Trajectree 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +3 -3
  5. trajectree/fock_optics/utils.py +6 -6
  6. trajectree/trajectory.py +2 -2
  7. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/METADATA +2 -3
  8. trajectree-0.0.2.dist-info/RECORD +16 -0
  9. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  10. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  11. trajectree/quimb/docs/conf.py +0 -158
  12. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  13. trajectree/quimb/quimb/__init__.py +0 -507
  14. trajectree/quimb/quimb/calc.py +0 -1491
  15. trajectree/quimb/quimb/core.py +0 -2279
  16. trajectree/quimb/quimb/evo.py +0 -712
  17. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  18. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  19. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  20. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  21. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  22. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  23. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  24. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  25. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  26. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  27. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  28. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  29. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  30. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  31. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  32. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  33. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  34. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  35. trajectree/quimb/quimb/gates.py +0 -36
  36. trajectree/quimb/quimb/gen/__init__.py +0 -2
  37. trajectree/quimb/quimb/gen/operators.py +0 -1167
  38. trajectree/quimb/quimb/gen/rand.py +0 -713
  39. trajectree/quimb/quimb/gen/states.py +0 -479
  40. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  41. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  42. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  43. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  44. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  45. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  46. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  47. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  48. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  49. trajectree/quimb/quimb/schematic.py +0 -1518
  50. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  51. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  52. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  53. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  54. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  55. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  56. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  57. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  58. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  59. trajectree/quimb/quimb/tensor/interface.py +0 -114
  60. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  61. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  62. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  63. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  64. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  65. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  66. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  67. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  68. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  69. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  70. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  71. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  72. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  74. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  75. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  76. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  77. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  78. trajectree/quimb/quimb/utils.py +0 -892
  79. trajectree/quimb/tests/__init__.py +0 -0
  80. trajectree/quimb/tests/test_accel.py +0 -501
  81. trajectree/quimb/tests/test_calc.py +0 -788
  82. trajectree/quimb/tests/test_core.py +0 -847
  83. trajectree/quimb/tests/test_evo.py +0 -565
  84. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  85. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  86. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  87. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  88. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  89. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  90. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  91. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  92. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  93. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  94. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  95. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  96. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  97. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  103. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  104. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  105. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  106. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  107. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  108. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  109. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  110. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  111. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  112. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  113. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  114. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  115. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  116. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  117. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  118. trajectree/quimb/tests/test_utils.py +0 -85
  119. trajectree-0.0.1.dist-info/RECORD +0 -126
  120. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/WHEEL +0 -0
  121. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/licenses/LICENSE +0 -0
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.2.dist-info}/top_level.txt +0 -0
@@ -1,351 +0,0 @@
1
- import pytest
2
- import numpy as np
3
- import scipy.sparse as sp
4
- from numpy.testing import assert_allclose
5
-
6
- import quimb as qu
7
- from quimb.linalg import SLEPC4PY_FOUND
8
- from quimb.linalg.base_linalg import _rel_window_to_abs_window
9
-
10
- eigs_backends = ["auto", "numpy", "scipy"]
11
- svds_backends = ["numpy", "scipy"]
12
-
13
- if SLEPC4PY_FOUND:
14
- eigs_backends += ["slepc-nompi", "slepc"]
15
- svds_backends += ["slepc-nompi", "slepc"]
16
-
17
-
18
- # --------------------------------------------------------------------------- #
19
- # Fixtures #
20
- # --------------------------------------------------------------------------- #
21
-
22
-
23
- @pytest.fixture
24
- def mat_herm_dense():
25
- np.random.seed(1)
26
- u = qu.rand_uni(4)
27
- a = u @ qu.ldmul(np.array([-1, 2, 4, -3]), u.H)
28
- # |--|--|--|--|--|--|--|
29
- # -3 -1 2 4
30
- return u, a
31
-
32
-
33
- @pytest.fixture
34
- def mat_herm_sparse():
35
- np.random.seed(1)
36
- u = qu.rand_uni(4)
37
- a = u @ qu.ldmul(np.array([-1, 2, 4, -3]), u.H)
38
- a = qu.sparse(a)
39
- return u, a
40
-
41
-
42
- @pytest.fixture
43
- def mat_nherm_dense():
44
- np.random.seed(1)
45
- u, v = qu.rand_uni(5), qu.rand_uni(5)
46
- a = u @ qu.ldmul(np.array([1, 2, 4, 3, 0.1]), v.H)
47
- return u, v, a
48
-
49
-
50
- @pytest.fixture
51
- def mat_nherm_sparse():
52
- np.random.seed(1)
53
- u, v = qu.rand_uni(5), qu.rand_uni(5)
54
- a = u @ qu.ldmul(np.array([1, 2, 4, 3, 0.1]), v.H)
55
- a = qu.sparse(a)
56
- return u, v, a
57
-
58
-
59
- @pytest.fixture
60
- def ham1():
61
- u = qu.rand_uni(7)
62
- el = np.array([-3, 0, 1, 2, 3, 4, 7])
63
- return u @ qu.ldmul(el, u.H)
64
-
65
-
66
- @pytest.fixture
67
- def ham2():
68
- u = qu.rand_uni(7)
69
- el = np.array([-3.72, 0, 1, 1.1, 2.1, 2.2, 6.28])
70
- return u @ qu.ldmul(el, u.H)
71
-
72
-
73
- # --------------------------------------------------------------------------- #
74
- # Tests #
75
- # --------------------------------------------------------------------------- #
76
-
77
-
78
- class TestEigh:
79
- def test_eigsys(self, mat_herm_dense):
80
- u, a = mat_herm_dense
81
- evals, v = qu.eigh(a)
82
- assert set(np.rint(evals)) == set((-1, 2, 4, -3))
83
- assert_allclose(evals, [-3, -1, 2, 4])
84
- for i, j in zip([3, 0, 1, 2], range(4)):
85
- o = u[:, [i]].H @ v[:, [j]]
86
- assert_allclose(abs(o), 1.0)
87
-
88
- def test_eigvals(self, mat_herm_dense):
89
- _, a = mat_herm_dense
90
- evals = qu.eigvalsh(a)
91
- assert_allclose(evals, [-3, -1, 2, 4])
92
-
93
- def test_eigvecs(self, mat_herm_dense):
94
- u, a = mat_herm_dense
95
- v = qu.eigvecsh(a)
96
- for i, j in zip([3, 0, 1, 2], range(4)):
97
- o = u[:, [i]].H @ v[:, [j]]
98
- assert_allclose(abs(o), 1.0)
99
-
100
-
101
- class TestSeigs:
102
- @pytest.mark.parametrize("backend", eigs_backends)
103
- def test_eigs_small_dense_wvecs(self, mat_herm_dense, backend):
104
- u, a = mat_herm_dense
105
- assert not qu.issparse(a)
106
- lk, vk = qu.eigh(a, k=2, backend=backend)
107
- assert_allclose(lk, (-3, -1))
108
- for i, j in zip([3, 0], [0, 1]):
109
- o = u[:, [i]].H @ vk[:, [j]]
110
- assert_allclose(abs(o), 1.0)
111
- vk = qu.eigvecsh(a, k=2, backend=backend)
112
- for i, j in zip([3, 0], [0, 1]):
113
- o = u[:, [i]].H @ vk[:, [j]]
114
- assert_allclose(abs(o), 1.0)
115
-
116
- @pytest.mark.parametrize("backend", eigs_backends)
117
- def test_eigs_small_dense_novecs(self, mat_herm_dense, backend):
118
- _, a = mat_herm_dense
119
- assert not qu.issparse(a)
120
- lk = qu.eigvalsh(a, k=2, backend=backend)
121
- assert_allclose(lk, (-3, -1))
122
-
123
- @pytest.mark.parametrize("backend", eigs_backends)
124
- def test_eigs_sparse_wvecs(self, mat_herm_sparse, backend):
125
- u, a = mat_herm_sparse
126
- assert qu.issparse(a)
127
- lk, vk = qu.eigh(a, k=2, backend=backend)
128
- assert_allclose(lk, (-3, -1))
129
- for i, j in zip([3, 0], [0, 1]):
130
- o = u[:, [i]].H @ vk[:, [j]]
131
- assert_allclose(abs(o), 1.0)
132
- vk = qu.eigvecsh(a, k=2, backend=backend)
133
- for i, j in zip([3, 0], [0, 1]):
134
- o = u[:, [i]].H @ vk[:, [j]]
135
- assert_allclose(abs(o), 1.0)
136
-
137
- @pytest.mark.parametrize("backend", eigs_backends)
138
- def test_eigs_small_sparse_novecs(self, mat_herm_sparse, backend):
139
- _, a = mat_herm_sparse
140
- assert qu.issparse(a)
141
- lk = qu.eigvalsh(a, k=2, backend=backend)
142
- assert_allclose(lk, (-3, -1))
143
-
144
- @pytest.mark.parametrize("backend", eigs_backends)
145
- def test_groundstate(self, mat_herm_dense, backend):
146
- u, a = mat_herm_dense
147
- gs = qu.groundstate(a, backend=backend)
148
- assert_allclose(abs(u[:, [3]].H @ gs), 1.0)
149
-
150
- @pytest.mark.parametrize("backend", eigs_backends)
151
- def test_groundenergy(self, mat_herm_dense, backend):
152
- _, a = mat_herm_dense
153
- ge = qu.groundenergy(a, backend=backend)
154
- assert_allclose(ge, -3)
155
-
156
- @pytest.mark.parametrize("which", [None, "SA", "LA", "LM", "SM", "TR"])
157
- @pytest.mark.parametrize("k", [1, 2])
158
- def test_cross_equality(self, mat_herm_sparse, k, which):
159
- _, a = mat_herm_sparse
160
- sigma = 1 if which in {None, "TR"} else None
161
- lks, vks = zip(
162
- *(
163
- qu.eigh(a, k=k, which=which, sigma=sigma, backend=b)
164
- for b in eigs_backends
165
- )
166
- )
167
- lks, vks = tuple(lks), tuple(vks)
168
- for i in range(len(lks) - 1):
169
- assert_allclose(lks[i], lks[i + 1])
170
- assert_allclose(abs(vks[i].H @ vks[i + 1]), qu.eye(k), atol=1e-14)
171
-
172
-
173
- class TestLOBPCG:
174
- def test_against_arpack(self):
175
- A = qu.rand_herm(32, dtype=float)
176
- lk, vk = qu.eigh(A, k=6, backend="lobpcg")
177
- slk, svk = qu.eigh(A, k=6, backend="scipy")
178
- assert_allclose(lk, slk)
179
- assert_allclose(np.eye(6), abs(vk.H @ svk), atol=1e-9, rtol=1e-9)
180
-
181
-
182
- class TestEvalsWindowed:
183
- @pytest.mark.parametrize("backend", eigs_backends)
184
- def test_bound_spectrum(self, ham1, backend):
185
- h = ham1
186
- lmin, lmax = qu.bound_spectrum(h, backend=backend)
187
- assert_allclose((lmin, lmax), (-3, 7), atol=1e-13)
188
-
189
- def test_rel_window_to_abs_window(self):
190
- el0 = _rel_window_to_abs_window(5, 10, 0.5)
191
- assert_allclose(el0, 7.5)
192
- el0, eli, elf = _rel_window_to_abs_window(-20, -10, 0.5, 0.2)
193
- assert_allclose([el0, eli, elf], [-15, -16, -14])
194
-
195
- def test_dense(self, ham2):
196
- h = ham2
197
- el = qu.eigvalsh_window(h, 0.5, 2, w_sz=0.1)
198
- assert_allclose(el, [1, 1.1])
199
-
200
- def test_dense_cut(self, ham1):
201
- h = ham1
202
- el = qu.eigvalsh_window(h, 0.5, 5, w_sz=0.3)
203
- assert_allclose(el, [1, 2, 3])
204
-
205
- @pytest.mark.parametrize("backend", eigs_backends)
206
- def test_sparse(self, ham2, backend):
207
- h = qu.sparse(ham2)
208
- el = qu.eigvalsh_window(h, 0.5, 2, w_sz=0.1, backend=backend)
209
- assert_allclose(el, [1, 1.1])
210
-
211
- def test_sparse_cut(self, ham1):
212
- h = qu.sparse(ham1)
213
- el = qu.eigvalsh_window(h, 0.5, 5, w_sz=0.3)
214
- assert_allclose(el, [1, 2, 3])
215
-
216
- def test_dense_return_vecs(self, mat_herm_dense):
217
- u, a = mat_herm_dense
218
- ev = qu.eigvecsh_window(a, w_0=0.5, k=2, w_sz=0.8)
219
- assert ev.shape == (4, 2)
220
- assert_allclose(abs(u[:, :2].H @ ev[:,]), [[1, 0], [0, 1]], atol=1e-14)
221
-
222
- def test_sparse_return_vecs(self, mat_herm_sparse):
223
- u, a = mat_herm_sparse
224
- ev = qu.eigvecsh_window(a, w_0=0.5, k=2, w_sz=0.8)
225
- assert ev.shape == (4, 2)
226
- assert_allclose(abs(u[:, :2].H @ ev[:,]), [[1, 0], [0, 1]], atol=1e-14)
227
-
228
-
229
- class TestSVD:
230
- def test_svd_full(self, mat_nherm_dense):
231
- u, v, a = mat_nherm_dense
232
- un, sn, vn = qu.svd(a)
233
- assert_allclose(sn, [4, 3, 2, 1, 0.1], atol=1e-14)
234
- for (
235
- i,
236
- j,
237
- ) in zip((0, 1, 2, 3, 4), (2, 3, 1, 0, 4)):
238
- o = abs(un[:, [i]].H @ u[:, [j]])
239
- assert_allclose(o, 1.0)
240
- o = abs(vn[[i], :] @ v[:, [j]])
241
- assert_allclose(o, 1.0)
242
-
243
-
244
- class TestSVDS:
245
- @pytest.mark.parametrize("backend", svds_backends)
246
- def test_svds_smalldense_wvecs(self, mat_nherm_dense, backend):
247
- u, v, a = mat_nherm_dense
248
- uk, sk, vk = qu.svds(a, k=3, return_vecs=True, backend=backend)
249
- assert_allclose(sk, [4, 3, 2])
250
- for i, j in zip((0, 1, 2), (2, 3, 1)):
251
- o = abs(uk[:, [i]].H @ u[:, [j]])
252
- assert_allclose(o, 1.0)
253
- o = abs(vk[[i], :] @ v[:, [j]])
254
- assert_allclose(o, 1.0)
255
-
256
- @pytest.mark.parametrize("backend", svds_backends)
257
- def test_svds_smalldense_nvecs(self, mat_nherm_dense, backend):
258
- _, _, a = mat_nherm_dense
259
- sk = qu.svds(a, k=3, return_vecs=False, backend=backend)
260
- assert_allclose(sk, [4, 3, 2])
261
-
262
- @pytest.mark.parametrize("backend", svds_backends)
263
- def test_svds_sparse_wvecs(self, mat_nherm_sparse, backend):
264
- u, v, a = mat_nherm_sparse
265
- uk, sk, vk = qu.svds(a, k=3, return_vecs=True, backend=backend)
266
- assert_allclose(sk, [4, 3, 2])
267
- for i, j in zip((0, 1, 2), (2, 3, 1)):
268
- o = abs(uk[:, [i]].H @ u[:, [j]])
269
- assert_allclose(o, 1.0)
270
- o = abs(vk[[i], :] @ v[:, [j]])
271
- assert_allclose(o, 1.0)
272
-
273
- @pytest.mark.parametrize("backend", svds_backends)
274
- def test_svds_sparse_nvecs(self, mat_nherm_sparse, backend):
275
- _, _, a = mat_nherm_sparse
276
- sk = qu.svds(a, k=3, return_vecs=False, backend=backend)
277
- assert_allclose(sk, [4, 3, 2])
278
-
279
-
280
- class TestNorms:
281
- def test_norm_fro_dense(self):
282
- a = qu.quimbify([[1, 2], [3j, 4j]])
283
- assert qu.norm(a, "fro") == (1 + 4 + 9 + 16) ** 0.5
284
-
285
- def test_norm_fro_sparse(self):
286
- a = qu.sparse([[3, 0], [4j, 0]])
287
- assert qu.norm(a, "fro") == (9 + 16) ** 0.5
288
-
289
- @pytest.mark.parametrize("backend", svds_backends)
290
- def test_norm_spectral_dense(self, mat_nherm_dense, backend):
291
- _, _, a = mat_nherm_dense
292
- assert_allclose(qu.norm(a, "spectral", backend=backend), 4.0)
293
-
294
- @pytest.mark.parametrize("backend", svds_backends)
295
- def test_norm_spectral_sparse(self, mat_nherm_sparse, backend):
296
- _, _, a = mat_nherm_sparse
297
- assert_allclose(qu.norm(a, "spectral", backend=backend), 4.0)
298
-
299
- def test_norm_trace_dense(self):
300
- a = qu.qarray(np.diag([-3, 1, 7]))
301
- assert qu.norm(a, "trace") == 11
302
- a = qu.rand_product_state(1, qtype="dop")
303
- assert_allclose(qu.norm(a, "nuc"), 1)
304
-
305
-
306
- class TestExpm:
307
- @pytest.mark.parametrize("herm", [True, False])
308
- def test_zeros_dense(self, herm):
309
- p = qu.expm(np.zeros((2, 2), dtype=complex), herm=herm)
310
- assert_allclose(p, qu.eye(2))
311
-
312
- @pytest.mark.parametrize("sparse", [True, False])
313
- @pytest.mark.parametrize("herm", [True, False])
314
- def test_eye(self, sparse, herm):
315
- p = qu.expm(qu.eye(2, sparse=sparse), herm=herm)
316
- assert_allclose((p.toarray() if sparse else p) / np.e, qu.eye(2))
317
- if sparse:
318
- assert isinstance(p, sp.csr_matrix)
319
-
320
-
321
- class TestSqrtm:
322
- @pytest.mark.parametrize("sparse", [True, False])
323
- @pytest.mark.parametrize("herm", [True, False])
324
- def test_eye(self, herm, sparse):
325
- if sparse:
326
- with pytest.raises(NotImplementedError):
327
- p = qu.sqrtm(qu.eye(2, sparse=sparse), herm=herm)
328
- else:
329
- p = qu.sqrtm(qu.eye(2), herm=herm)
330
- assert_allclose(p, qu.eye(2))
331
-
332
-
333
- class TestLazy:
334
- @pytest.mark.parametrize("sparse", [False, True])
335
- def test_basic(self, sparse):
336
- ownership = (0, 7)
337
- hl = qu.Lazy(qu.ham_heis, n=4, sparse=sparse, shape=(16, 16))
338
- print(hl)
339
- h = 1 * hl(ownership=ownership)
340
- h_ex = qu.ham_heis(n=4, sparse=sparse)[slice(*ownership), :]
341
- assert_allclose(h.toarray(), h_ex.toarray())
342
-
343
- @pytest.mark.parametrize("backend", ["scipy", "lobpcg"])
344
- def test_project_eig(self, backend):
345
- Hl = qu.Lazy(qu.ham_heis, 4, sparse=True, shape=(16, 16), cyclic=True)
346
- Pl = qu.Lazy(qu.zspin_projector, 4, shape=(16, 6))
347
-
348
- ge, gs = qu.eigh(Hl, P=Pl, k=1, backend=backend)
349
-
350
- assert ge == pytest.approx(-2)
351
- assert qu.expec(gs, gs) == pytest.approx(1.0)
@@ -1,127 +0,0 @@
1
- import pytest
2
- import numpy as np
3
- from numpy.testing import assert_allclose
4
-
5
- from quimb import (
6
- rand_herm,
7
- rand_ket,
8
- eigh,
9
- can_use_mpi_pool,
10
- )
11
-
12
- from quimb.linalg import SLEPC4PY_FOUND
13
- from quimb.linalg.scipy_linalg import eigs_scipy
14
-
15
- if SLEPC4PY_FOUND:
16
- from quimb.linalg.mpi_launcher import (
17
- eigs_slepc_spawn,
18
- svds_slepc_spawn,
19
- mfn_multiply_slepc_spawn,
20
- ALREADY_RUNNING_AS_MPI,
21
- NUM_MPI_WORKERS,
22
- )
23
-
24
- slepc4py_test = pytest.mark.skipif(
25
- not SLEPC4PY_FOUND, reason="No SLEPc4py installation"
26
- )
27
-
28
- mpipooltest = pytest.mark.skipif(
29
- not can_use_mpi_pool(), reason="Not allowed to use MPI pool."
30
- )
31
-
32
- num_workers_to_try = [None, 1, 2, 3]
33
-
34
-
35
- @pytest.fixture
36
- def bigsparsemat():
37
- import numpy as np
38
-
39
- np.random.seed(42)
40
- return rand_herm(100, sparse=True, density=0.1)
41
-
42
-
43
- @pytest.fixture
44
- def big_vec():
45
- import numpy as np
46
-
47
- np.random.seed(2442)
48
- return rand_ket(100)
49
-
50
-
51
- @slepc4py_test
52
- class TestSLEPcMPI:
53
- @pytest.mark.parametrize("num_workers", num_workers_to_try)
54
- def test_eigs(self, num_workers, bigsparsemat):
55
- if (
56
- (num_workers is not None)
57
- and ALREADY_RUNNING_AS_MPI
58
- and num_workers > 1
59
- and num_workers != NUM_MPI_WORKERS
60
- ):
61
- with pytest.raises(ValueError):
62
- eigs_slepc_spawn(bigsparsemat, k=6, num_workers=num_workers)
63
-
64
- else:
65
- el, ev = eigs_slepc_spawn(
66
- bigsparsemat, k=6, num_workers=num_workers
67
- )
68
- elex, evex = eigs_scipy(bigsparsemat, k=6)
69
- assert_allclose(el, elex)
70
- assert_allclose(np.abs(ev.H @ evex), np.eye(6), atol=1e-7)
71
-
72
- @pytest.mark.parametrize("num_workers", num_workers_to_try)
73
- def test_expm_multiply(self, num_workers, bigsparsemat, big_vec):
74
- a = bigsparsemat
75
- k = big_vec
76
-
77
- if (
78
- (num_workers is not None)
79
- and ALREADY_RUNNING_AS_MPI
80
- and num_workers > 1
81
- and num_workers != NUM_MPI_WORKERS
82
- ):
83
- with pytest.raises(ValueError):
84
- mfn_multiply_slepc_spawn(a, k, num_workers=num_workers)
85
-
86
- else:
87
- out = mfn_multiply_slepc_spawn(a, k, num_workers=num_workers)
88
- al, av = eigh(a.toarray())
89
- expected = av @ np.diag(np.exp(al)) @ av.conj().T @ k
90
- assert_allclose(out, expected)
91
-
92
- @pytest.mark.parametrize("num_workers", num_workers_to_try)
93
- def test_svds(self, num_workers):
94
- a = np.random.randn(13, 7) + 1.0j * np.random.randn(13, 7)
95
-
96
- if (
97
- (num_workers is not None)
98
- and ALREADY_RUNNING_AS_MPI
99
- and num_workers > 1
100
- and num_workers != NUM_MPI_WORKERS
101
- ):
102
- with pytest.raises(ValueError):
103
- svds_slepc_spawn(a, return_vecs=True, num_workers=num_workers)
104
-
105
- else:
106
- u, s, v = svds_slepc_spawn(
107
- a, return_vecs=True, num_workers=num_workers
108
- )
109
-
110
-
111
- @slepc4py_test
112
- @mpipooltest
113
- class TestMPIPool:
114
- def test_spawning_pool_in_pool(self, bigsparsemat):
115
- from quimb.linalg.mpi_launcher import get_mpi_pool
116
-
117
- l1 = eigs_slepc_spawn(bigsparsemat, k=6, return_vecs=False)
118
- pool = get_mpi_pool()
119
- f = pool.submit(
120
- eigs_slepc_spawn,
121
- bigsparsemat,
122
- k=6,
123
- return_vecs=False,
124
- num_workers=1,
125
- )
126
- l2 = f.result()
127
- assert_allclose(l1, l2)
@@ -1,84 +0,0 @@
1
- from pytest import fixture, mark
2
- import numpy as np
3
- from numpy.testing import assert_equal, assert_allclose
4
-
5
- import quimb as qu
6
- from quimb.linalg.numpy_linalg import (
7
- sort_inds,
8
- eigs_numpy,
9
- )
10
-
11
-
12
- @fixture
13
- def xs():
14
- return np.array([-2.4 - 1j, -1 + 2.2j, 1 - 2.1j, 2.3 + 1j])
15
-
16
-
17
- @fixture
18
- def ham1():
19
- evecs = qu.rand_uni(5)
20
- evals = np.array([-5, -3, 0.1, 2, 4])
21
- return qu.dot(evecs, qu.ldmul(evals, evecs.H))
22
-
23
-
24
- class TestSortInds:
25
- @mark.parametrize(
26
- "method, inds, sigma",
27
- [
28
- ("LM", [0, 3, 1, 2], None),
29
- ("SM", [2, 1, 3, 0], None),
30
- ("SA", [0, 1, 2, 3], None),
31
- ("SR", [0, 1, 2, 3], None),
32
- ("SI", [2, 0, 3, 1], None),
33
- ("LA", [3, 2, 1, 0], None),
34
- ("LR", [3, 2, 1, 0], None),
35
- ("LI", [1, 3, 0, 2], None),
36
- ("TM", [1, 2, 3, 0], 2.41),
37
- ("tm", [1, 2, 3, 0], 2.41),
38
- ("TR", [2, 3, 1, 0], 1.01),
39
- ("TI", [3, 1, 0, 2], 1.01),
40
- ],
41
- )
42
- def test_simple(self, xs, method, inds, sigma):
43
- assert_equal(sort_inds(xs, method, sigma), inds)
44
-
45
-
46
- class TestNumpyEigk:
47
- @mark.parametrize(
48
- "which, k, ls, sigma",
49
- [
50
- ("lm", 3, [-5, 4, -3], None),
51
- ("sm", 3, [0.1, 2, -3], None),
52
- ("tm", 3, [-3, 2, 4], 2.9),
53
- ],
54
- )
55
- def test_evals(self, ham1, which, k, ls, sigma):
56
- lk = eigs_numpy(
57
- ham1, k=k, which=which, return_vecs=False, sigma=sigma, sort=False
58
- )
59
- assert_allclose(lk, ls)
60
-
61
- @mark.parametrize("which, k, sigma", [("sa", 5, None)])
62
- def test_evecs(self, ham1, which, k, sigma):
63
- lk, vk = eigs_numpy(
64
- ham1, k=k, which=which, return_vecs=True, sigma=sigma, sort=False
65
- )
66
- assert isinstance(vk, qu.qarray)
67
- assert_allclose(qu.dot(vk, qu.ldmul(lk, vk.H)), ham1)
68
-
69
-
70
- class TestAutoBlock:
71
- def test_eigh(self):
72
- H = qu.ham_mbl(6, dh=2.5)
73
- a_el, a_ev = qu.eigh(H, autoblock=False)
74
- el, ev = qu.eigh(H, autoblock=True)
75
-
76
- assert qu.norm(ev @ qu.ldmul(el, ev.H) - H, "fro") < 1e-12
77
- assert_allclose(a_el, el)
78
- assert_allclose(ev.H @ ev, np.eye(H.shape[0]), atol=1e-12)
79
-
80
- def test_eigvals(self):
81
- H = qu.ham_hubbard_hardcore(4)
82
- a_el = qu.eigvalsh(H, autoblock=False)
83
- el = qu.eigvalsh(H, autoblock=True)
84
- assert_allclose(a_el, el, atol=1e-12)
@@ -1,134 +0,0 @@
1
- import pytest
2
- import numpy as np
3
- from numpy.testing import assert_allclose
4
-
5
- import quimb as qu
6
- import quimb.tensor as qtn
7
-
8
-
9
- def rand_rect(m, n, sparse=False, dtype=complex):
10
- X = qu.rand_matrix(max(m, n), dtype=dtype, sparse=sparse)
11
- return X[:m, :n]
12
-
13
-
14
- def usv2dense(U, s, VH):
15
- return U @ np.diag(s) @ VH
16
-
17
-
18
- def rand_rank(m, n, k, dtype=complex):
19
- s = np.sort(qu.randn(k) ** 2)[::-1]
20
-
21
- U = qu.gen.rand.rand_iso(m, k, dtype=dtype)
22
- VH = qu.gen.rand.rand_iso(n, k, dtype=dtype).conj().T
23
-
24
- if U.dtype in ("float32", "complex64"):
25
- s = s.astype("float32")
26
-
27
- return usv2dense(U, s, VH)
28
-
29
-
30
- def rand_tn1d_sect(n, bd, dtype=complex):
31
- mps = qtn.MPS_rand_state(n + 2, bd, dtype=dtype)
32
- mpo = qtn.MPO_rand_herm(n + 2, 5, dtype=dtype)
33
-
34
- norm = qtn.TensorNetwork(qtn.tensor_network_align(mps.H, mpo, mps))
35
- norm.view_as_(qtn.TensorNetwork1D, like=mps)
36
-
37
- lix = qtn.bonds(norm[0], norm[1])
38
- rix = qtn.bonds(norm[n], norm[n + 1])
39
-
40
- to = norm[1 : n + 1]
41
-
42
- return qtn.TNLinearOperator1D(to, lix, rix, 1, n + 1)
43
-
44
-
45
- dtypes = ["float32", "float64", "complex64", "complex128"]
46
-
47
-
48
- class TestRSVD:
49
- @pytest.mark.parametrize("dtype", dtypes)
50
- @pytest.mark.parametrize("shape", [(41, 31), (31, 41)])
51
- @pytest.mark.parametrize("sparse", [False, True])
52
- @pytest.mark.parametrize("q", [2, 3])
53
- @pytest.mark.parametrize("p", [0, 5])
54
- def test_rsvd(self, dtype, shape, sparse, q, p):
55
- X = rand_rect(*shape, dtype=dtype, sparse=sparse)
56
-
57
- k = 15
58
- U, s, V = qu.rsvd(X, k, q=q, p=p)
59
-
60
- assert U.shape == (shape[0], k)
61
- assert s.shape == (k,)
62
- assert V.shape == (k, shape[1])
63
-
64
- assert U.dtype == dtype
65
- assert V.dtype == dtype
66
-
67
- assert_allclose(U.conj().T @ U, np.eye(k), rtol=1e-5, atol=1e-5)
68
- assert_allclose(V @ V.conj().T, np.eye(k), rtol=1e-5, atol=1e-5)
69
-
70
- Ue, se, Ve = qu.svds(X, k)
71
- opt_err = qu.norm(X.toarray() - usv2dense(Ue, se, Ve), "fro")
72
- act_err = qu.norm(X.toarray() - usv2dense(U, s, V), "fro")
73
-
74
- assert act_err < 1.2 * opt_err
75
-
76
- assert_allclose(s[: k // 2], se[: k // 2], rtol=0.05)
77
-
78
- @pytest.mark.parametrize("dtype", dtypes)
79
- @pytest.mark.parametrize("shape", [(41, 31), (31, 41)])
80
- @pytest.mark.parametrize("q", [2, 3])
81
- @pytest.mark.parametrize("p", [0, 5])
82
- def test_rsvd_adaptive(self, dtype, shape, q, p):
83
- X = rand_rank(*shape, 10, dtype=dtype)
84
- U, s, V = qu.rsvd(X, 1e-6, q=q, p=p, k_start=10)
85
-
86
- k = s.size
87
- assert 10 <= k <= 20
88
-
89
- assert U.dtype == dtype
90
- assert V.dtype == dtype
91
-
92
- assert_allclose(U.conj().T @ U, np.eye(k), rtol=1e-6, atol=1e-6)
93
- assert_allclose(V @ V.conj().T, np.eye(k), rtol=1e-6, atol=1e-6)
94
-
95
- Ue, se, Ve = qu.svds(X, k)
96
- act_err = qu.norm(X - usv2dense(U, s, V), "fro")
97
-
98
- assert act_err < 1e-4
99
-
100
- assert_allclose(s[: k // 2], se[: k // 2], rtol=0.1)
101
-
102
- @pytest.mark.parametrize("dtype", dtypes)
103
- @pytest.mark.parametrize("shape", [(410, 310), (310, 410)])
104
- @pytest.mark.parametrize("k_start", [4, 10, 16])
105
- @pytest.mark.parametrize("use_qb", [False, 10, True])
106
- def test_estimate_rank(self, dtype, shape, k_start, use_qb):
107
- rnk = 100
108
- X = rand_rank(*shape, rnk, dtype=dtype)
109
-
110
- Ue, se, VHe = qu.svd(X)
111
- assert_allclose(se[rnk:], 0.0, atol=1e-5)
112
-
113
- k = qu.estimate_rank(
114
- X, 1e-3, k_start=k_start, use_qb=use_qb, use_sli=False
115
- )
116
- assert_allclose(k, 100, rtol=0.3)
117
-
118
- assert qu.estimate_rank(X, 1e-3, k_start=k_start, k_max=50) == 50
119
-
120
- @pytest.mark.parametrize("dtype", dtypes)
121
- @pytest.mark.parametrize("k_start", [2, 4, 8])
122
- @pytest.mark.parametrize("use_qb", [False, 10, True])
123
- def test_estimate_rank_lo(self, dtype, k_start, use_qb):
124
- X = rand_tn1d_sect(30, 10, dtype=dtype)
125
-
126
- Ue, se, VHe = qu.svd(X.toarray())
127
- actual_rank = sum(se > se[0] * 1e-3)
128
-
129
- k = qu.estimate_rank(
130
- X, 1e-3, k_start=k_start, use_qb=use_qb, use_sli=False
131
- )
132
- assert_allclose(k, actual_rank, rtol=0.3 if use_qb else 0.5)
133
-
134
- assert qu.estimate_rank(X, 1e-3, k_start=k_start, k_max=8) == 8