whispercpp 1.3.0 → 1.3.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +60 -11
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -16
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/{whisper.h → include/whisper.h} +23 -22
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1492 -9
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -21755
data/README.md
CHANGED
@@ -1,500 +1,231 @@
|
|
1
|
-
|
1
|
+
whispercpp
|
2
|
+
==========
|
2
3
|
|
3
|
-
|
4
|
-
[](https://opensource.org/licenses/MIT)
|
5
|
-
[](https://www.npmjs.com/package/whisper.cpp/)
|
4
|
+

|
6
5
|
|
7
|
-
|
6
|
+
Ruby bindings for [whisper.cpp][], an interface of automatic speech recognition model.
|
8
7
|
|
9
|
-
|
8
|
+
Installation
|
9
|
+
------------
|
10
10
|
|
11
|
-
|
12
|
-
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
|
13
|
-
- AVX intrinsics support for x86 architectures
|
14
|
-
- VSX intrinsics support for POWER architectures
|
15
|
-
- Mixed F16 / F32 precision
|
16
|
-
- Low memory usage (Flash Attention)
|
17
|
-
- Zero memory allocations at runtime
|
18
|
-
- Runs on the CPU
|
19
|
-
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
11
|
+
Install the gem and add to the application's Gemfile by executing:
|
20
12
|
|
21
|
-
|
13
|
+
$ bundle add whispercpp
|
22
14
|
|
23
|
-
|
24
|
-
- [x] [iOS](examples/whisper.objc)
|
25
|
-
- [x] [Android](examples/whisper.android)
|
26
|
-
- [x] Linux / [FreeBSD](https://github.com/ggerganov/whisper.cpp/issues/56#issuecomment-1350920264)
|
27
|
-
- [x] [WebAssembly](examples/whisper.wasm)
|
28
|
-
- [x] Windows ([MSVC](https://github.com/ggerganov/whisper.cpp/blob/master/.github/workflows/build.yml#L117-L144) and [MinGW](https://github.com/ggerganov/whisper.cpp/issues/168)]
|
29
|
-
- [x] [Raspberry Pi](https://github.com/ggerganov/whisper.cpp/discussions/166)
|
15
|
+
If bundler is not being used to manage dependencies, install the gem by executing:
|
30
16
|
|
31
|
-
|
17
|
+
$ gem install whispercpp
|
32
18
|
|
33
|
-
|
34
|
-
|
19
|
+
Usage
|
20
|
+
-----
|
35
21
|
|
36
|
-
|
37
|
-
|
22
|
+
```ruby
|
23
|
+
require "whisper"
|
38
24
|
|
39
|
-
|
25
|
+
whisper = Whisper::Context.new("base")
|
40
26
|
|
41
|
-
|
27
|
+
params = Whisper::Params.new
|
28
|
+
params.language = "en"
|
29
|
+
params.offset = 10_000
|
30
|
+
params.duration = 60_000
|
31
|
+
params.max_text_tokens = 300
|
32
|
+
params.translate = true
|
33
|
+
params.print_timestamps = false
|
34
|
+
params.initial_prompt = "Initial prompt here."
|
42
35
|
|
43
|
-
|
36
|
+
whisper.transcribe("path/to/audio.wav", params) do |whole_text|
|
37
|
+
puts whole_text
|
38
|
+
end
|
44
39
|
|
45
|
-
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
|
46
|
-
|
47
|
-
## Implementation details
|
48
|
-
|
49
|
-
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
|
50
|
-
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
|
51
|
-
- Sample usage is demonstrated in [main.cpp](examples/main)
|
52
|
-
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
|
53
|
-
- Various other examples are available in the [examples](examples) folder
|
54
|
-
|
55
|
-
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
56
|
-
instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
|
57
|
-
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
58
|
-
|
59
|
-
## Quick start
|
60
|
-
|
61
|
-
First, download one of the Whisper models converted in [ggml format](models). For example:
|
62
|
-
|
63
|
-
```bash
|
64
|
-
bash ./models/download-ggml-model.sh base.en
|
65
40
|
```
|
66
41
|
|
67
|
-
|
42
|
+
### Preparing model ###
|
68
43
|
|
69
|
-
|
70
|
-
# build the main example
|
71
|
-
make
|
44
|
+
Some models are prepared up-front:
|
72
45
|
|
73
|
-
|
74
|
-
|
46
|
+
```ruby
|
47
|
+
base_en = Whisper::Model.pre_converted_models["base.en"]
|
48
|
+
whisper = Whisper::Context.new(base_en)
|
75
49
|
```
|
76
50
|
|
77
|
-
|
51
|
+
At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call `#clear_cache`:
|
78
52
|
|
79
|
-
|
80
|
-
|
81
|
-
```java
|
82
|
-
$ make base.en
|
83
|
-
|
84
|
-
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
|
85
|
-
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp -o whisper.o
|
86
|
-
c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o ggml.o -o main -framework Accelerate
|
87
|
-
./main -h
|
88
|
-
|
89
|
-
usage: ./main [options] file0.wav file1.wav ...
|
90
|
-
|
91
|
-
options:
|
92
|
-
-h, --help [default] show this help message and exit
|
93
|
-
-t N, --threads N [4 ] number of threads to use during computation
|
94
|
-
-p N, --processors N [1 ] number of processors to use during computation
|
95
|
-
-ot N, --offset-t N [0 ] time offset in milliseconds
|
96
|
-
-on N, --offset-n N [0 ] segment index offset
|
97
|
-
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
98
|
-
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
99
|
-
-ml N, --max-len N [0 ] maximum segment length in characters
|
100
|
-
-bo N, --best-of N [5 ] number of best candidates to keep
|
101
|
-
-bs N, --beam-size N [-1 ] beam size for beam search
|
102
|
-
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
103
|
-
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
104
|
-
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
105
|
-
-su, --speed-up [false ] speed up audio by x2 (reduced accuracy)
|
106
|
-
-tr, --translate [false ] translate from source language to english
|
107
|
-
-di, --diarize [false ] stereo audio diarization
|
108
|
-
-nf, --no-fallback [false ] do not use temperature fallback while decoding
|
109
|
-
-otxt, --output-txt [false ] output result in a text file
|
110
|
-
-ovtt, --output-vtt [false ] output result in a vtt file
|
111
|
-
-osrt, --output-srt [false ] output result in a srt file
|
112
|
-
-owts, --output-words [false ] output script for generating karaoke video
|
113
|
-
-ocsv, --output-csv [false ] output result in a CSV file
|
114
|
-
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
115
|
-
-ps, --print-special [false ] print special tokens
|
116
|
-
-pc, --print-colors [false ] print colors
|
117
|
-
-pp, --print-progress [false ] print progress
|
118
|
-
-nt, --no-timestamps [true ] do not print timestamps
|
119
|
-
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
120
|
-
--prompt PROMPT [ ] initial prompt
|
121
|
-
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
122
|
-
-f FNAME, --file FNAME [ ] input WAV file path
|
123
|
-
|
124
|
-
|
125
|
-
bash ./models/download-ggml-model.sh base.en
|
126
|
-
Downloading ggml model base.en ...
|
127
|
-
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
|
128
|
-
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
129
|
-
You can now use it like this:
|
130
|
-
|
131
|
-
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
132
|
-
|
133
|
-
|
134
|
-
===============================================
|
135
|
-
Running base.en on all samples in ./samples ...
|
136
|
-
===============================================
|
137
|
-
|
138
|
-
----------------------------------------------
|
139
|
-
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
|
140
|
-
----------------------------------------------
|
141
|
-
|
142
|
-
whisper_init_from_file: loading model from 'models/ggml-base.en.bin'
|
143
|
-
whisper_model_load: loading model
|
144
|
-
whisper_model_load: n_vocab = 51864
|
145
|
-
whisper_model_load: n_audio_ctx = 1500
|
146
|
-
whisper_model_load: n_audio_state = 512
|
147
|
-
whisper_model_load: n_audio_head = 8
|
148
|
-
whisper_model_load: n_audio_layer = 6
|
149
|
-
whisper_model_load: n_text_ctx = 448
|
150
|
-
whisper_model_load: n_text_state = 512
|
151
|
-
whisper_model_load: n_text_head = 8
|
152
|
-
whisper_model_load: n_text_layer = 6
|
153
|
-
whisper_model_load: n_mels = 80
|
154
|
-
whisper_model_load: f16 = 1
|
155
|
-
whisper_model_load: type = 2
|
156
|
-
whisper_model_load: mem required = 215.00 MB (+ 6.00 MB per decoder)
|
157
|
-
whisper_model_load: kv self size = 5.25 MB
|
158
|
-
whisper_model_load: kv cross size = 17.58 MB
|
159
|
-
whisper_model_load: adding 1607 extra tokens
|
160
|
-
whisper_model_load: model ctx = 140.60 MB
|
161
|
-
whisper_model_load: model size = 140.54 MB
|
162
|
-
|
163
|
-
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
164
|
-
|
165
|
-
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
166
|
-
|
167
|
-
|
168
|
-
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
169
|
-
|
170
|
-
|
171
|
-
whisper_print_timings: fallbacks = 0 p / 0 h
|
172
|
-
whisper_print_timings: load time = 113.81 ms
|
173
|
-
whisper_print_timings: mel time = 15.40 ms
|
174
|
-
whisper_print_timings: sample time = 11.58 ms / 27 runs ( 0.43 ms per run)
|
175
|
-
whisper_print_timings: encode time = 266.60 ms / 1 runs ( 266.60 ms per run)
|
176
|
-
whisper_print_timings: decode time = 66.11 ms / 27 runs ( 2.45 ms per run)
|
177
|
-
whisper_print_timings: total time = 476.31 ms
|
53
|
+
```ruby
|
54
|
+
Whisper::Model.pre_converted_models["base"].clear_cache
|
178
55
|
```
|
179
56
|
|
180
|
-
|
181
|
-
|
182
|
-
For detailed usage instructions, run: `./main -h`
|
183
|
-
|
184
|
-
Note that the [main](examples/main) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
|
185
|
-
For example, you can use `ffmpeg` like this:
|
57
|
+
You also can use shorthand for pre-converted models:
|
186
58
|
|
187
|
-
```
|
188
|
-
|
59
|
+
```ruby
|
60
|
+
whisper = Whisper::Context.new("base.en")
|
189
61
|
```
|
190
62
|
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
63
|
+
You can see the list of prepared model names by `Whisper::Model.preconverted_models.keys`:
|
64
|
+
|
65
|
+
```ruby
|
66
|
+
puts Whisper::Model.preconverted_model_names
|
67
|
+
# tiny
|
68
|
+
# tiny.en
|
69
|
+
# tiny-q5_1
|
70
|
+
# tiny.en-q5_1
|
71
|
+
# tiny-q8_0
|
72
|
+
# base
|
73
|
+
# base.en
|
74
|
+
# base-q5_1
|
75
|
+
# base.en-q5_1
|
76
|
+
# base-q8_0
|
77
|
+
# :
|
78
|
+
# :
|
195
79
|
```
|
196
|
-
make samples
|
197
|
-
```
|
198
|
-
|
199
|
-
This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
|
200
80
|
|
201
|
-
You can
|
81
|
+
You can also use local model files you prepared:
|
202
82
|
|
83
|
+
```ruby
|
84
|
+
whisper = Whisper::Context.new("path/to/your/model.bin")
|
203
85
|
```
|
204
|
-
make tiny.en
|
205
|
-
make tiny
|
206
|
-
make base.en
|
207
|
-
make base
|
208
|
-
make small.en
|
209
|
-
make small
|
210
|
-
make medium.en
|
211
|
-
make medium
|
212
|
-
make large-v1
|
213
|
-
make large
|
214
|
-
```
|
215
|
-
|
216
|
-
## Memory usage
|
217
|
-
|
218
|
-
| Model | Disk | Mem | SHA |
|
219
|
-
| --- | --- | --- | --- |
|
220
|
-
| tiny | 75 MB | ~125 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
221
|
-
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
222
|
-
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
223
|
-
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
224
|
-
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
225
|
-
|
226
|
-
## Limitations
|
227
|
-
|
228
|
-
- Inference only
|
229
|
-
- No GPU support (yet)
|
230
|
-
|
231
|
-
## Another example
|
232
|
-
|
233
|
-
Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg)
|
234
|
-
in about half a minute on a MacBook M1 Pro, using `medium.en` model:
|
235
|
-
|
236
|
-
<details>
|
237
|
-
<summary>Expand to see the result</summary>
|
238
|
-
|
239
|
-
```java
|
240
|
-
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
|
241
|
-
|
242
|
-
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
|
243
|
-
whisper_model_load: loading model
|
244
|
-
whisper_model_load: n_vocab = 51864
|
245
|
-
whisper_model_load: n_audio_ctx = 1500
|
246
|
-
whisper_model_load: n_audio_state = 1024
|
247
|
-
whisper_model_load: n_audio_head = 16
|
248
|
-
whisper_model_load: n_audio_layer = 24
|
249
|
-
whisper_model_load: n_text_ctx = 448
|
250
|
-
whisper_model_load: n_text_state = 1024
|
251
|
-
whisper_model_load: n_text_head = 16
|
252
|
-
whisper_model_load: n_text_layer = 24
|
253
|
-
whisper_model_load: n_mels = 80
|
254
|
-
whisper_model_load: f16 = 1
|
255
|
-
whisper_model_load: type = 4
|
256
|
-
whisper_model_load: mem required = 1720.00 MB (+ 43.00 MB per decoder)
|
257
|
-
whisper_model_load: kv self size = 42.00 MB
|
258
|
-
whisper_model_load: kv cross size = 140.62 MB
|
259
|
-
whisper_model_load: adding 1607 extra tokens
|
260
|
-
whisper_model_load: model ctx = 1462.35 MB
|
261
|
-
whisper_model_load: model size = 1462.12 MB
|
262
|
-
|
263
|
-
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
264
|
-
|
265
|
-
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
266
|
-
|
267
|
-
|
268
|
-
[00:00:00.000 --> 00:00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
|
269
|
-
[00:00:08.000 --> 00:00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
270
|
-
[00:00:17.000 --> 00:00:23.000] A short time later, debris was seen falling from the skies above Texas.
|
271
|
-
[00:00:23.000 --> 00:00:29.000] The Columbia's lost. There are no survivors.
|
272
|
-
[00:00:29.000 --> 00:00:32.000] On board was a crew of seven.
|
273
|
-
[00:00:32.000 --> 00:00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
|
274
|
-
[00:00:39.000 --> 00:00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
|
275
|
-
[00:00:48.000 --> 00:00:52.000] a colonel in the Israeli Air Force.
|
276
|
-
[00:00:52.000 --> 00:00:58.000] These men and women assumed great risk in the service to all humanity.
|
277
|
-
[00:00:58.000 --> 00:01:03.000] In an age when space flight has come to seem almost routine,
|
278
|
-
[00:01:03.000 --> 00:01:07.000] it is easy to overlook the dangers of travel by rocket
|
279
|
-
[00:01:07.000 --> 00:01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
280
|
-
[00:01:12.000 --> 00:01:18.000] These astronauts knew the dangers, and they faced them willingly,
|
281
|
-
[00:01:18.000 --> 00:01:23.000] knowing they had a high and noble purpose in life.
|
282
|
-
[00:01:23.000 --> 00:01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
|
283
|
-
[00:01:31.000 --> 00:01:36.000] All Americans today are thinking as well of the families of these men and women
|
284
|
-
[00:01:36.000 --> 00:01:40.000] who have been given this sudden shock and grief.
|
285
|
-
[00:01:40.000 --> 00:01:45.000] You're not alone. Our entire nation grieves with you,
|
286
|
-
[00:01:45.000 --> 00:01:52.000] and those you love will always have the respect and gratitude of this country.
|
287
|
-
[00:01:52.000 --> 00:01:56.000] The cause in which they died will continue.
|
288
|
-
[00:01:56.000 --> 00:02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
|
289
|
-
[00:02:04.000 --> 00:02:11.000] and the longing to understand. Our journey into space will go on.
|
290
|
-
[00:02:11.000 --> 00:02:16.000] In the skies today, we saw destruction and tragedy.
|
291
|
-
[00:02:16.000 --> 00:02:22.000] Yet farther than we can see, there is comfort and hope.
|
292
|
-
[00:02:22.000 --> 00:02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
|
293
|
-
[00:02:29.000 --> 00:02:35.000] who created all these. He who brings out the starry hosts one by one
|
294
|
-
[00:02:35.000 --> 00:02:39.000] and calls them each by name."
|
295
|
-
[00:02:39.000 --> 00:02:46.000] Because of His great power and mighty strength, not one of them is missing.
|
296
|
-
[00:02:46.000 --> 00:02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
|
297
|
-
[00:02:55.000 --> 00:03:01.000] The crew of the shuttle Columbia did not return safely to earth,
|
298
|
-
[00:03:01.000 --> 00:03:05.000] yet we can pray that all are safely home.
|
299
|
-
[00:03:05.000 --> 00:03:13.000] May God bless the grieving families, and may God continue to bless America.
|
300
|
-
[00:03:13.000 --> 00:03:19.000] [Silence]
|
301
|
-
|
302
|
-
|
303
|
-
whisper_print_timings: fallbacks = 1 p / 0 h
|
304
|
-
whisper_print_timings: load time = 569.03 ms
|
305
|
-
whisper_print_timings: mel time = 146.85 ms
|
306
|
-
whisper_print_timings: sample time = 238.66 ms / 553 runs ( 0.43 ms per run)
|
307
|
-
whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per run)
|
308
|
-
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
|
309
|
-
whisper_print_timings: total time = 32733.52 ms
|
310
|
-
```
|
311
|
-
</details>
|
312
|
-
|
313
|
-
## Real-time audio input example
|
314
86
|
|
315
|
-
|
316
|
-
The [stream](examples/stream) tool samples the audio every half a second and runs the transcription continously.
|
317
|
-
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
87
|
+
Or, you can download model files:
|
318
88
|
|
319
|
-
```
|
320
|
-
|
321
|
-
|
89
|
+
```ruby
|
90
|
+
model_uri = Whisper::Model::URI.new("http://example.net/uri/of/your/model.bin")
|
91
|
+
whisper = Whisper::Context.new(model_uri)
|
322
92
|
```
|
323
93
|
|
324
|
-
|
94
|
+
See [models][] page for details.
|
325
95
|
|
326
|
-
|
96
|
+
### Preparing audio file ###
|
327
97
|
|
328
|
-
|
329
|
-
to highlight words with high or low confidence:
|
98
|
+
Currently, whisper.cpp accepts only 16-bit WAV files.
|
330
99
|
|
331
|
-
|
332
|
-
|
333
|
-
## Controlling the length of the generated text segments (experimental)
|
100
|
+
API
|
101
|
+
---
|
334
102
|
|
335
|
-
|
103
|
+
### Segments ###
|
336
104
|
|
337
|
-
|
338
|
-
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
|
105
|
+
Once `Whisper::Context#transcribe` called, you can retrieve segments by `#each_segment`:
|
339
106
|
|
340
|
-
|
341
|
-
|
342
|
-
|
107
|
+
```ruby
|
108
|
+
def format_time(time_ms)
|
109
|
+
sec, decimal_part = time_ms.divmod(1000)
|
110
|
+
min, sec = sec.divmod(60)
|
111
|
+
hour, min = min.divmod(60)
|
112
|
+
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
|
113
|
+
end
|
343
114
|
|
344
|
-
|
115
|
+
whisper.transcribe("path/to/audio.wav", params)
|
345
116
|
|
346
|
-
|
347
|
-
[
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
117
|
+
whisper.each_segment.with_index do |segment, index|
|
118
|
+
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
|
119
|
+
nth: index + 1,
|
120
|
+
st: format_time(segment.start_time),
|
121
|
+
ed: format_time(segment.end_time),
|
122
|
+
text: segment.text
|
123
|
+
}
|
124
|
+
line << " (speaker turned)" if segment.speaker_next_turn?
|
125
|
+
puts line
|
126
|
+
end
|
356
127
|
|
357
|
-
## Word-level timestamp
|
358
|
-
|
359
|
-
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
|
360
|
-
|
361
|
-
```java
|
362
|
-
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
|
363
|
-
|
364
|
-
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
365
|
-
...
|
366
|
-
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
367
|
-
|
368
|
-
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
369
|
-
|
370
|
-
[00:00:00.000 --> 00:00:00.320]
|
371
|
-
[00:00:00.320 --> 00:00:00.370] And
|
372
|
-
[00:00:00.370 --> 00:00:00.690] so
|
373
|
-
[00:00:00.690 --> 00:00:00.850] my
|
374
|
-
[00:00:00.850 --> 00:00:01.590] fellow
|
375
|
-
[00:00:01.590 --> 00:00:02.850] Americans
|
376
|
-
[00:00:02.850 --> 00:00:03.300] ,
|
377
|
-
[00:00:03.300 --> 00:00:04.140] ask
|
378
|
-
[00:00:04.140 --> 00:00:04.990] not
|
379
|
-
[00:00:04.990 --> 00:00:05.410] what
|
380
|
-
[00:00:05.410 --> 00:00:05.660] your
|
381
|
-
[00:00:05.660 --> 00:00:06.260] country
|
382
|
-
[00:00:06.260 --> 00:00:06.600] can
|
383
|
-
[00:00:06.600 --> 00:00:06.840] do
|
384
|
-
[00:00:06.840 --> 00:00:07.010] for
|
385
|
-
[00:00:07.010 --> 00:00:08.170] you
|
386
|
-
[00:00:08.170 --> 00:00:08.190] ,
|
387
|
-
[00:00:08.190 --> 00:00:08.430] ask
|
388
|
-
[00:00:08.430 --> 00:00:08.910] what
|
389
|
-
[00:00:08.910 --> 00:00:09.040] you
|
390
|
-
[00:00:09.040 --> 00:00:09.320] can
|
391
|
-
[00:00:09.320 --> 00:00:09.440] do
|
392
|
-
[00:00:09.440 --> 00:00:09.760] for
|
393
|
-
[00:00:09.760 --> 00:00:10.020] your
|
394
|
-
[00:00:10.020 --> 00:00:10.510] country
|
395
|
-
[00:00:10.510 --> 00:00:11.000] .
|
396
128
|
```
|
397
129
|
|
398
|
-
|
130
|
+
You can also add hook to params called on new segment:
|
399
131
|
|
400
|
-
|
401
|
-
|
402
|
-
|
132
|
+
```ruby
|
133
|
+
# Add hook before calling #transcribe
|
134
|
+
params.on_new_segment do |segment|
|
135
|
+
line = "[%{st} --> %{ed}] %{text}" % {
|
136
|
+
st: format_time(segment.start_time),
|
137
|
+
ed: format_time(segment.end_time),
|
138
|
+
text: segment.text
|
139
|
+
}
|
140
|
+
line << " (speaker turned)" if segment.speaker_next_turn?
|
141
|
+
puts line
|
142
|
+
end
|
403
143
|
|
404
|
-
|
144
|
+
whisper.transcribe("path/to/audio.wav", params)
|
405
145
|
|
406
|
-
```java
|
407
|
-
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
|
408
|
-
source ./samples/jfk.wav.wts
|
409
|
-
ffplay ./samples/jfk.wav.mp4
|
410
146
|
```
|
411
147
|
|
412
|
-
|
148
|
+
### Models ###
|
413
149
|
|
414
|
-
|
150
|
+
You can see model information:
|
415
151
|
|
416
|
-
```
|
417
|
-
|
418
|
-
|
419
|
-
ffplay ./samples/mm0.wav.mp4
|
420
|
-
```
|
152
|
+
```ruby
|
153
|
+
whisper = Whisper::Context.new("base")
|
154
|
+
model = whisper.model
|
421
155
|
|
422
|
-
|
156
|
+
model.n_vocab # => 51864
|
157
|
+
model.n_audio_ctx # => 1500
|
158
|
+
model.n_audio_state # => 512
|
159
|
+
model.n_audio_head # => 8
|
160
|
+
model.n_audio_layer # => 6
|
161
|
+
model.n_text_ctx # => 448
|
162
|
+
model.n_text_state # => 512
|
163
|
+
model.n_text_head # => 8
|
164
|
+
model.n_text_layer # => 6
|
165
|
+
model.n_mels # => 80
|
166
|
+
model.ftype # => 1
|
167
|
+
model.type # => "base"
|
423
168
|
|
424
|
-
---
|
425
|
-
|
426
|
-
```java
|
427
|
-
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
|
428
|
-
source ./samples/gb0.wav.wts
|
429
|
-
ffplay ./samples/gb0.wav.mp4
|
430
169
|
```
|
431
170
|
|
432
|
-
|
433
|
-
|
434
|
-
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
171
|
+
### Logging ###
|
172
|
+
|
173
|
+
You can set log callback:
|
174
|
+
|
175
|
+
```ruby
|
176
|
+
prefix = "[MyApp] "
|
177
|
+
log_callback = ->(level, buffer, user_data) {
|
178
|
+
case level
|
179
|
+
when Whisper::LOG_LEVEL_NONE
|
180
|
+
puts "#{user_data}none: #{buffer}"
|
181
|
+
when Whisper::LOG_LEVEL_INFO
|
182
|
+
puts "#{user_data}info: #{buffer}"
|
183
|
+
when Whisper::LOG_LEVEL_WARN
|
184
|
+
puts "#{user_data}warn: #{buffer}"
|
185
|
+
when Whisper::LOG_LEVEL_ERROR
|
186
|
+
puts "#{user_data}error: #{buffer}"
|
187
|
+
when Whisper::LOG_LEVEL_DEBUG
|
188
|
+
puts "#{user_data}debug: #{buffer}"
|
189
|
+
when Whisper::LOG_LEVEL_CONT
|
190
|
+
puts "#{user_data}same to previous: #{buffer}"
|
191
|
+
end
|
192
|
+
}
|
193
|
+
Whisper.log_set log_callback, prefix
|
194
|
+
```
|
447
195
|
|
448
|
-
|
449
|
-
- mel filters
|
450
|
-
- vocabulary
|
451
|
-
- weights
|
196
|
+
Using this feature, you are also able to suppress log:
|
452
197
|
|
453
|
-
|
454
|
-
|
198
|
+
```ruby
|
199
|
+
Whisper.log_set ->(level, buffer, user_data) {
|
200
|
+
# do nothing
|
201
|
+
}, nil
|
202
|
+
Whisper::Context.new("base")
|
203
|
+
```
|
455
204
|
|
456
|
-
-
|
457
|
-
- https://ggml.ggerganov.com
|
205
|
+
### Low-level API to transcribe ###
|
458
206
|
|
459
|
-
|
460
|
-
in [models](models).
|
207
|
+
You can also call `Whisper::Context#full` and `#full_parallel` with a Ruby array as samples. Although `#transcribe` with audio file path is recommended because it extracts PCM samples in C++ and is fast, `#full` and `#full_parallel` give you flexibility.
|
461
208
|
|
462
|
-
|
209
|
+
```ruby
|
210
|
+
require "whisper"
|
211
|
+
require "wavefile"
|
463
212
|
|
464
|
-
|
465
|
-
|
466
|
-
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
|
467
|
-
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
|
468
|
-
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
|
469
|
-
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
|
470
|
-
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
|
471
|
-
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
|
472
|
-
- [X] Python: | [#9](https://github.com/ggerganov/whisper.cpp/issues/9)
|
473
|
-
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
|
213
|
+
reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :float, 16000))
|
214
|
+
samples = reader.enum_for(:each_buffer).map(&:samples).flatten
|
474
215
|
|
475
|
-
|
216
|
+
whisper = Whisper::Context.new("base")
|
217
|
+
whisper.full(Whisper::Params.new, samples)
|
218
|
+
whisper.each_segment do |segment|
|
219
|
+
puts segment.text
|
220
|
+
end
|
221
|
+
```
|
476
222
|
|
477
|
-
|
478
|
-
Some of the examples are even ported to run in the browser using WebAssembly. Check them out!
|
223
|
+
The second argument `samples` may be an array, an object with `length` method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.
|
479
224
|
|
480
|
-
|
481
|
-
|
482
|
-
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
|
483
|
-
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
|
484
|
-
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
|
485
|
-
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
|
486
|
-
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
|
487
|
-
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
|
488
|
-
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
|
489
|
-
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
|
490
|
-
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
|
491
|
-
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
|
492
|
-
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
|
493
|
-
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
|
225
|
+
License
|
226
|
+
-------
|
494
227
|
|
495
|
-
|
228
|
+
The same to [whisper.cpp][].
|
496
229
|
|
497
|
-
|
498
|
-
|
499
|
-
to share your own projects that use `whisper.cpp`. If you have a question, make sure to check the
|
500
|
-
[Frequently asked questions (#126)](https://github.com/ggerganov/whisper.cpp/discussions/126) discussion.
|
230
|
+
[whisper.cpp]: https://github.com/ggerganov/whisper.cpp
|
231
|
+
[models]: https://github.com/ggerganov/whisper.cpp/tree/master/models
|