whispercpp 1.3.0 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (132) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +5 -0
  3. data/LICENSE +1 -1
  4. data/README.md +165 -434
  5. data/Rakefile +60 -11
  6. data/ext/.gitignore +13 -0
  7. data/ext/cpu.mk +9 -0
  8. data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
  9. data/ext/extconf.rb +185 -16
  10. data/ext/ggml/include/ggml-alloc.h +76 -0
  11. data/ext/ggml/include/ggml-backend.h +352 -0
  12. data/ext/ggml/include/ggml-blas.h +25 -0
  13. data/ext/ggml/include/ggml-cann.h +123 -0
  14. data/ext/ggml/include/ggml-cpp.h +38 -0
  15. data/ext/ggml/include/ggml-cpu.h +135 -0
  16. data/ext/ggml/include/ggml-cuda.h +47 -0
  17. data/ext/ggml/include/ggml-kompute.h +50 -0
  18. data/ext/ggml/include/ggml-metal.h +66 -0
  19. data/ext/ggml/include/ggml-opencl.h +26 -0
  20. data/ext/ggml/include/ggml-opt.h +216 -0
  21. data/ext/ggml/include/ggml-rpc.h +28 -0
  22. data/ext/ggml/include/ggml-sycl.h +49 -0
  23. data/ext/ggml/include/ggml-vulkan.h +31 -0
  24. data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
  25. data/ext/ggml/src/ggml-alloc.c +1037 -0
  26. data/ext/ggml/src/ggml-amx/common.h +94 -0
  27. data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
  28. data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
  29. data/ext/ggml/src/ggml-amx/mmq.h +17 -0
  30. data/ext/ggml/src/ggml-backend-impl.h +256 -0
  31. data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
  32. data/ext/ggml/src/ggml-backend.cpp +1999 -0
  33. data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
  34. data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
  35. data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
  36. data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
  37. data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
  38. data/ext/ggml/src/ggml-cann/common.h +286 -0
  39. data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
  40. data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
  41. data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
  42. data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
  43. data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
  44. data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
  45. data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
  46. data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
  47. data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
  48. data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
  49. data/ext/ggml/src/ggml-common.h +1853 -0
  50. data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
  51. data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
  52. data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
  53. data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
  54. data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
  55. data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
  56. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
  57. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
  58. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
  59. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
  60. data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
  61. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
  62. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
  63. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
  64. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
  65. data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
  66. data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
  67. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
  68. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
  69. data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
  70. data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
  71. data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
  72. data/ext/ggml/src/ggml-impl.h +556 -0
  73. data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
  74. data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
  75. data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
  76. data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
  77. data/ext/ggml/src/ggml-opt.cpp +854 -0
  78. data/ext/ggml/src/ggml-quants.c +5238 -0
  79. data/ext/ggml/src/ggml-quants.h +100 -0
  80. data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
  81. data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
  82. data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
  83. data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
  84. data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
  85. data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
  86. data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
  87. data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
  88. data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
  89. data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
  90. data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
  91. data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
  92. data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
  93. data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
  94. data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
  95. data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
  96. data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
  97. data/ext/ggml/src/ggml-threading.cpp +12 -0
  98. data/ext/ggml/src/ggml-threading.h +14 -0
  99. data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
  100. data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
  101. data/ext/ggml/src/ggml.c +7694 -0
  102. data/ext/{whisper.h → include/whisper.h} +23 -22
  103. data/ext/metal-embed.mk +17 -0
  104. data/ext/metal.mk +6 -0
  105. data/ext/ruby_whisper.cpp +1492 -9
  106. data/ext/ruby_whisper.h +10 -0
  107. data/ext/scripts/get-flags.mk +38 -0
  108. data/ext/src/coreml/whisper-decoder-impl.h +146 -0
  109. data/ext/src/coreml/whisper-decoder-impl.m +201 -0
  110. data/ext/src/coreml/whisper-encoder-impl.h +142 -0
  111. data/ext/src/coreml/whisper-encoder-impl.m +197 -0
  112. data/ext/src/coreml/whisper-encoder.h +26 -0
  113. data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
  114. data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
  115. data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
  116. data/extsources.rb +6 -0
  117. data/lib/whisper/model/uri.rb +157 -0
  118. data/lib/whisper.rb +2 -0
  119. data/tests/helper.rb +7 -0
  120. data/tests/jfk_reader/.gitignore +5 -0
  121. data/tests/jfk_reader/extconf.rb +3 -0
  122. data/tests/jfk_reader/jfk_reader.c +68 -0
  123. data/tests/test_callback.rb +160 -0
  124. data/tests/test_error.rb +20 -0
  125. data/tests/test_model.rb +71 -0
  126. data/tests/test_package.rb +31 -0
  127. data/tests/test_params.rb +160 -0
  128. data/tests/test_segment.rb +83 -0
  129. data/tests/test_whisper.rb +211 -123
  130. data/whispercpp.gemspec +36 -0
  131. metadata +137 -11
  132. data/ext/ggml.c +0 -21755
@@ -0,0 +1,258 @@
1
+ /*
2
+ * Copyright (c) 2023-2024 The ggml authors
3
+ *
4
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
5
+ * of this software and associated documentation files (the "Software"), to
6
+ * deal in the Software without restriction, including without limitation the
7
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
8
+ * sell copies of the Software, and to permit persons to whom the Software is
9
+ * furnished to do so, subject to the following conditions:
10
+ *
11
+ * The above copyright notice and this permission notice shall be included in
12
+ * all copies or substantial portions of the Software.
13
+ *
14
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20
+ * IN THE SOFTWARE.
21
+ */
22
+
23
+ #ifndef CANN_ACL_TENSOR_H
24
+ #define CANN_ACL_TENSOR_H
25
+
26
+ #include <algorithm>
27
+ #include <cstring>
28
+
29
+ #include <aclnn/aclnn_base.h>
30
+ #include "common.h"
31
+
32
+ /**
33
+ * @brief Maps a ggml_type to its corresponding aclDataType.
34
+ *
35
+ * @details This function takes a ggml_type as input and returns the corresponding
36
+ * aclDataType. It supports mapping for various ggml_types. If the input type
37
+ * does not match any of the predefined ggml_types, the function returns
38
+ * ACL_DT_UNDEFINED.
39
+ *
40
+ * @param type The ggml_type to be mapped.
41
+ * @return The corresponding aclDataType. If the input type is not recognized,
42
+ * ACL_DT_UNDEFINED is returned.
43
+ */
44
+ aclDataType ggml_cann_type_mapping(ggml_type type);
45
+
46
+ /**
47
+ * @brief Creates an ACL tensor from a ggml_tensor with optional shape.
48
+ *
49
+ * @details This function creates an ACL tensor based on the properties of the
50
+ * provided ggml_tensor. It supports customer shape by adjusting dimensions
51
+ * and strides accordingly. If customer shape is applied, additional
52
+ * dimensions and strides are calculated based on the provided parameters.
53
+ *
54
+ * @param tensor Pointer to the ggml_tensor to be converted to ACL tensor.
55
+ * @param ne Pointer to an array containing dimensions. Defaults to nullptr
56
+ * if no customer shape is applied.
57
+ * @param nb Pointer to an array containing strides. Defaults to nullptr
58
+ * if no customer shape is applied.
59
+ * @param dims Number of dimensions in the tensor. Defaults to 0 if no customer
60
+ * shape is applied.
61
+ * @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
62
+ * @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
63
+ * @return Pointer to the created ACL tensor.
64
+ */
65
+ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
66
+ size_t* nb = nullptr, int64_t dims = 0,
67
+ aclFormat format = ACL_FORMAT_ND,
68
+ size_t offset = 0);
69
+
70
+ /**
71
+ * @brief Template for creating an ACL tensor from provided parameters. typename TYPE
72
+ * should be size_t or float.
73
+ *
74
+ * @details This function creates an ACL tensor using the provided data pointer,
75
+ * data type, dimensions, strides, format, offset, and additional parameters.
76
+ * It calculates necessary dimensions and strides based on the provided ne and nb
77
+ * arrays, adjusting them for the ACL tensor creation. The ACL storage length
78
+ * is also calculated based on the provided dimensions and strides.
79
+ *
80
+ * @param data_ptr Pointer to the data buffer for the ACL tensor.
81
+ * @param dtype ACL data type of the tensor.
82
+ * @param type_size Size of each element in the tensor data buffer.
83
+ * @param ne Pointer to an array containing tensor dimensions.
84
+ * @param nb Pointer to an array containing tensor strides.
85
+ * @param dims Number of dimensions of the tensor.
86
+ * @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
87
+ * @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
88
+ * @return Pointer to the created ACL tensor.
89
+ */
90
+ template<typename TYPE>
91
+ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
92
+ TYPE type_size, int64_t* ne, TYPE* nb,
93
+ int64_t dims,
94
+ aclFormat format = ACL_FORMAT_ND,
95
+ size_t offset = 0) {
96
+ int64_t tmp_ne[GGML_MAX_DIMS * 2];
97
+ int64_t tmp_stride[GGML_MAX_DIMS * 2];
98
+
99
+ memcpy(tmp_ne, ne, dims * sizeof(int64_t));
100
+ for (int i = 0; i < dims; i++) {
101
+ tmp_stride[i] = nb[i] / type_size;
102
+ }
103
+
104
+ std::reverse(tmp_ne, tmp_ne + dims);
105
+ std::reverse(tmp_stride, tmp_stride + dims);
106
+
107
+ int64_t acl_storage_len = 0;
108
+ for (int i = 0; i < dims; i++) {
109
+ acl_storage_len += (ne[i] - 1) * nb[i];
110
+ }
111
+
112
+ aclTensor* acl_tensor =
113
+ aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
114
+ format, &acl_storage_len, 1, data_ptr);
115
+
116
+ return acl_tensor;
117
+ }
118
+
119
+ /**
120
+ * @brief Checks if tensors require broadcasting based on their shapes.
121
+ *
122
+ * @details This function determines if two ggml_tensors need to be broadcasted for
123
+ * element-wise operations. Broadcasting is necessary if the shapes of the
124
+ * tensors are not identical and no dimension in either tensor equals 1.
125
+ *
126
+ * @param t0 Pointer to the first ggml_tensor.
127
+ * @param t1 Pointer to the second ggml_tensor.
128
+ * @return True if broadcasting is needed, False otherwise.
129
+ *
130
+ * @remarks This function iterates over the dimensions of t0 and t1. It checks if each
131
+ * dimension in t1 differs from t0's corresponding dimension and is not equal
132
+ * to 1. If such a dimension is found, broadcasting is required to align t1
133
+ * with t0 for element-wise operations.
134
+ */
135
+ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
136
+
137
+ /**
138
+ * @brief Computes broadcast shapes and strides for two ggml_tensors.
139
+ *
140
+ * @details This function calculates the broadcast shapes and strides for two ggml_tensors,
141
+ * following the broadcasting rules similar to numpy. It adjusts dimensions and
142
+ * strides to ensure compatibility for element-wise operations where one tensor
143
+ * can be broadcasted to match the shape of another tensor.
144
+ *
145
+ * @param src0 Pointer to the first ggml_tensor.
146
+ * @param src1 Pointer to the second ggml_tensor.
147
+ * @param bcast_ne_src0 Output array to store broadcasted dimensions for src0.
148
+ * @param bcast_ne_src1 Output array to store broadcasted dimensions for src1.
149
+ * @param bcast_nb_src0 Output array to store broadcasted strides for src0.
150
+ * @param bcast_nb_src1 Output array to store broadcasted strides for src1.
151
+ * @return Number of dimensions in the broadcasted shape.
152
+ *
153
+ * @pre ggml_can_repeat(src1, src0) must return true, indicating src1 can be broadcasted
154
+ * to match src0.
155
+ *
156
+ * @remarks This function iterates over the dimensions of src0 and src1, calculating the
157
+ * necessary broadcast dimensions and strides. If a dimension requires broadcasting
158
+ * (i.e., its size in src1 is smaller than in src0), an additional dimension is
159
+ * added with size calculated to match src0's dimension. This adjustment ensures
160
+ * that src1 can be element-wise broadcasted to src0's shape.
161
+ *
162
+ * How it works:
163
+ *
164
+ * if dim0 has padding.
165
+ * a -> (2, 2) padding = 2
166
+ * a: [[1, 2, *, *]
167
+ * [2, 3, *, *]]
168
+ * nb = (8, 4, 2)
169
+ *
170
+ * if a should bcast with b -> (2, 4)
171
+ * b' -> (2, 2, 2)
172
+ * b : [[1, 2, 3, 4, *, *]
173
+ * [5, 6, 7, 8, *, *]]
174
+ * nb = (12, 6, 1)
175
+ *
176
+ * after bcast:
177
+ * a' -> (2, 1, 2)
178
+ * a': [[[1, 2], *, *]
179
+ * [[2, 3], *, *]]
180
+ * nb = (8, 4, 2, 1)
181
+ *
182
+ * b' : [[[1, 2], [3, 4], *, *]
183
+ * [[5, 6], [7, 8], *, *]]
184
+ * nb = (12, 6, 2, 1)
185
+ * \endcode
186
+ *
187
+ * dim1 in a inserted dim, should add nb for dim1,
188
+ * and all other nb moves to next in order.
189
+ */
190
+ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
191
+ int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
192
+ size_t* bcast_nb_src0, size_t* bcast_nb_src1);
193
+
194
+ // Bcast macro to avoid duplicate code.
195
+ #define BCAST_SHAPE(src0, src1) \
196
+ int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
197
+ int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
198
+ size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
199
+ size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
200
+ int64_t bcast_dims = ggml_cann_get_bcast_shape( \
201
+ src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
202
+ bcast_##src1##_nb);
203
+
204
+ #define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
205
+
206
+ /**
207
+ * @brief Calculates broadcast shapes for matrix multiplication.
208
+ *
209
+ * @details This function computes the broadcast shapes required for matrix multiplication
210
+ * based on the input, weight, and destination tensor shapes. It ensures that the
211
+ * dimensions of weight tensors are expanded appropriately to satisfy matrix
212
+ * multiplication broadcast rules.
213
+ *
214
+ * @param input_ne Array containing the dimensions of the input tensor.
215
+ * @param weight_ne Array containing the dimensions of the weight tensor.
216
+ * @param dst_ne Array containing the dimensions of the destination tensor.
217
+ * @param input_nb Array containing the strides of the input tensor.
218
+ * @param weight_nb Array containing the strides of the weight tensor.
219
+ * @param dst_nb Array containing the strides of the destination tensor.
220
+ * @param bcast_input_ne Output array for broadcasted input tensor dimensions.
221
+ * @param bcast_weight_ne Output array for broadcasted weight tensor dimensions.
222
+ * @param bcast_dst_ne Output array for broadcasted destination tensor dimensions.
223
+ * @param bcast_input_nb Output array for broadcasted input tensor strides.
224
+ * @param bcast_weight_nb Output array for broadcasted weight tensor strides.
225
+ * @param bcast_dst_nb Output array for broadcasted destination tensor strides.
226
+ * @return The number of dimensions in the broadcasted tensors.
227
+ *
228
+ * @remarks This function iterates over the tensor dimensions and calculates the broadcast
229
+ * shapes needed for matrix multiplication. It ensures that dimensions where
230
+ * weight tensor requires expansion are appropriately handled to conform with
231
+ * broadcasting rules.
232
+ * @note compare with ggml_cann_get_bcast_shape, mul_mat broadcast need add this new dim
233
+ * before cast dim.
234
+ * @sa ggml_cann_get_bcast_shape
235
+ */
236
+ int64_t ggml_cann_get_mulmat_bcast_shape(
237
+ const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
238
+ const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
239
+ int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
240
+ size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);
241
+
242
+ // Bcast macro to avoid duplicate code.
243
+ #define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
244
+ int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
245
+ int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
246
+ int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
247
+ size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
248
+ size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
249
+ size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
250
+ int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
251
+ input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
252
+ bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \
253
+ bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
254
+
255
+ #define BCAST_MUL_MAT_PARAM(tensor) \
256
+ bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
257
+
258
+ #endif // CANN_ACL_TENSOR_H