whispercpp 1.3.0 → 1.3.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +60 -11
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -16
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/{whisper.h → include/whisper.h} +23 -22
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1492 -9
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -21755
@@ -0,0 +1,517 @@
|
|
1
|
+
#include "ggml-impl.h"
|
2
|
+
#include "ggml-blas.h"
|
3
|
+
#include "ggml-backend-impl.h"
|
4
|
+
|
5
|
+
#include <future>
|
6
|
+
#include <vector>
|
7
|
+
#include <cstring>
|
8
|
+
|
9
|
+
#if defined(GGML_BLAS_USE_ACCELERATE)
|
10
|
+
# include <Accelerate/Accelerate.h>
|
11
|
+
#elif defined(GGML_BLAS_USE_MKL)
|
12
|
+
# include <mkl.h>
|
13
|
+
#elif defined(GGML_BLAS_USE_BLIS)
|
14
|
+
# include <blis.h>
|
15
|
+
#elif defined(GGML_BLAS_USE_NVPL)
|
16
|
+
# include <nvpl_blas.h>
|
17
|
+
#else
|
18
|
+
# include <cblas.h>
|
19
|
+
#endif
|
20
|
+
|
21
|
+
struct ggml_backend_blas_context {
|
22
|
+
int n_threads = GGML_DEFAULT_N_THREADS;
|
23
|
+
std::unique_ptr<char[]> work_data;
|
24
|
+
size_t work_size = 0;
|
25
|
+
#ifndef GGML_USE_OPENMP
|
26
|
+
std::vector<std::future<void>> tasks;
|
27
|
+
#endif
|
28
|
+
};
|
29
|
+
|
30
|
+
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
31
|
+
const struct ggml_tensor * src0 = dst->src[0];
|
32
|
+
const struct ggml_tensor * src1 = dst->src[1];
|
33
|
+
|
34
|
+
GGML_TENSOR_BINARY_OP_LOCALS
|
35
|
+
|
36
|
+
const enum ggml_type type = src0->type;
|
37
|
+
|
38
|
+
GGML_ASSERT(ne0 == ne01);
|
39
|
+
GGML_ASSERT(ne1 == ne11);
|
40
|
+
GGML_ASSERT(ne2 == ne12);
|
41
|
+
GGML_ASSERT(ne3 == ne13);
|
42
|
+
|
43
|
+
// we don't support permuted src0 or src1
|
44
|
+
GGML_ASSERT(nb00 == ggml_type_size(type));
|
45
|
+
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
46
|
+
|
47
|
+
// dst cannot be transposed or permuted
|
48
|
+
GGML_ASSERT(nb0 == sizeof(float));
|
49
|
+
GGML_ASSERT(nb0 <= nb1);
|
50
|
+
GGML_ASSERT(nb1 <= nb2);
|
51
|
+
GGML_ASSERT(nb2 <= nb3);
|
52
|
+
|
53
|
+
// broadcast factors
|
54
|
+
const int64_t r2 = ne12/ne02;
|
55
|
+
const int64_t r3 = ne13/ne03;
|
56
|
+
|
57
|
+
const int64_t ne_plane = ne01*ne00;
|
58
|
+
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
|
59
|
+
|
60
|
+
if (ctx->work_size < desired_wsize) {
|
61
|
+
ctx->work_data.reset(new char[desired_wsize]);
|
62
|
+
ctx->work_size = desired_wsize;
|
63
|
+
}
|
64
|
+
void * wdata = ctx->work_data.get();
|
65
|
+
|
66
|
+
// convert src0 to float
|
67
|
+
if (type != GGML_TYPE_F32) {
|
68
|
+
const auto * type_traits = ggml_get_type_traits(type);
|
69
|
+
ggml_to_float_t const to_float = type_traits->to_float;
|
70
|
+
|
71
|
+
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
72
|
+
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
73
|
+
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
74
|
+
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
75
|
+
|
76
|
+
const int min_cols_per_thread = 4096;
|
77
|
+
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
|
78
|
+
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
|
79
|
+
|
80
|
+
#ifdef GGML_USE_OPENMP
|
81
|
+
#pragma omp parallel for num_threads(n_threads)
|
82
|
+
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
83
|
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
84
|
+
}
|
85
|
+
#else
|
86
|
+
for (int i = 1; i < n_threads; i++) {
|
87
|
+
const int64_t start = i*ne01/n_threads;
|
88
|
+
const int64_t end = (i + 1)*ne01/n_threads;
|
89
|
+
if (start < end) {
|
90
|
+
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
|
91
|
+
for (int64_t i01 = start; i01 < end; i01++) {
|
92
|
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
93
|
+
}
|
94
|
+
}));
|
95
|
+
}
|
96
|
+
}
|
97
|
+
{
|
98
|
+
// reuse the current thread for the first task
|
99
|
+
const int64_t start = 0;
|
100
|
+
const int64_t end = ne01/n_threads;
|
101
|
+
for (int64_t i01 = start; i01 < end; i01++) {
|
102
|
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
103
|
+
}
|
104
|
+
}
|
105
|
+
#endif
|
106
|
+
}
|
107
|
+
}
|
108
|
+
|
109
|
+
#ifndef GGML_USE_OPENMP
|
110
|
+
// wait for all tasks to finish
|
111
|
+
for (auto & task : ctx->tasks) {
|
112
|
+
task.get();
|
113
|
+
}
|
114
|
+
ctx->tasks.clear();
|
115
|
+
#endif
|
116
|
+
}
|
117
|
+
|
118
|
+
#if defined(OPENBLAS_VERSION)
|
119
|
+
openblas_set_num_threads(ctx->n_threads);
|
120
|
+
#endif
|
121
|
+
|
122
|
+
#if defined(GGML_BLAS_USE_BLIS)
|
123
|
+
bli_thread_set_num_threads(ctx->n_threads);
|
124
|
+
#endif
|
125
|
+
|
126
|
+
#if defined(GGML_BLAS_USE_NVPL)
|
127
|
+
nvpl_blas_set_num_threads(ctx->n_threads);
|
128
|
+
#endif
|
129
|
+
|
130
|
+
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
131
|
+
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
132
|
+
const int64_t i03 = i13/r3;
|
133
|
+
const int64_t i02 = i12/r2;
|
134
|
+
|
135
|
+
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
136
|
+
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
137
|
+
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
138
|
+
|
139
|
+
if (type != GGML_TYPE_F32) {
|
140
|
+
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
141
|
+
}
|
142
|
+
|
143
|
+
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
144
|
+
ne1, ne01, ne10,
|
145
|
+
1.0f, y, ne10,
|
146
|
+
x, ne00,
|
147
|
+
0.0f, d, ne01);
|
148
|
+
}
|
149
|
+
}
|
150
|
+
}
|
151
|
+
|
152
|
+
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
153
|
+
const struct ggml_tensor * src0 = dst->src[0];
|
154
|
+
const struct ggml_tensor * src1 = dst->src[1];
|
155
|
+
|
156
|
+
GGML_TENSOR_BINARY_OP_LOCALS
|
157
|
+
|
158
|
+
GGML_ASSERT(ne0 == ne00);
|
159
|
+
GGML_ASSERT(ne1 == ne10);
|
160
|
+
GGML_ASSERT(ne2 == ne02);
|
161
|
+
GGML_ASSERT(ne02 == ne12);
|
162
|
+
GGML_ASSERT(ne3 == ne13);
|
163
|
+
GGML_ASSERT(ne03 == ne13);
|
164
|
+
|
165
|
+
// we don't support permuted src0 or src1
|
166
|
+
GGML_ASSERT(nb00 == sizeof(float));
|
167
|
+
|
168
|
+
// dst cannot be transposed or permuted
|
169
|
+
GGML_ASSERT(nb0 == sizeof(float));
|
170
|
+
// GGML_ASSERT(nb0 <= nb1);
|
171
|
+
// GGML_ASSERT(nb1 <= nb2);
|
172
|
+
// GGML_ASSERT(nb2 <= nb3);
|
173
|
+
|
174
|
+
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
175
|
+
// src0: (k,n)
|
176
|
+
// src1: (k,m)
|
177
|
+
// dst: (m,n)
|
178
|
+
//
|
179
|
+
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
180
|
+
// Also expressed as (major,minor)
|
181
|
+
// a: (m,k): so src1 transposed
|
182
|
+
// b: (k,n): so src0
|
183
|
+
// c: (m,n)
|
184
|
+
//
|
185
|
+
// However, if ggml_is_transposed(src1) is true, then
|
186
|
+
// src1->data already contains a transposed version, so sgemm mustn't
|
187
|
+
// transpose it further.
|
188
|
+
|
189
|
+
int n = src0->ne[0];
|
190
|
+
int k = src0->ne[1];
|
191
|
+
int m = src1->ne[0];
|
192
|
+
|
193
|
+
CBLAS_TRANSPOSE transposeA;
|
194
|
+
int lda;
|
195
|
+
|
196
|
+
if (!ggml_is_transposed(src1)) {
|
197
|
+
transposeA = CblasTrans;
|
198
|
+
lda = m;
|
199
|
+
} else {
|
200
|
+
transposeA = CblasNoTrans;
|
201
|
+
lda = k;
|
202
|
+
}
|
203
|
+
|
204
|
+
float * a = (float *) ((char *) src1->data);
|
205
|
+
float * b = (float *) ((char *) src0->data);
|
206
|
+
float * c = (float *) ((char *) dst->data);
|
207
|
+
|
208
|
+
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
209
|
+
|
210
|
+
GGML_UNUSED(ctx);
|
211
|
+
}
|
212
|
+
|
213
|
+
// backend interface
|
214
|
+
|
215
|
+
static const char * ggml_backend_blas_get_name(ggml_backend_t backend) {
|
216
|
+
return "BLAS";
|
217
|
+
|
218
|
+
GGML_UNUSED(backend);
|
219
|
+
}
|
220
|
+
|
221
|
+
static void ggml_backend_blas_free(ggml_backend_t backend) {
|
222
|
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
223
|
+
delete ctx;
|
224
|
+
delete backend;
|
225
|
+
}
|
226
|
+
|
227
|
+
static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
228
|
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
229
|
+
|
230
|
+
for (int i = 0; i < cgraph->n_nodes; i++) {
|
231
|
+
struct ggml_tensor * node = cgraph->nodes[i];
|
232
|
+
|
233
|
+
switch (node->op) {
|
234
|
+
case GGML_OP_MUL_MAT:
|
235
|
+
ggml_backend_blas_mul_mat(ctx, node);
|
236
|
+
break;
|
237
|
+
|
238
|
+
case GGML_OP_OUT_PROD:
|
239
|
+
ggml_backend_blas_out_prod(ctx, node);
|
240
|
+
break;
|
241
|
+
|
242
|
+
case GGML_OP_NONE:
|
243
|
+
case GGML_OP_RESHAPE:
|
244
|
+
case GGML_OP_VIEW:
|
245
|
+
case GGML_OP_PERMUTE:
|
246
|
+
case GGML_OP_TRANSPOSE:
|
247
|
+
break;
|
248
|
+
|
249
|
+
default:
|
250
|
+
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
251
|
+
}
|
252
|
+
}
|
253
|
+
|
254
|
+
return GGML_STATUS_SUCCESS;
|
255
|
+
|
256
|
+
GGML_UNUSED(backend);
|
257
|
+
}
|
258
|
+
|
259
|
+
static struct ggml_backend_i blas_backend_i = {
|
260
|
+
/* .get_name = */ ggml_backend_blas_get_name,
|
261
|
+
/* .free = */ ggml_backend_blas_free,
|
262
|
+
/* .set_tensor_async = */ NULL,
|
263
|
+
/* .get_tensor_async = */ NULL,
|
264
|
+
/* .cpy_tensor_async = */ NULL,
|
265
|
+
/* .synchronize = */ NULL,
|
266
|
+
/* .graph_plan_create = */ NULL,
|
267
|
+
/* .graph_plan_free = */ NULL,
|
268
|
+
/* .graph_plan_update = */ NULL,
|
269
|
+
/* .graph_plan_compute = */ NULL,
|
270
|
+
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
271
|
+
/* .event_record = */ NULL,
|
272
|
+
/* .event_wait = */ NULL,
|
273
|
+
};
|
274
|
+
|
275
|
+
static ggml_guid_t ggml_backend_blas_guid(void) {
|
276
|
+
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
277
|
+
return &guid;
|
278
|
+
}
|
279
|
+
|
280
|
+
ggml_backend_t ggml_backend_blas_init(void) {
|
281
|
+
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
282
|
+
|
283
|
+
ggml_backend_t backend = new ggml_backend {
|
284
|
+
/* .guid = */ ggml_backend_blas_guid(),
|
285
|
+
/* .interface = */ blas_backend_i,
|
286
|
+
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
|
287
|
+
/* .context = */ ctx,
|
288
|
+
};
|
289
|
+
|
290
|
+
#if defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
291
|
+
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
|
292
|
+
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
|
293
|
+
}
|
294
|
+
#endif
|
295
|
+
|
296
|
+
#if defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
|
297
|
+
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
|
298
|
+
#endif
|
299
|
+
|
300
|
+
return backend;
|
301
|
+
}
|
302
|
+
|
303
|
+
bool ggml_backend_is_blas(ggml_backend_t backend) {
|
304
|
+
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
305
|
+
}
|
306
|
+
|
307
|
+
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
|
308
|
+
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
|
309
|
+
|
310
|
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
|
311
|
+
ctx->n_threads = n_threads;
|
312
|
+
}
|
313
|
+
|
314
|
+
// device interface
|
315
|
+
|
316
|
+
static const char * ggml_backend_blas_device_get_name(ggml_backend_dev_t dev) {
|
317
|
+
return "BLAS";
|
318
|
+
|
319
|
+
GGML_UNUSED(dev);
|
320
|
+
}
|
321
|
+
|
322
|
+
static const char * ggml_backend_blas_device_get_description(ggml_backend_dev_t dev) {
|
323
|
+
#if defined(GGML_BLAS_USE_ACCELERATE)
|
324
|
+
return "Accelerate";
|
325
|
+
#elif defined(GGML_BLAS_USE_MKL)
|
326
|
+
return "MKL";
|
327
|
+
#elif defined(GGML_BLAS_USE_BLIS)
|
328
|
+
return "BLIS";
|
329
|
+
#elif defined(GGML_BLAS_USE_NVPL)
|
330
|
+
return "NVPL";
|
331
|
+
#elif defined(OPENBLAS_VERSION)
|
332
|
+
return "OpenBLAS";
|
333
|
+
#else
|
334
|
+
return "BLAS";
|
335
|
+
#endif
|
336
|
+
|
337
|
+
GGML_UNUSED(dev);
|
338
|
+
}
|
339
|
+
|
340
|
+
static void ggml_backend_blas_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
341
|
+
// TODO
|
342
|
+
*free = 0;
|
343
|
+
*total = 0;
|
344
|
+
|
345
|
+
GGML_UNUSED(dev);
|
346
|
+
}
|
347
|
+
|
348
|
+
static enum ggml_backend_dev_type ggml_backend_blas_device_get_type(ggml_backend_dev_t dev) {
|
349
|
+
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
350
|
+
|
351
|
+
GGML_UNUSED(dev);
|
352
|
+
}
|
353
|
+
|
354
|
+
static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
355
|
+
props->name = ggml_backend_blas_device_get_name(dev);
|
356
|
+
props->description = ggml_backend_blas_device_get_description(dev);
|
357
|
+
props->type = ggml_backend_blas_device_get_type(dev);
|
358
|
+
ggml_backend_blas_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
359
|
+
props->caps = {
|
360
|
+
/* .async = */ false,
|
361
|
+
/* .host_buffer = */ false,
|
362
|
+
/* .buffer_from_host_ptr = */ true,
|
363
|
+
/* .events = */ false,
|
364
|
+
};
|
365
|
+
}
|
366
|
+
|
367
|
+
static ggml_backend_t ggml_backend_blas_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
368
|
+
return ggml_backend_blas_init();
|
369
|
+
|
370
|
+
GGML_UNUSED(dev);
|
371
|
+
GGML_UNUSED(params);
|
372
|
+
}
|
373
|
+
|
374
|
+
static ggml_backend_buffer_type_t ggml_backend_blas_device_get_buffer_type(ggml_backend_dev_t dev) {
|
375
|
+
return ggml_backend_cpu_buffer_type();
|
376
|
+
|
377
|
+
GGML_UNUSED(dev);
|
378
|
+
}
|
379
|
+
|
380
|
+
static ggml_backend_buffer_t ggml_backend_blas_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
381
|
+
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
382
|
+
|
383
|
+
GGML_UNUSED(dev);
|
384
|
+
GGML_UNUSED(max_tensor_size);
|
385
|
+
}
|
386
|
+
|
387
|
+
static bool ggml_backend_blas_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
388
|
+
const struct ggml_tensor * src0 = op->src[0];
|
389
|
+
const struct ggml_tensor * src1 = op->src[1];
|
390
|
+
|
391
|
+
switch (op->op) {
|
392
|
+
case GGML_OP_NONE:
|
393
|
+
case GGML_OP_RESHAPE:
|
394
|
+
case GGML_OP_VIEW:
|
395
|
+
case GGML_OP_PERMUTE:
|
396
|
+
case GGML_OP_TRANSPOSE:
|
397
|
+
return true;
|
398
|
+
|
399
|
+
case GGML_OP_MUL_MAT:
|
400
|
+
{
|
401
|
+
// BLAS usually is only faster for large matrices
|
402
|
+
const struct ggml_tensor * src0 = op->src[0];
|
403
|
+
const struct ggml_tensor * src1 = op->src[1];
|
404
|
+
|
405
|
+
const int64_t ne10 = src1->ne[0];
|
406
|
+
|
407
|
+
const int64_t ne0 = op->ne[0];
|
408
|
+
const int64_t ne1 = op->ne[1];
|
409
|
+
|
410
|
+
// TODO: find the optimal value
|
411
|
+
const int64_t min_batch = 32;
|
412
|
+
|
413
|
+
return ggml_is_contiguous(src0) &&
|
414
|
+
ggml_is_contiguous(src1) &&
|
415
|
+
src1->type == GGML_TYPE_F32 &&
|
416
|
+
(ne0 >= min_batch && ne1 >= min_batch && ne10 >= min_batch) &&
|
417
|
+
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
418
|
+
}
|
419
|
+
|
420
|
+
case GGML_OP_OUT_PROD:
|
421
|
+
return op->src[0]->type == GGML_TYPE_F32 &&
|
422
|
+
op->src[1]->type == GGML_TYPE_F32 &&
|
423
|
+
ggml_is_matrix(src0) &&
|
424
|
+
ggml_is_matrix(src1) &&
|
425
|
+
ggml_is_contiguous(src0) &&
|
426
|
+
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)) &&
|
427
|
+
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
428
|
+
|
429
|
+
default:
|
430
|
+
return false;
|
431
|
+
|
432
|
+
}
|
433
|
+
|
434
|
+
GGML_UNUSED(dev);
|
435
|
+
}
|
436
|
+
|
437
|
+
static bool ggml_backend_blas_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
438
|
+
return ggml_backend_buft_is_host(buft);
|
439
|
+
|
440
|
+
GGML_UNUSED(dev);
|
441
|
+
}
|
442
|
+
|
443
|
+
static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
|
444
|
+
/* .get_name = */ ggml_backend_blas_device_get_name,
|
445
|
+
/* .get_description = */ ggml_backend_blas_device_get_description,
|
446
|
+
/* .get_memory = */ ggml_backend_blas_device_get_memory,
|
447
|
+
/* .get_type = */ ggml_backend_blas_device_get_type,
|
448
|
+
/* .get_props = */ ggml_backend_blas_device_get_props,
|
449
|
+
/* .init_backend = */ ggml_backend_blas_device_init_backend,
|
450
|
+
/* .get_buffer_type = */ ggml_backend_blas_device_get_buffer_type,
|
451
|
+
/* .get_host_buffer_type = */ NULL,
|
452
|
+
/* .buffer_from_host_ptr = */ ggml_backend_blas_device_buffer_from_host_ptr,
|
453
|
+
/* .supports_op = */ ggml_backend_blas_device_supports_op,
|
454
|
+
/* .supports_buft = */ ggml_backend_blas_device_supports_buft,
|
455
|
+
/* .offload_op = */ NULL,
|
456
|
+
/* .event_new = */ NULL,
|
457
|
+
/* .event_free = */ NULL,
|
458
|
+
/* .event_synchronize = */ NULL,
|
459
|
+
};
|
460
|
+
|
461
|
+
// backend reg interface
|
462
|
+
|
463
|
+
static const char * ggml_backend_blas_reg_get_name(ggml_backend_reg_t reg) {
|
464
|
+
return "BLAS";
|
465
|
+
|
466
|
+
GGML_UNUSED(reg);
|
467
|
+
}
|
468
|
+
|
469
|
+
static size_t ggml_backend_blas_reg_get_device_count(ggml_backend_reg_t reg) {
|
470
|
+
return 1;
|
471
|
+
|
472
|
+
GGML_UNUSED(reg);
|
473
|
+
}
|
474
|
+
|
475
|
+
static ggml_backend_dev_t ggml_backend_blas_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
476
|
+
GGML_ASSERT(index == 0);
|
477
|
+
|
478
|
+
static ggml_backend_device ggml_backend_blas_device = {
|
479
|
+
/* .iface = */ ggml_backend_blas_device_i,
|
480
|
+
/* .reg = */ reg,
|
481
|
+
/* .context = */ nullptr,
|
482
|
+
};
|
483
|
+
|
484
|
+
return &ggml_backend_blas_device;
|
485
|
+
|
486
|
+
GGML_UNUSED(reg);
|
487
|
+
GGML_UNUSED(index);
|
488
|
+
}
|
489
|
+
|
490
|
+
static void * ggml_backend_blas_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
491
|
+
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
492
|
+
return (void *)ggml_backend_blas_set_n_threads;
|
493
|
+
}
|
494
|
+
return NULL;
|
495
|
+
|
496
|
+
GGML_UNUSED(reg);
|
497
|
+
GGML_UNUSED(name);
|
498
|
+
}
|
499
|
+
|
500
|
+
static const struct ggml_backend_reg_i ggml_backend_blas_reg_i = {
|
501
|
+
/* .get_name = */ ggml_backend_blas_reg_get_name,
|
502
|
+
/* .get_device_count = */ ggml_backend_blas_reg_get_device_count,
|
503
|
+
/* .get_device = */ ggml_backend_blas_reg_get_device,
|
504
|
+
/* .get_proc_address = */ ggml_backend_blas_get_proc_address,
|
505
|
+
};
|
506
|
+
|
507
|
+
ggml_backend_reg_t ggml_backend_blas_reg(void) {
|
508
|
+
static struct ggml_backend_reg ggml_backend_blas_reg = {
|
509
|
+
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
510
|
+
/* .iface = */ ggml_backend_blas_reg_i,
|
511
|
+
/* .context = */ NULL,
|
512
|
+
};
|
513
|
+
|
514
|
+
return &ggml_backend_blas_reg;
|
515
|
+
}
|
516
|
+
|
517
|
+
GGML_BACKEND_DL_IMPL(ggml_backend_blas_reg)
|
@@ -0,0 +1,175 @@
|
|
1
|
+
/*
|
2
|
+
* Copyright (c) 2023-2024 The ggml authors
|
3
|
+
*
|
4
|
+
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
5
|
+
* of this software and associated documentation files (the "Software"), to
|
6
|
+
* deal in the Software without restriction, including without limitation the
|
7
|
+
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
8
|
+
* sell copies of the Software, and to permit persons to whom the Software is
|
9
|
+
* furnished to do so, subject to the following conditions:
|
10
|
+
*
|
11
|
+
* The above copyright notice and this permission notice shall be included in
|
12
|
+
* all copies or substantial portions of the Software.
|
13
|
+
*
|
14
|
+
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
15
|
+
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
16
|
+
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
17
|
+
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
18
|
+
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
19
|
+
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
20
|
+
* IN THE SOFTWARE.
|
21
|
+
*/
|
22
|
+
|
23
|
+
#include "acl_tensor.h"
|
24
|
+
|
25
|
+
#include <algorithm>
|
26
|
+
#include <cstring>
|
27
|
+
|
28
|
+
aclDataType ggml_cann_type_mapping(ggml_type type) {
|
29
|
+
switch (type) {
|
30
|
+
case GGML_TYPE_F32:
|
31
|
+
return ACL_FLOAT;
|
32
|
+
case GGML_TYPE_F16:
|
33
|
+
return ACL_FLOAT16;
|
34
|
+
case GGML_TYPE_I8:
|
35
|
+
return ACL_INT8;
|
36
|
+
case GGML_TYPE_I16:
|
37
|
+
return ACL_INT16;
|
38
|
+
case GGML_TYPE_I32:
|
39
|
+
return ACL_INT32;
|
40
|
+
case GGML_TYPE_Q4_0:
|
41
|
+
return ACL_INT4;
|
42
|
+
case GGML_TYPE_Q8_0:
|
43
|
+
return ACL_INT8;
|
44
|
+
default:
|
45
|
+
return ACL_DT_UNDEFINED;
|
46
|
+
}
|
47
|
+
return ACL_DT_UNDEFINED;
|
48
|
+
}
|
49
|
+
|
50
|
+
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
51
|
+
size_t* nb, int64_t dims, aclFormat format,
|
52
|
+
size_t offset) {
|
53
|
+
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
|
54
|
+
// added.
|
55
|
+
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
56
|
+
|
57
|
+
int64_t acl_storage_len = 0;
|
58
|
+
if (ne == nullptr) {
|
59
|
+
acl_storage_len = ggml_nbytes(tensor);
|
60
|
+
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
61
|
+
acl_ne[i] = tensor->ne[i];
|
62
|
+
// The step size of acl is in elements.
|
63
|
+
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
|
64
|
+
}
|
65
|
+
} else {
|
66
|
+
// With bcast
|
67
|
+
for (int i = 0; i < dims; i++) {
|
68
|
+
acl_storage_len += (ne[i] - 1) * nb[i];
|
69
|
+
acl_ne[i] = ne[i];
|
70
|
+
acl_stride[i] = nb[i] / ggml_element_size(tensor);
|
71
|
+
}
|
72
|
+
}
|
73
|
+
|
74
|
+
// Reverse ne and stride.
|
75
|
+
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
76
|
+
std::reverse(acl_ne, acl_ne + final_dims);
|
77
|
+
std::reverse(acl_stride, acl_stride + final_dims);
|
78
|
+
|
79
|
+
aclTensor* acl_tensor = aclCreateTensor(
|
80
|
+
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
81
|
+
offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
|
82
|
+
tensor->data);
|
83
|
+
|
84
|
+
return acl_tensor;
|
85
|
+
}
|
86
|
+
|
87
|
+
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
|
88
|
+
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
89
|
+
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
|
90
|
+
return true;
|
91
|
+
}
|
92
|
+
}
|
93
|
+
return false;
|
94
|
+
}
|
95
|
+
|
96
|
+
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
|
97
|
+
const ggml_tensor* src1,
|
98
|
+
int64_t* bcast_src0_ne,
|
99
|
+
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
|
100
|
+
size_t* bcast_src1_nb) {
|
101
|
+
GGML_ASSERT(ggml_can_repeat(src1, src0));
|
102
|
+
int bcast_dim_cnt = 0;
|
103
|
+
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
104
|
+
int64_t nr = src0->ne[i] / src1->ne[i];
|
105
|
+
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
|
106
|
+
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
|
107
|
+
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
|
108
|
+
bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
|
109
|
+
bcast_dim_cnt++;
|
110
|
+
if (nr != 1) {
|
111
|
+
// Need to add an extra dim.
|
112
|
+
bcast_src0_ne[bcast_dim_cnt] = nr;
|
113
|
+
bcast_src1_ne[bcast_dim_cnt] = 1;
|
114
|
+
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
|
115
|
+
bcast_src0_ne[bcast_dim_cnt - 1];
|
116
|
+
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
|
117
|
+
bcast_src1_ne[bcast_dim_cnt - 1];
|
118
|
+
bcast_dim_cnt++;
|
119
|
+
}
|
120
|
+
}
|
121
|
+
return bcast_dim_cnt;
|
122
|
+
}
|
123
|
+
|
124
|
+
int64_t ggml_cann_get_mulmat_bcast_shape(
|
125
|
+
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
126
|
+
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
127
|
+
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
128
|
+
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
|
129
|
+
// input and dst shoule in same shape, except first two dims.
|
130
|
+
GGML_ASSERT(input_ne[2] == dst_ne[2]);
|
131
|
+
GGML_ASSERT(input_ne[3] == dst_ne[3]);
|
132
|
+
|
133
|
+
int bcast_dim_cnt = 0;
|
134
|
+
|
135
|
+
// For mul_mat, a dimension needs to be added before the dimension that
|
136
|
+
// weight needs to be expanded to satisfy the bcast rule of matrix
|
137
|
+
// multiplication.
|
138
|
+
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
139
|
+
int64_t nr = input_ne[i] / weight_ne[i];
|
140
|
+
// Do not use bcast in the first two dimensions because we only support
|
141
|
+
// the bcast batch dimension. Just copy them.
|
142
|
+
if (i < 2 || nr == 1) {
|
143
|
+
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
|
144
|
+
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
145
|
+
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
|
146
|
+
|
147
|
+
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
148
|
+
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
149
|
+
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
150
|
+
bcast_dim_cnt++;
|
151
|
+
} else {
|
152
|
+
// Need to add an extra dim.
|
153
|
+
bcast_input_ne[bcast_dim_cnt] = nr;
|
154
|
+
bcast_dst_ne[bcast_dim_cnt] = nr;
|
155
|
+
bcast_weight_ne[bcast_dim_cnt] = 1;
|
156
|
+
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
157
|
+
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
158
|
+
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
159
|
+
bcast_dim_cnt++;
|
160
|
+
|
161
|
+
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
|
162
|
+
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
|
163
|
+
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
164
|
+
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
|
165
|
+
bcast_input_ne[bcast_dim_cnt - 1];
|
166
|
+
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
|
167
|
+
bcast_dst_ne[bcast_dim_cnt - 1];
|
168
|
+
bcast_weight_nb[bcast_dim_cnt] =
|
169
|
+
bcast_weight_nb[bcast_dim_cnt - 1] *
|
170
|
+
bcast_weight_ne[bcast_dim_cnt - 1];
|
171
|
+
bcast_dim_cnt++;
|
172
|
+
}
|
173
|
+
}
|
174
|
+
return bcast_dim_cnt;
|
175
|
+
}
|