whispercpp 1.3.0 → 1.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +60 -11
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -16
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/{whisper.h → include/whisper.h} +23 -22
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1492 -9
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -21755
@@ -176,25 +176,15 @@
|
|
176
176
|
#ifdef GGML_SHARED
|
177
177
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
178
178
|
# ifdef GGML_BUILD
|
179
|
-
# define GGML_API __declspec(dllexport)
|
179
|
+
# define GGML_API __declspec(dllexport) extern
|
180
180
|
# else
|
181
|
-
# define GGML_API __declspec(dllimport)
|
181
|
+
# define GGML_API __declspec(dllimport) extern
|
182
182
|
# endif
|
183
183
|
# else
|
184
|
-
# define GGML_API __attribute__ ((visibility ("default")))
|
184
|
+
# define GGML_API __attribute__ ((visibility ("default"))) extern
|
185
185
|
# endif
|
186
186
|
#else
|
187
|
-
# define GGML_API
|
188
|
-
#endif
|
189
|
-
|
190
|
-
#ifdef GGML_MULTIPLATFORM
|
191
|
-
# if defined(_WIN32)
|
192
|
-
# define GGML_CALL
|
193
|
-
# else
|
194
|
-
# define GGML_CALL __attribute__((__ms_abi__))
|
195
|
-
# endif
|
196
|
-
#else
|
197
|
-
# define GGML_CALL
|
187
|
+
# define GGML_API extern
|
198
188
|
#endif
|
199
189
|
|
200
190
|
// TODO: support for clang
|
@@ -220,21 +210,24 @@
|
|
220
210
|
#include <stdio.h>
|
221
211
|
|
222
212
|
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
223
|
-
#define GGML_FILE_VERSION
|
213
|
+
#define GGML_FILE_VERSION 2
|
224
214
|
|
225
215
|
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
226
216
|
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
227
217
|
|
228
218
|
#define GGML_MAX_DIMS 4
|
229
219
|
#define GGML_MAX_PARAMS 2048
|
230
|
-
#define GGML_MAX_CONTEXTS 64
|
231
220
|
#define GGML_MAX_SRC 10
|
221
|
+
#define GGML_MAX_N_THREADS 512
|
222
|
+
#define GGML_MAX_OP_PARAMS 64
|
223
|
+
|
232
224
|
#ifndef GGML_MAX_NAME
|
233
|
-
#define GGML_MAX_NAME
|
225
|
+
# define GGML_MAX_NAME 64
|
234
226
|
#endif
|
235
|
-
|
227
|
+
|
236
228
|
#define GGML_DEFAULT_N_THREADS 4
|
237
229
|
#define GGML_DEFAULT_GRAPH_SIZE 2048
|
230
|
+
|
238
231
|
#if UINTPTR_MAX == 0xFFFFFFFF
|
239
232
|
#define GGML_MEM_ALIGN 4
|
240
233
|
#else
|
@@ -244,6 +237,10 @@
|
|
244
237
|
#define GGML_EXIT_SUCCESS 0
|
245
238
|
#define GGML_EXIT_ABORTED 1
|
246
239
|
|
240
|
+
#define GGML_ROPE_TYPE_NEOX 2
|
241
|
+
#define GGML_ROPE_TYPE_MROPE 8
|
242
|
+
#define GGML_ROPE_TYPE_VISION 24
|
243
|
+
|
247
244
|
#define GGUF_MAGIC "GGUF"
|
248
245
|
|
249
246
|
#define GGUF_VERSION 3
|
@@ -254,26 +251,27 @@
|
|
254
251
|
|
255
252
|
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
256
253
|
|
257
|
-
#define GGML_ASSERT(x) \
|
258
|
-
do { \
|
259
|
-
if (!(x)) { \
|
260
|
-
fflush(stdout); \
|
261
|
-
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
262
|
-
ggml_print_backtrace(); \
|
263
|
-
abort(); \
|
264
|
-
} \
|
265
|
-
} while (0)
|
266
|
-
|
267
254
|
#ifndef NDEBUG
|
268
|
-
#define GGML_UNREACHABLE()
|
255
|
+
# define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
|
269
256
|
#elif defined(__GNUC__)
|
270
|
-
#define GGML_UNREACHABLE() __builtin_unreachable()
|
257
|
+
# define GGML_UNREACHABLE() __builtin_unreachable()
|
271
258
|
#elif defined(_MSC_VER)
|
272
|
-
#define GGML_UNREACHABLE() __assume(0)
|
259
|
+
# define GGML_UNREACHABLE() __assume(0)
|
273
260
|
#else
|
274
|
-
#define GGML_UNREACHABLE() ((void) 0)
|
261
|
+
# define GGML_UNREACHABLE() ((void) 0)
|
275
262
|
#endif
|
276
263
|
|
264
|
+
#ifdef __cplusplus
|
265
|
+
# define GGML_NORETURN [[noreturn]]
|
266
|
+
#elif defined(_MSC_VER)
|
267
|
+
# define GGML_NORETURN __declspec(noreturn)
|
268
|
+
#else
|
269
|
+
# define GGML_NORETURN _Noreturn
|
270
|
+
#endif
|
271
|
+
|
272
|
+
#define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
|
273
|
+
#define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
|
274
|
+
|
277
275
|
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
278
276
|
// main purpose is to reduce code duplication and improve readability.
|
279
277
|
//
|
@@ -312,10 +310,19 @@
|
|
312
310
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
313
311
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
314
312
|
|
313
|
+
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
|
314
|
+
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
315
|
+
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
316
|
+
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
317
|
+
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
318
|
+
|
315
319
|
#ifdef __cplusplus
|
316
320
|
extern "C" {
|
317
321
|
#endif
|
318
322
|
|
323
|
+
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
|
324
|
+
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
|
325
|
+
|
319
326
|
enum ggml_status {
|
320
327
|
GGML_STATUS_ALLOC_FAILED = -2,
|
321
328
|
GGML_STATUS_FAILED = -1,
|
@@ -324,19 +331,27 @@ extern "C" {
|
|
324
331
|
};
|
325
332
|
|
326
333
|
// get ggml_status name string
|
327
|
-
GGML_API
|
334
|
+
GGML_API const char * ggml_status_to_string(enum ggml_status status);
|
328
335
|
|
336
|
+
// ieee 754-2008 half-precision float16
|
337
|
+
// todo: make this not an integral type
|
329
338
|
typedef uint16_t ggml_fp16_t;
|
330
|
-
|
331
|
-
|
332
|
-
GGML_API
|
333
|
-
GGML_API
|
334
|
-
|
335
|
-
|
336
|
-
|
339
|
+
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
|
340
|
+
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
|
341
|
+
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
|
342
|
+
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
|
343
|
+
|
344
|
+
// google brain half-precision bfloat16
|
345
|
+
typedef struct { uint16_t bits; } ggml_bf16_t;
|
346
|
+
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
|
347
|
+
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
|
348
|
+
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
|
349
|
+
GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
|
350
|
+
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
|
337
351
|
|
338
352
|
struct ggml_object;
|
339
353
|
struct ggml_context;
|
354
|
+
struct ggml_cgraph;
|
340
355
|
|
341
356
|
// NOTE: always add types at the end of the enum to keep backward compatibility
|
342
357
|
enum ggml_type {
|
@@ -370,7 +385,16 @@ extern "C" {
|
|
370
385
|
GGML_TYPE_I64 = 27,
|
371
386
|
GGML_TYPE_F64 = 28,
|
372
387
|
GGML_TYPE_IQ1_M = 29,
|
373
|
-
|
388
|
+
GGML_TYPE_BF16 = 30,
|
389
|
+
// GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
|
390
|
+
// GGML_TYPE_Q4_0_4_8 = 32,
|
391
|
+
// GGML_TYPE_Q4_0_8_8 = 33,
|
392
|
+
GGML_TYPE_TQ1_0 = 34,
|
393
|
+
GGML_TYPE_TQ2_0 = 35,
|
394
|
+
// GGML_TYPE_IQ4_NL_4_4 = 36,
|
395
|
+
// GGML_TYPE_IQ4_NL_4_8 = 37,
|
396
|
+
// GGML_TYPE_IQ4_NL_8_8 = 38,
|
397
|
+
GGML_TYPE_COUNT = 39,
|
374
398
|
};
|
375
399
|
|
376
400
|
// precision
|
@@ -410,6 +434,7 @@ extern "C" {
|
|
410
434
|
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
411
435
|
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
412
436
|
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
437
|
+
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
|
413
438
|
};
|
414
439
|
|
415
440
|
// available tensor operations:
|
@@ -426,10 +451,13 @@ extern "C" {
|
|
426
451
|
GGML_OP_SQR,
|
427
452
|
GGML_OP_SQRT,
|
428
453
|
GGML_OP_LOG,
|
454
|
+
GGML_OP_SIN,
|
455
|
+
GGML_OP_COS,
|
429
456
|
GGML_OP_SUM,
|
430
457
|
GGML_OP_SUM_ROWS,
|
431
458
|
GGML_OP_MEAN,
|
432
459
|
GGML_OP_ARGMAX,
|
460
|
+
GGML_OP_COUNT_EQUAL,
|
433
461
|
GGML_OP_REPEAT,
|
434
462
|
GGML_OP_REPEAT_BACK,
|
435
463
|
GGML_OP_CONCAT,
|
@@ -460,22 +488,23 @@ extern "C" {
|
|
460
488
|
GGML_OP_SOFT_MAX_BACK,
|
461
489
|
GGML_OP_ROPE,
|
462
490
|
GGML_OP_ROPE_BACK,
|
463
|
-
GGML_OP_ALIBI,
|
464
491
|
GGML_OP_CLAMP,
|
465
492
|
GGML_OP_CONV_TRANSPOSE_1D,
|
466
493
|
GGML_OP_IM2COL,
|
494
|
+
GGML_OP_IM2COL_BACK,
|
467
495
|
GGML_OP_CONV_TRANSPOSE_2D,
|
468
496
|
GGML_OP_POOL_1D,
|
469
497
|
GGML_OP_POOL_2D,
|
498
|
+
GGML_OP_POOL_2D_BACK,
|
470
499
|
GGML_OP_UPSCALE, // nearest interpolate
|
471
500
|
GGML_OP_PAD,
|
501
|
+
GGML_OP_PAD_REFLECT_1D,
|
472
502
|
GGML_OP_ARANGE,
|
473
503
|
GGML_OP_TIMESTEP_EMBEDDING,
|
474
504
|
GGML_OP_ARGSORT,
|
475
505
|
GGML_OP_LEAKY_RELU,
|
476
506
|
|
477
|
-
|
478
|
-
GGML_OP_FLASH_FF,
|
507
|
+
GGML_OP_FLASH_ATTN_EXT,
|
479
508
|
GGML_OP_FLASH_ATTN_BACK,
|
480
509
|
GGML_OP_SSM_CONV,
|
481
510
|
GGML_OP_SSM_SCAN,
|
@@ -483,6 +512,7 @@ extern "C" {
|
|
483
512
|
GGML_OP_WIN_UNPART,
|
484
513
|
GGML_OP_GET_REL_POS,
|
485
514
|
GGML_OP_ADD_REL_POS,
|
515
|
+
GGML_OP_RWKV_WKV6,
|
486
516
|
|
487
517
|
GGML_OP_UNARY,
|
488
518
|
|
@@ -499,6 +529,7 @@ extern "C" {
|
|
499
529
|
|
500
530
|
GGML_OP_CROSS_ENTROPY_LOSS,
|
501
531
|
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
532
|
+
GGML_OP_OPT_STEP_ADAMW,
|
502
533
|
|
503
534
|
GGML_OP_COUNT,
|
504
535
|
};
|
@@ -511,11 +542,13 @@ extern "C" {
|
|
511
542
|
GGML_UNARY_OP_TANH,
|
512
543
|
GGML_UNARY_OP_ELU,
|
513
544
|
GGML_UNARY_OP_RELU,
|
545
|
+
GGML_UNARY_OP_SIGMOID,
|
514
546
|
GGML_UNARY_OP_GELU,
|
515
547
|
GGML_UNARY_OP_GELU_QUICK,
|
516
548
|
GGML_UNARY_OP_SILU,
|
517
549
|
GGML_UNARY_OP_HARDSWISH,
|
518
550
|
GGML_UNARY_OP_HARDSIGMOID,
|
551
|
+
GGML_UNARY_OP_EXP,
|
519
552
|
|
520
553
|
GGML_UNARY_OP_COUNT,
|
521
554
|
};
|
@@ -527,36 +560,34 @@ extern "C" {
|
|
527
560
|
};
|
528
561
|
|
529
562
|
enum ggml_log_level {
|
530
|
-
|
563
|
+
GGML_LOG_LEVEL_NONE = 0,
|
564
|
+
GGML_LOG_LEVEL_DEBUG = 1,
|
565
|
+
GGML_LOG_LEVEL_INFO = 2,
|
531
566
|
GGML_LOG_LEVEL_WARN = 3,
|
532
|
-
|
533
|
-
|
567
|
+
GGML_LOG_LEVEL_ERROR = 4,
|
568
|
+
GGML_LOG_LEVEL_CONT = 5, // continue previous log
|
534
569
|
};
|
535
570
|
|
571
|
+
// this tensor...
|
536
572
|
enum ggml_tensor_flag {
|
537
|
-
GGML_TENSOR_FLAG_INPUT =
|
538
|
-
GGML_TENSOR_FLAG_OUTPUT =
|
539
|
-
GGML_TENSOR_FLAG_PARAM =
|
573
|
+
GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
|
574
|
+
GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
|
575
|
+
GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
|
576
|
+
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
|
540
577
|
};
|
541
578
|
|
542
|
-
|
543
|
-
|
544
|
-
size_t
|
545
|
-
|
546
|
-
|
547
|
-
struct ggml_object * next;
|
548
|
-
|
549
|
-
enum ggml_object_type type;
|
550
|
-
|
551
|
-
char padding[4];
|
579
|
+
struct ggml_init_params {
|
580
|
+
// memory pool
|
581
|
+
size_t mem_size; // bytes
|
582
|
+
void * mem_buffer; // if NULL, memory will be allocated internally
|
583
|
+
bool no_alloc; // don't allocate memory for the tensor data
|
552
584
|
};
|
553
585
|
|
554
|
-
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
555
|
-
|
556
586
|
// n-dimensional tensor
|
557
587
|
struct ggml_tensor {
|
558
|
-
enum ggml_type
|
559
|
-
|
588
|
+
enum ggml_type type;
|
589
|
+
|
590
|
+
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
560
591
|
|
561
592
|
struct ggml_backend_buffer * buffer;
|
562
593
|
|
@@ -574,14 +605,9 @@ extern "C" {
|
|
574
605
|
|
575
606
|
int32_t flags;
|
576
607
|
|
577
|
-
struct ggml_tensor * grad;
|
578
608
|
struct ggml_tensor * src[GGML_MAX_SRC];
|
579
609
|
|
580
|
-
//
|
581
|
-
int perf_runs;
|
582
|
-
int64_t perf_cycles;
|
583
|
-
int64_t perf_time_us;
|
584
|
-
|
610
|
+
// source tensor and offset for views
|
585
611
|
struct ggml_tensor * view_src;
|
586
612
|
size_t view_offs;
|
587
613
|
|
@@ -601,95 +627,6 @@ extern "C" {
|
|
601
627
|
// If it returns true, the computation is aborted
|
602
628
|
typedef bool (*ggml_abort_callback)(void * data);
|
603
629
|
|
604
|
-
// the compute plan that needs to be prepared for ggml_graph_compute()
|
605
|
-
// since https://github.com/ggerganov/ggml/issues/287
|
606
|
-
struct ggml_cplan {
|
607
|
-
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
608
|
-
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
609
|
-
|
610
|
-
int n_threads;
|
611
|
-
|
612
|
-
// abort ggml_graph_compute when true
|
613
|
-
ggml_abort_callback abort_callback;
|
614
|
-
void * abort_callback_data;
|
615
|
-
};
|
616
|
-
|
617
|
-
enum ggml_cgraph_eval_order {
|
618
|
-
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
619
|
-
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
620
|
-
GGML_CGRAPH_EVAL_ORDER_COUNT
|
621
|
-
};
|
622
|
-
|
623
|
-
struct ggml_hash_set {
|
624
|
-
size_t size;
|
625
|
-
struct ggml_tensor ** keys;
|
626
|
-
};
|
627
|
-
|
628
|
-
// computation graph
|
629
|
-
struct ggml_cgraph {
|
630
|
-
int size;
|
631
|
-
int n_nodes;
|
632
|
-
int n_leafs;
|
633
|
-
|
634
|
-
struct ggml_tensor ** nodes;
|
635
|
-
struct ggml_tensor ** grads;
|
636
|
-
struct ggml_tensor ** leafs;
|
637
|
-
|
638
|
-
struct ggml_hash_set visited_hash_table;
|
639
|
-
|
640
|
-
enum ggml_cgraph_eval_order order;
|
641
|
-
|
642
|
-
// performance
|
643
|
-
int perf_runs;
|
644
|
-
int64_t perf_cycles;
|
645
|
-
int64_t perf_time_us;
|
646
|
-
};
|
647
|
-
|
648
|
-
// scratch buffer
|
649
|
-
struct ggml_scratch {
|
650
|
-
size_t offs;
|
651
|
-
size_t size;
|
652
|
-
void * data;
|
653
|
-
};
|
654
|
-
|
655
|
-
struct ggml_init_params {
|
656
|
-
// memory pool
|
657
|
-
size_t mem_size; // bytes
|
658
|
-
void * mem_buffer; // if NULL, memory will be allocated internally
|
659
|
-
bool no_alloc; // don't allocate memory for the tensor data
|
660
|
-
};
|
661
|
-
|
662
|
-
|
663
|
-
// compute types
|
664
|
-
|
665
|
-
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
|
666
|
-
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
|
667
|
-
enum ggml_task_type {
|
668
|
-
GGML_TASK_TYPE_INIT = 0,
|
669
|
-
GGML_TASK_TYPE_COMPUTE,
|
670
|
-
GGML_TASK_TYPE_FINALIZE,
|
671
|
-
};
|
672
|
-
|
673
|
-
struct ggml_compute_params {
|
674
|
-
enum ggml_task_type type;
|
675
|
-
|
676
|
-
// ith = thread index, nth = number of threads
|
677
|
-
int ith, nth;
|
678
|
-
|
679
|
-
// work buffer for all threads
|
680
|
-
size_t wsize;
|
681
|
-
void * wdata;
|
682
|
-
};
|
683
|
-
|
684
|
-
// numa strategies
|
685
|
-
enum ggml_numa_strategy {
|
686
|
-
GGML_NUMA_STRATEGY_DISABLED = 0,
|
687
|
-
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
|
688
|
-
GGML_NUMA_STRATEGY_ISOLATE = 2,
|
689
|
-
GGML_NUMA_STRATEGY_NUMACTL = 3,
|
690
|
-
GGML_NUMA_STRATEGY_MIRROR = 4,
|
691
|
-
GGML_NUMA_STRATEGY_COUNT
|
692
|
-
};
|
693
630
|
|
694
631
|
//
|
695
632
|
// GUID
|
@@ -709,67 +646,71 @@ extern "C" {
|
|
709
646
|
GGML_API int64_t ggml_cycles(void);
|
710
647
|
GGML_API int64_t ggml_cycles_per_ms(void);
|
711
648
|
|
712
|
-
GGML_API void ggml_print_backtrace(void);
|
713
|
-
|
714
649
|
// accepts a UTF-8 path, even on Windows
|
715
650
|
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
|
716
651
|
|
717
|
-
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
718
|
-
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
719
|
-
|
720
652
|
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
721
653
|
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
722
654
|
|
723
|
-
GGML_API
|
724
|
-
GGML_API
|
725
|
-
GGML_API
|
726
|
-
GGML_API
|
655
|
+
GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
656
|
+
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
657
|
+
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
658
|
+
GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
727
659
|
|
728
|
-
GGML_API
|
729
|
-
GGML_API
|
730
|
-
GGML_API
|
660
|
+
GGML_API int64_t ggml_blck_size(enum ggml_type type);
|
661
|
+
GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
662
|
+
GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
731
663
|
|
732
664
|
GGML_DEPRECATED(
|
733
665
|
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
|
734
666
|
"use ggml_row_size() instead");
|
735
667
|
|
736
|
-
GGML_API
|
737
|
-
GGML_API
|
738
|
-
GGML_API
|
668
|
+
GGML_API const char * ggml_type_name(enum ggml_type type);
|
669
|
+
GGML_API const char * ggml_op_name (enum ggml_op op);
|
670
|
+
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
739
671
|
|
740
|
-
GGML_API
|
741
|
-
GGML_API
|
672
|
+
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
673
|
+
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
742
674
|
|
743
|
-
GGML_API
|
675
|
+
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
744
676
|
|
745
|
-
GGML_API
|
677
|
+
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
746
678
|
|
747
679
|
// TODO: temporary until model loading of ggml examples is refactored
|
748
680
|
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
749
681
|
|
750
|
-
GGML_API
|
751
|
-
GGML_API
|
752
|
-
GGML_API
|
753
|
-
GGML_API
|
754
|
-
GGML_API
|
755
|
-
GGML_API
|
756
|
-
GGML_API
|
757
|
-
GGML_API
|
758
|
-
|
682
|
+
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
683
|
+
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
684
|
+
GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
|
685
|
+
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
686
|
+
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
687
|
+
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
688
|
+
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
689
|
+
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
690
|
+
|
691
|
+
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
692
|
+
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
693
|
+
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
694
|
+
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
759
695
|
|
760
|
-
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
696
|
+
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
697
|
+
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
698
|
+
|
699
|
+
GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
761
700
|
|
762
701
|
// use this to compute the memory overhead of a tensor
|
763
702
|
GGML_API size_t ggml_tensor_overhead(void);
|
764
703
|
|
704
|
+
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
|
705
|
+
|
765
706
|
// main
|
766
707
|
|
767
|
-
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
768
|
-
GGML_API void
|
708
|
+
GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
|
709
|
+
GGML_API void ggml_reset(struct ggml_context * ctx);
|
710
|
+
GGML_API void ggml_free (struct ggml_context * ctx);
|
769
711
|
|
770
712
|
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
771
713
|
|
772
|
-
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
773
714
|
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
|
774
715
|
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
775
716
|
|
@@ -809,8 +750,7 @@ extern "C" {
|
|
809
750
|
int64_t ne2,
|
810
751
|
int64_t ne3);
|
811
752
|
|
812
|
-
GGML_API
|
813
|
-
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
753
|
+
GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
|
814
754
|
|
815
755
|
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
816
756
|
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
@@ -820,35 +760,25 @@ extern "C" {
|
|
820
760
|
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
|
821
761
|
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
822
762
|
|
823
|
-
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
824
|
-
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
825
|
-
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
826
|
-
|
827
763
|
// Converts a flat index into coordinates
|
828
|
-
GGML_API void
|
764
|
+
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
829
765
|
|
830
|
-
GGML_API
|
831
|
-
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
832
|
-
|
833
|
-
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
834
|
-
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
835
|
-
|
836
|
-
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
837
|
-
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
838
|
-
|
839
|
-
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
840
|
-
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
766
|
+
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
841
767
|
|
842
768
|
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
843
769
|
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
844
770
|
|
845
|
-
GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
846
|
-
|
847
771
|
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
848
772
|
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
849
773
|
GGML_ATTRIBUTE_FORMAT(2, 3)
|
850
774
|
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
|
851
775
|
|
776
|
+
// Tensor flags
|
777
|
+
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
778
|
+
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
779
|
+
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
|
780
|
+
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
|
781
|
+
|
852
782
|
//
|
853
783
|
// operations on tensors with backpropagation
|
854
784
|
//
|
@@ -963,6 +893,22 @@ extern "C" {
|
|
963
893
|
struct ggml_context * ctx,
|
964
894
|
struct ggml_tensor * a);
|
965
895
|
|
896
|
+
GGML_API struct ggml_tensor * ggml_sin(
|
897
|
+
struct ggml_context * ctx,
|
898
|
+
struct ggml_tensor * a);
|
899
|
+
|
900
|
+
GGML_API struct ggml_tensor * ggml_sin_inplace(
|
901
|
+
struct ggml_context * ctx,
|
902
|
+
struct ggml_tensor * a);
|
903
|
+
|
904
|
+
GGML_API struct ggml_tensor * ggml_cos(
|
905
|
+
struct ggml_context * ctx,
|
906
|
+
struct ggml_tensor * a);
|
907
|
+
|
908
|
+
GGML_API struct ggml_tensor * ggml_cos_inplace(
|
909
|
+
struct ggml_context * ctx,
|
910
|
+
struct ggml_tensor * a);
|
911
|
+
|
966
912
|
// return scalar
|
967
913
|
GGML_API struct ggml_tensor * ggml_sum(
|
968
914
|
struct ggml_context * ctx,
|
@@ -983,6 +929,12 @@ extern "C" {
|
|
983
929
|
struct ggml_context * ctx,
|
984
930
|
struct ggml_tensor * a);
|
985
931
|
|
932
|
+
// count number of equal elements in a and b
|
933
|
+
GGML_API struct ggml_tensor * ggml_count_equal(
|
934
|
+
struct ggml_context * ctx,
|
935
|
+
struct ggml_tensor * a,
|
936
|
+
struct ggml_tensor * b);
|
937
|
+
|
986
938
|
// if a is the same shape as b, and a is not parameter, return a
|
987
939
|
// otherwise, return a new tensor: repeat(a) to fit in b
|
988
940
|
GGML_API struct ggml_tensor * ggml_repeat(
|
@@ -996,12 +948,13 @@ extern "C" {
|
|
996
948
|
struct ggml_tensor * a,
|
997
949
|
struct ggml_tensor * b);
|
998
950
|
|
999
|
-
// concat a and b
|
951
|
+
// concat a and b along dim
|
1000
952
|
// used in stable-diffusion
|
1001
953
|
GGML_API struct ggml_tensor * ggml_concat(
|
1002
954
|
struct ggml_context * ctx,
|
1003
955
|
struct ggml_tensor * a,
|
1004
|
-
struct ggml_tensor * b
|
956
|
+
struct ggml_tensor * b,
|
957
|
+
int dim);
|
1005
958
|
|
1006
959
|
GGML_API struct ggml_tensor * ggml_abs(
|
1007
960
|
struct ggml_context * ctx,
|
@@ -1063,6 +1016,14 @@ extern "C" {
|
|
1063
1016
|
struct ggml_context * ctx,
|
1064
1017
|
struct ggml_tensor * a);
|
1065
1018
|
|
1019
|
+
GGML_API struct ggml_tensor * ggml_sigmoid(
|
1020
|
+
struct ggml_context * ctx,
|
1021
|
+
struct ggml_tensor * a);
|
1022
|
+
|
1023
|
+
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
|
1024
|
+
struct ggml_context * ctx,
|
1025
|
+
struct ggml_tensor * a);
|
1026
|
+
|
1066
1027
|
GGML_API struct ggml_tensor * ggml_gelu(
|
1067
1028
|
struct ggml_context * ctx,
|
1068
1029
|
struct ggml_tensor * a);
|
@@ -1104,6 +1065,14 @@ extern "C" {
|
|
1104
1065
|
struct ggml_context * ctx,
|
1105
1066
|
struct ggml_tensor * a);
|
1106
1067
|
|
1068
|
+
GGML_API struct ggml_tensor * ggml_exp(
|
1069
|
+
struct ggml_context * ctx,
|
1070
|
+
struct ggml_tensor * a);
|
1071
|
+
|
1072
|
+
GGML_API struct ggml_tensor * ggml_exp_inplace(
|
1073
|
+
struct ggml_context * ctx,
|
1074
|
+
struct ggml_tensor * a);
|
1075
|
+
|
1107
1076
|
// normalize along rows
|
1108
1077
|
GGML_API struct ggml_tensor * ggml_norm(
|
1109
1078
|
struct ggml_context * ctx,
|
@@ -1127,16 +1096,17 @@ extern "C" {
|
|
1127
1096
|
|
1128
1097
|
// group normalize along ne0*ne1*n_groups
|
1129
1098
|
// used in stable-diffusion
|
1130
|
-
// TODO: eps is hardcoded to 1e-6 for now
|
1131
1099
|
GGML_API struct ggml_tensor * ggml_group_norm(
|
1132
1100
|
struct ggml_context * ctx,
|
1133
1101
|
struct ggml_tensor * a,
|
1134
|
-
int n_groups
|
1102
|
+
int n_groups,
|
1103
|
+
float eps);
|
1135
1104
|
|
1136
1105
|
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
|
1137
1106
|
struct ggml_context * ctx,
|
1138
1107
|
struct ggml_tensor * a,
|
1139
|
-
int n_groups
|
1108
|
+
int n_groups,
|
1109
|
+
float eps);
|
1140
1110
|
|
1141
1111
|
// a - x
|
1142
1112
|
// b - dy
|
@@ -1161,13 +1131,11 @@ extern "C" {
|
|
1161
1131
|
enum ggml_prec prec);
|
1162
1132
|
|
1163
1133
|
// indirect matrix multiplication
|
1164
|
-
// ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
|
1165
1134
|
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
1166
1135
|
struct ggml_context * ctx,
|
1167
1136
|
struct ggml_tensor * as,
|
1168
|
-
struct ggml_tensor *
|
1169
|
-
|
1170
|
-
struct ggml_tensor * b);
|
1137
|
+
struct ggml_tensor * b,
|
1138
|
+
struct ggml_tensor * ids);
|
1171
1139
|
|
1172
1140
|
// A: m columns, n rows,
|
1173
1141
|
// B: p columns, n rows,
|
@@ -1200,7 +1168,7 @@ extern "C" {
|
|
1200
1168
|
size_t nb1,
|
1201
1169
|
size_t nb2,
|
1202
1170
|
size_t nb3,
|
1203
|
-
size_t offset);
|
1171
|
+
size_t offset); // in bytes
|
1204
1172
|
|
1205
1173
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
1206
1174
|
GGML_API struct ggml_tensor * ggml_set_inplace(
|
@@ -1210,19 +1178,19 @@ extern "C" {
|
|
1210
1178
|
size_t nb1,
|
1211
1179
|
size_t nb2,
|
1212
1180
|
size_t nb3,
|
1213
|
-
size_t offset);
|
1181
|
+
size_t offset); // in bytes
|
1214
1182
|
|
1215
1183
|
GGML_API struct ggml_tensor * ggml_set_1d(
|
1216
1184
|
struct ggml_context * ctx,
|
1217
1185
|
struct ggml_tensor * a,
|
1218
1186
|
struct ggml_tensor * b,
|
1219
|
-
size_t offset);
|
1187
|
+
size_t offset); // in bytes
|
1220
1188
|
|
1221
1189
|
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
|
1222
1190
|
struct ggml_context * ctx,
|
1223
1191
|
struct ggml_tensor * a,
|
1224
1192
|
struct ggml_tensor * b,
|
1225
|
-
size_t offset);
|
1193
|
+
size_t offset); // in bytes
|
1226
1194
|
|
1227
1195
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
1228
1196
|
GGML_API struct ggml_tensor * ggml_set_2d(
|
@@ -1230,7 +1198,7 @@ extern "C" {
|
|
1230
1198
|
struct ggml_tensor * a,
|
1231
1199
|
struct ggml_tensor * b,
|
1232
1200
|
size_t nb1,
|
1233
|
-
size_t offset);
|
1201
|
+
size_t offset); // in bytes
|
1234
1202
|
|
1235
1203
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
1236
1204
|
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
|
@@ -1238,7 +1206,7 @@ extern "C" {
|
|
1238
1206
|
struct ggml_tensor * a,
|
1239
1207
|
struct ggml_tensor * b,
|
1240
1208
|
size_t nb1,
|
1241
|
-
size_t offset);
|
1209
|
+
size_t offset); // in bytes
|
1242
1210
|
|
1243
1211
|
// a -> b, return view(b)
|
1244
1212
|
GGML_API struct ggml_tensor * ggml_cpy(
|
@@ -1373,14 +1341,14 @@ extern "C" {
|
|
1373
1341
|
// supports 3D: a->ne[2] == b->ne[1]
|
1374
1342
|
GGML_API struct ggml_tensor * ggml_get_rows(
|
1375
1343
|
struct ggml_context * ctx,
|
1376
|
-
struct ggml_tensor * a,
|
1377
|
-
struct ggml_tensor * b);
|
1344
|
+
struct ggml_tensor * a, // data
|
1345
|
+
struct ggml_tensor * b); // row indices
|
1378
1346
|
|
1379
1347
|
GGML_API struct ggml_tensor * ggml_get_rows_back(
|
1380
1348
|
struct ggml_context * ctx,
|
1381
|
-
struct ggml_tensor * a,
|
1382
|
-
struct ggml_tensor * b,
|
1383
|
-
struct ggml_tensor * c);
|
1349
|
+
struct ggml_tensor * a, // gradients of ggml_get_rows result
|
1350
|
+
struct ggml_tensor * b, // row indices
|
1351
|
+
struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
|
1384
1352
|
|
1385
1353
|
GGML_API struct ggml_tensor * ggml_diag(
|
1386
1354
|
struct ggml_context * ctx,
|
@@ -1419,15 +1387,13 @@ extern "C" {
|
|
1419
1387
|
struct ggml_context * ctx,
|
1420
1388
|
struct ggml_tensor * a);
|
1421
1389
|
|
1422
|
-
// fused soft_max(a*scale + mask
|
1390
|
+
// fused soft_max(a*scale + mask*(ALiBi slope))
|
1423
1391
|
// mask is optional
|
1424
|
-
// pos is required when max_bias > 0.0f
|
1425
1392
|
// max_bias = 0.0f for no ALiBi
|
1426
1393
|
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
1427
1394
|
struct ggml_context * ctx,
|
1428
1395
|
struct ggml_tensor * a,
|
1429
1396
|
struct ggml_tensor * mask,
|
1430
|
-
struct ggml_tensor * pos,
|
1431
1397
|
float scale,
|
1432
1398
|
float max_bias);
|
1433
1399
|
|
@@ -1443,9 +1409,8 @@ extern "C" {
|
|
1443
1409
|
struct ggml_tensor * b);
|
1444
1410
|
|
1445
1411
|
// rotary position embedding
|
1446
|
-
// if mode & 1
|
1447
|
-
// if mode &
|
1448
|
-
// if mode & 4 == 1, ChatGLM style
|
1412
|
+
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
|
1413
|
+
// if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
|
1449
1414
|
//
|
1450
1415
|
// b is an int32 vector with size a->ne[2], it contains the positions
|
1451
1416
|
GGML_API struct ggml_tensor * ggml_rope(
|
@@ -1453,8 +1418,7 @@ extern "C" {
|
|
1453
1418
|
struct ggml_tensor * a,
|
1454
1419
|
struct ggml_tensor * b,
|
1455
1420
|
int n_dims,
|
1456
|
-
int mode
|
1457
|
-
int n_ctx);
|
1421
|
+
int mode);
|
1458
1422
|
|
1459
1423
|
// in-place, returns view(a)
|
1460
1424
|
GGML_API struct ggml_tensor * ggml_rope_inplace(
|
@@ -1462,18 +1426,18 @@ extern "C" {
|
|
1462
1426
|
struct ggml_tensor * a,
|
1463
1427
|
struct ggml_tensor * b,
|
1464
1428
|
int n_dims,
|
1465
|
-
int mode
|
1466
|
-
int n_ctx);
|
1429
|
+
int mode);
|
1467
1430
|
|
1468
1431
|
// custom RoPE
|
1469
|
-
|
1432
|
+
// c is freq factors (e.g. phi3-128k), (optional)
|
1433
|
+
GGML_API struct ggml_tensor * ggml_rope_ext(
|
1470
1434
|
struct ggml_context * ctx,
|
1471
1435
|
struct ggml_tensor * a,
|
1472
1436
|
struct ggml_tensor * b,
|
1437
|
+
struct ggml_tensor * c,
|
1473
1438
|
int n_dims,
|
1474
1439
|
int mode,
|
1475
|
-
int
|
1476
|
-
int n_orig_ctx,
|
1440
|
+
int n_ctx_orig,
|
1477
1441
|
float freq_base,
|
1478
1442
|
float freq_scale,
|
1479
1443
|
float ext_factor,
|
@@ -1481,15 +1445,15 @@ extern "C" {
|
|
1481
1445
|
float beta_fast,
|
1482
1446
|
float beta_slow);
|
1483
1447
|
|
1484
|
-
|
1485
|
-
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
1448
|
+
GGML_API struct ggml_tensor * ggml_rope_multi(
|
1486
1449
|
struct ggml_context * ctx,
|
1487
1450
|
struct ggml_tensor * a,
|
1488
1451
|
struct ggml_tensor * b,
|
1452
|
+
struct ggml_tensor * c,
|
1489
1453
|
int n_dims,
|
1454
|
+
int sections[4],
|
1490
1455
|
int mode,
|
1491
|
-
int
|
1492
|
-
int n_orig_ctx,
|
1456
|
+
int n_ctx_orig,
|
1493
1457
|
float freq_base,
|
1494
1458
|
float freq_scale,
|
1495
1459
|
float ext_factor,
|
@@ -1497,47 +1461,72 @@ extern "C" {
|
|
1497
1461
|
float beta_fast,
|
1498
1462
|
float beta_slow);
|
1499
1463
|
|
1500
|
-
//
|
1501
|
-
|
1502
|
-
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
1503
|
-
|
1504
|
-
// xPos RoPE, in-place, returns view(a)
|
1505
|
-
GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
|
1464
|
+
// in-place, returns view(a)
|
1465
|
+
GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
|
1506
1466
|
struct ggml_context * ctx,
|
1507
1467
|
struct ggml_tensor * a,
|
1508
1468
|
struct ggml_tensor * b,
|
1469
|
+
struct ggml_tensor * c,
|
1509
1470
|
int n_dims,
|
1510
|
-
|
1511
|
-
|
1471
|
+
int mode,
|
1472
|
+
int n_ctx_orig,
|
1473
|
+
float freq_base,
|
1474
|
+
float freq_scale,
|
1475
|
+
float ext_factor,
|
1476
|
+
float attn_factor,
|
1477
|
+
float beta_fast,
|
1478
|
+
float beta_slow);
|
1512
1479
|
|
1513
|
-
|
1514
|
-
// a - dy
|
1515
|
-
GGML_API struct ggml_tensor * ggml_rope_back(
|
1480
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
|
1516
1481
|
struct ggml_context * ctx,
|
1517
1482
|
struct ggml_tensor * a,
|
1518
1483
|
struct ggml_tensor * b,
|
1519
1484
|
int n_dims,
|
1520
1485
|
int mode,
|
1521
|
-
int
|
1522
|
-
int n_orig_ctx,
|
1486
|
+
int n_ctx_orig,
|
1523
1487
|
float freq_base,
|
1524
1488
|
float freq_scale,
|
1525
1489
|
float ext_factor,
|
1526
1490
|
float attn_factor,
|
1527
1491
|
float beta_fast,
|
1528
|
-
float beta_slow,
|
1529
|
-
|
1530
|
-
bool xpos_down);
|
1492
|
+
float beta_slow),
|
1493
|
+
"use ggml_rope_ext instead");
|
1531
1494
|
|
1532
|
-
|
1533
|
-
// in-place, returns view(a)
|
1534
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi(
|
1495
|
+
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
1535
1496
|
struct ggml_context * ctx,
|
1536
1497
|
struct ggml_tensor * a,
|
1537
|
-
|
1538
|
-
int
|
1539
|
-
|
1540
|
-
|
1498
|
+
struct ggml_tensor * b,
|
1499
|
+
int n_dims,
|
1500
|
+
int mode,
|
1501
|
+
int n_ctx_orig,
|
1502
|
+
float freq_base,
|
1503
|
+
float freq_scale,
|
1504
|
+
float ext_factor,
|
1505
|
+
float attn_factor,
|
1506
|
+
float beta_fast,
|
1507
|
+
float beta_slow),
|
1508
|
+
"use ggml_rope_ext_inplace instead");
|
1509
|
+
|
1510
|
+
// compute correction dims for YaRN RoPE scaling
|
1511
|
+
GGML_API void ggml_rope_yarn_corr_dims(
|
1512
|
+
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
1513
|
+
|
1514
|
+
// rotary position embedding backward, i.e compute dx from dy
|
1515
|
+
// a - dy
|
1516
|
+
GGML_API struct ggml_tensor * ggml_rope_back(
|
1517
|
+
struct ggml_context * ctx,
|
1518
|
+
struct ggml_tensor * a, // gradients of ggml_rope result
|
1519
|
+
struct ggml_tensor * b, // positions
|
1520
|
+
struct ggml_tensor * c, // freq factors
|
1521
|
+
int n_dims,
|
1522
|
+
int mode,
|
1523
|
+
int n_ctx_orig,
|
1524
|
+
float freq_base,
|
1525
|
+
float freq_scale,
|
1526
|
+
float ext_factor,
|
1527
|
+
float attn_factor,
|
1528
|
+
float beta_fast,
|
1529
|
+
float beta_slow);
|
1541
1530
|
|
1542
1531
|
// clamp
|
1543
1532
|
// in-place, returns view(a)
|
@@ -1547,34 +1536,49 @@ extern "C" {
|
|
1547
1536
|
float min,
|
1548
1537
|
float max);
|
1549
1538
|
|
1539
|
+
// im2col
|
1540
|
+
// converts data into a format that effectively results in a convolution when combined with matrix multiplication
|
1550
1541
|
GGML_API struct ggml_tensor * ggml_im2col(
|
1551
1542
|
struct ggml_context * ctx,
|
1552
|
-
struct ggml_tensor * a,
|
1553
|
-
struct ggml_tensor * b,
|
1554
|
-
int
|
1555
|
-
int
|
1556
|
-
int
|
1557
|
-
int
|
1558
|
-
int
|
1559
|
-
int
|
1560
|
-
bool
|
1561
|
-
enum ggml_type
|
1543
|
+
struct ggml_tensor * a, // convolution kernel
|
1544
|
+
struct ggml_tensor * b, // data
|
1545
|
+
int s0, // stride dimension 0
|
1546
|
+
int s1, // stride dimension 1
|
1547
|
+
int p0, // padding dimension 0
|
1548
|
+
int p1, // padding dimension 1
|
1549
|
+
int d0, // dilation dimension 0
|
1550
|
+
int d1, // dilation dimension 1
|
1551
|
+
bool is_2D,
|
1552
|
+
enum ggml_type dst_type);
|
1553
|
+
|
1554
|
+
GGML_API struct ggml_tensor * ggml_im2col_back(
|
1555
|
+
struct ggml_context * ctx,
|
1556
|
+
struct ggml_tensor * a, // convolution kernel
|
1557
|
+
struct ggml_tensor * b, // gradient of im2col output
|
1558
|
+
int64_t * ne, // shape of im2col input
|
1559
|
+
int s0, // stride dimension 0
|
1560
|
+
int s1, // stride dimension 1
|
1561
|
+
int p0, // padding dimension 0
|
1562
|
+
int p1, // padding dimension 1
|
1563
|
+
int d0, // dilation dimension 0
|
1564
|
+
int d1, // dilation dimension 1
|
1565
|
+
bool is_2D);
|
1562
1566
|
|
1563
1567
|
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
|
1564
1568
|
struct ggml_context * ctx,
|
1565
|
-
struct ggml_tensor * a,
|
1566
|
-
struct ggml_tensor * b,
|
1567
|
-
int s0,
|
1568
|
-
int s1,
|
1569
|
-
int p0,
|
1570
|
-
int p1,
|
1571
|
-
int d0,
|
1572
|
-
int d1);
|
1569
|
+
struct ggml_tensor * a, // convolution kernel
|
1570
|
+
struct ggml_tensor * b, // data
|
1571
|
+
int s0, // stride dimension 0
|
1572
|
+
int s1, // stride dimension 1
|
1573
|
+
int p0, // padding dimension 0
|
1574
|
+
int p1, // padding dimension 1
|
1575
|
+
int d0, // dilation dimension 0
|
1576
|
+
int d1); // dilation dimension 1
|
1573
1577
|
|
1574
1578
|
GGML_API struct ggml_tensor * ggml_conv_1d(
|
1575
1579
|
struct ggml_context * ctx,
|
1576
|
-
struct ggml_tensor * a,
|
1577
|
-
struct ggml_tensor * b,
|
1580
|
+
struct ggml_tensor * a, // convolution kernel
|
1581
|
+
struct ggml_tensor * b, // data
|
1578
1582
|
int s0, // stride
|
1579
1583
|
int p0, // padding
|
1580
1584
|
int d0); // dilation
|
@@ -1583,29 +1587,29 @@ extern "C" {
|
|
1583
1587
|
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
1584
1588
|
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
1585
1589
|
struct ggml_context * ctx,
|
1586
|
-
struct ggml_tensor * a,
|
1587
|
-
struct ggml_tensor * b,
|
1588
|
-
int s,
|
1589
|
-
int d);
|
1590
|
+
struct ggml_tensor * a, // convolution kernel
|
1591
|
+
struct ggml_tensor * b, // data
|
1592
|
+
int s, // stride
|
1593
|
+
int d); // dilation
|
1590
1594
|
|
1591
1595
|
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
|
1592
1596
|
struct ggml_context * ctx,
|
1593
|
-
struct ggml_tensor * a,
|
1594
|
-
struct ggml_tensor * b,
|
1595
|
-
int s0,
|
1596
|
-
int p0,
|
1597
|
-
int d0);
|
1597
|
+
struct ggml_tensor * a, // convolution kernel
|
1598
|
+
struct ggml_tensor * b, // data
|
1599
|
+
int s0, // stride
|
1600
|
+
int p0, // padding
|
1601
|
+
int d0); // dilation
|
1598
1602
|
|
1599
1603
|
GGML_API struct ggml_tensor * ggml_conv_2d(
|
1600
1604
|
struct ggml_context * ctx,
|
1601
|
-
struct ggml_tensor * a,
|
1602
|
-
struct ggml_tensor * b,
|
1603
|
-
int s0,
|
1604
|
-
int s1,
|
1605
|
-
int p0,
|
1606
|
-
int p1,
|
1607
|
-
int d0,
|
1608
|
-
int d1);
|
1605
|
+
struct ggml_tensor * a, // convolution kernel
|
1606
|
+
struct ggml_tensor * b, // data
|
1607
|
+
int s0, // stride dimension 0
|
1608
|
+
int s1, // stride dimension 1
|
1609
|
+
int p0, // padding dimension 0
|
1610
|
+
int p1, // padding dimension 1
|
1611
|
+
int d0, // dilation dimension 0
|
1612
|
+
int d1); // dilation dimension 1
|
1609
1613
|
|
1610
1614
|
|
1611
1615
|
// kernel size is a->ne[0] x a->ne[1]
|
@@ -1667,13 +1671,37 @@ extern "C" {
|
|
1667
1671
|
float p0,
|
1668
1672
|
float p1);
|
1669
1673
|
|
1674
|
+
GGML_API struct ggml_tensor * ggml_pool_2d_back(
|
1675
|
+
struct ggml_context * ctx,
|
1676
|
+
struct ggml_tensor * a,
|
1677
|
+
struct ggml_tensor * af, // "a"/input used in forward pass
|
1678
|
+
enum ggml_op_pool op,
|
1679
|
+
int k0,
|
1680
|
+
int k1,
|
1681
|
+
int s0,
|
1682
|
+
int s1,
|
1683
|
+
float p0,
|
1684
|
+
float p1);
|
1685
|
+
|
1670
1686
|
// nearest interpolate
|
1687
|
+
// multiplies ne0 and ne1 by scale factor
|
1671
1688
|
// used in stable-diffusion
|
1672
1689
|
GGML_API struct ggml_tensor * ggml_upscale(
|
1673
1690
|
struct ggml_context * ctx,
|
1674
1691
|
struct ggml_tensor * a,
|
1675
1692
|
int scale_factor);
|
1676
1693
|
|
1694
|
+
// nearest interpolate
|
1695
|
+
// nearest interpolate to specified dimensions
|
1696
|
+
// used in tortoise.cpp
|
1697
|
+
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
1698
|
+
struct ggml_context * ctx,
|
1699
|
+
struct ggml_tensor * a,
|
1700
|
+
int ne0,
|
1701
|
+
int ne1,
|
1702
|
+
int ne2,
|
1703
|
+
int ne3);
|
1704
|
+
|
1677
1705
|
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
1678
1706
|
GGML_API struct ggml_tensor * ggml_pad(
|
1679
1707
|
struct ggml_context * ctx,
|
@@ -1683,6 +1711,13 @@ extern "C" {
|
|
1683
1711
|
int p2,
|
1684
1712
|
int p3);
|
1685
1713
|
|
1714
|
+
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
|
1715
|
+
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
|
1716
|
+
struct ggml_context * ctx,
|
1717
|
+
struct ggml_tensor * a,
|
1718
|
+
int p0,
|
1719
|
+
int p1);
|
1720
|
+
|
1686
1721
|
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
1687
1722
|
// timesteps: [N,]
|
1688
1723
|
// return: [N, dim]
|
@@ -1715,13 +1750,31 @@ extern "C" {
|
|
1715
1750
|
struct ggml_tensor * a,
|
1716
1751
|
int k);
|
1717
1752
|
|
1718
|
-
|
1753
|
+
#define GGML_KQ_MASK_PAD 32
|
1754
|
+
|
1755
|
+
// q: [n_embd, n_batch, n_head, 1]
|
1756
|
+
// k: [n_embd, n_kv, n_head_kv, 1]
|
1757
|
+
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
|
1758
|
+
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
1759
|
+
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
|
1760
|
+
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
|
1719
1761
|
struct ggml_context * ctx,
|
1720
1762
|
struct ggml_tensor * q,
|
1721
1763
|
struct ggml_tensor * k,
|
1722
1764
|
struct ggml_tensor * v,
|
1723
|
-
|
1765
|
+
struct ggml_tensor * mask,
|
1766
|
+
float scale,
|
1767
|
+
float max_bias,
|
1768
|
+
float logit_softcap);
|
1769
|
+
|
1770
|
+
GGML_API void ggml_flash_attn_ext_set_prec(
|
1771
|
+
struct ggml_tensor * a,
|
1772
|
+
enum ggml_prec prec);
|
1724
1773
|
|
1774
|
+
GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
|
1775
|
+
const struct ggml_tensor * a);
|
1776
|
+
|
1777
|
+
// TODO: needs to be adapted to ggml_flash_attn_ext
|
1725
1778
|
GGML_API struct ggml_tensor * ggml_flash_attn_back(
|
1726
1779
|
struct ggml_context * ctx,
|
1727
1780
|
struct ggml_tensor * q,
|
@@ -1730,20 +1783,10 @@ extern "C" {
|
|
1730
1783
|
struct ggml_tensor * d,
|
1731
1784
|
bool masked);
|
1732
1785
|
|
1733
|
-
GGML_API struct ggml_tensor * ggml_flash_ff(
|
1734
|
-
struct ggml_context * ctx,
|
1735
|
-
struct ggml_tensor * a,
|
1736
|
-
struct ggml_tensor * b0,
|
1737
|
-
struct ggml_tensor * b1,
|
1738
|
-
struct ggml_tensor * c0,
|
1739
|
-
struct ggml_tensor * c1);
|
1740
|
-
|
1741
1786
|
GGML_API struct ggml_tensor * ggml_ssm_conv(
|
1742
1787
|
struct ggml_context * ctx,
|
1743
|
-
struct ggml_tensor *
|
1744
|
-
struct ggml_tensor *
|
1745
|
-
struct ggml_tensor * c,
|
1746
|
-
struct ggml_tensor * sq);
|
1788
|
+
struct ggml_tensor * sx,
|
1789
|
+
struct ggml_tensor * c);
|
1747
1790
|
|
1748
1791
|
GGML_API struct ggml_tensor * ggml_ssm_scan(
|
1749
1792
|
struct ggml_context * ctx,
|
@@ -1752,8 +1795,7 @@ extern "C" {
|
|
1752
1795
|
struct ggml_tensor * dt,
|
1753
1796
|
struct ggml_tensor * A,
|
1754
1797
|
struct ggml_tensor * B,
|
1755
|
-
struct ggml_tensor * C
|
1756
|
-
struct ggml_tensor * sq);
|
1798
|
+
struct ggml_tensor * C);
|
1757
1799
|
|
1758
1800
|
// partition into non-overlapping windows with padding if needed
|
1759
1801
|
// example:
|
@@ -1805,6 +1847,15 @@ extern "C" {
|
|
1805
1847
|
struct ggml_tensor * pw,
|
1806
1848
|
struct ggml_tensor * ph);
|
1807
1849
|
|
1850
|
+
GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
|
1851
|
+
struct ggml_context * ctx,
|
1852
|
+
struct ggml_tensor * k,
|
1853
|
+
struct ggml_tensor * v,
|
1854
|
+
struct ggml_tensor * r,
|
1855
|
+
struct ggml_tensor * tf,
|
1856
|
+
struct ggml_tensor * td,
|
1857
|
+
struct ggml_tensor * state);
|
1858
|
+
|
1808
1859
|
// custom operators
|
1809
1860
|
|
1810
1861
|
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
@@ -1888,7 +1939,8 @@ extern "C" {
|
|
1888
1939
|
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
1889
1940
|
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
1890
1941
|
|
1891
|
-
|
1942
|
+
#define GGML_N_TASKS_MAX (-1)
|
1943
|
+
// n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
|
1892
1944
|
|
1893
1945
|
GGML_API struct ggml_tensor * ggml_map_custom1(
|
1894
1946
|
struct ggml_context * ctx,
|
@@ -1941,49 +1993,59 @@ extern "C" {
|
|
1941
1993
|
// loss function
|
1942
1994
|
|
1943
1995
|
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
|
1944
|
-
struct ggml_context
|
1945
|
-
struct ggml_tensor
|
1946
|
-
struct ggml_tensor
|
1996
|
+
struct ggml_context * ctx,
|
1997
|
+
struct ggml_tensor * a, // logits
|
1998
|
+
struct ggml_tensor * b); // labels
|
1947
1999
|
|
1948
2000
|
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
|
1949
|
-
struct ggml_context
|
1950
|
-
struct ggml_tensor
|
1951
|
-
struct ggml_tensor
|
1952
|
-
struct ggml_tensor
|
2001
|
+
struct ggml_context * ctx,
|
2002
|
+
struct ggml_tensor * a, // logits
|
2003
|
+
struct ggml_tensor * b, // labels
|
2004
|
+
struct ggml_tensor * c); // gradients of cross_entropy_loss result
|
2005
|
+
|
2006
|
+
// AdamW optimizer step
|
2007
|
+
// Paper: https://arxiv.org/pdf/1711.05101v3.pdf
|
2008
|
+
// PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
|
2009
|
+
GGML_API struct ggml_tensor * ggml_opt_step_adamw(
|
2010
|
+
struct ggml_context * ctx,
|
2011
|
+
struct ggml_tensor * a,
|
2012
|
+
struct ggml_tensor * grad,
|
2013
|
+
struct ggml_tensor * m,
|
2014
|
+
struct ggml_tensor * v,
|
2015
|
+
struct ggml_tensor * adamw_params); // parameters such a the learning rate
|
1953
2016
|
|
1954
2017
|
//
|
1955
2018
|
// automatic differentiation
|
1956
2019
|
//
|
1957
2020
|
|
1958
|
-
GGML_API void
|
1959
|
-
|
1960
|
-
|
2021
|
+
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
2022
|
+
GGML_API void ggml_build_backward_expand(
|
2023
|
+
struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
|
2024
|
+
struct ggml_context * ctx_compute, // context for gradient computation
|
2025
|
+
struct ggml_cgraph * cgraph,
|
2026
|
+
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
|
1961
2027
|
|
2028
|
+
// graph allocation in a context
|
2029
|
+
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
2030
|
+
GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
|
2031
|
+
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
2032
|
+
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
2033
|
+
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
|
2034
|
+
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
1962
2035
|
|
1963
|
-
GGML_API
|
1964
|
-
GGML_API
|
2036
|
+
GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
|
2037
|
+
GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
|
2038
|
+
GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
|
2039
|
+
GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
|
1965
2040
|
|
1966
|
-
|
1967
|
-
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
1968
|
-
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
1969
|
-
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
1970
|
-
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
|
1971
|
-
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
1972
|
-
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
1973
|
-
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
2041
|
+
GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
1974
2042
|
|
1975
2043
|
GGML_API size_t ggml_graph_overhead(void);
|
1976
2044
|
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
1977
2045
|
|
1978
|
-
|
1979
|
-
|
1980
|
-
GGML_API struct
|
1981
|
-
GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
1982
|
-
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
1983
|
-
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
1984
|
-
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
1985
|
-
|
1986
|
-
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
2046
|
+
GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
|
2047
|
+
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
|
2048
|
+
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
|
1987
2049
|
|
1988
2050
|
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
1989
2051
|
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
@@ -1994,197 +2056,14 @@ extern "C" {
|
|
1994
2056
|
// dump the graph into a file using the dot format
|
1995
2057
|
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
1996
2058
|
|
1997
|
-
//
|
1998
|
-
// gb_tmp will contain original backward graph with rewritten backward process nodes,
|
1999
|
-
// but without the second forward pass nodes.
|
2000
|
-
GGML_API void ggml_build_backward_gradient_checkpointing(
|
2001
|
-
struct ggml_context * ctx,
|
2002
|
-
struct ggml_cgraph * gf,
|
2003
|
-
struct ggml_cgraph * gb,
|
2004
|
-
struct ggml_cgraph * gb_tmp,
|
2005
|
-
struct ggml_tensor * * checkpoints,
|
2006
|
-
int n_checkpoints);
|
2007
|
-
//
|
2008
|
-
// optimization
|
2009
|
-
//
|
2010
|
-
|
2011
|
-
// optimization methods
|
2012
|
-
enum ggml_opt_type {
|
2013
|
-
GGML_OPT_TYPE_ADAM,
|
2014
|
-
GGML_OPT_TYPE_LBFGS,
|
2015
|
-
};
|
2016
|
-
|
2017
|
-
// linesearch methods
|
2018
|
-
enum ggml_linesearch {
|
2019
|
-
GGML_LINESEARCH_DEFAULT = 1,
|
2020
|
-
|
2021
|
-
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
2022
|
-
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
2023
|
-
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
2024
|
-
};
|
2025
|
-
|
2026
|
-
// optimization return values
|
2027
|
-
enum ggml_opt_result {
|
2028
|
-
GGML_OPT_RESULT_OK = 0,
|
2029
|
-
GGML_OPT_RESULT_DID_NOT_CONVERGE,
|
2030
|
-
GGML_OPT_RESULT_NO_CONTEXT,
|
2031
|
-
GGML_OPT_RESULT_INVALID_WOLFE,
|
2032
|
-
GGML_OPT_RESULT_FAIL,
|
2033
|
-
GGML_OPT_RESULT_CANCEL,
|
2034
|
-
|
2035
|
-
GGML_LINESEARCH_FAIL = -128,
|
2036
|
-
GGML_LINESEARCH_MINIMUM_STEP,
|
2037
|
-
GGML_LINESEARCH_MAXIMUM_STEP,
|
2038
|
-
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
2039
|
-
GGML_LINESEARCH_INVALID_PARAMETERS,
|
2040
|
-
};
|
2041
|
-
|
2042
|
-
typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
|
2059
|
+
// TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
|
2043
2060
|
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
2044
2061
|
|
2045
|
-
//
|
2046
|
-
//
|
2047
|
-
|
2048
|
-
//
|
2049
|
-
struct ggml_opt_params {
|
2050
|
-
enum ggml_opt_type type;
|
2051
|
-
|
2052
|
-
size_t graph_size;
|
2053
|
-
|
2054
|
-
int n_threads;
|
2055
|
-
|
2056
|
-
// delta-based convergence test
|
2057
|
-
//
|
2058
|
-
// if past == 0 - disabled
|
2059
|
-
// if past > 0:
|
2060
|
-
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
2061
|
-
//
|
2062
|
-
int past;
|
2063
|
-
float delta;
|
2064
|
-
|
2065
|
-
// maximum number of iterations without improvement
|
2066
|
-
//
|
2067
|
-
// if 0 - disabled
|
2068
|
-
// if > 0:
|
2069
|
-
// assume convergence if no cost improvement in this number of iterations
|
2070
|
-
//
|
2071
|
-
int max_no_improvement;
|
2072
|
-
|
2073
|
-
bool print_forward_graph;
|
2074
|
-
bool print_backward_graph;
|
2075
|
-
|
2076
|
-
int n_gradient_accumulation;
|
2077
|
-
|
2078
|
-
// ADAM parameters
|
2079
|
-
struct {
|
2080
|
-
int n_iter;
|
2081
|
-
|
2082
|
-
float sched; // schedule multiplier (fixed, decay or warmup)
|
2083
|
-
float decay; // weight decay for AdamW, use 0.0f to disable
|
2084
|
-
int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
|
2085
|
-
float alpha; // learning rate
|
2086
|
-
float beta1;
|
2087
|
-
float beta2;
|
2088
|
-
float eps; // epsilon for numerical stability
|
2089
|
-
float eps_f; // epsilon for convergence test
|
2090
|
-
float eps_g; // epsilon for convergence test
|
2091
|
-
float gclip; // gradient clipping
|
2092
|
-
} adam;
|
2093
|
-
|
2094
|
-
// LBFGS parameters
|
2095
|
-
struct {
|
2096
|
-
int m; // number of corrections to approximate the inv. Hessian
|
2097
|
-
int n_iter;
|
2098
|
-
int max_linesearch;
|
2099
|
-
|
2100
|
-
float eps; // convergence tolerance
|
2101
|
-
float ftol; // line search tolerance
|
2102
|
-
float wolfe;
|
2103
|
-
float min_step;
|
2104
|
-
float max_step;
|
2105
|
-
|
2106
|
-
enum ggml_linesearch linesearch;
|
2107
|
-
} lbfgs;
|
2108
|
-
};
|
2109
|
-
|
2110
|
-
struct ggml_opt_context {
|
2111
|
-
struct ggml_context * ctx;
|
2112
|
-
struct ggml_opt_params params;
|
2113
|
-
|
2114
|
-
int iter;
|
2115
|
-
int64_t nx; // number of parameter elements
|
2116
|
-
|
2117
|
-
bool just_initialized;
|
2118
|
-
|
2119
|
-
float loss_before;
|
2120
|
-
float loss_after;
|
2121
|
-
|
2122
|
-
struct {
|
2123
|
-
struct ggml_tensor * g; // current gradient
|
2124
|
-
struct ggml_tensor * m; // first moment
|
2125
|
-
struct ggml_tensor * v; // second moment
|
2126
|
-
struct ggml_tensor * pf; // past function values
|
2127
|
-
float fx_best;
|
2128
|
-
float fx_prev;
|
2129
|
-
int n_no_improvement;
|
2130
|
-
} adam;
|
2131
|
-
|
2132
|
-
struct {
|
2133
|
-
struct ggml_tensor * x; // current parameters
|
2134
|
-
struct ggml_tensor * xp; // previous parameters
|
2135
|
-
struct ggml_tensor * g; // current gradient
|
2136
|
-
struct ggml_tensor * gp; // previous gradient
|
2137
|
-
struct ggml_tensor * d; // search direction
|
2138
|
-
struct ggml_tensor * pf; // past function values
|
2139
|
-
struct ggml_tensor * lmal; // the L-BFGS memory alpha
|
2140
|
-
struct ggml_tensor * lmys; // the L-BFGS memory ys
|
2141
|
-
struct ggml_tensor * lms; // the L-BFGS memory s
|
2142
|
-
struct ggml_tensor * lmy; // the L-BFGS memory y
|
2143
|
-
float fx_best;
|
2144
|
-
float step;
|
2145
|
-
int j;
|
2146
|
-
int k;
|
2147
|
-
int end;
|
2148
|
-
int n_no_improvement;
|
2149
|
-
} lbfgs;
|
2150
|
-
};
|
2151
|
-
|
2152
|
-
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
2153
|
-
|
2154
|
-
// optimize the function defined by the tensor f
|
2155
|
-
GGML_API enum ggml_opt_result ggml_opt(
|
2156
|
-
struct ggml_context * ctx,
|
2157
|
-
struct ggml_opt_params params,
|
2158
|
-
struct ggml_tensor * f);
|
2159
|
-
|
2160
|
-
// initialize optimizer context
|
2161
|
-
GGML_API void ggml_opt_init(
|
2162
|
-
struct ggml_context * ctx,
|
2163
|
-
struct ggml_opt_context * opt,
|
2164
|
-
struct ggml_opt_params params,
|
2165
|
-
int64_t nx);
|
2166
|
-
|
2167
|
-
// continue optimizing the function defined by the tensor f
|
2168
|
-
GGML_API enum ggml_opt_result ggml_opt_resume(
|
2169
|
-
struct ggml_context * ctx,
|
2170
|
-
struct ggml_opt_context * opt,
|
2171
|
-
struct ggml_tensor * f);
|
2172
|
-
|
2173
|
-
// continue optimizing the function defined by the tensor f
|
2174
|
-
GGML_API enum ggml_opt_result ggml_opt_resume_g(
|
2175
|
-
struct ggml_context * ctx,
|
2176
|
-
struct ggml_opt_context * opt,
|
2177
|
-
struct ggml_tensor * f,
|
2178
|
-
struct ggml_cgraph * gf,
|
2179
|
-
struct ggml_cgraph * gb,
|
2180
|
-
ggml_opt_callback callback,
|
2181
|
-
void * callback_data);
|
2062
|
+
// Set callback for all future logging events.
|
2063
|
+
// If this is not called, or NULL is supplied, everything is output on stderr.
|
2064
|
+
GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
|
2182
2065
|
|
2183
|
-
|
2184
|
-
// tensor flags
|
2185
|
-
//
|
2186
|
-
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
2187
|
-
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
2066
|
+
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
2188
2067
|
|
2189
2068
|
//
|
2190
2069
|
// quantization
|
@@ -2289,6 +2168,9 @@ extern "C" {
|
|
2289
2168
|
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
|
2290
2169
|
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
|
2291
2170
|
|
2171
|
+
// removes key if it exists
|
2172
|
+
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
|
2173
|
+
|
2292
2174
|
// overrides existing values or adds a new one
|
2293
2175
|
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
2294
2176
|
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
@@ -2338,64 +2220,65 @@ extern "C" {
|
|
2338
2220
|
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
2339
2221
|
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
2340
2222
|
|
2341
|
-
|
2342
|
-
//
|
2343
|
-
|
2344
|
-
|
2345
|
-
|
2346
|
-
|
2347
|
-
|
2348
|
-
|
2349
|
-
|
2350
|
-
|
2351
|
-
|
2352
|
-
GGML_API int ggml_cpu_has_neon (void);
|
2353
|
-
GGML_API int ggml_cpu_has_arm_fma (void);
|
2354
|
-
GGML_API int ggml_cpu_has_metal (void);
|
2355
|
-
GGML_API int ggml_cpu_has_f16c (void);
|
2356
|
-
GGML_API int ggml_cpu_has_fp16_va (void);
|
2357
|
-
GGML_API int ggml_cpu_has_wasm_simd (void);
|
2358
|
-
GGML_API int ggml_cpu_has_blas (void);
|
2359
|
-
GGML_API int ggml_cpu_has_cuda (void);
|
2360
|
-
GGML_API int ggml_cpu_has_clblast (void);
|
2361
|
-
GGML_API int ggml_cpu_has_vulkan (void);
|
2362
|
-
GGML_API int ggml_cpu_has_kompute (void);
|
2363
|
-
GGML_API int ggml_cpu_has_gpublas (void);
|
2364
|
-
GGML_API int ggml_cpu_has_sse3 (void);
|
2365
|
-
GGML_API int ggml_cpu_has_ssse3 (void);
|
2366
|
-
GGML_API int ggml_cpu_has_sycl (void);
|
2367
|
-
GGML_API int ggml_cpu_has_vsx (void);
|
2368
|
-
GGML_API int ggml_cpu_has_matmul_int8(void);
|
2369
|
-
|
2370
|
-
//
|
2371
|
-
// Internal types and functions exposed for tests and benchmarks
|
2372
|
-
//
|
2373
|
-
|
2374
|
-
#ifdef __cplusplus
|
2375
|
-
// restrict not standard in C++
|
2376
|
-
#define GGML_RESTRICT
|
2223
|
+
#ifdef __cplusplus
|
2224
|
+
// restrict not standard in C++
|
2225
|
+
# if defined(__GNUC__)
|
2226
|
+
# define GGML_RESTRICT __restrict__
|
2227
|
+
# elif defined(__clang__)
|
2228
|
+
# define GGML_RESTRICT __restrict
|
2229
|
+
# elif defined(_MSC_VER)
|
2230
|
+
# define GGML_RESTRICT __restrict
|
2231
|
+
# else
|
2232
|
+
# define GGML_RESTRICT
|
2233
|
+
# endif
|
2377
2234
|
#else
|
2378
|
-
#define GGML_RESTRICT restrict
|
2235
|
+
# define GGML_RESTRICT restrict
|
2379
2236
|
#endif
|
2380
2237
|
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
2381
2238
|
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
2382
|
-
|
2383
|
-
|
2384
|
-
|
2385
|
-
|
2386
|
-
|
2387
|
-
|
2388
|
-
|
2389
|
-
|
2390
|
-
|
2391
|
-
|
2392
|
-
|
2393
|
-
|
2394
|
-
|
2395
|
-
|
2396
|
-
|
2397
|
-
|
2398
|
-
|
2239
|
+
|
2240
|
+
struct ggml_type_traits {
|
2241
|
+
const char * type_name;
|
2242
|
+
int64_t blck_size;
|
2243
|
+
int64_t blck_size_interleave; // interleave elements in blocks
|
2244
|
+
size_t type_size;
|
2245
|
+
bool is_quantized;
|
2246
|
+
ggml_to_float_t to_float;
|
2247
|
+
ggml_from_float_t from_float_ref;
|
2248
|
+
};
|
2249
|
+
|
2250
|
+
GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
|
2251
|
+
|
2252
|
+
// ggml threadpool
|
2253
|
+
// TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
|
2254
|
+
// the goal should be to create an API that other backends can use move everything to the ggml base
|
2255
|
+
|
2256
|
+
// scheduling priorities
|
2257
|
+
enum ggml_sched_priority {
|
2258
|
+
GGML_SCHED_PRIO_NORMAL,
|
2259
|
+
GGML_SCHED_PRIO_MEDIUM,
|
2260
|
+
GGML_SCHED_PRIO_HIGH,
|
2261
|
+
GGML_SCHED_PRIO_REALTIME
|
2262
|
+
};
|
2263
|
+
|
2264
|
+
// threadpool params
|
2265
|
+
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
|
2266
|
+
struct ggml_threadpool_params {
|
2267
|
+
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
|
2268
|
+
int n_threads; // number of threads
|
2269
|
+
enum ggml_sched_priority prio; // thread priority
|
2270
|
+
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
|
2271
|
+
bool strict_cpu; // strict cpu placement
|
2272
|
+
bool paused; // start in paused state
|
2273
|
+
};
|
2274
|
+
|
2275
|
+
struct ggml_threadpool; // forward declaration, see ggml.c
|
2276
|
+
|
2277
|
+
typedef struct ggml_threadpool * ggml_threadpool_t;
|
2278
|
+
|
2279
|
+
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
2280
|
+
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
2281
|
+
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
2399
2282
|
|
2400
2283
|
#ifdef __cplusplus
|
2401
2284
|
}
|