Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,441 +0,0 @@
1
- import numpy as np
2
- import pytest
3
- from numpy.testing import assert_allclose
4
-
5
- import quimb as qu
6
- import quimb.tensor as qtn
7
-
8
-
9
- class TestGeometries:
10
- @pytest.mark.parametrize("cyclic", [False, True])
11
- @pytest.mark.parametrize(
12
- "edge_fn,shape,percell,coordination",
13
- [
14
- (qtn.edges_2d_square, (3, 3), 1, 4),
15
- (qtn.edges_2d_hexagonal, (3, 3), 2, 3),
16
- (qtn.edges_2d_kagome, (3, 3), 3, 4),
17
- (qtn.edges_2d_triangular, (3, 3), 1, 6),
18
- (qtn.edges_2d_triangular_rectangular, (3, 3), 2, 6),
19
- (qtn.edges_3d_cubic, (3, 3, 3), 1, 6),
20
- (qtn.edges_3d_pyrochlore, (3, 3, 3), 4, 6),
21
- (qtn.edges_3d_diamond, (3, 3, 3), 2, 4),
22
- (qtn.edges_3d_diamond_cubic, (2, 2, 2), 8, 4),
23
- ],
24
- )
25
- def test_basic(self, cyclic, edge_fn, shape, percell, coordination):
26
- edges = edge_fn(*shape, cyclic=cyclic)
27
- tn = qtn.TN_rand_from_edges(edges, D=2)
28
- assert tn.num_tensors == qu.prod(shape) * percell
29
- assert max(t.ndim for t in tn) == coordination
30
-
31
-
32
- class TestSpinHam1D:
33
- @pytest.mark.parametrize("cyclic", [False, True])
34
- def test_var_terms(self, cyclic):
35
- n = 8
36
- Hd = qu.ham_mbl(n, dh=0.77, seed=42, cyclic=cyclic)
37
- Ht = qtn.MPO_ham_mbl(n, dh=0.77, seed=42, cyclic=cyclic).to_dense()
38
- assert_allclose(Hd, Ht)
39
-
40
- @pytest.mark.parametrize("var_two", ["none", "some", "only"])
41
- @pytest.mark.parametrize(
42
- "var_one", ["some", "only", "only-some", "def-only", "none"]
43
- )
44
- def test_specials(self, var_one, var_two):
45
- K1 = qu.rand_herm(2**1)
46
-
47
- n = 10
48
- HB = qtn.SpinHam1D(S=1 / 2)
49
-
50
- if var_two == "some":
51
- HB += 1, K1, K1
52
- HB[4, 5] += 1, K1, K1
53
- HB[7, 8] += 1, K1, K1
54
- elif var_two == "only":
55
- for i in range(n - 1):
56
- HB[i, i + 1] += 1, K1, K1
57
- else:
58
- HB += 1, K1, K1
59
-
60
- if var_one == "some":
61
- HB += 1, K1
62
- HB[2] += 1, K1
63
- HB[3] += 1, K1
64
- elif var_one == "only":
65
- for i in range(n - 1):
66
- HB[i] += 1, K1
67
- elif var_one == "only-some":
68
- HB[1] += 1, K1
69
- elif var_one == "def-only":
70
- HB += 1, K1
71
-
72
- HB.build_local_ham(n)
73
- H_mpo = HB.build_mpo(n)
74
- H_sps = HB.build_sparse(n)
75
-
76
- assert_allclose(H_mpo.to_dense(), H_sps.toarray())
77
-
78
- def test_no_default_term(self):
79
- N = 10
80
- builder = qtn.SpinHam1D(1 / 2)
81
-
82
- for i in range(N - 1):
83
- builder[i, i + 1] += 1.0, "Z", "Z"
84
-
85
- H = builder.build_mpo(N)
86
-
87
- dmrg = qtn.DMRG2(H)
88
- dmrg.solve(verbosity=1)
89
-
90
- assert dmrg.energy == pytest.approx(-2.25)
91
-
92
-
93
- class TestMPSSpecificStates:
94
- def test_site_varying_phys_dim(self):
95
- k = qtn.MPS_rand_state(5, 4, phys_dim=[2, 3, 3, 2, 5])
96
- assert k.H @ k == pytest.approx(1.0)
97
- assert k.outer_dims_inds() == (
98
- (2, "k0"),
99
- (3, "k1"),
100
- (3, "k2"),
101
- (2, "k3"),
102
- (5, "k4"),
103
- )
104
-
105
- @pytest.mark.parametrize("dtype", ["float32", "complex64"])
106
- def test_ghz_state(self, dtype):
107
- mps = qtn.MPS_ghz_state(5, dtype=dtype)
108
- assert mps.dtype == dtype
109
- psi = qu.ghz_state(5, dtype=dtype)
110
- assert mps.H @ mps == pytest.approx(1.0)
111
- assert mps.bond_sizes() == [2, 2, 2, 2]
112
- assert qu.fidelity(psi, mps.to_dense()) == pytest.approx(1.0)
113
-
114
- @pytest.mark.parametrize("dtype", ["float32", "complex64"])
115
- def test_w_state(self, dtype):
116
- mps = qtn.MPS_w_state(5, dtype=dtype)
117
- assert mps.dtype == dtype
118
- psi = qu.w_state(5, dtype=dtype)
119
- assert mps.H @ mps == pytest.approx(1.0)
120
- assert mps.bond_sizes() == [2, 2, 2, 2]
121
- assert qu.fidelity(psi, mps.to_dense()) == pytest.approx(1.0)
122
-
123
- def test_computational_state(self):
124
- mps = qtn.MPS_computational_state("01+-")
125
- assert_allclose(
126
- mps.to_dense(), qu.up() & qu.down() & qu.plus() & qu.minus()
127
- )
128
-
129
-
130
- class TestMatrixProductOperatorSpecifics:
131
- def test_MPO_product_operator(self):
132
- psis = [qu.rand_ket(2) for _ in range(5)]
133
- ops = [qu.rand_matrix(2) for _ in range(5)]
134
- psif = qu.kron(*ops) @ qu.kron(*psis)
135
- mps = qtn.MPS_product_state(psis)
136
- mpo = qtn.MPO_product_operator(ops)
137
- assert mpo.bond_sizes() == [1, 1, 1, 1]
138
- mpsf = mpo.apply(mps)
139
- assert_allclose(mpsf.to_dense(), psif)
140
-
141
-
142
- class TestGenericTN:
143
- def test_TN_rand_reg(self):
144
- n = 6
145
- reg = 3
146
- D = 2
147
- tn = qtn.TN_rand_reg(n, reg, D=D)
148
- assert tn.outer_inds() == ()
149
- assert tn.max_bond() == D
150
- assert {t.ndim for t in tn} == {reg}
151
- ket = qtn.TN_rand_reg(n, reg, D=2, phys_dim=2)
152
- assert set(ket.outer_inds()) == {f"k{i}" for i in range(n)}
153
- assert ket.max_bond() == D
154
-
155
- @pytest.mark.parametrize("Lx", [3])
156
- @pytest.mark.parametrize("Ly", [2, 4])
157
- @pytest.mark.parametrize("beta", [0.13, 0.44])
158
- @pytest.mark.parametrize("j", [-1.0, +1.0])
159
- @pytest.mark.parametrize("h", [0.0, 0.1])
160
- @pytest.mark.parametrize(
161
- "cyclic", [False, True, (False, True), (True, False)]
162
- )
163
- def test_2D_classical_ising_model(self, Lx, Ly, beta, j, h, cyclic):
164
- tn = qtn.TN2D_classical_ising_partition_function(
165
- Lx, Ly, beta=beta, j=j, h=h, cyclic=cyclic
166
- )
167
- htn = qtn.HTN2D_classical_ising_partition_function(
168
- Lx, Ly, beta=beta, j=j, h=h, cyclic=cyclic
169
- )
170
- Z1 = tn.contract(all, output_inds=())
171
- Z2 = htn.contract(all, output_inds=())
172
- assert Z1 == pytest.approx(Z2)
173
-
174
- if not cyclic:
175
- # skip cyclic as nx has no multibonds for L=2
176
- import networkx as nx
177
-
178
- G = nx.lattice.grid_graph((Lx, Ly))
179
- Z3 = qtn.TN_classical_partition_function_from_edges(
180
- G.edges, beta=beta, j=j, h=h
181
- ).contract(all, output_inds=())
182
- assert Z2 == pytest.approx(Z3)
183
- Z4 = qtn.HTN_classical_partition_function_from_edges(
184
- G.edges, beta=beta, j=j, h=h
185
- ).contract(all, output_inds=())
186
- assert Z3 == pytest.approx(Z4)
187
-
188
- @pytest.mark.parametrize("Lx", [2])
189
- @pytest.mark.parametrize("Ly", [3])
190
- @pytest.mark.parametrize("Lz", [4])
191
- @pytest.mark.parametrize("beta", [0.13, 1 / 4.5])
192
- @pytest.mark.parametrize("j", [-1.0, +1.0])
193
- @pytest.mark.parametrize("h", [0.0, 0.1])
194
- @pytest.mark.parametrize(
195
- "cyclic", [False, True, (False, True, False), (True, False, True)]
196
- )
197
- def test_3D_classical_ising_model(self, Lx, Ly, Lz, beta, j, h, cyclic):
198
- tn = qtn.TN3D_classical_ising_partition_function(
199
- Lx, Ly, Lz, beta=beta, j=j, h=h, cyclic=cyclic
200
- )
201
- htn = qtn.HTN3D_classical_ising_partition_function(
202
- Lx, Ly, Lz, beta=beta, j=j, h=h, cyclic=cyclic
203
- )
204
- Z1 = tn.contract(all, output_inds=())
205
- Z2 = htn.contract(all, output_inds=())
206
- assert Z1 == pytest.approx(Z2)
207
-
208
- if not cyclic:
209
- # skip cyclic as nx has no multibonds for L=2
210
- import networkx as nx
211
-
212
- G = nx.lattice.grid_graph((Lx, Ly, Lz))
213
- Z3 = qtn.TN_classical_partition_function_from_edges(
214
- G.edges, beta=beta, j=j, h=h
215
- ).contract(all, output_inds=())
216
- assert Z2 == pytest.approx(Z3)
217
- Z4 = qtn.HTN_classical_partition_function_from_edges(
218
- G.edges, beta=beta, j=j, h=h
219
- ).contract(all, output_inds=())
220
- assert Z3 == pytest.approx(Z4)
221
-
222
- def test_2d_classical_ising_varying_j(self):
223
- L = 5
224
- beta = 0.3
225
- edges = qtn.edges_2d_square(L, L)
226
- np.random.seed(666)
227
- js = {edge: np.random.normal() for edge in edges}
228
- tn = qtn.TN_classical_partition_function_from_edges(
229
- edges, beta=beta, j=lambda i, j: js[i, j]
230
- )
231
- assert tn.dtype == "float64"
232
- x0 = tn.contract(all, output_inds=())
233
- tn = qtn.HTN_classical_partition_function_from_edges(
234
- edges, beta=beta, j=lambda i, j: js[i, j]
235
- )
236
- assert tn.dtype == "float64"
237
- x1 = tn.contract(all, output_inds=())
238
- tn = qtn.TN2D_classical_ising_partition_function(
239
- L, L, beta=beta, j=lambda i, j: js[i, j]
240
- )
241
- assert tn.dtype == "float64"
242
- x2 = tn.contract(all, output_inds=())
243
- tn = qtn.HTN2D_classical_ising_partition_function(
244
- L, L, beta=beta, j=lambda i, j: js[i, j]
245
- )
246
- assert tn.dtype == "float64"
247
- x3 = tn.contract(all, output_inds=())
248
- assert x0 == pytest.approx(x1)
249
- assert x1 == pytest.approx(x2)
250
- assert x2 == pytest.approx(x3)
251
-
252
- def test_3d_classical_ising_varying_j(self):
253
- L = 3
254
- beta = 0.3
255
- edges = qtn.edges_3d_cubic(L, L, L)
256
- np.random.seed(666)
257
- js = {edge: np.random.normal() for edge in edges}
258
- tn = qtn.TN_classical_partition_function_from_edges(
259
- edges, beta=beta, j=lambda i, j: js[i, j]
260
- )
261
- assert tn.dtype == "float64"
262
- x0 = tn.contract(all, output_inds=())
263
- tn = qtn.HTN_classical_partition_function_from_edges(
264
- edges, beta=beta, j=lambda i, j: js[i, j]
265
- )
266
- assert tn.dtype == "float64"
267
- x1 = tn.contract(all, output_inds=())
268
- tn = qtn.TN3D_classical_ising_partition_function(
269
- L, L, L, beta=beta, j=lambda i, j: js[i, j]
270
- )
271
- assert tn.dtype == "float64"
272
- x2 = tn.contract(all, output_inds=())
273
- tn = qtn.HTN3D_classical_ising_partition_function(
274
- L, L, L, beta=beta, j=lambda i, j: js[i, j]
275
- )
276
- assert tn.dtype == "float64"
277
- x3 = tn.contract(all, output_inds=())
278
- assert x0 == pytest.approx(x1)
279
- assert x1 == pytest.approx(x2)
280
- assert x2 == pytest.approx(x3)
281
-
282
- def test_tn_dimer_covering(self):
283
- edges = [(0, 1), (1, 2), (2, 3), (3, 0)]
284
- tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=1)
285
- assert tn ^ all == pytest.approx(2.0)
286
- tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=2)
287
- assert tn ^ all == pytest.approx(1.0)
288
- edges = [(0, 1), (1, 2), (2, 0)]
289
- tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=1)
290
- assert tn ^ all == pytest.approx(0.0)
291
-
292
- def test_tn2d_fillers(self):
293
- tn = qtn.TN2D_empty(Lx=2, Ly=2, D=2)
294
- assert isinstance(tn, qtn.TensorNetwork2D)
295
- assert (
296
- qtn.TN2D_rand(Lx=2, Ly=2, D=2, seed=42) ^ all
297
- ) == pytest.approx(qtn.TN2D_rand(Lx=2, Ly=2, D=2, seed=42) ^ all)
298
- tn = qtn.TN2D_with_value(1.0, Lx=2, Ly=3, D=4)
299
- assert tn ^ all == pytest.approx(qu.prod(tn.ind_sizes().values()))
300
-
301
- def test_tn3d_fillers(self):
302
- tn = qtn.TN3D_empty(Lx=2, Ly=2, Lz=2, D=2)
303
- assert isinstance(tn, qtn.TensorNetwork3D)
304
- assert (
305
- qtn.TN3D_rand(Lx=2, Ly=2, Lz=2, D=2, seed=42) ^ all
306
- ) == pytest.approx(qtn.TN3D_rand(Lx=2, Ly=2, Lz=2, D=2, seed=42) ^ all)
307
- tn = qtn.TN3D_with_value(1.0, Lx=2, Ly=3, Lz=2, D=2)
308
- assert tn ^ all == pytest.approx(qu.prod(tn.ind_sizes().values()))
309
-
310
-
311
- @pytest.mark.parametrize("cyclic", [False, True, (False, True), (True, False)])
312
- def test_tn2d_classical_ising_partition_function(cyclic):
313
- Lx = 4
314
- Ly = 5
315
- coupling = {
316
- (cooa, coob): float(qu.randn())
317
- for cooa, coob in qtn.gen_2d_bonds(Lx, Ly, cyclic=cyclic)
318
- }
319
- h = qu.randn()
320
- tn = qtn.TN2D_classical_ising_partition_function(
321
- Lx,
322
- Ly,
323
- beta=0.44,
324
- j=coupling,
325
- h=h,
326
- outputs=[(1, 2), (3, 4)],
327
- cyclic=cyclic,
328
- )
329
- assert tn.outer_inds() == ("s1,2", "s3,4")
330
- htn = qtn.HTN2D_classical_ising_partition_function(
331
- Lx,
332
- Ly,
333
- beta=0.44,
334
- j=coupling,
335
- h=h,
336
- cyclic=cyclic,
337
- )
338
- assert htn.num_indices == Lx * Ly
339
-
340
- if not isinstance(cyclic, tuple):
341
- cyclic = (cyclic, cyclic)
342
-
343
- assert (tn.is_cyclic_x(), tn.is_cyclic_y()) == cyclic
344
-
345
- assert_allclose(
346
- tn.contract().data,
347
- htn.contract(output_inds=("s1,2", "s3,4")).data,
348
- )
349
-
350
-
351
- @pytest.mark.parametrize("cyclic", [False, (0, 1, 1), (0, 0, 1)])
352
- def test_tn3d_classical_ising_partition_function(cyclic):
353
- Lx, Ly, Lz = 2, 3, 3
354
- coupling = {
355
- (cooa, coob): float(qu.randn())
356
- for cooa, coob in qtn.gen_3d_bonds(Lx, Ly, Lz, cyclic=cyclic)
357
- }
358
- h = qu.randn()
359
- tn = qtn.TN3D_classical_ising_partition_function(
360
- Lx,
361
- Ly,
362
- Lz,
363
- beta=0.44,
364
- j=lambda cooa, coob: coupling[(cooa, coob)],
365
- h=h,
366
- outputs=[(1, 0, 2), (0, 2, 1)],
367
- cyclic=cyclic,
368
- )
369
- assert tn.outer_inds() == ("s0,2,1", "s1,0,2")
370
- htn = qtn.HTN3D_classical_ising_partition_function(
371
- Lx,
372
- Ly,
373
- Lz,
374
- beta=0.44,
375
- j=lambda cooa, coob: coupling[(cooa, coob)],
376
- h=h,
377
- cyclic=cyclic,
378
- )
379
- assert htn.num_indices == Lx * Ly * Lz
380
-
381
- if not isinstance(cyclic, tuple):
382
- cyclic = (cyclic, cyclic, cyclic)
383
-
384
- assert (tn.is_cyclic_x(), tn.is_cyclic_y(), tn.is_cyclic_z()) == cyclic
385
-
386
- assert_allclose(
387
- tn.contract().data,
388
- htn.contract(output_inds=("s0,2,1", "s1,0,2")).data,
389
- )
390
-
391
-
392
- @pytest.mark.parametrize("sites_location", ["side", "diag"])
393
- @pytest.mark.parametrize("outputs", [(), 2, (1, 3)])
394
- def test_all_to_all_classical_partition_functions(sites_location, outputs):
395
- import numpy as np
396
-
397
- N = 5
398
- rng = np.random.default_rng(42)
399
- Jij = {(i, j): rng.normal() for i in range(N) for j in range(i + 1, N)}
400
- htn = qtn.HTN_classical_partition_function_from_edges(
401
- edges=Jij.keys(),
402
- beta=0.179,
403
- j=Jij,
404
- )
405
- Zex = htn.contract(all, output_inds=())
406
-
407
- tn = qtn.TN2D_embedded_classical_ising_partition_function(
408
- Jij,
409
- beta=0.179,
410
- sites_location=sites_location,
411
- outputs=outputs,
412
- )
413
-
414
- sites = tuple(tn.gen_sites_present())
415
- assert len(sites) == N * (N - 1) // 2
416
- for i, j in sites:
417
- assert i > j
418
-
419
- if isinstance(outputs, tuple):
420
- assert set(tn.outer_inds()) == {f"s{i}" for i in outputs}
421
- else:
422
- assert tn.outer_inds() == (f"s{outputs}",)
423
- (t,) = tn._inds_get(f"s{outputs}")
424
- if sites_location == "side":
425
- assert "I2,0" in t.tags
426
- else:
427
- assert "I2,1" in t.tags
428
- assert tn.contract(output_inds=()) == pytest.approx(Zex)
429
-
430
-
431
- def test_tn2d_rand_symm():
432
- import numpy as np
433
-
434
- tn = qtn.TN2D_rand_symmetric(3, 4, 3)
435
- ghash = tn.geometry_hash(strict_index_order=True)
436
- Zex = tn.contract(all, output_inds=())
437
- rng = np.random.default_rng(42)
438
- for t in tn:
439
- t.modify(inds=rng.permutation(t.inds))
440
- assert tn.geometry_hash(strict_index_order=True) != ghash
441
- assert tn.contract(all, output_inds=()) == pytest.approx(Zex)