli("Z")
193
- ZI = qu.pauli("Z") & qu.pauli("I")
194
- res, psi_after = qu.measure(psi, IZ)
195
- # normalized
196
- assert qu.expectation(psi_after, psi_after) == pytest.approx(1.0)
197
- # anticorrelated
198
- assert qu.expectation(psi_after, IZ) == pytest.approx(res)
199
- assert qu.expectation(psi_after, ZI) == pytest.approx(-res)
200
- assert isinstance(psi_after, qu.qarray)
201
-
202
- def test_bigger(self):
203
- psi = qu.rand_ket(2**5)
204
- assert np.sum(abs(psi) < 1e-12) == 0
205
- A = qu.kronpow(qu.pauli("Z"), 5)
206
- res, psi_after = qu.measure(psi, A, eigenvalue=-1.0)
207
- # should have projected to half subspace
208
- assert np.sum(abs(psi_after) < 1e-12) == 2**4
209
- assert res == -1.0
210
-
211
- def test_mixed(self):
212
- rho = qu.dop(qu.bell_state("psi-"))
213
- IZ = qu.pauli("I") & qu.pauli("Z")
214
- ZI = qu.pauli("Z") & qu.pauli("I")
215
- res, rho_after = qu.measure(rho, IZ)
216
- # normalized
217
- assert qu.tr(rho_after) == pytest.approx(1.0)
218
- # anticorrelated
219
- assert qu.expectation(rho_after, IZ) == pytest.approx(res)
220
- assert qu.expectation(rho_after, ZI) == pytest.approx(-res)
221
- assert isinstance(rho_after, qu.qarray)
222
-
223
-
224
- class TestSimulateCounts:
225
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
226
- def test_ghz(self, qtype):
227
- psi = qu.ghz_state(3, qtype=qtype)
228
- results = qu.simulate_counts(psi, 1024)
229
- assert len(results) == 2
230
- assert "000" in results
231
- assert "111" in results
232
-
233
-
234
- class TestCPrint:
235
- def test_basic(self):
236
- psi = qu.ghz_state(2)
237
- qu.cprint(psi)
238
-
239
-
240
- class TestEntropy:
241
- def test_entropy_pure(self):
242
- a = qu.bell_state(1, qtype="dop")
243
- assert_allclose(0.0, qu.entropy(a), atol=1e-12)
244
-
245
- def test_entropy_mixed(self):
246
- a = 0.5 * (
247
- qu.bell_state(1, qtype="dop") + qu.bell_state(2, qtype="dop")
248
- )
249
- assert_allclose(1.0, qu.entropy(a), atol=1e-12)
250
-
251
- @pytest.mark.parametrize(
252
- "evals, e",
253
- [
254
- ([0, 1, 0, 0], 0),
255
- ([0, 0.5, 0, 0.5], 1),
256
- ([0.25, 0.25, 0.25, 0.25], 2),
257
- ],
258
- )
259
- def test_list(self, evals, e):
260
- assert_allclose(qu.entropy(evals), e)
261
-
262
- @pytest.mark.parametrize(
263
- "evals, e",
264
- [
265
- ([0, 1, 0, 0], 0),
266
- ([0, 0.5, 0, 0.5], 1),
267
- ([0.25, 0.25, 0.25, 0.25], 2),
268
- ],
269
- )
270
- def test_1darray(self, evals, e):
271
- assert_allclose(qu.entropy(np.asarray(evals)), e)
272
-
273
- @pytest.mark.parametrize("m", [1, 2, 3])
274
- def test_rank(self, m):
275
- k = qu.rand_ket(2**4)
276
- pab = qu.ptr(k, [2, 2, 2, 2], range(m))
277
- ef = qu.entropy(pab)
278
- er = qu.entropy(pab, rank=2**m)
279
- assert_allclose(ef, er)
280
-
281
- def test_entropy_subsystem(self):
282
- p = qu.rand_ket(2**9)
283
- # exact
284
- e1 = qu.entropy_subsys(p, (2**5, 2**4), 0, approx_thresh=1e30)
285
- # approx
286
- e2 = qu.entropy_subsys(p, (2**5, 2**4), 0, approx_thresh=1)
287
- assert e1 != e2
288
- assert_allclose(e1, e2, rtol=0.2)
289
-
290
- assert (
291
- qu.entropy_subsys(p, (2**5, 2**4), [0, 1], approx_thresh=1) == 0.0
292
- )
293
-
294
-
295
- class TestMutualInformation:
296
- def test_mutual_information_pure(self):
297
- a = qu.bell_state(0)
298
- assert_allclose(qu.mutual_information(a), 2.0)
299
- a = qu.rand_product_state(2)
300
- assert_allclose(qu.mutual_information(a), 0.0, atol=1e-12)
301
-
302
- def test_mutual_information_pure_sub(self):
303
- a = qu.up() & qu.bell_state(1)
304
- ixy = qu.mutual_information(a, [2, 2, 2], 0, 1)
305
- assert_allclose(0.0, ixy, atol=1e-12)
306
- ixy = qu.mutual_information(a, [2, 2, 2], 0, 2)
307
- assert_allclose(0.0, ixy, atol=1e-12)
308
- ixy = qu.mutual_information(a, [2, 2, 2], 2, 1)
309
- assert_allclose(2.0, ixy, atol=1e-12)
310
-
311
- @pytest.mark.parametrize("inds", [(0, 1), (1, 2), (0, 2)])
312
- def test_mixed_sub(self, inds):
313
- a = qu.rand_rho(2**3)
314
- rho_ab = qu.ptr(a, [2, 2, 2], inds)
315
- ixy = qu.mutual_information(rho_ab, (2, 2))
316
- assert 0 <= ixy <= 2.0
317
-
318
- def test_mutinf_interleave(self):
319
- p = qu.dop(qu.singlet() & qu.singlet())
320
- ixy = qu.mutual_information(p, [2] * 4, sysa=(0, 2))
321
- assert_allclose(ixy, 4)
322
-
323
- def test_mutinf_interleave_pure(self):
324
- p = qu.singlet() & qu.singlet()
325
- ixy = qu.mutual_information(p, [2] * 4, sysa=(0, 2))
326
- assert_allclose(ixy, 4)
327
-
328
- def test_mutinf_subsys(self):
329
- p = qu.rand_ket(2**9)
330
- dims = (2**3, 2**2, 2**4)
331
- # exact
332
- rho_ab = qu.ptr(p, dims, [0, 2])
333
- mi0 = qu.mutual_information(rho_ab, [8, 16])
334
- mi1 = qu.mutinf_subsys(p, dims, sysa=0, sysb=2, approx_thresh=1e30)
335
- assert_allclose(mi1, mi0)
336
- # approx
337
- mi2 = qu.mutinf_subsys(p, dims, sysa=0, sysb=2, approx_thresh=1)
338
- assert_allclose(mi1, mi2, rtol=0.1)
339
-
340
- def test_mutinf_subsys_pure(self):
341
- p = qu.rand_ket(2**7)
342
- dims = (2**3, 2**4)
343
- # exact
344
- mi0 = qu.mutual_information(p, dims, sysa=0)
345
- mi1 = qu.mutinf_subsys(p, dims, sysa=0, sysb=1, approx_thresh=1e30)
346
- assert_allclose(mi1, mi0)
347
- # approx
348
- mi2 = qu.mutinf_subsys(
349
- p, dims, sysa=0, sysb=1, approx_thresh=1, tol=5e-3
350
- )
351
- assert_allclose(mi1, mi2, rtol=0.1)
352
-
353
-
354
- class TestSchmidtGap:
355
- def test_bell_state(self):
356
- p = qu.bell_state("psi-")
357
- assert_allclose(qu.schmidt_gap(p, [2, 2], 0), 0.0)
358
- p = qu.up() & qu.down()
359
- assert_allclose(qu.schmidt_gap(p, [2, 2], 0), 1.0)
360
- p = qu.rand_ket(2**3)
361
- assert 0 < qu.schmidt_gap(p, [2] * 3, sysa=[0, 1]) < 1.0
362
-
363
-
364
- class TestPartialTranspose:
365
- def test_partial_transpose(self):
366
- a = qu.bell_state(0, qtype="dop")
367
- b = qu.partial_transpose(a)
368
- assert isinstance(b, qu.qarray)
369
- assert_allclose(
370
- b,
371
- np.array(
372
- [
373
- [0, 0, 0, -0.5],
374
- [0, 0.5, 0, 0],
375
- [0, 0, 0.5, 0],
376
- [-0.5, 0, 0, 0],
377
- ]
378
- ),
379
- )
380
-
381
- def test_tr_sqrt_rank(self):
382
- psi = qu.rand_ket(2**5)
383
- rhoa = psi.ptr([2] * 5, range(4))
384
- assert_allclose(qu.tr_sqrt(rhoa), qu.tr_sqrt(rhoa, rank=2))
385
-
386
-
387
- class TestNegativity:
388
- @pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
389
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
390
- def test_simple(self, qtype, bs):
391
- p = qu.bell_state(bs, qtype=qtype)
392
- assert qu.negativity(p) > 0.5 - 1e-14
393
-
394
- def test_subsystem(self):
395
- p = qu.singlet_pairs(4)
396
- rhoab = p.ptr([2, 2, 2, 2], [0, 1])
397
- assert qu.negativity(rhoab, [2] * 2) > 0.5 - 1e-14
398
- rhoab = p.ptr([2, 2, 2, 2], [1, 2])
399
- assert qu.negativity(rhoab, [2] * 2) < 1e-14
400
- rhoab = p.ptr([2, 2, 2, 2], [2, 3])
401
- assert qu.negativity(rhoab, [2] * 2) > 0.5 - 1e-14
402
-
403
-
404
- class TestLogarithmicNegativity:
405
- @pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
406
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
407
- def test_bell_states(self, qtype, bs):
408
- p = qu.bell_state(bs, qtype=qtype)
409
- assert qu.logneg(p) > 1.0 - 1e-14
410
-
411
- def test_subsystem(self):
412
- p = qu.singlet_pairs(4)
413
- rhoab = p.ptr([2, 2, 2, 2], [0, 1])
414
- assert qu.logneg(rhoab, [2] * 2) > 1 - 1e-14
415
- rhoab = p.ptr([2, 2, 2, 2], [1, 2])
416
- assert qu.logneg(rhoab, [2] * 2) < 1e-14
417
- rhoab = p.ptr([2, 2, 2, 2], [2, 3])
418
- assert qu.logneg(rhoab, [2] * 2) > 1 - 1e-14
419
-
420
- def test_interleaving(self):
421
- p = qu.permute(qu.singlet() & qu.singlet(), [2, 2, 2, 2], [0, 2, 1, 3])
422
- assert qu.logneg(p, [2] * 4, sysa=[0, 3]) > 2 - 1e-13
423
-
424
- def test_logneg_subsys(self):
425
- p = qu.rand_ket(2 ** (2 + 3 + 1 + 2))
426
- dims = (2**2, 2**3, 2**1, 2**2)
427
- sysa = [0, 3]
428
- sysb = 1
429
- # exact 1
430
- ln0 = qu.logneg(qu.ptr(p, dims, [0, 1, 3]), [4, 8, 4], [0, 2])
431
- # exact 2
432
- ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
433
- assert_allclose(ln0, ln1)
434
- # approx
435
- ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1)
436
- assert ln1 != ln2
437
- assert_allclose(ln1, ln2, rtol=5e-2)
438
-
439
- def test_logneg_subsys_pure(self):
440
- p = qu.rand_ket(2 ** (3 + 4))
441
- dims = (2**3, 2**4)
442
- sysa = 0
443
- sysb = 1
444
- # exact 1
445
- ln0 = qu.logneg(p, dims, 0)
446
- # exact 2
447
- ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
448
- assert_allclose(ln0, ln1)
449
- # approx
450
- ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1, tol=5e-3)
451
- assert ln1 != ln2
452
- assert_allclose(ln1, ln2, rtol=1e-1)
453
-
454
- def test_logneg_subsys_pure_should_swap_subsys(self):
455
- p = qu.rand_ket(2 ** (5 + 2))
456
- dims = (2**5, 2**2)
457
- sysa = 0
458
- sysb = 1
459
- # exact 1
460
- ln0 = qu.logneg(p, dims, 0)
461
- # exact 2
462
- ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
463
- assert_allclose(ln0, ln1)
464
- # approx
465
- ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1, tol=0.005)
466
- assert ln1 != ln2
467
- assert_allclose(ln1, ln2, rtol=0.2)
468
-
469
-
470
- class TestConcurrence:
471
- @pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
472
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
473
- def test_bell_states(self, qtype, bs):
474
- p = qu.bell_state(bs, qtype=qtype)
475
- assert qu.concurrence(p) > 1.0 - 1e-14
476
-
477
- def test_subsystem(self):
478
- p = qu.rand_rho(2**4)
479
- e = qu.concurrence(p, [2, 2, 2, 2], 1, 2)
480
- assert 0 <= e <= 1
481
-
482
-
483
- class TestQuantumDiscord:
484
- def test_owci(self):
485
- a = qu.qu([1, 0], qtype="op")
486
- b = qu.qu([0, 1], qtype="op")
487
- for _ in (0, 1, 2, 3):
488
- p = qu.rand_product_state(2)
489
- ci = qu.one_way_classical_information(p @ p.H, [a, b])
490
- assert_allclose(ci, 0.0, atol=1e-12)
491
- for i in (0, 1, 2, 3):
492
- p = qu.bell_state(i)
493
- ci = qu.one_way_classical_information(p @ p.H, [a, b])
494
- assert_allclose(ci, 1.0, atol=1e-12)
495
-
496
- def test_quantum_discord_sep(self):
497
- for _ in range(10):
498
- p = qu.rand_product_state(2)
499
- p = p @ p.H
500
- qd = qu.quantum_discord(p)
501
- assert_allclose(0.0, qd, atol=1e-12)
502
-
503
- def test_quantum_discord_pure(self):
504
- for _ in range(10):
505
- p = qu.rand_ket(4)
506
- p = p @ p.H
507
- iab = qu.mutual_information(p)
508
- qd = qu.quantum_discord(p)
509
- assert_allclose(iab / 2, qd)
510
-
511
- def test_quantum_discord_mixed(self):
512
- for _ in range(10):
513
- p = qu.rand_mix(4)
514
- p = p @ p.H
515
- qd = qu.quantum_discord(p)
516
- assert 0 <= qd and qd <= 1
517
-
518
- def test_auto_trace_out(self):
519
- p = qu.rand_rho(2**3)
520
- qd = qu.quantum_discord(p, [2, 2, 2], 0, 2)
521
- assert 0 <= qd and qd <= 1
522
-
523
- @pytest.mark.parametrize("seed", range(10))
524
- def test_qu_discord_diagonal(self, seed):
525
- rng = np.random.RandomState(seed)
526
- p = rng.random(size=4)
527
- p /= np.sum(p)
528
- rho = np.diag(p)
529
- assert qu.quantum_discord(rho) < 1e-10
530
-
531
-
532
- class TestTraceDistance:
533
- def test_types(self, k1, k2):
534
- td1 = qu.trace_distance(k1, k2)
535
- td2 = qu.trace_distance(qu.dop(k1), k2)
536
- td3 = qu.trace_distance(k1, qu.dop(k2))
537
- td4 = qu.trace_distance(qu.dop(k1), qu.dop(k2))
538
- assert_allclose([td1] * 3, [td2, td3, td4])
539
-
540
- def test_same(self, p1):
541
- assert abs(qu.trace_distance(p1, p1)) < 1e-14
542
-
543
- @pytest.mark.parametrize("uqtype", ["ket", "dop"])
544
- @pytest.mark.parametrize("dqtype", ["ket", "dop"])
545
- def test_distinguishable(self, uqtype, dqtype):
546
- assert (
547
- qu.trace_distance(qu.up(qtype=uqtype), qu.down(qtype=dqtype))
548
- > 1 - 1e-10
549
- )
550
-
551
-
552
- class TestDecomp:
553
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
554
- def test_pauli_decomp_singlet(self, qtype):
555
- p = qu.singlet(qtype=qtype)
556
- names_cffs = qu.pauli_decomp(p, mode="cp")
557
- assert_allclose(names_cffs["II"], 0.25)
558
- assert_allclose(names_cffs["ZZ"], -0.25)
559
- assert_allclose(names_cffs["YY"], -0.25)
560
- assert_allclose(names_cffs["ZZ"], -0.25)
561
- for name in itertools.permutations("IXYZ", 2):
562
- assert_allclose(names_cffs["".join(name)], 0.0)
563
-
564
- def test_pauli_reconstruct(self):
565
- p1 = qu.rand_rho(4)
566
- names_cffs = qu.pauli_decomp(p1, mode="c")
567
- pr = sum(
568
- qu.kron(*(qu.pauli(s) for s in name)) * names_cffs["".join(name)]
569
- for name in itertools.product("IXYZ", repeat=2)
570
- )
571
- assert_allclose(pr, p1)
572
-
573
- @pytest.mark.parametrize(
574
- "state, out",
575
- [
576
- (qu.up() & qu.down(), {0: 0.5, 1: 0.5, 2: 0, 3: 0}),
577
- (qu.down() & qu.down(), {0: 0, 1: 0, 2: 0.5, 3: 0.5}),
578
- (qu.singlet() & qu.singlet(), {"00": 1.0, "23": 0.0}),
579
- ],
580
- )
581
- def test_bell_decomp(self, state, out):
582
- names_cffs = qu.bell_decomp(state, mode="c")
583
- for key in out:
584
- assert_allclose(names_cffs[str(key)], out[key])
585
-
586
-
587
- class TestCorrelation:
588
- @pytest.mark.parametrize("pre_c", [False, True])
589
- @pytest.mark.parametrize("p_sps", [True, False])
590
- @pytest.mark.parametrize("op_sps", [True, False])
591
- @pytest.mark.parametrize("dims", (None, [2, 2]))
592
- def test_types(self, dims, op_sps, p_sps, pre_c):
593
- p = qu.rand_rho(4, sparse=p_sps)
594
- c = qu.correlation(
595
- p,
596
- qu.pauli("x", sparse=op_sps),
597
- qu.pauli("z", sparse=op_sps),
598
- 0,
599
- 1,
600
- dims=dims,
601
- precomp_func=pre_c,
602
- )
603
- c = c(p) if pre_c else c
604
- assert c >= -1.0
605
- assert c <= 1.0
606
-
607
- @pytest.mark.parametrize("pre_c", [False, True])
608
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
609
- @pytest.mark.parametrize("s", ["x", "y", "z"])
610
- def test_classically_no_correlated(self, s, qtype, pre_c):
611
- p = qu.up(qtype=qtype) & qu.up(qtype=qtype)
612
- c = qu.correlation(
613
- p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
614
- )
615
- c = c(p) if pre_c else c
616
- assert_allclose(c, 0.0)
617
-
618
- @pytest.mark.parametrize("pre_c", [False, True])
619
- @pytest.mark.parametrize("s, ct", [("x", 0), ("y", 0), ("z", 1)])
620
- def test_classically_correlated(self, s, ct, pre_c):
621
- p = 0.5 * (
622
- (qu.up(qtype="dop") & qu.up(qtype="dop"))
623
- + (qu.down(qtype="dop") & qu.down(qtype="dop"))
624
- )
625
- c = qu.correlation(
626
- p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
627
- )
628
- c = c(p) if pre_c else c
629
- assert_allclose(c, ct)
630
-
631
- @pytest.mark.parametrize("pre_c", [False, True])
632
- @pytest.mark.parametrize("s, ct", [("x", -1), ("y", -1), ("z", -1)])
633
- def test_entangled(self, s, ct, pre_c):
634
- p = qu.bell_state("psi-")
635
- c = qu.correlation(
636
- p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
637
- )
638
- c = c(p) if pre_c else c
639
- assert_allclose(c, ct)
640
-
641
- def test_reuse_precomp(self):
642
- cfn = qu.correlation(
643
- None,
644
- qu.pauli("z"),
645
- qu.pauli("z"),
646
- 0,
647
- 1,
648
- dims=[2, 2],
649
- precomp_func=True,
650
- )
651
- assert_allclose(cfn(qu.bell_state("psi-")), -1.0)
652
- assert_allclose(cfn(qu.bell_state("phi+")), 1.0)
653
-
654
- @pytest.mark.parametrize("pre_c", [False, True])
655
- def test_pauli_correlations_sum_abs(self, pre_c):
656
- p = qu.bell_state("psi-")
657
- ct = qu.pauli_correlations(p, sum_abs=True, precomp_func=pre_c)
658
- ct = ct(p) if pre_c else ct
659
- assert_allclose(ct, 3.0)
660
-
661
- @pytest.mark.parametrize("pre_c", [False, True])
662
- def test_pauli_correlations_no_sum_abs(self, pre_c):
663
- p = qu.bell_state("psi-")
664
- ct = qu.pauli_correlations(p, sum_abs=False, precomp_func=pre_c)
665
- assert_allclose(list(c(p) for c in ct) if pre_c else ct, (-1, -1, -1))
666
-
667
-
668
- class TestEntCrossMatrix:
669
- def test_bell_state(self):
670
- p = qu.bell_state("phi+")
671
- ecm = qu.ent_cross_matrix(p, ent_fn=qu.concurrence, calc_self_ent=True)
672
- assert_allclose(ecm, [[1, 1], [1, 1]])
673
-
674
- def test_bell_state_no_self_ent(self):
675
- p = qu.bell_state("phi+")
676
- ecm = qu.ent_cross_matrix(
677
- p, ent_fn=qu.concurrence, calc_self_ent=False
678
- )
679
- assert_allclose(ecm, [[np.nan, 1], [1, np.nan]])
680
-
681
- def test_block2(self):
682
- p = qu.bell_state("phi+") & qu.bell_state("phi+")
683
- ecm = qu.ent_cross_matrix(p, ent_fn=qu.logneg, sz_blc=2)
684
- assert_allclose(ecm[1, 1], 0)
685
- assert_allclose(ecm[0, 1], 0)
686
- assert_allclose(ecm[1, 0], 0)
687
-
688
- def test_block2_no_self_ent(self):
689
- p = qu.bell_state("phi+") & qu.bell_state("phi+")
690
- ecm = qu.ent_cross_matrix(
691
- p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2
692
- )
693
- assert_allclose(ecm[0, 1], 0)
694
- assert_allclose(ecm[0, 0], np.nan)
695
- assert_allclose(ecm[1, 0], 0)
696
-
697
- def test_block2_upscale(self):
698
- p = qu.bell_state("phi+") & qu.bell_state("phi+")
699
- ecm = qu.ent_cross_matrix(
700
- p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2
701
- )
702
- assert ecm.shape == (2, 2)
703
- ecm = qu.ent_cross_matrix(
704
- p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2, upscale=True
705
- )
706
- assert ecm.shape == (4, 4)
707
-
708
-
709
- class TestEntCrossMatrixBlocked:
710
- @pytest.mark.parametrize("sz_p", [2**2 for i in [2, 3, 4, 5, 6, 9, 12]])
711
- @pytest.mark.parametrize("sz_blc", [1, 2, 3, 4, 5])
712
- @pytest.mark.parametrize("calc_self_ent", [True, False])
713
- def test_shapes_and_blocks(self, sz_blc, sz_p, calc_self_ent):
714
- if sz_p // sz_blc > 0:
715
- p = qu.rand_rho(2**sz_p)
716
- n = sz_p // sz_blc
717
- ecm = qu.ent_cross_matrix(p, sz_blc, calc_self_ent=calc_self_ent)
718
- assert ecm.shape[0] == n
719
- if not calc_self_ent:
720
- assert_allclose(np.diag(ecm), [np.nan] * n, equal_nan=True)
721
-
722
-
723
- class TestQID:
724
- @pytest.mark.parametrize("bs", [0, 1, 2, 3])
725
- @pytest.mark.parametrize("pre_c", [False, True])
726
- def test_bell_state(self, bs, pre_c):
727
- p = qu.bell_state(bs)
728
- qids = qu.qid(p, dims=[2, 2], inds=[0, 1], precomp_func=pre_c)
729
- assert_allclose(qids(p) if pre_c else qids, [3, 3])
730
-
731
- @pytest.mark.parametrize("pre_c", [False, True])
732
- def test_random_product_state(self, pre_c):
733
- p = qu.rand_product_state(3)
734
- qids = qu.qid(p, dims=[2, 2, 2], inds=[0, 1, 2], precomp_func=pre_c)
735
- assert_allclose(qids(p) if pre_c else qids, [2, 2, 2])
736
-
737
-
738
- class TestIsDegenerate:
739
- def test_known_degenerate(self):
740
- h = qu.ham_heis(2)
741
- assert qu.is_degenerate(h) == 2
742
-
743
- def test_known_nondegen(self):
744
- h = qu.ham_heis(2, b=0.3)
745
- assert qu.is_degenerate(h) == 0
746
-
747
- def test_supply_list(self):
748
- evals = [0, 1, 2, 2.0, 3]
749
- assert qu.is_degenerate(evals)
750
-
751
- def test_tol(self):
752
- evals = [0, 1, 1.001, 3, 4, 5, 6, 7, 8, 9]
753
- assert not qu.is_degenerate(evals)
754
- assert qu.is_degenerate(evals, tol=1e-2)
755
-
756
-
757
- class TestPageEntropy:
758
- def test_known_qubit_qubit(self):
759
- assert abs(qu.page_entropy(2, 4) - 0.4808983469629878) < 1e-12
760
-
761
- def test_large_m_approx(self):
762
- pe = qu.page_entropy(2**10, 2**20)
763
- ae = 0.5 * (20 - math.log2(math.e))
764
-
765
- assert abs(pe - ae) < 1e-5
766
-
767
- def test_bigger_than_half(self):
768
- assert_allclose(qu.page_entropy(4, 24), qu.page_entropy(6, 24))
769
-
770
-
771
- class TestIsEigenvector:
772
- def test_dense_true(self):
773
- a = qu.rand_herm(10)
774
- v = qu.eigvecsh(a)
775
- for i in range(10):
776
- assert qu.is_eigenvector(v[:, [i]], a)
777
-
778
- def test_dense_false(self):
779
- a = qu.rand_herm(10)
780
- v = qu.rand_ket(10)
781
- assert not qu.is_eigenvector(v, a)
782
-
783
- def test_sparse(self):
784
- a = qu.rand_herm(10, sparse=True, density=0.9)
785
- vt = qu.eigvecsh(a, sigma=0, k=1)
786
- assert qu.is_eigenvector(vt, a)
787
- vf = qu.rand_ket(10)
788
- assert not qu.is_eigenvector(vf, a)