whispercpp 1.3.0 → 1.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +60 -11
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -16
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/{whisper.h → include/whisper.h} +23 -22
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1492 -9
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -21755
@@ -0,0 +1,19 @@
|
|
1
|
+
#ifndef ASCENDC_KERNELS_H
|
2
|
+
#define ASCENDC_KERNELS_H
|
3
|
+
|
4
|
+
#include "aclrtlaunch_ascendc_get_row_f32.h"
|
5
|
+
#include "aclrtlaunch_ascendc_get_row_f16.h"
|
6
|
+
#include "aclrtlaunch_ascendc_get_row_q8_0.h"
|
7
|
+
#include "aclrtlaunch_ascendc_get_row_q4_0.h"
|
8
|
+
|
9
|
+
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
|
10
|
+
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
|
11
|
+
#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
|
12
|
+
#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
|
13
|
+
|
14
|
+
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
|
15
|
+
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
|
16
|
+
#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
|
17
|
+
#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
|
18
|
+
|
19
|
+
#endif // ASCENDC_KERNELS_H
|
@@ -0,0 +1,236 @@
|
|
1
|
+
#include "kernel_operator.h"
|
2
|
+
|
3
|
+
#include <cmath>
|
4
|
+
|
5
|
+
using namespace AscendC;
|
6
|
+
|
7
|
+
#define BUFFER_NUM 2
|
8
|
+
const int64_t SUPPORTED_MAX_DIM = 65535; // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
|
9
|
+
|
10
|
+
template <typename SRC_T, typename DST_T>
|
11
|
+
class DupByRows {
|
12
|
+
public:
|
13
|
+
__aicore__ inline DupByRows() {}
|
14
|
+
__aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
|
15
|
+
size_t *input_nb_ub) {
|
16
|
+
/* Dup by rows when src is contigous on first dimension and dst is
|
17
|
+
contiguous, each kernel process one row.
|
18
|
+
*/
|
19
|
+
|
20
|
+
// Input has four dims.
|
21
|
+
int64_t op_block_num = GetBlockNum();
|
22
|
+
int64_t op_block_idx = GetBlockIdx();
|
23
|
+
|
24
|
+
// param
|
25
|
+
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
|
26
|
+
num_elem = input_ne_ub[0];
|
27
|
+
|
28
|
+
// index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
|
29
|
+
idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
|
30
|
+
idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
|
31
|
+
/ (input_ne_ub[1]);
|
32
|
+
idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
|
33
|
+
- idx_ne2 * input_ne_ub[1];
|
34
|
+
|
35
|
+
// src may not contiguous in dim [1,2,3], so stride decited by ne&nb
|
36
|
+
src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
|
37
|
+
+ input_nb_ub[1] * idx_ne1;
|
38
|
+
|
39
|
+
// dst is contiguous
|
40
|
+
dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
|
41
|
+
|
42
|
+
src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
|
43
|
+
src_stride));
|
44
|
+
dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
|
45
|
+
dst_stride));
|
46
|
+
|
47
|
+
pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
|
48
|
+
32 - 1) / 32 * 32);
|
49
|
+
pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
|
50
|
+
32 - 1) / 32 * 32);
|
51
|
+
}
|
52
|
+
|
53
|
+
__aicore__ inline void copy_in() {
|
54
|
+
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
|
55
|
+
const size_t elem_per_block = 32 / sizeof(SRC_T);
|
56
|
+
size_t tail = num_elem % elem_per_block;
|
57
|
+
size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
|
58
|
+
DataCopy(src_local, src_gm, cpy_elements_len);
|
59
|
+
src_queue.EnQue(src_local);
|
60
|
+
}
|
61
|
+
|
62
|
+
__aicore__ inline void copy_out() {
|
63
|
+
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
|
64
|
+
#ifdef ASCEND_310P
|
65
|
+
const size_t elem_per_block = 32 / sizeof(DST_T);
|
66
|
+
size_t tail = num_elem % elem_per_block;
|
67
|
+
size_t len = num_elem & ~(elem_per_block - 1);
|
68
|
+
if (len > 0) {
|
69
|
+
DataCopy(dst_gm, dst_local, len);
|
70
|
+
}
|
71
|
+
if(tail != 0) {
|
72
|
+
for (size_t i = tail; i < elem_per_block; i++) {
|
73
|
+
dst_local[len + i].SetValue(0, 0);
|
74
|
+
}
|
75
|
+
SetAtomicAdd<float>();
|
76
|
+
DataCopy(dst_gm[len], dst_local[len], elem_per_block);
|
77
|
+
SetAtomicNone();
|
78
|
+
}
|
79
|
+
#else
|
80
|
+
DataCopyExtParams dataCopyParams;
|
81
|
+
dataCopyParams.blockCount = 1;
|
82
|
+
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
|
83
|
+
DataCopyPad(dst_gm, dst_local, dataCopyParams);
|
84
|
+
#endif
|
85
|
+
dst_queue.FreeTensor(dst_local);
|
86
|
+
}
|
87
|
+
|
88
|
+
__aicore__ inline void dup() {
|
89
|
+
// main process, copy one row data from src to dst.
|
90
|
+
copy_in();
|
91
|
+
|
92
|
+
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
93
|
+
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
94
|
+
|
95
|
+
int32_t BLOCK_NUM = 32 / sizeof(DST_T);
|
96
|
+
DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
|
97
|
+
/ BLOCK_NUM * BLOCK_NUM);
|
98
|
+
dst_queue.EnQue<DST_T>(dst_local);
|
99
|
+
|
100
|
+
src_queue.FreeTensor(src_local);
|
101
|
+
copy_out();
|
102
|
+
}
|
103
|
+
|
104
|
+
__aicore__ inline void dup_with_cast() {
|
105
|
+
// main process, copy one row data from src to dst.
|
106
|
+
// cast dtype from src to dst.
|
107
|
+
copy_in();
|
108
|
+
|
109
|
+
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
110
|
+
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
111
|
+
|
112
|
+
Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
|
113
|
+
dst_queue.EnQue<DST_T>(dst_local);
|
114
|
+
|
115
|
+
src_queue.FreeTensor(src_local);
|
116
|
+
copy_out();
|
117
|
+
}
|
118
|
+
|
119
|
+
private:
|
120
|
+
|
121
|
+
TPipe pipe;
|
122
|
+
GlobalTensor<SRC_T> src_gm;
|
123
|
+
GlobalTensor<DST_T> dst_gm;
|
124
|
+
|
125
|
+
int64_t num_rows;
|
126
|
+
int64_t num_elem;
|
127
|
+
int64_t idx_ne3;
|
128
|
+
int64_t idx_ne2;
|
129
|
+
int64_t idx_ne1;
|
130
|
+
int64_t src_stride;
|
131
|
+
int64_t dst_stride;
|
132
|
+
|
133
|
+
TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
|
134
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
|
135
|
+
};
|
136
|
+
|
137
|
+
template <typename T>
|
138
|
+
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
139
|
+
auto gm_ptr = (__gm__ uint8_t *)gm;
|
140
|
+
auto ub_ptr = (uint8_t *)(ub);
|
141
|
+
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
142
|
+
*ub_ptr = *gm_ptr;
|
143
|
+
}
|
144
|
+
}
|
145
|
+
|
146
|
+
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
|
147
|
+
GM_ADDR src_gm,
|
148
|
+
GM_ADDR dst_gm,
|
149
|
+
GM_ADDR input_ne_gm,
|
150
|
+
GM_ADDR input_nb_gm,
|
151
|
+
GM_ADDR output_ne_gm,
|
152
|
+
GM_ADDR output_nb_gm) {
|
153
|
+
|
154
|
+
int64_t input_ne_ub[4];
|
155
|
+
size_t input_nb_ub[4];
|
156
|
+
int64_t output_ne_ub[4];
|
157
|
+
size_t output_nb_ub[4];
|
158
|
+
|
159
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
160
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
161
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
162
|
+
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
163
|
+
|
164
|
+
DupByRows<half, half> op;
|
165
|
+
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
166
|
+
op.dup();
|
167
|
+
}
|
168
|
+
|
169
|
+
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
|
170
|
+
GM_ADDR src_gm,
|
171
|
+
GM_ADDR dst_gm,
|
172
|
+
GM_ADDR input_ne_gm,
|
173
|
+
GM_ADDR input_nb_gm,
|
174
|
+
GM_ADDR output_ne_gm,
|
175
|
+
GM_ADDR output_nb_gm) {
|
176
|
+
int64_t input_ne_ub[4];
|
177
|
+
size_t input_nb_ub[4];
|
178
|
+
int64_t output_ne_ub[4];
|
179
|
+
size_t output_nb_ub[4];
|
180
|
+
|
181
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
182
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
183
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
184
|
+
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
185
|
+
|
186
|
+
DupByRows<float_t, float_t> op;
|
187
|
+
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
188
|
+
op.dup();
|
189
|
+
}
|
190
|
+
|
191
|
+
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
|
192
|
+
GM_ADDR src_gm,
|
193
|
+
GM_ADDR dst_gm,
|
194
|
+
GM_ADDR input_ne_gm,
|
195
|
+
GM_ADDR input_nb_gm,
|
196
|
+
GM_ADDR output_ne_gm,
|
197
|
+
GM_ADDR output_nb_gm) {
|
198
|
+
|
199
|
+
int64_t input_ne_ub[4];
|
200
|
+
size_t input_nb_ub[4];
|
201
|
+
int64_t output_ne_ub[4];
|
202
|
+
size_t output_nb_ub[4];
|
203
|
+
|
204
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
205
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
206
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
207
|
+
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
208
|
+
|
209
|
+
DupByRows<float_t, half> op;
|
210
|
+
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
211
|
+
op.dup_with_cast();
|
212
|
+
}
|
213
|
+
|
214
|
+
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
|
215
|
+
GM_ADDR src_gm,
|
216
|
+
GM_ADDR dst_gm,
|
217
|
+
GM_ADDR input_ne_gm,
|
218
|
+
GM_ADDR input_nb_gm,
|
219
|
+
GM_ADDR output_ne_gm,
|
220
|
+
GM_ADDR output_nb_gm) {
|
221
|
+
|
222
|
+
// copy params from gm to ub.
|
223
|
+
int64_t input_ne_ub[4];
|
224
|
+
size_t input_nb_ub[4];
|
225
|
+
int64_t output_ne_ub[4];
|
226
|
+
size_t output_nb_ub[4];
|
227
|
+
|
228
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
229
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
230
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
231
|
+
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
232
|
+
|
233
|
+
DupByRows<half, float_t> op;
|
234
|
+
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
235
|
+
op.dup_with_cast();
|
236
|
+
}
|
@@ -0,0 +1,197 @@
|
|
1
|
+
#include "kernel_operator.h"
|
2
|
+
|
3
|
+
// optimize me. Use template to avoid copy code.
|
4
|
+
using namespace AscendC;
|
5
|
+
|
6
|
+
#define BUFFER_NUM 2
|
7
|
+
|
8
|
+
class GET_ROW_F16 {
|
9
|
+
public:
|
10
|
+
__aicore__ inline GET_ROW_F16() {}
|
11
|
+
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
12
|
+
int64_t *input_ne_ub, size_t *input_nb_ub,
|
13
|
+
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
14
|
+
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
15
|
+
// TODO, use template for F16/f32
|
16
|
+
int64_t op_block_num = GetBlockNum();
|
17
|
+
op_block_idx = GetBlockIdx();
|
18
|
+
|
19
|
+
for (int i = 0; i < 4; i++) {
|
20
|
+
input_ne[i] = input_ne_ub[i];
|
21
|
+
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
22
|
+
|
23
|
+
indices_ne[i] = indices_ne_ub[i];
|
24
|
+
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
25
|
+
|
26
|
+
output_ne[i] = output_ne_ub[i];
|
27
|
+
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
28
|
+
}
|
29
|
+
|
30
|
+
// Indices has two dims. n_elements = all rows should get.
|
31
|
+
// dr, all rows should this thread get.
|
32
|
+
uint64_t n_elements =
|
33
|
+
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
34
|
+
dr = n_elements / op_block_num;
|
35
|
+
|
36
|
+
uint64_t tails = n_elements % op_block_num;
|
37
|
+
if (op_block_idx < tails) {
|
38
|
+
dr += 1;
|
39
|
+
ir = dr * op_block_idx;
|
40
|
+
} else {
|
41
|
+
ir = dr * op_block_idx + tails;
|
42
|
+
}
|
43
|
+
|
44
|
+
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
45
|
+
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
46
|
+
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
47
|
+
|
48
|
+
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
|
49
|
+
& ~31);
|
50
|
+
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
|
51
|
+
& ~31);
|
52
|
+
|
53
|
+
local_buffer_elems = input_local_buffer_size / sizeof(half);
|
54
|
+
|
55
|
+
// TODO, consider long row that can't put in UB.
|
56
|
+
// All data should asign to 32. It's ok because all data is align to 32.
|
57
|
+
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
|
58
|
+
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
|
59
|
+
}
|
60
|
+
|
61
|
+
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
62
|
+
size_t origin_len = len;
|
63
|
+
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
64
|
+
const size_t elem_per_block = 32 / sizeof(half);
|
65
|
+
size_t tail = len % elem_per_block;
|
66
|
+
len = len & ~(elem_per_block - 1);
|
67
|
+
if(tail != 0) {
|
68
|
+
len += elem_per_block;
|
69
|
+
}
|
70
|
+
DataCopy(input_local, input_gm[offset], len);
|
71
|
+
input_queue.EnQue(input_local);
|
72
|
+
}
|
73
|
+
|
74
|
+
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
75
|
+
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
76
|
+
const size_t elem_per_block = 32 / sizeof(float);
|
77
|
+
size_t tail = len % elem_per_block;
|
78
|
+
len = len & ~(elem_per_block - 1);
|
79
|
+
if (len > 0) {
|
80
|
+
DataCopy(output_gm[offset], output_local, len);
|
81
|
+
}
|
82
|
+
|
83
|
+
if(tail != 0) {
|
84
|
+
#ifdef ASCEND_310P
|
85
|
+
for (size_t i = tail; i < elem_per_block; i++) {
|
86
|
+
output_local[len + i].SetValue(0, 0);
|
87
|
+
}
|
88
|
+
SetAtomicAdd<float>();
|
89
|
+
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
90
|
+
SetAtomicNone();
|
91
|
+
#else
|
92
|
+
DataCopyExtParams dataCopyParams;
|
93
|
+
dataCopyParams.blockCount = 1;
|
94
|
+
dataCopyParams.blockLen = tail * sizeof(float);
|
95
|
+
DataCopyPad(output_gm[offset + len], output_local[len],
|
96
|
+
dataCopyParams);
|
97
|
+
#endif
|
98
|
+
}
|
99
|
+
output_queue.FreeTensor(output_local);
|
100
|
+
}
|
101
|
+
|
102
|
+
__aicore__ inline void calculate_row(int64_t idx) {
|
103
|
+
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
104
|
+
const int64_t indices_ne1_idx =
|
105
|
+
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
106
|
+
indices_ne[0];
|
107
|
+
const int64_t indices_ne0_idx =
|
108
|
+
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
109
|
+
indices_ne1_idx * indices_ne[0]);
|
110
|
+
|
111
|
+
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
112
|
+
indices_ne1_idx * indices_stride[1] +
|
113
|
+
indices_ne2_idx * indices_stride[2];
|
114
|
+
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
115
|
+
|
116
|
+
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
117
|
+
indices_ne1_idx * input_stride[2] +
|
118
|
+
indices_ne2_idx * input_stride[3];
|
119
|
+
|
120
|
+
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
121
|
+
indices_ne1_idx * output_stride[2] +
|
122
|
+
indices_ne2_idx * output_stride[3];
|
123
|
+
|
124
|
+
copy_in(input_offset, input_ne[0]);
|
125
|
+
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
126
|
+
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
127
|
+
|
128
|
+
Cast(output_local, input_local, RoundMode::CAST_NONE,
|
129
|
+
local_buffer_elems);
|
130
|
+
output_queue.EnQue(output_local);
|
131
|
+
copy_out(output_offset, input_ne[0]);
|
132
|
+
|
133
|
+
input_queue.FreeTensor(input_local);
|
134
|
+
}
|
135
|
+
|
136
|
+
__aicore__ inline void calculate() {
|
137
|
+
for (int64_t i = ir; i < ir + dr; i++) {
|
138
|
+
calculate_row(i);
|
139
|
+
}
|
140
|
+
}
|
141
|
+
|
142
|
+
private:
|
143
|
+
int64_t input_ne[4];
|
144
|
+
size_t input_stride[4];
|
145
|
+
|
146
|
+
int64_t indices_ne[4];
|
147
|
+
size_t indices_stride[4];
|
148
|
+
|
149
|
+
int64_t output_ne[4];
|
150
|
+
size_t output_stride[4];
|
151
|
+
|
152
|
+
size_t local_buffer_elems;
|
153
|
+
|
154
|
+
int64_t ir;
|
155
|
+
int64_t dr;
|
156
|
+
|
157
|
+
TPipe pipe;
|
158
|
+
GlobalTensor<half> input_gm;
|
159
|
+
GlobalTensor<int32_t> indices_gm;
|
160
|
+
GlobalTensor<float> output_gm;
|
161
|
+
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
162
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
163
|
+
int64_t op_block_idx;
|
164
|
+
};
|
165
|
+
|
166
|
+
template <typename T>
|
167
|
+
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
168
|
+
auto gm_ptr = (__gm__ uint8_t *)gm;
|
169
|
+
auto ub_ptr = (uint8_t *)(ub);
|
170
|
+
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
171
|
+
*ub_ptr = *gm_ptr;
|
172
|
+
}
|
173
|
+
}
|
174
|
+
|
175
|
+
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
|
176
|
+
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
177
|
+
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
178
|
+
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
179
|
+
int64_t input_ne_ub[4];
|
180
|
+
size_t input_nb_ub[4];
|
181
|
+
int64_t indices_ne_ub[4];
|
182
|
+
size_t indices_nb_ub[4];
|
183
|
+
int64_t output_ne_ub[4];
|
184
|
+
size_t output_nb_ub[4];
|
185
|
+
|
186
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
187
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
188
|
+
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
189
|
+
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
190
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
191
|
+
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
192
|
+
|
193
|
+
GET_ROW_F16 op;
|
194
|
+
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
195
|
+
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
196
|
+
op.calculate();
|
197
|
+
}
|
@@ -0,0 +1,190 @@
|
|
1
|
+
#include "kernel_operator.h"
|
2
|
+
|
3
|
+
// optimize me. Use template to avoid copy code.
|
4
|
+
using namespace AscendC;
|
5
|
+
|
6
|
+
#define BUFFER_NUM 2
|
7
|
+
|
8
|
+
class GET_ROW_F32 {
|
9
|
+
public:
|
10
|
+
__aicore__ inline GET_ROW_F32() {}
|
11
|
+
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
12
|
+
int64_t *input_ne_ub, size_t *input_nb_ub,
|
13
|
+
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
14
|
+
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
15
|
+
int64_t op_block_num = GetBlockNum();
|
16
|
+
op_block_idx = GetBlockIdx();
|
17
|
+
|
18
|
+
for (int i = 0; i < 4; i++) {
|
19
|
+
input_ne[i] = input_ne_ub[i];
|
20
|
+
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
21
|
+
|
22
|
+
indices_ne[i] = indices_ne_ub[i];
|
23
|
+
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
24
|
+
|
25
|
+
output_ne[i] = output_ne_ub[i];
|
26
|
+
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
27
|
+
}
|
28
|
+
|
29
|
+
// Indices has two dims. n_elements = all rows should get.
|
30
|
+
// dr, all rows should this thread get.
|
31
|
+
uint64_t n_elements =
|
32
|
+
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
33
|
+
dr = n_elements / op_block_num;
|
34
|
+
|
35
|
+
uint64_t tails = n_elements % op_block_num;
|
36
|
+
if (op_block_idx < tails) {
|
37
|
+
dr += 1;
|
38
|
+
ir = dr * op_block_idx;
|
39
|
+
} else {
|
40
|
+
ir = dr * op_block_idx + tails;
|
41
|
+
}
|
42
|
+
|
43
|
+
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
44
|
+
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
45
|
+
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
46
|
+
|
47
|
+
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
|
48
|
+
local_buffer_elems = local_buffer_size / sizeof(float);
|
49
|
+
|
50
|
+
// TODO, consider long row that can't put in UB.
|
51
|
+
// All data should asign to 32. It's ok because all data is align to 32.
|
52
|
+
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
|
53
|
+
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
|
54
|
+
}
|
55
|
+
|
56
|
+
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
57
|
+
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
58
|
+
const size_t elem_per_block = 32 / sizeof(float);
|
59
|
+
size_t tail = len % elem_per_block;
|
60
|
+
len = len & ~(elem_per_block - 1);
|
61
|
+
if(tail != 0) {
|
62
|
+
len += elem_per_block;
|
63
|
+
}
|
64
|
+
DataCopy(input_local, input_gm[offset], len);
|
65
|
+
input_queue.EnQue(input_local);
|
66
|
+
}
|
67
|
+
|
68
|
+
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
69
|
+
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
70
|
+
const size_t elem_per_block = 32 / sizeof(float);
|
71
|
+
size_t tail = len % elem_per_block;
|
72
|
+
len = len & ~(elem_per_block - 1);
|
73
|
+
if (len > 0) {
|
74
|
+
DataCopy(output_gm[offset], output_local, len);
|
75
|
+
}
|
76
|
+
|
77
|
+
if(tail != 0) {
|
78
|
+
#ifdef ASCEND_310P
|
79
|
+
for (size_t i = tail; i < elem_per_block; i++) {
|
80
|
+
output_local[len + i].SetValue(0, 0);
|
81
|
+
}
|
82
|
+
SetAtomicAdd<float>();
|
83
|
+
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
84
|
+
SetAtomicNone();
|
85
|
+
#else
|
86
|
+
DataCopyExtParams dataCopyParams;
|
87
|
+
dataCopyParams.blockCount = 1;
|
88
|
+
dataCopyParams.blockLen = tail * sizeof(float);
|
89
|
+
DataCopyPad(output_gm[offset + len], output_local[len],
|
90
|
+
dataCopyParams);
|
91
|
+
#endif
|
92
|
+
}
|
93
|
+
output_queue.FreeTensor(output_local);
|
94
|
+
}
|
95
|
+
|
96
|
+
__aicore__ inline void calculate_row(int64_t idx) {
|
97
|
+
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
98
|
+
const int64_t indices_ne1_idx =
|
99
|
+
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
100
|
+
indices_ne[0];
|
101
|
+
const int64_t indices_ne0_idx =
|
102
|
+
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
103
|
+
indices_ne1_idx * indices_ne[0]);
|
104
|
+
|
105
|
+
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
106
|
+
indices_ne1_idx * indices_stride[1] +
|
107
|
+
indices_ne2_idx * indices_stride[2];
|
108
|
+
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
109
|
+
|
110
|
+
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
111
|
+
indices_ne1_idx * input_stride[2] +
|
112
|
+
indices_ne2_idx * input_stride[3];
|
113
|
+
|
114
|
+
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
115
|
+
indices_ne1_idx * output_stride[2] +
|
116
|
+
indices_ne2_idx * output_stride[3];
|
117
|
+
|
118
|
+
copy_in(input_offset, input_ne[0]);
|
119
|
+
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
120
|
+
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
121
|
+
|
122
|
+
DataCopy(output_local, input_local, local_buffer_elems);
|
123
|
+
output_queue.EnQue(output_local);
|
124
|
+
copy_out(output_offset, input_ne[0]);
|
125
|
+
|
126
|
+
input_queue.FreeTensor(input_local);
|
127
|
+
}
|
128
|
+
|
129
|
+
__aicore__ inline void calculate() {
|
130
|
+
for (int64_t i = ir; i < ir + dr; i++) {
|
131
|
+
calculate_row(i);
|
132
|
+
}
|
133
|
+
}
|
134
|
+
|
135
|
+
private:
|
136
|
+
int64_t input_ne[4];
|
137
|
+
size_t input_stride[4];
|
138
|
+
|
139
|
+
int64_t indices_ne[4];
|
140
|
+
size_t indices_stride[4];
|
141
|
+
|
142
|
+
int64_t output_ne[4];
|
143
|
+
size_t output_stride[4];
|
144
|
+
|
145
|
+
size_t local_buffer_elems;
|
146
|
+
|
147
|
+
int64_t ir;
|
148
|
+
int64_t dr;
|
149
|
+
|
150
|
+
TPipe pipe;
|
151
|
+
GlobalTensor<float> input_gm;
|
152
|
+
GlobalTensor<int32_t> indices_gm;
|
153
|
+
GlobalTensor<float> output_gm;
|
154
|
+
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
155
|
+
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
156
|
+
int64_t op_block_idx;
|
157
|
+
};
|
158
|
+
|
159
|
+
template <typename T>
|
160
|
+
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
161
|
+
auto gm_ptr = (__gm__ uint8_t *)gm;
|
162
|
+
auto ub_ptr = (uint8_t *)(ub);
|
163
|
+
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
164
|
+
*ub_ptr = *gm_ptr;
|
165
|
+
}
|
166
|
+
}
|
167
|
+
|
168
|
+
extern "C" __global__ __aicore__ void ascendc_get_row_f32(
|
169
|
+
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
170
|
+
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
171
|
+
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
172
|
+
int64_t input_ne_ub[4];
|
173
|
+
size_t input_nb_ub[4];
|
174
|
+
int64_t indices_ne_ub[4];
|
175
|
+
size_t indices_nb_ub[4];
|
176
|
+
int64_t output_ne_ub[4];
|
177
|
+
size_t output_nb_ub[4];
|
178
|
+
|
179
|
+
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
180
|
+
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
181
|
+
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
182
|
+
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
183
|
+
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
184
|
+
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
185
|
+
|
186
|
+
GET_ROW_F32 op;
|
187
|
+
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
188
|
+
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
189
|
+
op.calculate();
|
190
|
+
}
|