whispercpp 1.3.0 → 1.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +60 -11
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -16
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/{whisper.h → include/whisper.h} +23 -22
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1492 -9
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -21755
@@ -0,0 +1,216 @@
|
|
1
|
+
// This file contains functionality for training models using GGML.
|
2
|
+
// It is not strictly needed vs. just vanilla GGML but it provides a more high-level interface for common needs such as datasets.
|
3
|
+
// At the bottom of this file especially there are relatively high-level functions that are suitable use or adaptation in user code.
|
4
|
+
//
|
5
|
+
// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
|
6
|
+
|
7
|
+
#pragma once
|
8
|
+
|
9
|
+
#include "ggml.h"
|
10
|
+
#include "ggml-backend.h"
|
11
|
+
|
12
|
+
#include <stdint.h>
|
13
|
+
|
14
|
+
#ifdef __cplusplus
|
15
|
+
extern "C" {
|
16
|
+
#endif
|
17
|
+
|
18
|
+
struct ggml_opt_dataset;
|
19
|
+
struct ggml_opt_context;
|
20
|
+
struct ggml_opt_result;
|
21
|
+
|
22
|
+
typedef struct ggml_opt_dataset * ggml_opt_dataset_t;
|
23
|
+
typedef struct ggml_opt_context * ggml_opt_context_t;
|
24
|
+
typedef struct ggml_opt_result * ggml_opt_result_t;
|
25
|
+
|
26
|
+
// ====== Loss ======
|
27
|
+
|
28
|
+
// built-in loss types, i.e. the built-in quantities minimized by the optimizer
|
29
|
+
// custom loss types can be defined via mean or sum which simply reduce the outputs for all datapoints to a single value
|
30
|
+
enum ggml_opt_loss_type {
|
31
|
+
GGML_OPT_LOSS_TYPE_MEAN,
|
32
|
+
GGML_OPT_LOSS_TYPE_SUM,
|
33
|
+
GGML_OPT_LOSS_TYPE_CROSS_ENTROPY,
|
34
|
+
GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR,
|
35
|
+
};
|
36
|
+
|
37
|
+
// ====== Dataset ======
|
38
|
+
|
39
|
+
GGML_API ggml_opt_dataset_t ggml_opt_dataset_init(
|
40
|
+
int64_t ne_datapoint, // number of elements per datapoint
|
41
|
+
int64_t ne_label, // number of elements per label
|
42
|
+
int64_t ndata, // total number of datapoints/labels
|
43
|
+
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
|
44
|
+
GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset);
|
45
|
+
|
46
|
+
// get underlying tensors that store the data
|
47
|
+
GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
|
48
|
+
GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
|
49
|
+
|
50
|
+
// shuffle idata first datapoints from dataset with RNG from opt_ctx, shuffle all datapoints if idata is negative
|
51
|
+
GGML_API void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata);
|
52
|
+
|
53
|
+
// get batch at position ibatch from dataset and copy the data to data_batch and labels_batch
|
54
|
+
GGML_API void ggml_opt_dataset_get_batch(
|
55
|
+
ggml_opt_dataset_t dataset,
|
56
|
+
struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
|
57
|
+
struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
|
58
|
+
int64_t ibatch);
|
59
|
+
|
60
|
+
// ====== Model / Context ======
|
61
|
+
|
62
|
+
enum ggml_opt_build_type {
|
63
|
+
GGML_OPT_BUILD_TYPE_FORWARD,
|
64
|
+
GGML_OPT_BUILD_TYPE_GRAD,
|
65
|
+
GGML_OPT_BUILD_TYPE_OPT,
|
66
|
+
};
|
67
|
+
|
68
|
+
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
|
69
|
+
struct ggml_opt_optimizer_params {
|
70
|
+
// AdamW optimizer parameters
|
71
|
+
struct {
|
72
|
+
float alpha; // learning rate
|
73
|
+
float beta1;
|
74
|
+
float beta2;
|
75
|
+
float eps; // epsilon for numerical stability
|
76
|
+
float wd; // weight decay for AdamW, use 0.0f to disable
|
77
|
+
} adamw;
|
78
|
+
};
|
79
|
+
|
80
|
+
// callback to calculate optimizer parameters prior to a backward pass
|
81
|
+
// userdata can be used to pass arbitrary data
|
82
|
+
typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata);
|
83
|
+
|
84
|
+
// returns the default optimizer params (constant)
|
85
|
+
// userdata is not used
|
86
|
+
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata);
|
87
|
+
|
88
|
+
// parameters for initializing a new optimization context
|
89
|
+
struct ggml_opt_params {
|
90
|
+
ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
|
91
|
+
|
92
|
+
struct ggml_context * ctx_compute; // created in user code, holds non-static tensors
|
93
|
+
|
94
|
+
// the forward graph is defined by inputs and outputs
|
95
|
+
// those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts
|
96
|
+
struct ggml_tensor * inputs;
|
97
|
+
struct ggml_tensor * outputs;
|
98
|
+
|
99
|
+
enum ggml_opt_loss_type loss_type;
|
100
|
+
enum ggml_opt_build_type build_type;
|
101
|
+
|
102
|
+
int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done
|
103
|
+
|
104
|
+
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
|
105
|
+
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
|
106
|
+
};
|
107
|
+
|
108
|
+
// get parameters for an optimization context with defaults set where possible
|
109
|
+
// parameters for which no sensible defaults exist are supplied as arguments to this function
|
110
|
+
GGML_API ggml_opt_params ggml_opt_default_params(
|
111
|
+
ggml_backend_sched_t backend_sched,
|
112
|
+
struct ggml_context * ctx_compute,
|
113
|
+
struct ggml_tensor * inputs,
|
114
|
+
struct ggml_tensor * outputs,
|
115
|
+
enum ggml_opt_loss_type loss_type);
|
116
|
+
|
117
|
+
GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params);
|
118
|
+
GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx);
|
119
|
+
|
120
|
+
// set gradients to zero, initilize loss, and optionally reset the optimizer
|
121
|
+
GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer);
|
122
|
+
|
123
|
+
// get underlying tensors that store data
|
124
|
+
GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor
|
125
|
+
GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor
|
126
|
+
GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against
|
127
|
+
GGML_API struct ggml_tensor * ggml_opt_loss( ggml_opt_context_t opt_ctx); // scalar tensor that contains the loss
|
128
|
+
GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs
|
129
|
+
GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
|
130
|
+
|
131
|
+
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
|
132
|
+
|
133
|
+
// ====== Optimization Result ======
|
134
|
+
|
135
|
+
GGML_API ggml_opt_result_t ggml_opt_result_init();
|
136
|
+
GGML_API void ggml_opt_result_free(ggml_opt_result_t result);
|
137
|
+
GGML_API void ggml_opt_result_reset(ggml_opt_result_t result);
|
138
|
+
|
139
|
+
// get data from result, uncertainties are optional and can be ignored by passing NULL
|
140
|
+
GGML_API void ggml_opt_result_ndata( ggml_opt_result_t result, int64_t * ndata); // writes 1 value, number of datapoints
|
141
|
+
GGML_API void ggml_opt_result_loss( ggml_opt_result_t result, double * loss, double * unc); // writes 1 value
|
142
|
+
GGML_API void ggml_opt_result_pred( ggml_opt_result_t result, int32_t * pred); // writes ndata values
|
143
|
+
GGML_API void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc); // writes 1 value
|
144
|
+
|
145
|
+
// ====== Computation ======
|
146
|
+
|
147
|
+
// do forward pass, increment result if not NULL
|
148
|
+
GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
149
|
+
|
150
|
+
// do forward pass, increment result if not NULL, do backward pass
|
151
|
+
GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
152
|
+
|
153
|
+
// ############################################################################
|
154
|
+
// ## The high-level functions start here. They do not depend on any private ##
|
155
|
+
// ## functions or structs and can be copied to and adapted for user code. ##
|
156
|
+
// ############################################################################
|
157
|
+
|
158
|
+
// ====== Intended Usage ======
|
159
|
+
//
|
160
|
+
// 1. Select the appropriate loss for your problem.
|
161
|
+
// 2. Create a dataset and set the data for the "data" tensor. Also set the "labels" tensor if your loss needs them.
|
162
|
+
// Setting the shard size to 1 will be fine, it's the granularity with which data is shuffled/loaded (bigger values are faster).
|
163
|
+
// 3. Create a GGML graph for your model with no_alloc == true. Use two separate contexts for the tensors.
|
164
|
+
// The first context should contain the model parameters and inputs and be allocated statically in user code.
|
165
|
+
// The second context should contain all other tensors and will be (re)allocated automatically.
|
166
|
+
// Due to this automated allocation the data of the second context is not defined when accessed in user code.
|
167
|
+
// Note that the second dimension of the inputs/outputs are interpreted as the number of datapoints in those tensors.
|
168
|
+
// 4. Call ggml_opt_fit. If you need more control you can use ggml_opt_epoch instead.
|
169
|
+
|
170
|
+
// signature for a callback while evaluating opt_ctx on dataset, called after an evaluation
|
171
|
+
typedef void (*ggml_opt_epoch_callback)(
|
172
|
+
bool train, // true after training evaluation, false after validation evaluation
|
173
|
+
ggml_opt_context_t opt_ctx,
|
174
|
+
ggml_opt_dataset_t dataset,
|
175
|
+
ggml_opt_result_t result, // result associated with the dataset subsection
|
176
|
+
int64_t ibatch, // number of batches that have been evaluated so far
|
177
|
+
int64_t ibatch_max, // total number of batches in this dataset subsection
|
178
|
+
int64_t t_start_us); // time at which the evaluation on the dataset subsection was started
|
179
|
+
|
180
|
+
// do training on front of dataset, do evaluation only on back of dataset
|
181
|
+
GGML_API void ggml_opt_epoch(
|
182
|
+
ggml_opt_context_t opt_ctx,
|
183
|
+
ggml_opt_dataset_t dataset,
|
184
|
+
ggml_opt_result_t result_train, // result to increment during training, ignored if NULL
|
185
|
+
ggml_opt_result_t result_eval, // result to increment during evaluation, ignored if NULL
|
186
|
+
int64_t idata_split, // data index at which to split training and evaluation
|
187
|
+
ggml_opt_epoch_callback callback_train,
|
188
|
+
ggml_opt_epoch_callback callback_eval);
|
189
|
+
|
190
|
+
// callback that prints a progress bar on stderr
|
191
|
+
GGML_API void ggml_opt_epoch_callback_progress_bar(
|
192
|
+
bool train,
|
193
|
+
ggml_opt_context_t opt_ctx,
|
194
|
+
ggml_opt_dataset_t dataset,
|
195
|
+
ggml_opt_result_t result,
|
196
|
+
int64_t ibatch,
|
197
|
+
int64_t ibatch_max,
|
198
|
+
int64_t t_start_us);
|
199
|
+
|
200
|
+
// fit model defined by inputs and outputs to dataset
|
201
|
+
GGML_API void ggml_opt_fit(
|
202
|
+
ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
|
203
|
+
ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
|
204
|
+
ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
|
205
|
+
ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
206
|
+
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
|
207
|
+
enum ggml_opt_loss_type loss_type, // loss to minimize
|
208
|
+
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
|
209
|
+
int64_t nepoch, // how many times the dataset should be iterated over
|
210
|
+
int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs
|
211
|
+
float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f)
|
212
|
+
bool silent); // whether or not info prints to stderr should be suppressed
|
213
|
+
|
214
|
+
#ifdef __cplusplus
|
215
|
+
}
|
216
|
+
#endif
|
@@ -0,0 +1,28 @@
|
|
1
|
+
#pragma once
|
2
|
+
|
3
|
+
#include "ggml.h"
|
4
|
+
#include "ggml-backend.h"
|
5
|
+
|
6
|
+
#ifdef __cplusplus
|
7
|
+
extern "C" {
|
8
|
+
#endif
|
9
|
+
|
10
|
+
#define GGML_RPC_MAX_SERVERS 16
|
11
|
+
|
12
|
+
// backend API
|
13
|
+
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
14
|
+
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
|
15
|
+
|
16
|
+
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
17
|
+
|
18
|
+
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
19
|
+
|
20
|
+
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
21
|
+
|
22
|
+
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
23
|
+
|
24
|
+
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
|
25
|
+
|
26
|
+
#ifdef __cplusplus
|
27
|
+
}
|
28
|
+
#endif
|
@@ -0,0 +1,49 @@
|
|
1
|
+
//
|
2
|
+
// MIT license
|
3
|
+
// Copyright (C) 2024 Intel Corporation
|
4
|
+
// SPDX-License-Identifier: MIT
|
5
|
+
//
|
6
|
+
|
7
|
+
#pragma once
|
8
|
+
|
9
|
+
#include "ggml.h"
|
10
|
+
#include "ggml-backend.h"
|
11
|
+
|
12
|
+
#define GGML_SYCL_NAME "SYCL"
|
13
|
+
#define GGML_SYCL_MAX_DEVICES 48
|
14
|
+
|
15
|
+
#ifdef __cplusplus
|
16
|
+
extern "C" {
|
17
|
+
#endif
|
18
|
+
|
19
|
+
// backend API
|
20
|
+
GGML_BACKEND_API ggml_backend_t ggml_backend_sycl_init(int device);
|
21
|
+
|
22
|
+
GGML_BACKEND_API bool ggml_backend_is_sycl(ggml_backend_t backend);
|
23
|
+
|
24
|
+
// devide buffer
|
25
|
+
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
26
|
+
|
27
|
+
// split tensor buffer that splits matrices by rows across multiple devices
|
28
|
+
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
29
|
+
|
30
|
+
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
31
|
+
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
32
|
+
|
33
|
+
GGML_BACKEND_API void ggml_backend_sycl_print_sycl_devices(void);
|
34
|
+
GGML_BACKEND_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len);
|
35
|
+
GGML_BACKEND_API void ggml_backend_sycl_get_device_description(int device,
|
36
|
+
char *description,
|
37
|
+
size_t description_size);
|
38
|
+
GGML_BACKEND_API int ggml_backend_sycl_get_device_count();
|
39
|
+
GGML_BACKEND_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
40
|
+
|
41
|
+
// SYCL doesn't support registering host memory, keep here for reference
|
42
|
+
// GGML_BACKEND_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
43
|
+
// GGML_BACKEND_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
44
|
+
|
45
|
+
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_sycl_reg(void);
|
46
|
+
|
47
|
+
#ifdef __cplusplus
|
48
|
+
}
|
49
|
+
#endif
|
@@ -0,0 +1,31 @@
|
|
1
|
+
#pragma once
|
2
|
+
|
3
|
+
#include "ggml.h"
|
4
|
+
#include "ggml-backend.h"
|
5
|
+
|
6
|
+
#ifdef __cplusplus
|
7
|
+
extern "C" {
|
8
|
+
#endif
|
9
|
+
|
10
|
+
#define GGML_VK_NAME "Vulkan"
|
11
|
+
#define GGML_VK_MAX_DEVICES 16
|
12
|
+
|
13
|
+
GGML_BACKEND_API void ggml_vk_instance_init(void);
|
14
|
+
|
15
|
+
// backend API
|
16
|
+
GGML_BACKEND_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
17
|
+
|
18
|
+
GGML_BACKEND_API bool ggml_backend_is_vk(ggml_backend_t backend);
|
19
|
+
GGML_BACKEND_API int ggml_backend_vk_get_device_count(void);
|
20
|
+
GGML_BACKEND_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
21
|
+
GGML_BACKEND_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
22
|
+
|
23
|
+
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
24
|
+
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
25
|
+
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
26
|
+
|
27
|
+
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_vk_reg(void);
|
28
|
+
|
29
|
+
#ifdef __cplusplus
|
30
|
+
}
|
31
|
+
#endif
|