whispercpp 1.3.0 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (132) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +5 -0
  3. data/LICENSE +1 -1
  4. data/README.md +165 -434
  5. data/Rakefile +60 -11
  6. data/ext/.gitignore +13 -0
  7. data/ext/cpu.mk +9 -0
  8. data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
  9. data/ext/extconf.rb +185 -16
  10. data/ext/ggml/include/ggml-alloc.h +76 -0
  11. data/ext/ggml/include/ggml-backend.h +352 -0
  12. data/ext/ggml/include/ggml-blas.h +25 -0
  13. data/ext/ggml/include/ggml-cann.h +123 -0
  14. data/ext/ggml/include/ggml-cpp.h +38 -0
  15. data/ext/ggml/include/ggml-cpu.h +135 -0
  16. data/ext/ggml/include/ggml-cuda.h +47 -0
  17. data/ext/ggml/include/ggml-kompute.h +50 -0
  18. data/ext/ggml/include/ggml-metal.h +66 -0
  19. data/ext/ggml/include/ggml-opencl.h +26 -0
  20. data/ext/ggml/include/ggml-opt.h +216 -0
  21. data/ext/ggml/include/ggml-rpc.h +28 -0
  22. data/ext/ggml/include/ggml-sycl.h +49 -0
  23. data/ext/ggml/include/ggml-vulkan.h +31 -0
  24. data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
  25. data/ext/ggml/src/ggml-alloc.c +1037 -0
  26. data/ext/ggml/src/ggml-amx/common.h +94 -0
  27. data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
  28. data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
  29. data/ext/ggml/src/ggml-amx/mmq.h +17 -0
  30. data/ext/ggml/src/ggml-backend-impl.h +256 -0
  31. data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
  32. data/ext/ggml/src/ggml-backend.cpp +1999 -0
  33. data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
  34. data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
  35. data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
  36. data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
  37. data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
  38. data/ext/ggml/src/ggml-cann/common.h +286 -0
  39. data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
  40. data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
  41. data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
  42. data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
  43. data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
  44. data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
  45. data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
  46. data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
  47. data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
  48. data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
  49. data/ext/ggml/src/ggml-common.h +1853 -0
  50. data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
  51. data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
  52. data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
  53. data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
  54. data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
  55. data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
  56. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
  57. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
  58. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
  59. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
  60. data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
  61. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
  62. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
  63. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
  64. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
  65. data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
  66. data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
  67. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
  68. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
  69. data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
  70. data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
  71. data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
  72. data/ext/ggml/src/ggml-impl.h +556 -0
  73. data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
  74. data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
  75. data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
  76. data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
  77. data/ext/ggml/src/ggml-opt.cpp +854 -0
  78. data/ext/ggml/src/ggml-quants.c +5238 -0
  79. data/ext/ggml/src/ggml-quants.h +100 -0
  80. data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
  81. data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
  82. data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
  83. data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
  84. data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
  85. data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
  86. data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
  87. data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
  88. data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
  89. data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
  90. data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
  91. data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
  92. data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
  93. data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
  94. data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
  95. data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
  96. data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
  97. data/ext/ggml/src/ggml-threading.cpp +12 -0
  98. data/ext/ggml/src/ggml-threading.h +14 -0
  99. data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
  100. data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
  101. data/ext/ggml/src/ggml.c +7694 -0
  102. data/ext/{whisper.h → include/whisper.h} +23 -22
  103. data/ext/metal-embed.mk +17 -0
  104. data/ext/metal.mk +6 -0
  105. data/ext/ruby_whisper.cpp +1492 -9
  106. data/ext/ruby_whisper.h +10 -0
  107. data/ext/scripts/get-flags.mk +38 -0
  108. data/ext/src/coreml/whisper-decoder-impl.h +146 -0
  109. data/ext/src/coreml/whisper-decoder-impl.m +201 -0
  110. data/ext/src/coreml/whisper-encoder-impl.h +142 -0
  111. data/ext/src/coreml/whisper-encoder-impl.m +197 -0
  112. data/ext/src/coreml/whisper-encoder.h +26 -0
  113. data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
  114. data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
  115. data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
  116. data/extsources.rb +6 -0
  117. data/lib/whisper/model/uri.rb +157 -0
  118. data/lib/whisper.rb +2 -0
  119. data/tests/helper.rb +7 -0
  120. data/tests/jfk_reader/.gitignore +5 -0
  121. data/tests/jfk_reader/extconf.rb +3 -0
  122. data/tests/jfk_reader/jfk_reader.c +68 -0
  123. data/tests/test_callback.rb +160 -0
  124. data/tests/test_error.rb +20 -0
  125. data/tests/test_model.rb +71 -0
  126. data/tests/test_package.rb +31 -0
  127. data/tests/test_params.rb +160 -0
  128. data/tests/test_segment.rb +83 -0
  129. data/tests/test_whisper.rb +211 -123
  130. data/whispercpp.gemspec +36 -0
  131. metadata +137 -11
  132. data/ext/ggml.c +0 -21755
@@ -0,0 +1,204 @@
1
+ #include "kernel_operator.h"
2
+
3
+ // optimize me. Use template to avoid copy code.
4
+ using namespace AscendC;
5
+ #ifdef ASCEND_310P // 310P not support 4bit get row
6
+ extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
7
+ GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
8
+ GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
9
+ GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
10
+ // let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
11
+ printf("Ascend310P not support 4bit get row.\n");
12
+ }
13
+ #else
14
+
15
+ #define BUFFER_NUM 2
16
+
17
+ #define QK4_0 32
18
+
19
+ class GET_ROW_Q4_0 {
20
+ public:
21
+ __aicore__ inline GET_ROW_Q4_0() {}
22
+ __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
23
+ int64_t *input_ne_ub, int64_t *indices_ne_ub,
24
+ size_t *indices_nb_ub, int64_t *output_ne_ub,
25
+ size_t *output_nb_ub) {
26
+ int64_t op_block_num = GetBlockNum();
27
+ int64_t op_block_idx = GetBlockIdx();
28
+
29
+ for (int i = 0; i < 4; i++) {
30
+ input_ne[i] = input_ne_ub[i];
31
+ indices_ne[i] = indices_ne_ub[i];
32
+ indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
33
+ scale_ne[i] = input_ne_ub[i];
34
+ output_ne[i] = output_ne_ub[i];
35
+ output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
36
+ }
37
+
38
+ // one scale for a group.
39
+ scale_ne[0] /= QK4_0;
40
+
41
+ input_stride[0] = 1;
42
+ scale_stride[0] = 1;
43
+ output_stride[0] = 1;
44
+ for (int i = 1; i < 4; i++) {
45
+ input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
46
+ scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
47
+ }
48
+
49
+ group_size_in_row = input_ne[0] / QK4_0;
50
+ int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
51
+ input_ne[3] / 2;
52
+
53
+ // Indices has two dims. n_elements = all rows should get.
54
+ // dr, all rows should this thread get.
55
+ uint64_t n_elements =
56
+ indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
57
+ dr = n_elements / op_block_num;
58
+
59
+ uint64_t tails = n_elements % op_block_num;
60
+ if (op_block_idx < tails) {
61
+ dr += 1;
62
+ ir = dr * op_block_idx;
63
+ } else {
64
+ ir = dr * op_block_idx + tails;
65
+ }
66
+
67
+ input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
68
+ scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
69
+ indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
70
+ output_gm.SetGlobalBuffer((__gm__ float *)output);
71
+
72
+ pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
73
+ pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
74
+ pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
75
+ }
76
+
77
+ __aicore__ inline void copy_in(uint32_t offset) {
78
+ LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
79
+ // 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
80
+ DataCopy(input_local, input_gm[offset], QK4_0);
81
+ input_queue.EnQue(input_local);
82
+ }
83
+
84
+ __aicore__ inline void copy_out(uint32_t offset) {
85
+ LocalTensor<float> output_local = output_queue.DeQue<float>();
86
+ DataCopy(output_gm[offset], output_local, QK4_0);
87
+ output_queue.FreeTensor(output_local);
88
+ }
89
+
90
+ __aicore__ inline void calculate_group(int64_t idx, int64_t group) {
91
+ const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
92
+ const int64_t indices_ne1_idx =
93
+ (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
94
+ indices_ne[0];
95
+ const int64_t indices_ne0_idx =
96
+ (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
97
+ indices_ne1_idx * indices_ne[0]);
98
+
99
+ const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
100
+ indices_ne1_idx * indices_stride[1] +
101
+ indices_ne2_idx * indices_stride[2];
102
+ const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
103
+
104
+ const int64_t input_offset = selected_row_idx * input_stride[1] +
105
+ indices_ne1_idx * input_stride[2] +
106
+ indices_ne2_idx * input_stride[3] +
107
+ group * QK4_0;
108
+ const int64_t scale_offset = selected_row_idx * scale_stride[1] +
109
+ indices_ne1_idx * scale_stride[2] +
110
+ indices_ne2_idx * scale_stride[3] + group;
111
+ const int64_t output_offset = indices_ne0_idx * output_stride[1] +
112
+ indices_ne1_idx * output_stride[2] +
113
+ indices_ne2_idx * output_stride[3] +
114
+ group * QK4_0;
115
+
116
+ copy_in(input_offset);
117
+ LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
118
+ LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
119
+ LocalTensor<float> output_local = output_queue.AllocTensor<float>();
120
+
121
+ // TODO: cast more data to speed up.
122
+ Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
123
+ Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
124
+
125
+ // Only mul need compile by group.
126
+ half scale = scale_gm.GetValue(scale_offset);
127
+
128
+ Muls(output_local, output_local, (float)scale, QK4_0);
129
+
130
+ input_queue.FreeTensor(input_local);
131
+ cast_queue.FreeTensor(cast_local);
132
+ output_queue.EnQue(output_local);
133
+
134
+ copy_out(output_offset);
135
+ }
136
+
137
+ __aicore__ inline void calculate() {
138
+ for (int64_t i = ir; i < ir + dr; i++) {
139
+ for (int64_t j = 0; j < group_size_in_row; j++) {
140
+ calculate_group(i, j);
141
+ }
142
+ }
143
+ }
144
+
145
+ private:
146
+ int64_t input_ne[4];
147
+ size_t input_stride[4];
148
+
149
+ int64_t scale_ne[4];
150
+ size_t scale_stride[4];
151
+
152
+ int64_t indices_ne[4];
153
+ size_t indices_stride[4];
154
+
155
+ int64_t output_ne[4];
156
+ size_t output_stride[4];
157
+
158
+ int64_t ir;
159
+ int64_t dr;
160
+
161
+ int64_t group_size_in_row;
162
+
163
+ TPipe pipe;
164
+ GlobalTensor<int4b_t> input_gm;
165
+ GlobalTensor<half> scale_gm;
166
+ GlobalTensor<int32_t> indices_gm;
167
+ GlobalTensor<float> output_gm;
168
+ TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
169
+ TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
170
+ TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
171
+ };
172
+
173
+ template <typename T>
174
+ __aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
175
+ auto gm_ptr = (__gm__ uint8_t *)gm;
176
+ auto ub_ptr = (uint8_t *)(ub);
177
+ for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
178
+ *ub_ptr = *gm_ptr;
179
+ }
180
+ }
181
+
182
+ extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
183
+ GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
184
+ GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
185
+ GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
186
+ int64_t input_ne_ub[4];
187
+ int64_t indices_ne_ub[4];
188
+ size_t indices_nb_ub[4];
189
+ int64_t output_ne_ub[4];
190
+ size_t output_nb_ub[4];
191
+
192
+ copy_to_ub(input_ne_gm, input_ne_ub, 32);
193
+ copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
194
+ copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
195
+ copy_to_ub(output_ne_gm, output_ne_ub, 32);
196
+ copy_to_ub(output_nb_gm, output_nb_ub, 32);
197
+
198
+ GET_ROW_Q4_0 op;
199
+ op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
200
+ indices_nb_ub, output_ne_ub, output_nb_ub);
201
+ op.calculate();
202
+ }
203
+
204
+ #endif // #ifdef ASCEND_310P
@@ -0,0 +1,191 @@
1
+ #include "kernel_operator.h"
2
+
3
+ // optimize me. Use template to avoid copy code.
4
+ using namespace AscendC;
5
+
6
+ #define BUFFER_NUM 2
7
+
8
+ #define QK8_0 32
9
+
10
+ class GET_ROW_Q8_0 {
11
+ public:
12
+ __aicore__ inline GET_ROW_Q8_0() {}
13
+ __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
14
+ int64_t *input_ne_ub, int64_t *indices_ne_ub,
15
+ size_t *indices_nb_ub, int64_t *output_ne_ub,
16
+ size_t *output_nb_ub) {
17
+ int64_t op_block_num = GetBlockNum();
18
+ int64_t op_block_idx = GetBlockIdx();
19
+
20
+ for (int i = 0; i < 4; i++) {
21
+ input_ne[i] = input_ne_ub[i];
22
+ indices_ne[i] = indices_ne_ub[i];
23
+ indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
24
+ scale_ne[i] = input_ne_ub[i];
25
+ output_ne[i] = output_ne_ub[i];
26
+ output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
27
+ }
28
+
29
+ // one scale for a group.
30
+ scale_ne[0] /= QK8_0;
31
+
32
+ input_stride[0] = 1;
33
+ scale_stride[0] = 1;
34
+ output_stride[0] = 1;
35
+ for (int i = 1; i < 4; i++) {
36
+ input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
37
+ scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
38
+ }
39
+
40
+ group_size_in_row = input_ne[0] / QK8_0;
41
+ int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
42
+ input_ne[3] * sizeof(int8_t);
43
+
44
+ // Indices has two dims. n_elements = all rows should get.
45
+ // dr, all rows should this thread get.
46
+ uint64_t n_elements =
47
+ indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
48
+ dr = n_elements / op_block_num;
49
+
50
+ uint64_t tails = n_elements % op_block_num;
51
+ if (op_block_idx < tails) {
52
+ dr += 1;
53
+ ir = dr * op_block_idx;
54
+ } else {
55
+ ir = dr * op_block_idx + tails;
56
+ }
57
+
58
+ input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
59
+ scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
60
+ indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
61
+ output_gm.SetGlobalBuffer((__gm__ float *)output);
62
+
63
+ pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
64
+ pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
65
+ pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
66
+ }
67
+
68
+ __aicore__ inline void copy_in(uint32_t offset) {
69
+ LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
70
+ DataCopy(input_local, input_gm[offset], QK8_0);
71
+ input_queue.EnQue(input_local);
72
+ }
73
+
74
+ __aicore__ inline void copy_out(uint32_t offset) {
75
+ LocalTensor<float> output_local = output_queue.DeQue<float>();
76
+ DataCopy(output_gm[offset], output_local, QK8_0);
77
+ output_queue.FreeTensor(output_local);
78
+ }
79
+
80
+ __aicore__ inline void calculate_group(int64_t idx, int64_t group) {
81
+ const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
82
+ const int64_t indices_ne1_idx =
83
+ (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
84
+ indices_ne[0];
85
+ const int64_t indices_ne0_idx =
86
+ (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
87
+ indices_ne1_idx * indices_ne[0]);
88
+
89
+ const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
90
+ indices_ne1_idx * indices_stride[1] +
91
+ indices_ne2_idx * indices_stride[2];
92
+ const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
93
+
94
+ const int64_t input_offset = selected_row_idx * input_stride[1] +
95
+ indices_ne1_idx * input_stride[2] +
96
+ indices_ne2_idx * input_stride[3] +
97
+ group * QK8_0;
98
+ const int64_t scale_offset = selected_row_idx * scale_stride[1] +
99
+ indices_ne1_idx * scale_stride[2] +
100
+ indices_ne2_idx * scale_stride[3] + group;
101
+ const int64_t output_offset = indices_ne0_idx * output_stride[1] +
102
+ indices_ne1_idx * output_stride[2] +
103
+ indices_ne2_idx * output_stride[3] +
104
+ group * QK8_0;
105
+
106
+ copy_in(input_offset);
107
+ LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
108
+ LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
109
+ LocalTensor<float> output_local = output_queue.AllocTensor<float>();
110
+
111
+ // TODO: cast more data to speed up.
112
+ Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
113
+ Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
114
+
115
+ // Only mul need compile by group.
116
+ half scale = scale_gm.GetValue(scale_offset);
117
+ Muls(output_local, output_local, (float)scale, QK8_0);
118
+
119
+ input_queue.FreeTensor(input_local);
120
+ cast_queue.FreeTensor(cast_local);
121
+ output_queue.EnQue(output_local);
122
+
123
+ copy_out(output_offset);
124
+ }
125
+
126
+ __aicore__ inline void calculate() {
127
+ for (int64_t i = ir; i < ir + dr; i++) {
128
+ for (int64_t j = 0; j < group_size_in_row; j++) {
129
+ calculate_group(i, j);
130
+ }
131
+ }
132
+ }
133
+
134
+ private:
135
+ int64_t input_ne[4];
136
+ size_t input_stride[4];
137
+
138
+ int64_t scale_ne[4];
139
+ size_t scale_stride[4];
140
+
141
+ int64_t indices_ne[4];
142
+ size_t indices_stride[4];
143
+
144
+ int64_t output_ne[4];
145
+ size_t output_stride[4];
146
+
147
+ int64_t ir;
148
+ int64_t dr;
149
+
150
+ int64_t group_size_in_row;
151
+
152
+ TPipe pipe;
153
+ GlobalTensor<int8_t> input_gm;
154
+ GlobalTensor<half> scale_gm;
155
+ GlobalTensor<int32_t> indices_gm;
156
+ GlobalTensor<float> output_gm;
157
+ TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
158
+ TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
159
+ TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
160
+ };
161
+
162
+ template <typename T>
163
+ __aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
164
+ auto gm_ptr = (__gm__ uint8_t *)gm;
165
+ auto ub_ptr = (uint8_t *)(ub);
166
+ for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
167
+ *ub_ptr = *gm_ptr;
168
+ }
169
+ }
170
+
171
+ extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
172
+ GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
173
+ GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
174
+ GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
175
+ int64_t input_ne_ub[4];
176
+ int64_t indices_ne_ub[4];
177
+ size_t indices_nb_ub[4];
178
+ int64_t output_ne_ub[4];
179
+ size_t output_nb_ub[4];
180
+
181
+ copy_to_ub(input_ne_gm, input_ne_ub, 32);
182
+ copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
183
+ copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
184
+ copy_to_ub(output_ne_gm, output_ne_ub, 32);
185
+ copy_to_ub(output_nb_gm, output_nb_ub, 32);
186
+
187
+ GET_ROW_Q8_0 op;
188
+ op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
189
+ indices_nb_ub, output_ne_ub, output_nb_ub);
190
+ op.calculate();
191
+ }
@@ -0,0 +1,218 @@
1
+ #include "kernel_operator.h"
2
+
3
+ using namespace AscendC;
4
+ #ifdef ASCEND_310P
5
+ extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
6
+ GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
7
+ GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
8
+ // let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
9
+ printf("Ascend310P not support f16->8bit quantization.\n");
10
+ }
11
+ #else
12
+
13
+ #define BUFFER_NUM 2
14
+ #define QK8_0 32
15
+
16
+ class QUANTIZE_F16_Q8_0 {
17
+ public:
18
+ __aicore__ inline QUANTIZE_F16_Q8_0() {}
19
+ __aicore__ inline void init(GM_ADDR input, GM_ADDR output,
20
+ int64_t *input_ne_ub, size_t *input_nb_ub,
21
+ int64_t *output_ne_ub) {
22
+ int64_t op_block_num = GetBlockNum();
23
+ int64_t op_block_idx = GetBlockIdx();
24
+
25
+ for (int i = 0; i < 4; i++) {
26
+ input_ne[i] = input_ne_ub[i];
27
+ input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
28
+
29
+ output_ne[i] = output_ne_ub[i];
30
+ }
31
+
32
+ output_stride[0] = 1;
33
+ for (int i = 1; i < 4; i++) {
34
+ output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
35
+ }
36
+
37
+ scale_ne = input_ne;
38
+ scale_stride[0] = 1;
39
+ scale_stride[1] = input_ne[0] / QK8_0;
40
+ for (int i = 2; i < 4; i++) {
41
+ scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
42
+ }
43
+
44
+ // split input tensor by rows.
45
+ uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
46
+ dr = nr / op_block_num;
47
+
48
+ uint64_t tails = nr % op_block_num;
49
+ if (op_block_idx < tails) {
50
+ dr += 1;
51
+ ir = dr * op_block_idx;
52
+ } else {
53
+ ir = dr * op_block_idx + tails;
54
+ }
55
+
56
+ group_size_in_row = scale_stride[1];
57
+ int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
58
+ output_ne[3] * sizeof(uint8_t);
59
+
60
+ input_gm.SetGlobalBuffer((__gm__ half *)input);
61
+ output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
62
+ scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir *
63
+ group_size_in_row *
64
+ sizeof(half)));
65
+
66
+ pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half));
67
+ pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
68
+ pipe.InitBuffer(work_queue, 1, 32);
69
+ pipe.InitBuffer(max_queue, 1, 32);
70
+ pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
71
+ pipe.InitBuffer(scale_queue, 1, 32);
72
+ pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float));
73
+ }
74
+
75
+ __aicore__ inline void copy_in(uint32_t offset) {
76
+ LocalTensor<half> input_local = input_queue.AllocTensor<half>();
77
+ DataCopy(input_local, input_gm[offset], QK8_0);
78
+ input_queue.EnQue(input_local);
79
+ }
80
+
81
+ __aicore__ inline void copy_out(uint32_t offset) {
82
+ LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
83
+ DataCopy(output_gm[offset], output_local, QK8_0);
84
+ output_queue.FreeTensor(output_local);
85
+ }
86
+
87
+ __aicore__ inline half calculate_group(int64_t row, int64_t group) {
88
+ const int64_t i3 = row / (input_ne[1] * input_ne[2]);
89
+ const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
90
+ const int64_t i1 =
91
+ row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
92
+
93
+ const int64_t input_offset = i1 * input_stride[1] +
94
+ i2 * input_stride[2] +
95
+ i3 * input_stride[3] + QK8_0 * group;
96
+
97
+ const int64_t output_offset = i1 * output_stride[1] +
98
+ i2 * output_stride[2] +
99
+ i3 * output_stride[3] + QK8_0 * group;
100
+
101
+ copy_in(input_offset);
102
+ LocalTensor<half> input_local = input_queue.DeQue<half>();
103
+ LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
104
+ LocalTensor<float> work_local = work_queue.AllocTensor<float>();
105
+ LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
106
+ LocalTensor<float> max_local = max_queue.AllocTensor<float>();
107
+ LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
108
+
109
+ Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
110
+ Abs(abs_local, cast_local, QK8_0);
111
+ ReduceMax(max_local, abs_local, work_local, QK8_0);
112
+
113
+ pipe_barrier(PIPE_ALL);
114
+ float d = max_local.GetValue(0);
115
+ d = d / ((1 << 7) - 1);
116
+ if (d != 0) {
117
+ Muls(cast_local, cast_local, 1.0f / d, QK8_0);
118
+ }
119
+
120
+ Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
121
+ Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
122
+ Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0);
123
+ output_queue.EnQue(output_local);
124
+ copy_out(output_offset);
125
+
126
+ input_queue.FreeTensor(input_local);
127
+ work_queue.FreeTensor(work_local);
128
+ abs_queue.FreeTensor(abs_local);
129
+ max_queue.FreeTensor(max_local);
130
+ cast_queue.FreeTensor(cast_local);
131
+ return (half)d;
132
+ }
133
+
134
+ __aicore__ inline void calculate() {
135
+ LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
136
+ uint32_t scale_local_offset = 0;
137
+ uint32_t scale_global_offset = 0;
138
+ for (int64_t i = ir; i < ir + dr; i++) {
139
+ for (int64_t j = 0; j < group_size_in_row; j++) {
140
+ half scale = calculate_group(i, j);
141
+ scale_local.SetValue(scale_local_offset++, scale);
142
+ if (scale_local_offset == 16) {
143
+ scale_local_offset = 0;
144
+ // TODO: OPTIMIZE ME
145
+ pipe_barrier(PIPE_ALL);
146
+ DataCopy(scale_gm[scale_global_offset], scale_local, 16);
147
+ pipe_barrier(PIPE_ALL);
148
+ scale_global_offset += 16;
149
+ }
150
+ }
151
+ }
152
+
153
+ if (scale_local_offset != 0) {
154
+ pipe_barrier(PIPE_ALL);
155
+ DataCopyExtParams dataCopyParams;
156
+ dataCopyParams.blockCount = 1;
157
+ dataCopyParams.blockLen = scale_local_offset * sizeof(half);
158
+ DataCopyPad(scale_gm[scale_global_offset], scale_local,
159
+ dataCopyParams);
160
+ pipe_barrier(PIPE_ALL);
161
+ }
162
+ }
163
+
164
+ private:
165
+ int64_t input_ne[4];
166
+ size_t input_stride[4];
167
+
168
+ int64_t *scale_ne;
169
+ size_t scale_stride[4];
170
+
171
+ int64_t output_ne[4];
172
+ size_t output_stride[4];
173
+
174
+ int64_t group_size_in_row;
175
+
176
+ int64_t ir;
177
+ int64_t dr;
178
+
179
+ TPipe pipe;
180
+ GlobalTensor<half> input_gm;
181
+ GlobalTensor<half> scale_gm;
182
+ GlobalTensor<int8_t> output_gm;
183
+ TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
184
+ TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
185
+ TQue<QuePosition::VECIN, 1> work_queue;
186
+ TQue<QuePosition::VECOUT, 1> max_queue;
187
+ TQue<QuePosition::VECIN, 1> abs_queue;
188
+ TQue<QuePosition::VECOUT, 1> scale_queue;
189
+ TQue<QuePosition::VECOUT, 1> cast_queue;
190
+
191
+ };
192
+
193
+ template <typename T>
194
+ __aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
195
+ auto gm_ptr = (__gm__ uint8_t *)gm;
196
+ auto ub_ptr = (uint8_t *)(ub);
197
+ for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
198
+ *ub_ptr = *gm_ptr;
199
+ }
200
+ }
201
+
202
+ extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
203
+ GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
204
+ GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
205
+ int64_t input_ne_ub[4];
206
+ size_t input_nb_ub[4];
207
+ int64_t output_ne_ub[4];
208
+
209
+ copy_to_ub(input_ne_gm, input_ne_ub, 32);
210
+ copy_to_ub(input_nb_gm, input_nb_ub, 32);
211
+ copy_to_ub(output_ne_gm, output_ne_ub, 32);
212
+
213
+ QUANTIZE_F16_Q8_0 op;
214
+ op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
215
+ op.calculate();
216
+ }
217
+
218
+ #endif // #ifdef ASCEND_310P