Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,316 +0,0 @@
1
- import autoray as ar
2
-
3
- import quimb.tensor as qtn
4
- from quimb.utils import oset
5
-
6
- from .bp_common import (
7
- BeliefPropagationCommon,
8
- combine_local_contractions,
9
- create_lazy_community_edge_map,
10
- )
11
-
12
-
13
- class L1BP(BeliefPropagationCommon):
14
- """Lazy 1-norm belief propagation. BP is run between groups of tensors
15
- defined by ``site_tags``. The message updates are lazy contractions.
16
-
17
- Parameters
18
- ----------
19
- tn : TensorNetwork
20
- The tensor network to run BP on.
21
- site_tags : sequence of str, optional
22
- The tags identifying the sites in ``tn``, each tag forms a region,
23
- which should not overlap. If the tensor network is structured, then
24
- these are inferred automatically.
25
- damping : float, optional
26
- The damping parameter to use, defaults to no damping.
27
- update : {'parallel', 'sequential'}, optional
28
- Whether to update all messages in parallel or sequentially.
29
- local_convergence : bool, optional
30
- Whether to allow messages to locally converge - i.e. if all their
31
- input messages have converged then stop updating them.
32
- optimize : str or PathOptimizer, optional
33
- The path optimizer to use when contracting the messages.
34
- contract_opts
35
- Other options supplied to ``cotengra.array_contract``.
36
- """
37
-
38
- def __init__(
39
- self,
40
- tn,
41
- site_tags=None,
42
- damping=0.0,
43
- update="sequential",
44
- local_convergence=True,
45
- optimize="auto-hq",
46
- message_init_function=None,
47
- **contract_opts,
48
- ):
49
- self.backend = next(t.backend for t in tn)
50
- self.damping = damping
51
- self.local_convergence = local_convergence
52
- self.update = update
53
- self.optimize = optimize
54
- self.contract_opts = contract_opts
55
-
56
- if site_tags is None:
57
- self.site_tags = tuple(tn.site_tags)
58
- else:
59
- self.site_tags = tuple(site_tags)
60
-
61
- (
62
- self.edges,
63
- self.neighbors,
64
- self.local_tns,
65
- self.touch_map,
66
- ) = create_lazy_community_edge_map(tn, site_tags)
67
- self.touched = oset()
68
-
69
- self._abs = ar.get_lib_fn(self.backend, "abs")
70
- self._max = ar.get_lib_fn(self.backend, "max")
71
- self._sum = ar.get_lib_fn(self.backend, "sum")
72
- _real = ar.get_lib_fn(self.backend, "real")
73
- _argmax = ar.get_lib_fn(self.backend, "argmax")
74
- _reshape = ar.get_lib_fn(self.backend, "reshape")
75
- self._norm = ar.get_lib_fn(self.backend, "linalg.norm")
76
-
77
- def _normalize(x):
78
-
79
- # sx = self._sum(x)
80
- # sphase = sx / self._abs(sx)
81
- # smag = self._norm(x)**0.5
82
- # return x / (smag * sphase)
83
-
84
- return x / self._sum(x)
85
- # return x / self._norm(x)
86
- # return x / self._max(x)
87
- # fx = _reshape(x, (-1,))
88
- # return x / fx[_argmax(self._abs(_real(fx)))]
89
-
90
- def _distance(x, y):
91
- return self._sum(self._abs(x - y))
92
-
93
- self._normalize = _normalize
94
- self._distance = _distance
95
-
96
- # for each meta bond create initial messages
97
- self.messages = {}
98
- for pair, bix in self.edges.items():
99
- # compute leftwards and rightwards messages
100
- for i, j in (sorted(pair), sorted(pair, reverse=True)):
101
- tn_i = self.local_tns[i]
102
- # initial message just sums over dangling bonds
103
-
104
- if message_init_function is None:
105
- tm = tn_i.contract(
106
- all,
107
- output_inds=bix,
108
- optimize=self.optimize,
109
- drop_tags=True,
110
- **self.contract_opts,
111
- )
112
- # normalize
113
- tm.modify(apply=self._normalize)
114
- else:
115
- shape = tuple(tn_i.ind_size(ix) for ix in bix)
116
- tm = qtn.Tensor(
117
- data=message_init_function(shape),
118
- inds=bix,
119
- )
120
-
121
- self.messages[i, j] = tm
122
-
123
- # compute the contractions
124
- self.contraction_tns = {}
125
- for pair, bix in self.edges.items():
126
- # for each meta bond compute left and right contractions
127
- for i, j in (sorted(pair), sorted(pair, reverse=True)):
128
- tn_i = self.local_tns[i].copy()
129
- # attach incoming messages to dangling bonds
130
- tks = [
131
- self.messages[k, i] for k in self.neighbors[i] if k != j
132
- ]
133
- # virtual so we can modify messages tensors inplace
134
- tn_i_to_j = qtn.TensorNetwork((tn_i, *tks), virtual=True)
135
- self.contraction_tns[i, j] = tn_i_to_j
136
-
137
- def iterate(self, tol=5e-6):
138
- if (not self.local_convergence) or (not self.touched):
139
- # assume if asked to iterate that we want to check all messages
140
- self.touched.update(
141
- pair for edge in self.edges for pair in (edge, edge[::-1])
142
- )
143
-
144
- ncheck = len(self.touched)
145
- nconv = 0
146
- max_mdiff = -1.0
147
- new_touched = oset()
148
-
149
- def _compute_m(key):
150
- i, j = key
151
- bix = self.edges[(i, j) if i < j else (j, i)]
152
- tn_i_to_j = self.contraction_tns[i, j]
153
- tm_new = tn_i_to_j.contract(
154
- all,
155
- output_inds=bix,
156
- optimize=self.optimize,
157
- **self.contract_opts,
158
- )
159
- return self._normalize(tm_new.data)
160
-
161
- def _update_m(key, data):
162
- nonlocal nconv, max_mdiff
163
-
164
- tm = self.messages[key]
165
-
166
- if callable(self.damping):
167
- damping_m = self.damping()
168
- data = (1 - damping_m) * data + damping_m * tm.data
169
- elif self.damping != 0.0:
170
- data = (1 - self.damping) * data + self.damping * tm.data
171
-
172
- mdiff = float(self._distance(tm.data, data))
173
-
174
- if mdiff > tol:
175
- # mark touching messages for update
176
- new_touched.update(self.touch_map[key])
177
- else:
178
- nconv += 1
179
-
180
- max_mdiff = max(max_mdiff, mdiff)
181
- tm.modify(data=data)
182
-
183
- if self.update == "parallel":
184
- new_data = {}
185
- # compute all new messages
186
- while self.touched:
187
- key = self.touched.pop()
188
- new_data[key] = _compute_m(key)
189
- # insert all new messages
190
- for key, data in new_data.items():
191
- _update_m(key, data)
192
-
193
- elif self.update == "sequential":
194
- # compute each new message and immediately re-insert it
195
- while self.touched:
196
- key = self.touched.pop()
197
- data = _compute_m(key)
198
- _update_m(key, data)
199
-
200
- self.touched = new_touched
201
- return nconv, ncheck, max_mdiff
202
-
203
- def contract(self, strip_exponent=False):
204
- tvals = []
205
- for site, tn_ic in self.local_tns.items():
206
- if site in self.neighbors:
207
- tval = qtn.tensor_contract(
208
- *tn_ic,
209
- *(self.messages[k, site] for k in self.neighbors[site]),
210
- optimize=self.optimize,
211
- **self.contract_opts,
212
- )
213
- else:
214
- # site exists but has no neighbors
215
- tval = tn_ic.contract(
216
- all,
217
- output_inds=(),
218
- optimize=self.optimize,
219
- **self.contract_opts,
220
- )
221
- tvals.append(tval)
222
-
223
- mvals = []
224
- for i, j in self.edges:
225
- mval = qtn.tensor_contract(
226
- self.messages[i, j],
227
- self.messages[j, i],
228
- optimize=self.optimize,
229
- **self.contract_opts,
230
- )
231
- mvals.append(mval)
232
-
233
- return combine_local_contractions(
234
- tvals, mvals, self.backend, strip_exponent=strip_exponent
235
- )
236
-
237
- def normalize_messages(self):
238
- """Normalize all messages such that for each bond `<m_i|m_j> = 1` and
239
- `<m_i|m_i> = <m_j|m_j>` (but in general != 1).
240
- """
241
- for i, j in self.edges:
242
- tmi = self.messages[i, j]
243
- tmj = self.messages[j, i]
244
- nij = abs(tmi @ tmj)**0.5
245
- nii = (tmi @ tmi)**0.25
246
- njj = (tmj @ tmj)**0.25
247
- tmi /= (nij * nii / njj)
248
- tmj /= (nij * njj / nii)
249
-
250
-
251
- def contract_l1bp(
252
- tn,
253
- max_iterations=1000,
254
- tol=5e-6,
255
- site_tags=None,
256
- damping=0.0,
257
- update="sequential",
258
- local_convergence=True,
259
- optimize="auto-hq",
260
- strip_exponent=False,
261
- info=None,
262
- progbar=False,
263
- **contract_opts,
264
- ):
265
- """Estimate the contraction of ``tn`` using lazy 1-norm belief propagation.
266
-
267
- Parameters
268
- ----------
269
- tn : TensorNetwork
270
- The tensor network to contract.
271
- max_iterations : int, optional
272
- The maximum number of iterations to perform.
273
- tol : float, optional
274
- The convergence tolerance for messages.
275
- site_tags : sequence of str, optional
276
- The tags identifying the sites in ``tn``, each tag forms a region. If
277
- the tensor network is structured, then these are inferred
278
- automatically.
279
- damping : float, optional
280
- The damping parameter to use, defaults to no damping.
281
- update : {'parallel', 'sequential'}, optional
282
- Whether to update all messages in parallel or sequentially.
283
- local_convergence : bool, optional
284
- Whether to allow messages to locally converge - i.e. if all their
285
- input messages have converged then stop updating them.
286
- optimize : str or PathOptimizer, optional
287
- The path optimizer to use when contracting the messages.
288
- progbar : bool, optional
289
- Whether to show a progress bar.
290
- strip_exponent : bool, optional
291
- Whether to strip the exponent from the final result. If ``True``
292
- then the returned result is ``(mantissa, exponent)``.
293
- info : dict, optional
294
- If specified, update this dictionary with information about the
295
- belief propagation run.
296
- contract_opts
297
- Other options supplied to ``cotengra.array_contract``.
298
- """
299
- bp = L1BP(
300
- tn,
301
- site_tags=site_tags,
302
- damping=damping,
303
- local_convergence=local_convergence,
304
- update=update,
305
- optimize=optimize,
306
- **contract_opts,
307
- )
308
- bp.run(
309
- max_iterations=max_iterations,
310
- tol=tol,
311
- info=info,
312
- progbar=progbar,
313
- )
314
- return bp.contract(
315
- strip_exponent=strip_exponent,
316
- )