whispercpp 1.3.0 → 1.3.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +60 -11
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -16
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/{whisper.h → include/whisper.h} +23 -22
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1492 -9
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -21755
@@ -0,0 +1,378 @@
|
|
1
|
+
#include "norm.hpp"
|
2
|
+
|
3
|
+
static void norm_f32(const float* x, float* dst, const int ncols, const float eps,
|
4
|
+
const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
|
5
|
+
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
6
|
+
item_ct1.get_local_id(1);
|
7
|
+
const int tid = item_ct1.get_local_id(2);
|
8
|
+
|
9
|
+
const int nthreads = item_ct1.get_local_range(2);
|
10
|
+
const int nwarps = nthreads / WARP_SIZE;
|
11
|
+
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
|
12
|
+
|
13
|
+
for (int col = tid; col < ncols; col += block_size) {
|
14
|
+
const float xi = x[row * ncols + col];
|
15
|
+
mean_var.x() += xi;
|
16
|
+
mean_var.y() += xi * xi;
|
17
|
+
}
|
18
|
+
|
19
|
+
// sum up partial sums
|
20
|
+
mean_var = warp_reduce_sum(mean_var, item_ct1);
|
21
|
+
if (block_size > WARP_SIZE) {
|
22
|
+
|
23
|
+
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
24
|
+
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
25
|
+
if (lane_id == 0) {
|
26
|
+
s_sum[warp_id] = mean_var;
|
27
|
+
}
|
28
|
+
/*
|
29
|
+
DPCT1118:0: SYCL group functions and algorithms must be encountered in
|
30
|
+
converged control flow. You may need to adjust the code.
|
31
|
+
*/
|
32
|
+
item_ct1.barrier(sycl::access::fence_space::local_space);
|
33
|
+
mean_var = 0.f;
|
34
|
+
size_t nreduce = nwarps / WARP_SIZE;
|
35
|
+
for (size_t i = 0; i < nreduce; i += 1)
|
36
|
+
{
|
37
|
+
mean_var += s_sum[lane_id + i * WARP_SIZE];
|
38
|
+
}
|
39
|
+
mean_var = warp_reduce_sum(mean_var, item_ct1);
|
40
|
+
}
|
41
|
+
|
42
|
+
const float mean = mean_var.x() / ncols;
|
43
|
+
const float var = mean_var.y() / ncols - mean * mean;
|
44
|
+
const float inv_std = sycl::rsqrt(var + eps);
|
45
|
+
|
46
|
+
for (int col = tid; col < ncols; col += block_size) {
|
47
|
+
dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std;
|
48
|
+
}
|
49
|
+
}
|
50
|
+
|
51
|
+
static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps,
|
52
|
+
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
|
53
|
+
int start = item_ct1.get_group(2) * group_size;
|
54
|
+
int end = start + group_size;
|
55
|
+
const int nthreads = item_ct1.get_local_range(2);
|
56
|
+
const int nwarps = nthreads / WARP_SIZE;
|
57
|
+
start += item_ct1.get_local_id(2);
|
58
|
+
size_t nreduce = nwarps / WARP_SIZE;
|
59
|
+
|
60
|
+
if (end >= ne_elements) {
|
61
|
+
end = ne_elements;
|
62
|
+
}
|
63
|
+
|
64
|
+
float tmp = 0.0f; // partial sum for thread in warp
|
65
|
+
|
66
|
+
for (int j = start; j < end; j += block_size) {
|
67
|
+
tmp += x[j];
|
68
|
+
}
|
69
|
+
|
70
|
+
tmp = warp_reduce_sum(tmp, item_ct1);
|
71
|
+
if (block_size > WARP_SIZE) {
|
72
|
+
|
73
|
+
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
74
|
+
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
75
|
+
if (lane_id == 0) {
|
76
|
+
s_sum[warp_id] = tmp;
|
77
|
+
}
|
78
|
+
/*
|
79
|
+
DPCT1118:1: SYCL group functions and algorithms must be encountered in
|
80
|
+
converged control flow. You may need to adjust the code.
|
81
|
+
*/
|
82
|
+
/*
|
83
|
+
DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
|
84
|
+
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
85
|
+
better performance if there is no access to global memory.
|
86
|
+
*/
|
87
|
+
item_ct1.barrier();
|
88
|
+
tmp = 0.f;
|
89
|
+
for (size_t i = 0; i < nreduce; i += 1)
|
90
|
+
{
|
91
|
+
tmp += s_sum[lane_id + i * WARP_SIZE];
|
92
|
+
}
|
93
|
+
tmp = warp_reduce_sum(tmp, item_ct1);
|
94
|
+
}
|
95
|
+
|
96
|
+
float mean = tmp / group_size;
|
97
|
+
tmp = 0.0f;
|
98
|
+
|
99
|
+
for (int j = start; j < end; j += block_size) {
|
100
|
+
float xi = x[j] - mean;
|
101
|
+
dst[j] = xi;
|
102
|
+
tmp += xi * xi;
|
103
|
+
}
|
104
|
+
|
105
|
+
tmp = warp_reduce_sum(tmp, item_ct1);
|
106
|
+
if (block_size > WARP_SIZE) {
|
107
|
+
|
108
|
+
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
109
|
+
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
110
|
+
if (lane_id == 0) {
|
111
|
+
s_sum[warp_id] = tmp;
|
112
|
+
}
|
113
|
+
/*
|
114
|
+
DPCT1118:2: SYCL group functions and algorithms must be encountered in
|
115
|
+
converged control flow. You may need to adjust the code.
|
116
|
+
*/
|
117
|
+
/*
|
118
|
+
DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
|
119
|
+
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
120
|
+
better performance if there is no access to global memory.
|
121
|
+
*/
|
122
|
+
item_ct1.barrier();
|
123
|
+
tmp = 0.f;
|
124
|
+
for (size_t i = 0; i < nreduce; i += 1)
|
125
|
+
{
|
126
|
+
tmp += s_sum[lane_id + i * WARP_SIZE];
|
127
|
+
}
|
128
|
+
tmp = warp_reduce_sum(tmp, item_ct1);
|
129
|
+
}
|
130
|
+
|
131
|
+
float variance = tmp / group_size;
|
132
|
+
float scale = sycl::rsqrt(variance + eps);
|
133
|
+
for (int j = start; j < end; j += block_size) {
|
134
|
+
dst[j] *= scale;
|
135
|
+
}
|
136
|
+
}
|
137
|
+
|
138
|
+
static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps,
|
139
|
+
const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
|
140
|
+
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
141
|
+
item_ct1.get_local_id(1);
|
142
|
+
const int tid = item_ct1.get_local_id(2);
|
143
|
+
const int nthreads = item_ct1.get_local_range(2);
|
144
|
+
const int nwarps = nthreads / WARP_SIZE;
|
145
|
+
float tmp = 0.0f; // partial sum for thread in warp
|
146
|
+
|
147
|
+
for (int col = tid; col < ncols; col += block_size) {
|
148
|
+
const float xi = x[row * ncols + col];
|
149
|
+
tmp += xi * xi;
|
150
|
+
}
|
151
|
+
|
152
|
+
// sum up partial sums
|
153
|
+
tmp = warp_reduce_sum(tmp, item_ct1);
|
154
|
+
if (block_size > WARP_SIZE) {
|
155
|
+
|
156
|
+
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
157
|
+
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
158
|
+
if (lane_id == 0) {
|
159
|
+
s_sum[warp_id] = tmp;
|
160
|
+
}
|
161
|
+
/*
|
162
|
+
DPCT1118:3: SYCL group functions and algorithms must be encountered in
|
163
|
+
converged control flow. You may need to adjust the code.
|
164
|
+
*/
|
165
|
+
item_ct1.barrier(sycl::access::fence_space::local_space);
|
166
|
+
size_t nreduce = nwarps / WARP_SIZE;
|
167
|
+
tmp = 0.f;
|
168
|
+
for (size_t i = 0; i < nreduce; i += 1)
|
169
|
+
{
|
170
|
+
tmp += s_sum[lane_id + i * WARP_SIZE];
|
171
|
+
}
|
172
|
+
tmp = warp_reduce_sum(tmp, item_ct1);
|
173
|
+
}
|
174
|
+
|
175
|
+
const float mean = tmp / ncols;
|
176
|
+
const float scale = sycl::rsqrt(mean + eps);
|
177
|
+
|
178
|
+
for (int col = tid; col < ncols; col += block_size) {
|
179
|
+
dst[row * ncols + col] = scale * x[row * ncols + col];
|
180
|
+
}
|
181
|
+
}
|
182
|
+
|
183
|
+
static void norm_f32_sycl(const float* x, float* dst, const int ncols,
|
184
|
+
const int nrows, const float eps,
|
185
|
+
queue_ptr stream, int device) {
|
186
|
+
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
187
|
+
if (ncols < 1024) {
|
188
|
+
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
189
|
+
stream->submit([&](sycl::handler& cgh) {
|
190
|
+
cgh.parallel_for(
|
191
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
192
|
+
block_dims),
|
193
|
+
[=](sycl::nd_item<3> item_ct1)
|
194
|
+
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
195
|
+
norm_f32(x, dst, ncols, eps, item_ct1,
|
196
|
+
nullptr, WARP_SIZE);
|
197
|
+
});
|
198
|
+
});
|
199
|
+
}
|
200
|
+
else {
|
201
|
+
const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
|
202
|
+
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
|
203
|
+
const sycl::range<3> block_dims(1, 1, work_group_size);
|
204
|
+
/*
|
205
|
+
DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
|
206
|
+
the limit. To get the device limit, query
|
207
|
+
info::device::max_work_group_size. Adjust the work-group size if needed.
|
208
|
+
*/
|
209
|
+
stream->submit([&](sycl::handler& cgh) {
|
210
|
+
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
|
211
|
+
sycl::range<1>(work_group_size / WARP_SIZE), cgh);
|
212
|
+
|
213
|
+
cgh.parallel_for(
|
214
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
215
|
+
block_dims),
|
216
|
+
[=](sycl::nd_item<3> item_ct1)
|
217
|
+
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
218
|
+
norm_f32(x, dst, ncols, eps, item_ct1,
|
219
|
+
get_pointer(s_sum_acc_ct1), work_group_size);
|
220
|
+
});
|
221
|
+
});
|
222
|
+
}
|
223
|
+
}
|
224
|
+
|
225
|
+
static void group_norm_f32_sycl(const float* x, float* dst,
|
226
|
+
const int num_groups, const float eps, const int group_size,
|
227
|
+
const int ne_elements, queue_ptr stream, int device) {
|
228
|
+
if (group_size < 1024) {
|
229
|
+
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
230
|
+
stream->submit([&](sycl::handler& cgh) {
|
231
|
+
const float eps_ct4 = eps;
|
232
|
+
cgh.parallel_for(
|
233
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
|
234
|
+
block_dims),
|
235
|
+
[=](sycl::nd_item<3> item_ct1)
|
236
|
+
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
237
|
+
group_norm_f32(
|
238
|
+
x, dst, group_size, ne_elements, eps_ct4, item_ct1,
|
239
|
+
nullptr, WARP_SIZE);
|
240
|
+
});
|
241
|
+
});
|
242
|
+
}
|
243
|
+
else {
|
244
|
+
const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
|
245
|
+
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
|
246
|
+
const sycl::range<3> block_dims(1, 1, work_group_size);
|
247
|
+
/*
|
248
|
+
DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
|
249
|
+
the limit. To get the device limit, query
|
250
|
+
info::device::max_work_group_size. Adjust the work-group size if needed.
|
251
|
+
*/
|
252
|
+
|
253
|
+
stream->submit([&](sycl::handler& cgh) {
|
254
|
+
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
|
255
|
+
cgh);
|
256
|
+
|
257
|
+
const float eps_ct4 = eps;
|
258
|
+
|
259
|
+
cgh.parallel_for(
|
260
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
|
261
|
+
block_dims),
|
262
|
+
[=](sycl::nd_item<3> item_ct1)
|
263
|
+
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
264
|
+
group_norm_f32(x, dst, group_size, ne_elements,
|
265
|
+
eps_ct4, item_ct1,
|
266
|
+
get_pointer(s_sum_acc_ct1), work_group_size);
|
267
|
+
});
|
268
|
+
});
|
269
|
+
}
|
270
|
+
}
|
271
|
+
|
272
|
+
static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
|
273
|
+
const int nrows, const float eps,
|
274
|
+
queue_ptr stream, int device) {
|
275
|
+
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
276
|
+
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
|
277
|
+
if (ncols < 1024) {
|
278
|
+
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
279
|
+
stream->submit([&](sycl::handler& cgh) {
|
280
|
+
cgh.parallel_for(
|
281
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
282
|
+
block_dims),
|
283
|
+
[=](sycl::nd_item<3> item_ct1)
|
284
|
+
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
285
|
+
rms_norm_f32(x, dst, ncols, eps, item_ct1,
|
286
|
+
nullptr, WARP_SIZE);
|
287
|
+
});
|
288
|
+
});
|
289
|
+
}
|
290
|
+
else {
|
291
|
+
const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
|
292
|
+
assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
|
293
|
+
const sycl::range<3> block_dims(1, 1, work_group_size);
|
294
|
+
/*
|
295
|
+
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
|
296
|
+
the limit. To get the device limit, query
|
297
|
+
info::device::max_work_group_size. Adjust the work-group size if needed.
|
298
|
+
*/
|
299
|
+
stream->submit([&](sycl::handler& cgh) {
|
300
|
+
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
|
301
|
+
cgh);
|
302
|
+
cgh.parallel_for(
|
303
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
304
|
+
block_dims),
|
305
|
+
[=](sycl::nd_item<3> item_ct1)
|
306
|
+
[[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
307
|
+
rms_norm_f32(x, dst, ncols, eps, item_ct1,
|
308
|
+
get_pointer(s_sum_acc_ct1), work_group_size);
|
309
|
+
});
|
310
|
+
});
|
311
|
+
}
|
312
|
+
}
|
313
|
+
|
314
|
+
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
|
315
|
+
ggml_tensor* dst, const float* src0_dd,
|
316
|
+
const float* src1_dd, float* dst_dd,
|
317
|
+
const queue_ptr& main_stream) {
|
318
|
+
|
319
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
320
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
321
|
+
|
322
|
+
const int64_t ne00 = src0->ne[0];
|
323
|
+
const int64_t nrows = ggml_nrows(src0);
|
324
|
+
|
325
|
+
float eps;
|
326
|
+
memcpy(&eps, dst->op_params, sizeof(float));
|
327
|
+
|
328
|
+
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
|
329
|
+
|
330
|
+
(void)src1;
|
331
|
+
(void)dst;
|
332
|
+
(void)src1_dd;
|
333
|
+
}
|
334
|
+
|
335
|
+
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
|
336
|
+
const ggml_tensor* src1, ggml_tensor* dst,
|
337
|
+
const float* src0_dd, const float* src1_dd,
|
338
|
+
float* dst_dd,
|
339
|
+
const queue_ptr& main_stream) {
|
340
|
+
|
341
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
342
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
343
|
+
|
344
|
+
int num_groups = dst->op_params[0];
|
345
|
+
|
346
|
+
float eps;
|
347
|
+
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
348
|
+
|
349
|
+
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
350
|
+
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device);
|
351
|
+
|
352
|
+
(void)src1;
|
353
|
+
(void)dst;
|
354
|
+
(void)src1_dd;
|
355
|
+
GGML_UNUSED(ctx);
|
356
|
+
}
|
357
|
+
|
358
|
+
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
|
359
|
+
const ggml_tensor* src1, ggml_tensor* dst,
|
360
|
+
const float* src0_dd, const float* src1_dd,
|
361
|
+
float* dst_dd,
|
362
|
+
const queue_ptr& main_stream) {
|
363
|
+
|
364
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
365
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
366
|
+
|
367
|
+
const int64_t ne00 = src0->ne[0];
|
368
|
+
const int64_t nrows = ggml_nrows(src0);
|
369
|
+
|
370
|
+
float eps;
|
371
|
+
memcpy(&eps, dst->op_params, sizeof(float));
|
372
|
+
|
373
|
+
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
|
374
|
+
|
375
|
+
(void)src1;
|
376
|
+
(void)dst;
|
377
|
+
(void)src1_dd;
|
378
|
+
}
|
@@ -0,0 +1,56 @@
|
|
1
|
+
#include <sycl/sycl.hpp>
|
2
|
+
#include <oneapi/mkl.hpp>
|
3
|
+
#include "outprod.hpp"
|
4
|
+
|
5
|
+
|
6
|
+
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
|
7
|
+
const ggml_tensor* src1, ggml_tensor* dst) {
|
8
|
+
|
9
|
+
|
10
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
11
|
+
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
12
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
13
|
+
GGML_ASSERT(ggml_is_contiguous(src0));
|
14
|
+
GGML_ASSERT(ggml_is_contiguous(dst));
|
15
|
+
|
16
|
+
GGML_TENSOR_BINARY_OP_LOCALS
|
17
|
+
|
18
|
+
// Get SYCL queue
|
19
|
+
dpct::queue_ptr stream = ctx.stream();
|
20
|
+
|
21
|
+
// Dimension checks
|
22
|
+
GGML_ASSERT(ne01 == ne11); // Inner dimensions must match
|
23
|
+
GGML_ASSERT(ne0 == ne00); // Output rows match src0 rows
|
24
|
+
GGML_ASSERT(ne1 == ne10); // Output cols match src1 cols
|
25
|
+
|
26
|
+
// Get data pointers
|
27
|
+
const float* src0_d = (const float*)src0->data;
|
28
|
+
const float* src1_d = (const float*)src1->data;
|
29
|
+
float* dst_d = (float*)dst->data;
|
30
|
+
|
31
|
+
// GEMM parameters
|
32
|
+
const float alpha = 1.0f;
|
33
|
+
const float beta = 0.0f;
|
34
|
+
|
35
|
+
// Handle transposition of src1
|
36
|
+
const bool src1_T = ggml_is_transposed(src1);
|
37
|
+
const oneapi::mkl::transpose src1_op =
|
38
|
+
src1_T ? oneapi::mkl::transpose::nontrans : oneapi::mkl::transpose::trans;
|
39
|
+
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
|
40
|
+
|
41
|
+
try {
|
42
|
+
// Perform matrix multiplication using oneMKL GEMM
|
43
|
+
#ifdef GGML_SYCL_NVIDIA
|
44
|
+
oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ *stream },
|
45
|
+
oneapi::mkl::transpose::nontrans, src1_op, ne0, ne1, ne01, alpha, src0_d,
|
46
|
+
ne00, src1_d, ldb, beta, dst_d, ne0);
|
47
|
+
#else
|
48
|
+
oneapi::mkl::blas::column_major::gemm(*stream, oneapi::mkl::transpose::nontrans, src1_op, ne0, ne1, ne01, alpha,
|
49
|
+
src0_d, ne00, src1_d, ldb, beta, dst_d, ne0);
|
50
|
+
#endif
|
51
|
+
}
|
52
|
+
catch (sycl::exception const& exc) {
|
53
|
+
std::cerr << exc.what() << std::endl;
|
54
|
+
GGML_ASSERT(false);
|
55
|
+
}
|
56
|
+
}
|