whispercpp 1.3.0 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (132) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +5 -0
  3. data/LICENSE +1 -1
  4. data/README.md +165 -434
  5. data/Rakefile +60 -11
  6. data/ext/.gitignore +13 -0
  7. data/ext/cpu.mk +9 -0
  8. data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
  9. data/ext/extconf.rb +185 -16
  10. data/ext/ggml/include/ggml-alloc.h +76 -0
  11. data/ext/ggml/include/ggml-backend.h +352 -0
  12. data/ext/ggml/include/ggml-blas.h +25 -0
  13. data/ext/ggml/include/ggml-cann.h +123 -0
  14. data/ext/ggml/include/ggml-cpp.h +38 -0
  15. data/ext/ggml/include/ggml-cpu.h +135 -0
  16. data/ext/ggml/include/ggml-cuda.h +47 -0
  17. data/ext/ggml/include/ggml-kompute.h +50 -0
  18. data/ext/ggml/include/ggml-metal.h +66 -0
  19. data/ext/ggml/include/ggml-opencl.h +26 -0
  20. data/ext/ggml/include/ggml-opt.h +216 -0
  21. data/ext/ggml/include/ggml-rpc.h +28 -0
  22. data/ext/ggml/include/ggml-sycl.h +49 -0
  23. data/ext/ggml/include/ggml-vulkan.h +31 -0
  24. data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
  25. data/ext/ggml/src/ggml-alloc.c +1037 -0
  26. data/ext/ggml/src/ggml-amx/common.h +94 -0
  27. data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
  28. data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
  29. data/ext/ggml/src/ggml-amx/mmq.h +17 -0
  30. data/ext/ggml/src/ggml-backend-impl.h +256 -0
  31. data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
  32. data/ext/ggml/src/ggml-backend.cpp +1999 -0
  33. data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
  34. data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
  35. data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
  36. data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
  37. data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
  38. data/ext/ggml/src/ggml-cann/common.h +286 -0
  39. data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
  40. data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
  41. data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
  42. data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
  43. data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
  44. data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
  45. data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
  46. data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
  47. data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
  48. data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
  49. data/ext/ggml/src/ggml-common.h +1853 -0
  50. data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
  51. data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
  52. data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
  53. data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
  54. data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
  55. data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
  56. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
  57. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
  58. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
  59. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
  60. data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
  61. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
  62. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
  63. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
  64. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
  65. data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
  66. data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
  67. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
  68. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
  69. data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
  70. data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
  71. data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
  72. data/ext/ggml/src/ggml-impl.h +556 -0
  73. data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
  74. data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
  75. data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
  76. data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
  77. data/ext/ggml/src/ggml-opt.cpp +854 -0
  78. data/ext/ggml/src/ggml-quants.c +5238 -0
  79. data/ext/ggml/src/ggml-quants.h +100 -0
  80. data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
  81. data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
  82. data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
  83. data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
  84. data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
  85. data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
  86. data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
  87. data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
  88. data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
  89. data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
  90. data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
  91. data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
  92. data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
  93. data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
  94. data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
  95. data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
  96. data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
  97. data/ext/ggml/src/ggml-threading.cpp +12 -0
  98. data/ext/ggml/src/ggml-threading.h +14 -0
  99. data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
  100. data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
  101. data/ext/ggml/src/ggml.c +7694 -0
  102. data/ext/{whisper.h → include/whisper.h} +23 -22
  103. data/ext/metal-embed.mk +17 -0
  104. data/ext/metal.mk +6 -0
  105. data/ext/ruby_whisper.cpp +1492 -9
  106. data/ext/ruby_whisper.h +10 -0
  107. data/ext/scripts/get-flags.mk +38 -0
  108. data/ext/src/coreml/whisper-decoder-impl.h +146 -0
  109. data/ext/src/coreml/whisper-decoder-impl.m +201 -0
  110. data/ext/src/coreml/whisper-encoder-impl.h +142 -0
  111. data/ext/src/coreml/whisper-encoder-impl.m +197 -0
  112. data/ext/src/coreml/whisper-encoder.h +26 -0
  113. data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
  114. data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
  115. data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
  116. data/extsources.rb +6 -0
  117. data/lib/whisper/model/uri.rb +157 -0
  118. data/lib/whisper.rb +2 -0
  119. data/tests/helper.rb +7 -0
  120. data/tests/jfk_reader/.gitignore +5 -0
  121. data/tests/jfk_reader/extconf.rb +3 -0
  122. data/tests/jfk_reader/jfk_reader.c +68 -0
  123. data/tests/test_callback.rb +160 -0
  124. data/tests/test_error.rb +20 -0
  125. data/tests/test_model.rb +71 -0
  126. data/tests/test_package.rb +31 -0
  127. data/tests/test_params.rb +160 -0
  128. data/tests/test_segment.rb +83 -0
  129. data/tests/test_whisper.rb +211 -123
  130. data/whispercpp.gemspec +36 -0
  131. metadata +137 -11
  132. data/ext/ggml.c +0 -21755
@@ -0,0 +1,4729 @@
1
+ //
2
+ // MIT license
3
+ // Copyright (C) 2024 Intel Corporation
4
+ // SPDX-License-Identifier: MIT
5
+ //
6
+
7
+ //
8
+ // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9
+ // See https://llvm.org/LICENSE.txt for license information.
10
+ // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11
+ //
12
+
13
+ #include <algorithm>
14
+ #include <assert.h>
15
+ #include <atomic>
16
+ #include <cinttypes>
17
+ #include <cstddef>
18
+ #include <cstdint>
19
+ #include <cstdlib>
20
+ #include <float.h>
21
+ #include <limits>
22
+ #include <stdint.h>
23
+ #include <stdio.h>
24
+ #include <vector>
25
+ #include <cmath>
26
+ #include <iostream>
27
+ #include <fstream>
28
+ #include <stdio.h>
29
+ #include <stdlib.h>
30
+ #include <regex>
31
+
32
+ #include <sycl/sycl.hpp>
33
+ #include <sycl/half_type.hpp>
34
+
35
+ #include "ggml-sycl.h"
36
+ #include "ggml-impl.h"
37
+ #include "ggml-backend-impl.h"
38
+
39
+ #include "ggml-sycl/backend.hpp"
40
+ #include "ggml-sycl/presets.hpp"
41
+ #include "ggml-sycl/gemm.hpp"
42
+
43
+ static bool g_sycl_loaded = false;
44
+
45
+ static ggml_sycl_device_info ggml_sycl_init() {
46
+ ggml_sycl_device_info info = {};
47
+
48
+ info.device_count = dpct::dev_mgr::instance().device_count();
49
+ if (info.device_count == 0) {
50
+ GGML_LOG_ERROR("%s: failed to initialize: %s\n", GGML_SYCL_NAME, __func__);
51
+ return info;
52
+ }
53
+
54
+ GGML_ASSERT(info.device_count <= GGML_SYCL_MAX_DEVICES);
55
+
56
+ int64_t total_vram = 0;
57
+ #if defined(GGML_SYCL_FORCE_MMQ)
58
+ GGML_LOG_INFO("%s: GGML_SYCL_FORCE_MMQ: yes\n", __func__);
59
+ #else
60
+ GGML_LOG_INFO("%s: GGML_SYCL_FORCE_MMQ: no\n", __func__);
61
+ #endif
62
+ #if defined(SYCL_USE_XMX)
63
+ GGML_LOG_INFO("%s: SYCL_USE_XMX: yes\n", __func__);
64
+ #else
65
+ GGML_LOG_INFO("%s: SYCL_USE_XMX: no\n", __func__);
66
+ #endif
67
+ GGML_LOG_INFO("%s: found %d %s devices:\n", __func__, info.device_count, GGML_SYCL_NAME);
68
+
69
+ for (int i = 0; i < info.device_count; ++i) {
70
+ info.devices[i].vmm = 0;
71
+ dpct::device_info prop;
72
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
73
+ prop, dpct::dev_mgr::instance().get_device(i))));
74
+
75
+ info.default_tensor_split[i] = total_vram;
76
+ total_vram += prop.get_global_mem_size();
77
+
78
+ info.devices[i].cc =
79
+ 100 * prop.get_major_version() + 10 * prop.get_minor_version();
80
+
81
+ info.max_work_group_sizes[i] = prop.get_max_work_group_size();
82
+ }
83
+
84
+ for (int id = 0; id < info.device_count; ++id) {
85
+ info.default_tensor_split[id] /= total_vram;
86
+ }
87
+ return info;
88
+ }
89
+
90
+ const ggml_sycl_device_info & ggml_sycl_info() {
91
+ static ggml_sycl_device_info info = ggml_sycl_init();
92
+ return info;
93
+ }
94
+
95
+ void print_device_detail(int id, sycl::device &device, std::string device_type) {
96
+
97
+ dpct::device_info prop;
98
+ SYCL_CHECK(CHECK_TRY_ERROR(
99
+ dpct::get_device_info(prop, device)));
100
+
101
+ std::string version;
102
+ version += std::to_string(prop.get_major_version());
103
+ version += ".";
104
+ version += std::to_string(prop.get_minor_version());
105
+
106
+ device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
107
+ std::string name = std::string(prop.get_name());
108
+ name = std::regex_replace(name, std::regex("\\(R\\)"), "");
109
+ name = std::regex_replace(name, std::regex("\\(TM\\)"), "");
110
+
111
+ auto global_mem_size = prop.get_global_mem_size()/1000000;
112
+
113
+ GGML_LOG_INFO("|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(),
114
+ name.c_str(), version.c_str(), prop.get_max_compute_units(),
115
+ prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
116
+ global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str());
117
+ }
118
+
119
+ void ggml_backend_sycl_print_sycl_devices() {
120
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_print_sycl_devices\n");
121
+ int device_count = dpct::dev_mgr::instance().device_count();
122
+ std::map<std::string, size_t> DeviceNums;
123
+ GGML_LOG_INFO("Found %d SYCL devices:\n", device_count);
124
+
125
+ GGML_LOG_INFO(
126
+ "| | | | "
127
+ " |Max | |Max |Global | |\n");
128
+ GGML_LOG_INFO(
129
+ "| | | | "
130
+ " |compute|Max work|sub |mem | |\n");
131
+ GGML_LOG_INFO(
132
+ "|ID| Device Type| "
133
+ "Name|Version|units |group |group|size | Driver version|\n");
134
+ GGML_LOG_INFO(
135
+ "|--|-------------------|---------------------------------------|------"
136
+ "-|-------|--------|-----|-------|---------------------|\n");
137
+
138
+ for (int id = 0; id < device_count; ++id) {
139
+ sycl::device device = dpct::dev_mgr::instance().get_device(id);
140
+ std::string backend_type = get_device_backend_and_type(device);
141
+ int type_id = DeviceNums[backend_type]++;
142
+ std::stringstream device_type;
143
+ device_type << "[" << backend_type << ":" << std::to_string(type_id)
144
+ << "]";
145
+ print_device_detail(id, device, device_type.str());
146
+ }
147
+ }
148
+
149
+ static inline int get_sycl_env(const char *env_name, int default_val) {
150
+ char *user_device_string = getenv(env_name);
151
+ int user_number = default_val;
152
+
153
+ unsigned n;
154
+ if (user_device_string != NULL &&
155
+ sscanf(user_device_string, " %u", &n) == 1) {
156
+ user_number = (int)n;
157
+ } else {
158
+ user_number = default_val;
159
+ }
160
+ return user_number;
161
+ }
162
+
163
+ static void ggml_check_sycl() try {
164
+ static bool initialized = false;
165
+
166
+ if (!initialized) {
167
+ GGML_LOG_INFO("[SYCL] call ggml_check_sycl\n");
168
+ g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
169
+ GGML_LOG_INFO("%s: GGML_SYCL_DEBUG: %d\n", __func__, g_ggml_sycl_debug);
170
+
171
+ #if defined(GGML_SYCL_F16)
172
+ GGML_LOG_INFO("%s: GGML_SYCL_F16: yes\n", __func__);
173
+ #else
174
+ GGML_LOG_INFO("%s: GGML_SYCL_F16: no\n", __func__);
175
+ #endif
176
+
177
+ /* NOT REMOVE, keep it for next optimize for XMX.
178
+ #if defined(SYCL_USE_XMX)
179
+ fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
180
+ #else
181
+ fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
182
+ #endif
183
+ */
184
+
185
+ if (CHECK_TRY_ERROR(g_all_sycl_device_count =
186
+ dpct::dev_mgr::instance().device_count()) != 0) {
187
+ initialized = true;
188
+ g_sycl_loaded = false;
189
+ return;
190
+ }
191
+ GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
192
+
193
+ initialized = true;
194
+ g_sycl_loaded = true;
195
+ ggml_backend_sycl_print_sycl_devices();
196
+ }
197
+ }
198
+ catch (sycl::exception const &exc) {
199
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
200
+ << ", line:" << __LINE__ << std::endl;
201
+ std::exit(1);
202
+ }
203
+
204
+ /*
205
+ device_index: device index from 0 to n (continue numbers).
206
+ It is used for device select/set in SYCL backend internal data structure.
207
+ */
208
+ inline void check_allow_gpu_index(const int device_index) {
209
+ if (device_index >= ggml_sycl_info().device_count) {
210
+ char error_buf[256];
211
+ snprintf(
212
+ error_buf,
213
+ sizeof(error_buf),
214
+ "%s error: device_index:%d is out of range: [0-%d]",
215
+ __func__,
216
+ device_index,
217
+ ggml_sycl_info().device_count - 1);
218
+ GGML_LOG_ERROR("%s\n", error_buf);
219
+ assert(false);
220
+ }
221
+ }
222
+
223
+ GGML_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len) try {
224
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_gpu_list\n");
225
+ for(int i=0;i<max_len;i++) id_list[i] = -1;
226
+
227
+ for (int i=0;i< ggml_sycl_info().device_count;i++){
228
+ if (i>=max_len) break;
229
+ id_list[i] = i;
230
+ }
231
+ return;
232
+ }
233
+ catch (sycl::exception const &exc) {
234
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
235
+ << ", line:" << __LINE__ << std::endl;
236
+ std::exit(1);
237
+ }
238
+
239
+ // sycl buffer
240
+
241
+ struct ggml_backend_sycl_buffer_context {
242
+ int device;
243
+ void * dev_ptr = nullptr;
244
+ queue_ptr stream;
245
+ std::string name;
246
+
247
+ ggml_backend_sycl_buffer_context(int device, void * dev_ptr, queue_ptr stream) :
248
+ device(device), dev_ptr(dev_ptr), stream(stream) {
249
+ check_allow_gpu_index(device);
250
+ name = (GGML_SYCL_NAME + std::to_string(device));
251
+ }
252
+
253
+
254
+ ~ggml_backend_sycl_buffer_context() {
255
+ if (dev_ptr != nullptr) {
256
+ ggml_sycl_set_device(device);
257
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(dev_ptr, *stream)));
258
+ }
259
+ }
260
+ };
261
+
262
+ static const char * ggml_backend_sycl_buffer_type_get_name(ggml_backend_buffer_type_t buft);
263
+
264
+ static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
265
+ return buffer->buft->iface.get_name == ggml_backend_sycl_buffer_type_get_name;
266
+ }
267
+
268
+ static void
269
+ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
270
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
271
+ ggml_sycl_set_device(ctx->device);
272
+
273
+ delete ctx;
274
+ }
275
+ catch (sycl::exception const &exc) {
276
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
277
+ << ", line:" << __LINE__ << std::endl;
278
+ std::exit(1);
279
+ }
280
+
281
+ static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
282
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
283
+ return ctx->dev_ptr;
284
+ }
285
+
286
+ static void
287
+ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
288
+ ggml_tensor *tensor) try {
289
+ ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
290
+
291
+ if (tensor->view_src != NULL && tensor->view_offs == 0) {
292
+ assert(tensor->view_src->buffer->buft == buffer->buft);
293
+ tensor->backend = tensor->view_src->backend;
294
+ tensor->extra = tensor->view_src->extra;
295
+ return;
296
+ }
297
+
298
+
299
+ if (ggml_is_quantized(tensor->type)) {
300
+ // initialize padding to 0 to avoid possible NaN values
301
+ size_t original_size = ggml_nbytes(tensor);
302
+ size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
303
+
304
+ if (padded_size > original_size && tensor->view_src == nullptr) {
305
+ SYCL_CHECK(CHECK_TRY_ERROR(ctx->stream->memset(
306
+ (char *)tensor->data + original_size, 0,
307
+ padded_size - original_size).wait()));
308
+ }
309
+ }
310
+ }
311
+ catch (sycl::exception const &exc) {
312
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
313
+ << ", line:" << __LINE__ << std::endl;
314
+ std::exit(1);
315
+ }
316
+
317
+ static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
318
+ ggml_tensor *tensor,
319
+ const void *data, size_t offset,
320
+ size_t size) try {
321
+
322
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
323
+
324
+ ggml_sycl_set_device(ctx->device);
325
+ auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
326
+ SYCL_CHECK(
327
+ CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
328
+ char* host_buf = (char*)malloc(size);
329
+ memcpy(host_buf, data, size);
330
+ SYCL_CHECK(
331
+ CHECK_TRY_ERROR((*stream).memcpy((char *)tensor->data + offset, host_buf, size)
332
+ .wait()));
333
+ free(host_buf);
334
+ }
335
+ catch (sycl::exception const &exc) {
336
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
337
+ << ", line:" << __LINE__ << std::endl;
338
+ std::exit(1);
339
+ }
340
+
341
+ static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
342
+ const ggml_tensor *tensor,
343
+ void *data, size_t offset,
344
+ size_t size) try {
345
+
346
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
347
+
348
+ ggml_sycl_set_device(ctx->device);
349
+ auto stream = dpct::dev_mgr::instance().get_device(ctx->device).default_queue();
350
+
351
+ SYCL_CHECK(CHECK_TRY_ERROR(
352
+ stream.memcpy(data, (const char *)tensor->data + offset, size)
353
+ .wait()));
354
+ }
355
+ catch (sycl::exception const &exc) {
356
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
357
+ << ", line:" << __LINE__ << std::endl;
358
+ std::exit(1);
359
+ }
360
+
361
+ void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
362
+ const void *ptr_src, size_t size) {
363
+ char *host_buf = (char *)malloc(size);
364
+ q_src.memcpy(host_buf, (const char *)ptr_src, size).wait();
365
+ q_dst.memcpy((char *)ptr_dst, host_buf, size).wait();
366
+ free(host_buf);
367
+ }
368
+
369
+ static bool
370
+ ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
371
+ const ggml_tensor *src,
372
+ ggml_tensor *dst) try {
373
+ if (ggml_backend_buffer_is_sycl(src->buffer)) {
374
+ ggml_backend_sycl_buffer_context * src_ctx = (ggml_backend_sycl_buffer_context *)src->buffer->context;
375
+ ggml_backend_sycl_buffer_context * dst_ctx = (ggml_backend_sycl_buffer_context *)dst->buffer->context;
376
+
377
+ ggml_sycl_set_device(src_ctx->device);
378
+ /*
379
+ DPCT1009:198: SYCL uses exceptions to report errors and does not use the
380
+ error codes. The original code was commented out and a warning string
381
+ was inserted. You need to rewrite this code.
382
+ */
383
+ SYCL_CHECK(CHECK_TRY_ERROR(
384
+ dpct::dev_mgr::instance().get_device(src_ctx->device).queues_wait_and_throw()));
385
+ ggml_sycl_set_device(dst_ctx->device);
386
+ /*
387
+ DPCT1009:199: SYCL uses exceptions to report errors and does not use the
388
+ error codes. The original code was commented out and a warning string
389
+ was inserted. You need to rewrite this code.
390
+ */
391
+ SYCL_CHECK(CHECK_TRY_ERROR(
392
+ dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
393
+ /*
394
+ DPCT1009:200: SYCL uses exceptions to report errors and does not use the
395
+ error codes. The original code was commented out and a warning string
396
+ was inserted. You need to rewrite this code.
397
+ */
398
+
399
+ queue_ptr stream_dst = dst_ctx->stream;
400
+ queue_ptr stream_src = src_ctx->stream;
401
+ size_t size = ggml_nbytes(src);
402
+
403
+ //todo. it's dirty solutino to walkaroud known issue:device2device cross GPUs.
404
+ dev2dev_memcpy(*stream_dst, *stream_src, dst->data, src->data, size);
405
+
406
+ //todo, it's known issue:error in device2device cross GPUs. reused when the issue is fixed. DON"T remove
407
+ #if 0
408
+ SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(
409
+ (char *)dst->data, (const char *)src->data, size).wait()));
410
+
411
+ /*
412
+ DPCT1009:201: SYCL uses exceptions to report errors and does not use the
413
+ error codes. The original code was commented out and a warning string
414
+ was inserted. You need to rewrite this code.
415
+ */
416
+ SYCL_CHECK(CHECK_TRY_ERROR(
417
+ dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
418
+ #endif
419
+ return true;
420
+ }
421
+ return false;
422
+ GGML_UNUSED(buffer);
423
+ } catch (const sycl::exception & exc) {
424
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl;
425
+ std::exit(1);
426
+ }
427
+
428
+ static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
429
+ uint8_t value) try {
430
+ ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
431
+
432
+ ggml_sycl_set_device(ctx->device);
433
+ queue_ptr stream = ctx->stream;
434
+ SYCL_CHECK(
435
+ CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
436
+
437
+ SYCL_CHECK(CHECK_TRY_ERROR((*stream)
438
+ .memset(ctx->dev_ptr, value, buffer->size)
439
+ .wait()));
440
+ }
441
+ catch (sycl::exception const &exc) {
442
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
443
+ << ", line:" << __LINE__ << std::endl;
444
+ std::exit(1);
445
+ }
446
+
447
+ static const ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
448
+ /* .free_buffer = */ ggml_backend_sycl_buffer_free_buffer,
449
+ /* .get_base = */ ggml_backend_sycl_buffer_get_base,
450
+ /* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor,
451
+ /* .memset_tensor = */ NULL,
452
+ /* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
453
+ /* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
454
+ /* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor,
455
+ /* .clear = */ ggml_backend_sycl_buffer_clear,
456
+ /* .reset = */ NULL,
457
+ };
458
+
459
+ // sycl buffer type
460
+ struct ggml_backend_sycl_buffer_type_context {
461
+ int device;
462
+ std::string name;
463
+
464
+ // each buffer type has its own stream
465
+ queue_ptr stream = nullptr;
466
+ };
467
+
468
+ static const char * ggml_backend_sycl_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
469
+ ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
470
+
471
+ return ctx->name.c_str();
472
+ }
473
+
474
+ static ggml_backend_buffer_t
475
+ ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
476
+ size_t size) try {
477
+ ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
478
+ ggml_sycl_set_device(buft_ctx->device);
479
+ const queue_ptr stream = buft_ctx->stream;
480
+ size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
481
+
482
+ void * dev_ptr;
483
+ SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
484
+ size, *stream)));
485
+ if (!dev_ptr) {
486
+ GGML_LOG_ERROR("%s: can't allocate %lu Bytes of memory on device\n", __func__, size);
487
+ return nullptr;
488
+ }
489
+ ggml_backend_sycl_buffer_context * ctx = new ggml_backend_sycl_buffer_context(buft_ctx->device, dev_ptr, buft_ctx->stream);
490
+ return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
491
+ }
492
+ catch (sycl::exception const &exc) {
493
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
494
+ << ", line:" << __LINE__ << std::endl;
495
+ std::exit(1);
496
+ }
497
+
498
+ static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
499
+ return 128;
500
+ GGML_UNUSED(buft);
501
+ }
502
+
503
+ static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
504
+ return dpct::get_current_device().get_max_mem_alloc_size();
505
+
506
+ GGML_UNUSED(buft);
507
+ }
508
+
509
+ static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
510
+ size_t size = ggml_nbytes(tensor);
511
+ int64_t ne0 = tensor->ne[0];
512
+
513
+ if (ggml_is_quantized(tensor->type)) {
514
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
515
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
516
+ }
517
+ }
518
+
519
+ return size;
520
+
521
+ GGML_UNUSED(buft);
522
+ }
523
+
524
+ static const ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
525
+ /* .get_name = */ ggml_backend_sycl_buffer_type_get_name,
526
+ /* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
527
+ /* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
528
+ /* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
529
+ /* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
530
+ /* .is_host = */ NULL,
531
+ };
532
+
533
+ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
534
+ static std::mutex mutex;
535
+ std::lock_guard<std::mutex> lock(mutex);
536
+
537
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
538
+
539
+ auto dev_count = ggml_backend_sycl_get_device_count();
540
+
541
+ if (device>=dev_count or device<0) {
542
+ printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
543
+ device, dev_count-1);
544
+ GGML_ASSERT(device<dev_count);
545
+ }
546
+ static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
547
+
548
+ static bool ggml_backend_sycl_buffer_type_initialized = false;
549
+
550
+ if (!ggml_backend_sycl_buffer_type_initialized) {
551
+ for (int i = 0; i < dev_count; i++) {
552
+ auto & device_i = dpct::dev_mgr::instance().get_device(i);
553
+ queue_ptr stream = &(device_i.default_queue());
554
+ ggml_backend_sycl_buffer_types[i] = {
555
+ /* .iface = */ ggml_backend_sycl_buffer_type_interface,
556
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_sycl_reg(), i),
557
+ /* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), stream},
558
+ };
559
+ }
560
+ ggml_backend_sycl_buffer_type_initialized = true;
561
+ }
562
+ return &ggml_backend_sycl_buffer_types[device];
563
+ }
564
+
565
+ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_context * ctx) {
566
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
567
+
568
+ int device = ctx->device;
569
+ if (device>=ggml_sycl_info().device_count or device<0) {
570
+ printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
571
+ device, ggml_sycl_info().device_count-1);
572
+ GGML_ASSERT(device<ggml_sycl_info().device_count);
573
+ }
574
+ static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
575
+
576
+ static bool ggml_backend_sycl_buffer_type_initialized = false;
577
+
578
+ if (!ggml_backend_sycl_buffer_type_initialized) {
579
+ for (int i = 0; i < ggml_sycl_info().device_count; i++) {
580
+ ggml_backend_sycl_buffer_types[i] = {
581
+ /* .iface = */ ggml_backend_sycl_buffer_type_interface,
582
+ /* .device = */ nullptr,
583
+ /* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), ctx->stream(i, 0)},
584
+ };
585
+ }
586
+ ggml_backend_sycl_buffer_type_initialized = true;
587
+ }
588
+ return &ggml_backend_sycl_buffer_types[device];
589
+ }
590
+
591
+ // sycl split buffer
592
+
593
+ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
594
+ int64_t min_compute_capability = INT_MAX;
595
+ int64_t max_compute_capability = INT_MIN;
596
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
597
+ if (tensor_split[i] < (i + 1 < ggml_sycl_info().device_count ? tensor_split[i + 1] : 1.0f)) {
598
+ if (min_compute_capability > ggml_sycl_info().devices[i].cc) {
599
+ min_compute_capability = ggml_sycl_info().devices[i].cc;
600
+ }
601
+ if (max_compute_capability < ggml_sycl_info().devices[i].cc) {
602
+ max_compute_capability = ggml_sycl_info().devices[i].cc;
603
+ }
604
+ }
605
+ }
606
+
607
+ switch(type) {
608
+ case GGML_TYPE_Q4_0:
609
+ case GGML_TYPE_Q4_1:
610
+ return max_compute_capability >= VER_GEN9 ? 128 : 64;
611
+ case GGML_TYPE_Q5_0:
612
+ case GGML_TYPE_Q5_1:
613
+ case GGML_TYPE_Q8_0:
614
+ return 64;
615
+ case GGML_TYPE_F16:
616
+ case GGML_TYPE_F32:
617
+ return 1;
618
+ case GGML_TYPE_Q2_K:
619
+ case GGML_TYPE_Q3_K:
620
+ case GGML_TYPE_Q4_K:
621
+ case GGML_TYPE_Q5_K:
622
+ case GGML_TYPE_IQ2_XXS:
623
+ case GGML_TYPE_IQ2_XS:
624
+ case GGML_TYPE_IQ2_S:
625
+ case GGML_TYPE_IQ1_S:
626
+ case GGML_TYPE_IQ1_M:
627
+ case GGML_TYPE_IQ3_XXS:
628
+ case GGML_TYPE_IQ4_XS:
629
+ case GGML_TYPE_IQ4_NL:
630
+ return max_compute_capability >= VER_GEN9 ? 128 : 64;
631
+ case GGML_TYPE_IQ3_S:
632
+ return max_compute_capability >= VER_GEN9 ? 128 : 64;
633
+ case GGML_TYPE_Q6_K:
634
+ return 64;
635
+ default:
636
+ GGML_ABORT("fatal error");
637
+ }
638
+ }
639
+
640
+ static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split, int id) {
641
+ const int64_t nrows = ggml_nrows(tensor);
642
+ const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
643
+
644
+ *row_low = id == 0 ? 0 : nrows*tensor_split[id];
645
+ *row_low -= *row_low % rounding;
646
+ if (id == ggml_sycl_info().device_count - 1) {
647
+ *row_high = nrows;
648
+ } else {
649
+ *row_high = nrows*tensor_split[id + 1];
650
+ *row_high -= *row_high % rounding;
651
+ }
652
+ }
653
+
654
+ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
655
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
656
+
657
+ return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
658
+ }
659
+
660
+ struct ggml_backend_sycl_split_buffer_type_context {
661
+ std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
662
+ };
663
+
664
+ struct ggml_backend_sycl_split_buffer_context {
665
+ ~ggml_backend_sycl_split_buffer_context() try {
666
+ for (ggml_tensor_extra_gpu * extra : tensor_extras) {
667
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
668
+ for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
669
+ if (extra->events[i][is] != nullptr) {
670
+ /*
671
+ DPCT1009:206: SYCL uses exceptions to report errors and
672
+ does not use the error codes. The original code was
673
+ commented out and a warning string was inserted. You
674
+ need to rewrite this code.
675
+ */
676
+ SYCL_CHECK(CHECK_TRY_ERROR(
677
+ dpct::destroy_event(extra->events[i][is])));
678
+ }
679
+ }
680
+ if (extra->data_device[i] != nullptr) {
681
+ /*
682
+ DPCT1009:207: SYCL uses exceptions to report errors and does
683
+ not use the error codes. The original code was commented out
684
+ and a warning string was inserted. You need to rewrite this
685
+ code.
686
+ */
687
+ ggml_sycl_set_device(i);
688
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(
689
+ extra->data_device[i], *(streams[i]))));
690
+ }
691
+ }
692
+ delete extra;
693
+ }
694
+ }
695
+ catch (sycl::exception const &exc) {
696
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
697
+ << ", line:" << __LINE__ << std::endl;
698
+ std::exit(1);
699
+ }
700
+
701
+ std::vector<ggml_tensor_extra_gpu *> tensor_extras;
702
+ std::vector<queue_ptr> streams;
703
+ };
704
+
705
+ static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
706
+ ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
707
+ delete ctx;
708
+ }
709
+
710
+ static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
711
+ // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
712
+ return (void *)0x1000;
713
+
714
+ GGML_UNUSED(buffer);
715
+ }
716
+
717
+ static void
718
+ ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
719
+ ggml_tensor *tensor) try {
720
+ GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
721
+
722
+ ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
723
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
724
+
725
+ const int64_t ne0 = tensor->ne[0];
726
+
727
+ ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
728
+
729
+ ctx->tensor_extras.push_back(extra);
730
+ ctx->streams.push_back(&(dpct::get_current_device().default_queue()));
731
+
732
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
733
+ int64_t row_low, row_high;
734
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
735
+
736
+ int64_t nrows_split = row_high - row_low;
737
+ if (nrows_split == 0) {
738
+ continue;
739
+ }
740
+
741
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
742
+ const size_t original_size = size;
743
+
744
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
745
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
746
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
747
+ }
748
+
749
+ // FIXME: do not crash if cudaMalloc fails
750
+ // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
751
+ ggml_sycl_set_device(i);
752
+ const queue_ptr stream = ctx->streams[i];
753
+ char * buf;
754
+ /*
755
+ DPCT1009:208: SYCL uses exceptions to report errors and does not use the
756
+ error codes. The original code was commented out and a warning string
757
+ was inserted. You need to rewrite this code.
758
+ */
759
+ SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
760
+ size, *stream)));
761
+ if (!buf) {
762
+ char err_buf[1024];
763
+ snprintf(err_buf, 1023, "%s: can't allocate %lu Bytes of memory on device\n", __func__, size);
764
+ throw std::runtime_error(err_buf);
765
+ }
766
+ // set padding to 0 to avoid possible NaN values
767
+ if (size > original_size) {
768
+ /*
769
+ DPCT1009:209: SYCL uses exceptions to report errors and does not use
770
+ the error codes. The original code was commented out and a warning
771
+ string was inserted. You need to rewrite this code.
772
+ */
773
+ SYCL_CHECK(CHECK_TRY_ERROR(
774
+ (*stream)
775
+ .memset(buf + original_size, 0, size - original_size)
776
+ .wait()));
777
+ }
778
+
779
+ extra->data_device[i] = buf;
780
+
781
+ for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
782
+ /*
783
+ DPCT1009:210: SYCL uses exceptions to report errors and does not use
784
+ the error codes. The original code was commented out and a warning
785
+ string was inserted. You need to rewrite this code.
786
+ */
787
+ SYCL_CHECK(
788
+ CHECK_TRY_ERROR(extra->events[i][is] = new sycl::event()));
789
+ }
790
+ }
791
+ tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
792
+ tensor->extra = extra;
793
+ }
794
+ catch (sycl::exception const &exc) {
795
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
796
+ << ", line:" << __LINE__ << std::endl;
797
+ std::exit(1);
798
+ }
799
+
800
+ static void
801
+ ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
802
+ ggml_tensor *tensor, const void *data,
803
+ size_t offset, size_t size) try {
804
+ // split tensors must always be set in their entirety at once
805
+ GGML_ASSERT(offset == 0);
806
+ GGML_ASSERT(size == ggml_nbytes(tensor));
807
+
808
+ ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
809
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
810
+
811
+ const int64_t ne0 = tensor->ne[0];
812
+ const size_t nb1 = tensor->nb[1];
813
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
814
+
815
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
816
+ int64_t row_low, row_high;
817
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
818
+
819
+ int64_t nrows_split = row_high - row_low;
820
+ if (nrows_split == 0) {
821
+ continue;
822
+ }
823
+
824
+ const size_t offset_split = row_low*nb1;
825
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
826
+ const size_t original_size = size;
827
+
828
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
829
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
830
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
831
+ }
832
+
833
+ const char * buf_host = (const char *)data + offset_split;
834
+ /*
835
+ DPCT1009:211: SYCL uses exceptions to report errors and does not use the
836
+ error codes. The original code was commented out and a warning string
837
+ was inserted. You need to rewrite this code.
838
+ */
839
+ ggml_sycl_set_device(i);
840
+ const queue_ptr stream = ctx->streams[i];
841
+ SYCL_CHECK(CHECK_TRY_ERROR(
842
+ (*stream)
843
+ .memcpy(extra->data_device[i], buf_host, original_size)
844
+ .wait()));
845
+ }
846
+ }
847
+ catch (sycl::exception const &exc) {
848
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
849
+ << ", line:" << __LINE__ << std::endl;
850
+ std::exit(1);
851
+ }
852
+
853
+ static void
854
+ ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
855
+ const ggml_tensor *tensor, void *data,
856
+ size_t offset, size_t size) try {
857
+ // split tensors must always be set in their entirety at once
858
+ GGML_ASSERT(offset == 0);
859
+ GGML_ASSERT(size == ggml_nbytes(tensor));
860
+
861
+ ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
862
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
863
+
864
+ const int64_t ne0 = tensor->ne[0];
865
+ const size_t nb1 = tensor->nb[1];
866
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
867
+
868
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
869
+ int64_t row_low, row_high;
870
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
871
+
872
+ int64_t nrows_split = row_high - row_low;
873
+ if (nrows_split == 0) {
874
+ continue;
875
+ }
876
+
877
+ const size_t offset_split = row_low*nb1;
878
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
879
+ const size_t original_size = size;
880
+
881
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
882
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
883
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
884
+ }
885
+
886
+ char * buf_host = (char *)data + offset_split;
887
+ /*
888
+ DPCT1009:212: SYCL uses exceptions to report errors and does not use the
889
+ error codes. The original code was commented out and a warning string
890
+ was inserted. You need to rewrite this code.
891
+ */
892
+ ggml_sycl_set_device(i);
893
+ const queue_ptr stream = ctx->streams[i];
894
+ SYCL_CHECK(CHECK_TRY_ERROR(
895
+ (*stream)
896
+ .memcpy(buf_host, extra->data_device[i], original_size)
897
+ .wait()));
898
+ }
899
+ }
900
+ catch (sycl::exception const &exc) {
901
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
902
+ << ", line:" << __LINE__ << std::endl;
903
+ std::exit(1);
904
+ }
905
+
906
+ static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
907
+ GGML_UNUSED(buffer);
908
+ GGML_UNUSED(value);
909
+ }
910
+
911
+ static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
912
+ /* .free_buffer = */ ggml_backend_sycl_split_buffer_free_buffer,
913
+ /* .get_base = */ ggml_backend_sycl_split_buffer_get_base,
914
+ /* .init_tensor = */ ggml_backend_sycl_split_buffer_init_tensor,
915
+ /* .memset_tensor = */ NULL,
916
+ /* .set_tensor = */ ggml_backend_sycl_split_buffer_set_tensor,
917
+ /* .get_tensor = */ ggml_backend_sycl_split_buffer_get_tensor,
918
+ /* .cpy_tensor = */ NULL,
919
+ /* .clear = */ ggml_backend_sycl_split_buffer_clear,
920
+ /* .reset = */ NULL,
921
+ };
922
+
923
+ // sycl split buffer type
924
+
925
+ static const char * ggml_backend_sycl_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
926
+ return GGML_SYCL_NAME "_Split";
927
+
928
+ GGML_UNUSED(buft);
929
+ }
930
+
931
+ static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
932
+ return buffer->buft->iface.get_name == ggml_backend_sycl_split_buffer_type_get_name;
933
+ }
934
+
935
+ static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
936
+ // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
937
+ // instead, we allocate them for each tensor separately in init_tensor
938
+ // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
939
+ // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
940
+ ggml_backend_sycl_split_buffer_context * ctx = new ggml_backend_sycl_split_buffer_context();
941
+
942
+ return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
943
+ }
944
+
945
+ static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
946
+ return 128;
947
+ GGML_UNUSED(buft);
948
+ }
949
+
950
+ static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
951
+ ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
952
+
953
+ size_t total_size = 0;
954
+
955
+ const int64_t ne0 = tensor->ne[0];
956
+
957
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
958
+ int64_t row_low, row_high;
959
+ get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, i);
960
+
961
+ int64_t nrows_split = row_high - row_low;
962
+ if (nrows_split == 0) {
963
+ continue;
964
+ }
965
+
966
+ total_size += ggml_nbytes_split(tensor, nrows_split);
967
+
968
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
969
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
970
+ total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
971
+ }
972
+ }
973
+
974
+ return total_size;
975
+ }
976
+
977
+ static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
978
+ return false;
979
+
980
+ GGML_UNUSED(buft);
981
+ }
982
+
983
+ static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface = {
984
+ /* .get_name = */ ggml_backend_sycl_split_buffer_type_get_name,
985
+ /* .alloc_buffer = */ ggml_backend_sycl_split_buffer_type_alloc_buffer,
986
+ /* .get_alignment = */ ggml_backend_sycl_split_buffer_type_get_alignment,
987
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
988
+ /* .get_alloc_size = */ ggml_backend_sycl_split_buffer_type_get_alloc_size,
989
+ /* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
990
+ };
991
+
992
+ ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
993
+ static std::mutex mutex;
994
+ std::lock_guard<std::mutex> lock(mutex);
995
+
996
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_split_buffer_type\n");
997
+ ggml_check_sycl();
998
+ // FIXME: this is not thread safe
999
+ static std::map<std::array<float, GGML_SYCL_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
1000
+
1001
+ std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split_arr = {};
1002
+
1003
+ bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_SYCL_MAX_DEVICES, [](float x) { return x == 0.0f; });
1004
+ if (all_zero) {
1005
+ tensor_split_arr = ggml_sycl_info().default_tensor_split;
1006
+ } else {
1007
+ float split_sum = 0.0f;
1008
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
1009
+ tensor_split_arr[i] = split_sum;
1010
+ split_sum += tensor_split[i];
1011
+ }
1012
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
1013
+ tensor_split_arr[i] /= split_sum;
1014
+ }
1015
+ }
1016
+
1017
+ auto it = buft_map.find(tensor_split_arr);
1018
+ if (it != buft_map.end()) {
1019
+ return &it->second;
1020
+ }
1021
+
1022
+ struct ggml_backend_buffer_type buft {
1023
+ /* .iface = */ ggml_backend_sycl_split_buffer_type_interface,
1024
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_sycl_reg(), 0),
1025
+ /* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
1026
+ };
1027
+
1028
+ auto result = buft_map.emplace(tensor_split_arr, buft);
1029
+ return &result.first->second;
1030
+ }
1031
+
1032
+ // host buffer type
1033
+
1034
+ static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
1035
+ return GGML_SYCL_NAME "_Host";
1036
+
1037
+ GGML_UNUSED(buft);
1038
+ }
1039
+
1040
+ static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
1041
+ ggml_sycl_host_free(buffer->context);
1042
+ }
1043
+
1044
+ static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
1045
+ void * ptr = ggml_sycl_host_malloc(size);
1046
+
1047
+ if (ptr == nullptr) {
1048
+ // fallback to cpu buffer
1049
+ return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
1050
+ }
1051
+
1052
+ // FIXME: this is a hack to avoid having to implement a new buffer type
1053
+ ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
1054
+ buffer->buft = buft;
1055
+ buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
1056
+
1057
+ return buffer;
1058
+ }
1059
+
1060
+ ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
1061
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_host_buffer_type\n");
1062
+ static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
1063
+ /* .iface = */ {
1064
+ /* .get_name = */ ggml_backend_sycl_host_buffer_type_name,
1065
+ /* .alloc_buffer = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
1066
+ /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
1067
+ /* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
1068
+ /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
1069
+ /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
1070
+ },
1071
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_sycl_reg(), 0),
1072
+ /* .context = */ nullptr,
1073
+ };
1074
+
1075
+ return &ggml_backend_sycl_buffer_type_host;
1076
+ }
1077
+
1078
+ // buffer pool for sycl (legacy)
1079
+ struct ggml_sycl_pool_leg : public ggml_sycl_pool {
1080
+ static const int MAX_SYCL_BUFFERS = 256;
1081
+
1082
+ int device;
1083
+ queue_ptr qptr;
1084
+ struct ggml_sycl_buffer {
1085
+ void * ptr = nullptr;
1086
+ size_t size = 0;
1087
+ };
1088
+
1089
+ ggml_sycl_buffer buffer_pool[MAX_SYCL_BUFFERS] = {};
1090
+ size_t pool_size = 0;
1091
+
1092
+ explicit ggml_sycl_pool_leg(queue_ptr qptr_, int device_) : device(device_), qptr(qptr_) {}
1093
+
1094
+ ~ggml_sycl_pool_leg() {
1095
+ for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
1096
+ ggml_sycl_buffer & b = buffer_pool[i];
1097
+ if (b.ptr != nullptr) {
1098
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(b.ptr, *qptr)));
1099
+ pool_size -= b.size;
1100
+ }
1101
+ }
1102
+ GGML_ASSERT(pool_size == 0);
1103
+ }
1104
+
1105
+ void * alloc(size_t size, size_t * actual_size) override {
1106
+ #ifdef DEBUG_sycl_MALLOC
1107
+ int nnz = 0;
1108
+ size_t max_size = 0;
1109
+ #endif
1110
+ size_t best_diff = 1ull << 36;
1111
+ int ibest = -1;
1112
+ for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
1113
+ ggml_sycl_buffer& b = buffer_pool[i];
1114
+ if (b.ptr != nullptr) {
1115
+ #ifdef DEBUG_sycl_MALLOC
1116
+ ++nnz;
1117
+ if (b.size > max_size) max_size = b.size;
1118
+ #endif
1119
+ if (b.size >= size) {
1120
+ size_t diff = b.size - size;
1121
+ if (diff < best_diff) {
1122
+ best_diff = diff;
1123
+ ibest = i;
1124
+ if (!best_diff) {
1125
+ void * ptr = b.ptr;
1126
+ *actual_size = b.size;
1127
+ b.ptr = nullptr;
1128
+ b.size = 0;
1129
+ return ptr;
1130
+ }
1131
+ }
1132
+ }
1133
+ }
1134
+ }
1135
+ if (ibest >= 0) {
1136
+ ggml_sycl_buffer& b = buffer_pool[ibest];
1137
+ void * ptr = b.ptr;
1138
+ *actual_size = b.size;
1139
+ b.ptr = nullptr;
1140
+ b.size = 0;
1141
+ return ptr;
1142
+ }
1143
+ void * ptr;
1144
+ size_t look_ahead_size = (size_t) (1.05 * size);
1145
+
1146
+ SYCL_CHECK(
1147
+ CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
1148
+ look_ahead_size, *qptr)));
1149
+ if (!ptr) {
1150
+ GGML_LOG_ERROR("%s: can't allocate %lu Bytes of memory on device/GPU\n", __func__, look_ahead_size);
1151
+ return nullptr;
1152
+ }
1153
+
1154
+ *actual_size = look_ahead_size;
1155
+ pool_size += look_ahead_size;
1156
+
1157
+ #ifdef DEBUG_SYCL_MALLOC
1158
+ GGML_LOG_DEBUG("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
1159
+ (uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
1160
+ #endif
1161
+
1162
+ // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg look_ahead_size=%lu, return %p\n", look_ahead_size, ptr);
1163
+ return ptr;
1164
+ }
1165
+
1166
+ void free(void * ptr, size_t size) override {
1167
+ for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
1168
+ ggml_sycl_buffer& b = buffer_pool[i];
1169
+ if (b.ptr == nullptr) {
1170
+ b.ptr = ptr;
1171
+ b.size = size;
1172
+ return;
1173
+ }
1174
+ }
1175
+ GGML_LOG_WARN("WARNING: sycl buffer pool full, increase MAX_sycl_BUFFERS\n");
1176
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *qptr)));
1177
+ pool_size -= size;
1178
+ }
1179
+ };
1180
+
1181
+ std::unique_ptr<ggml_sycl_pool> ggml_backend_sycl_context::new_pool_for_device(queue_ptr qptr, int device) {
1182
+ // TBD: NO VMM support
1183
+ // if (ggml_sycl_info().devices[device].vmm) {
1184
+ // return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_vmm(device));
1185
+ // }
1186
+ return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_leg(qptr, device));
1187
+ }
1188
+
1189
+ // TBD pool with virtual memory management
1190
+ // struct ggml_sycl_pool_vmm : public ggml_sycl_pool
1191
+
1192
+ /// kernels
1193
+
1194
+ typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
1195
+ typedef void (*ggml_sycl_func_t)(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
1196
+ typedef void (*ggml_sycl_op_mul_mat_t)(
1197
+ ggml_backend_sycl_context & ctx,
1198
+ const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
1199
+ const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
1200
+ float *dst_dd_i, const int64_t row_low, const int64_t row_high,
1201
+ const int64_t src1_ncols, const int64_t src1_padded_row_size,
1202
+ const queue_ptr &stream);
1203
+
1204
+
1205
+
1206
+ template<int QUANT_BLOCK_TILE>
1207
+ static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
1208
+ const sycl::nd_item<3> &item_ct1) {
1209
+ const int ix = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
1210
+ item_ct1.get_local_id(2)) * QUANT_BLOCK_TILE;
1211
+
1212
+ if (ix >= kx_padded) {
1213
+ return;
1214
+ }
1215
+
1216
+ const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
1217
+ item_ct1.get_local_id(1);
1218
+
1219
+ const int i_padded = iy*kx_padded + ix;
1220
+
1221
+ block_q8_1 * y = (block_q8_1 *) vy;
1222
+
1223
+ const int ib = i_padded / QK8_1; // block index
1224
+ const int iqs = i_padded % QK8_1; // quant index
1225
+ typedef sycl::vec<float, QUANT_BLOCK_TILE> TC;
1226
+ typedef sycl::vec<int8_t, QUANT_BLOCK_TILE> TQ;
1227
+ TC zeros;
1228
+ TQ qzeros;
1229
+ #pragma unroll
1230
+ for (int i = 0; i < QUANT_BLOCK_TILE; i++)
1231
+ {
1232
+ zeros[i] = 0.f;
1233
+ qzeros[i] = 0;
1234
+ }
1235
+ const TC xi = ix < kx ? *(const TC *)&x[iy * kx + ix] : zeros;
1236
+ float sum = xi[0];
1237
+ float amax = sycl::fabs(xi[0]);
1238
+ #pragma unroll
1239
+ for (int i = 1; i < QUANT_BLOCK_TILE; i++)
1240
+ {
1241
+ sum += xi[i];
1242
+ amax = sycl::fmax(sycl::fabs(xi[i]), amax);
1243
+ }
1244
+ sum = warp_reduce_sum(sum, item_ct1);
1245
+ amax = warp_reduce_max(amax, item_ct1);
1246
+
1247
+ const float d = amax / 127;
1248
+ TQ q = qzeros;
1249
+ if (amax != 0.0f)
1250
+ {
1251
+ #pragma unroll
1252
+ for (int i = 0; i < QUANT_BLOCK_TILE; i++) {
1253
+ q[i] = sycl::round(xi[i] / d);
1254
+ }
1255
+ }
1256
+
1257
+ *(TQ *)&y[ib].qs[iqs] = q;
1258
+
1259
+ if (iqs > 0) {
1260
+ return;
1261
+ }
1262
+
1263
+ reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
1264
+ reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
1265
+ }
1266
+
1267
+ template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
1268
+ static void k_get_rows(
1269
+ const void * src0, const int32_t * src1, dst_t * dst,
1270
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
1271
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
1272
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
1273
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
1274
+ size_t s10, size_t s11, size_t s12,
1275
+ const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
1276
+
1277
+ const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
1278
+ item_ct1.get_local_id(2)) *
1279
+ 2;
1280
+ const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
1281
+ item_ct1.get_local_id(1);
1282
+ const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
1283
+ item_ct1.get_local_id(0)) /
1284
+ ne12;
1285
+ const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
1286
+ item_ct1.get_local_id(0)) %
1287
+ ne12;
1288
+
1289
+ if (i00 >= ne00) {
1290
+ return;
1291
+ }
1292
+
1293
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
1294
+
1295
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
1296
+ const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
1297
+
1298
+ const int ib = i00/qk; // block index
1299
+ const int iqs = (i00%qk)/qr; // quant index
1300
+ const int iybs = i00 - i00%qk; // dst block start index
1301
+ const int y_offset = qr == 1 ? 1 : qk/2;
1302
+
1303
+ // dequantize
1304
+ dfloat2 v;
1305
+ dequantize_kernel(src0_row, ib, iqs, v);
1306
+
1307
+ dst_row[iybs + iqs + 0] = v.x();
1308
+ dst_row[iybs + iqs + y_offset] = v.y();
1309
+ }
1310
+
1311
+ template<typename src0_t, typename dst_t>
1312
+ static void k_get_rows_float(
1313
+ const src0_t * src0, const int32_t * src1, dst_t * dst,
1314
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
1315
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
1316
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
1317
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
1318
+ size_t s10, size_t s11, size_t s12,
1319
+ const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
1320
+
1321
+ const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
1322
+ item_ct1.get_local_id(2);
1323
+ const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
1324
+ item_ct1.get_local_id(1);
1325
+ const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
1326
+ item_ct1.get_local_id(0)) /
1327
+ ne12;
1328
+ const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
1329
+ item_ct1.get_local_id(0)) %
1330
+ ne12;
1331
+
1332
+ if (i00 >= ne00) {
1333
+ return;
1334
+ }
1335
+
1336
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
1337
+
1338
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
1339
+ const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
1340
+
1341
+ dst_row[i00] = src0_row[i00];
1342
+ }
1343
+
1344
+ static void mul_mat_p021_f16_f32(
1345
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
1346
+ const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
1347
+ const sycl::nd_item<3> &item_ct1) {
1348
+
1349
+ const sycl::half *x = (const sycl::half *)vx;
1350
+
1351
+ const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
1352
+ item_ct1.get_local_id(1);
1353
+ const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
1354
+ item_ct1.get_local_id(0);
1355
+ const int channel_x = channel / (nchannels_y / nchannels_x);
1356
+
1357
+ const int nrows_y = ncols_x;
1358
+ const int nrows_dst = nrows_x;
1359
+ const int row_dst = row_x;
1360
+
1361
+ float tmp = 0.0f;
1362
+
1363
+ for (int col_x0 = 0; col_x0 < ncols_x;
1364
+ col_x0 += item_ct1.get_local_range(2)) {
1365
+ const int col_x = col_x0 + item_ct1.get_local_id(2);
1366
+
1367
+ if (col_x >= ncols_x) {
1368
+ break;
1369
+ }
1370
+
1371
+ // x is transposed and permuted
1372
+ const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
1373
+ const float xi =
1374
+ sycl::vec<sycl::half, 1>(x[ix])
1375
+ .convert<float, sycl::rounding_mode::automatic>()[0];
1376
+
1377
+ const int row_y = col_x;
1378
+
1379
+
1380
+ // y is not transposed but permuted
1381
+ const int iy = channel*nrows_y + row_y;
1382
+
1383
+ tmp += xi * y[iy];
1384
+ }
1385
+
1386
+ // dst is not transposed and not permuted
1387
+ const int idst = channel*nrows_dst + row_dst;
1388
+
1389
+ // sum up partial sums and write back result
1390
+ #pragma unroll
1391
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
1392
+ tmp +=
1393
+ dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
1394
+ }
1395
+
1396
+ if (item_ct1.get_local_id(2) == 0) {
1397
+ dst[idst] = tmp;
1398
+ }
1399
+ }
1400
+
1401
+ static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
1402
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
1403
+ const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
1404
+ const sycl::nd_item<3> &item_ct1) {
1405
+
1406
+ const sycl::half *x = (const sycl::half *)vx;
1407
+
1408
+ const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
1409
+ item_ct1.get_local_id(1);
1410
+ const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
1411
+ item_ct1.get_local_id(0);
1412
+ const int channel_x = channel / channel_x_divisor;
1413
+
1414
+ const int nrows_y = ncols_x;
1415
+ const int nrows_dst = nrows_x;
1416
+ const int row_dst = row_x;
1417
+
1418
+ const int idst = channel*nrows_dst + row_dst;
1419
+
1420
+ float tmp = 0.0f;
1421
+
1422
+ for (int col_x0 = 0; col_x0 < ncols_x;
1423
+ col_x0 += item_ct1.get_local_range(2)) {
1424
+ const int col_x = col_x0 + item_ct1.get_local_id(2);
1425
+
1426
+ if (col_x >= ncols_x) {
1427
+ break;
1428
+ }
1429
+
1430
+ const int row_y = col_x;
1431
+
1432
+ const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
1433
+ const int iy = channel*nrows_y + row_y;
1434
+
1435
+ const float xi =
1436
+ sycl::vec<sycl::half, 1>(x[ix])
1437
+ .convert<float, sycl::rounding_mode::automatic>()[0];
1438
+
1439
+ tmp += xi * y[iy];
1440
+ }
1441
+
1442
+ // sum up partial sums and write back result
1443
+ #pragma unroll
1444
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
1445
+ tmp +=
1446
+ dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
1447
+ }
1448
+
1449
+ if (item_ct1.get_local_id(2) == 0) {
1450
+ dst[idst] = tmp;
1451
+ }
1452
+ }
1453
+
1454
+ static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
1455
+ const float * xi = (const float *) cxi;
1456
+ float * dsti = (float *) cdsti;
1457
+
1458
+ *dsti = *xi;
1459
+ }
1460
+
1461
+ static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
1462
+ const float * xi = (const float *) cxi;
1463
+ sycl::half *dsti = (sycl::half *)cdsti;
1464
+
1465
+ *dsti = sycl::vec<float, 1>(*xi)
1466
+ .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
1467
+ }
1468
+
1469
+ static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
1470
+ const sycl::half *xi = (const sycl::half *)cxi;
1471
+ sycl::half *dsti = (sycl::half *)cdsti;
1472
+
1473
+ *dsti = *xi;
1474
+ }
1475
+
1476
+ static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
1477
+ const sycl::half *xi = (const sycl::half *)cxi;
1478
+ float * dsti = (float *) cdsti;
1479
+
1480
+ *dsti = *xi;
1481
+ }
1482
+
1483
+ static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
1484
+ const int16_t *xi = (const int16_t *)cxi;
1485
+ int16_t *dsti = (int16_t *)cdsti;
1486
+
1487
+ *dsti = *xi;
1488
+ }
1489
+
1490
+ static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
1491
+ const int32_t *xi = (const int32_t *)cxi;
1492
+ int32_t *dsti = (int32_t *)cdsti;
1493
+
1494
+ *dsti = *xi;
1495
+ }
1496
+
1497
+ template <cpy_kernel_t cpy_1>
1498
+ static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
1499
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
1500
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
1501
+ const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
1502
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
1503
+ item_ct1.get_local_id(2);
1504
+
1505
+ if (i >= ne) {
1506
+ return;
1507
+ }
1508
+
1509
+ // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
1510
+ // then combine those indices with the corresponding byte offsets to get the total offsets
1511
+ const int i03 = i/(ne00 * ne01 * ne02);
1512
+ const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
1513
+ const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
1514
+ const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
1515
+ const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
1516
+
1517
+ const int i13 = i/(ne10 * ne11 * ne12);
1518
+ const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
1519
+ const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
1520
+ const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
1521
+ const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
1522
+
1523
+ cpy_1(cx + x_offset, cdst + dst_offset);
1524
+ }
1525
+
1526
+ static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
1527
+ const float * xi = (const float *) cxi;
1528
+ block_q8_0 * dsti = (block_q8_0 *) cdsti;
1529
+
1530
+ float amax = 0.0f; // absolute max
1531
+
1532
+ for (int j = 0; j < QK8_0; j++) {
1533
+ const float v = xi[j];
1534
+ amax = sycl::fmax(amax, sycl::fabs((float)v));
1535
+ }
1536
+
1537
+ const float d = amax / ((1 << 7) - 1);
1538
+ const float id = d ? 1.0f/d : 0.0f;
1539
+
1540
+ dsti->d = d;
1541
+
1542
+ for (int j = 0; j < QK8_0; ++j) {
1543
+ const float x0 = xi[j]*id;
1544
+
1545
+ dsti->qs[j] = sycl::round((float)x0);
1546
+ }
1547
+ }
1548
+
1549
+ static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
1550
+ const float * xi = (const float *) cxi;
1551
+ block_q4_0 * dsti = (block_q4_0 *) cdsti;
1552
+
1553
+ float amax = 0.0f;
1554
+ float vmax = 0.0f;
1555
+
1556
+ for (int j = 0; j < QK4_0; ++j) {
1557
+ const float v = xi[j];
1558
+ if (amax < sycl::fabs((float)v)) {
1559
+ amax = sycl::fabs((float)v);
1560
+ vmax = v;
1561
+ }
1562
+ }
1563
+
1564
+ const float d = vmax / -8;
1565
+ const float id = d ? 1.0f/d : 0.0f;
1566
+
1567
+ dsti->d = d;
1568
+
1569
+ for (int j = 0; j < QK4_0/2; ++j) {
1570
+ const float x0 = xi[0 + j]*id;
1571
+ const float x1 = xi[QK4_0/2 + j]*id;
1572
+
1573
+ const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
1574
+ const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
1575
+
1576
+ dsti->qs[j] = xi0;
1577
+ dsti->qs[j] |= xi1 << 4;
1578
+ }
1579
+ }
1580
+
1581
+ static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
1582
+ const float * xi = (const float *) cxi;
1583
+ block_q4_1 * dsti = (block_q4_1 *) cdsti;
1584
+
1585
+ float vmin = FLT_MAX;
1586
+ float vmax = -FLT_MAX;
1587
+
1588
+ for (int j = 0; j < QK4_1; ++j) {
1589
+ const float v = xi[j];
1590
+
1591
+ if (v < vmin) vmin = v;
1592
+ if (v > vmax) vmax = v;
1593
+ }
1594
+
1595
+ const float d = (vmax - vmin) / ((1 << 4) - 1);
1596
+ const float id = d ? 1.0f/d : 0.0f;
1597
+
1598
+ dsti->dm.x() = d;
1599
+ dsti->dm.y() = vmin;
1600
+
1601
+ for (int j = 0; j < QK4_1/2; ++j) {
1602
+ const float x0 = (xi[0 + j] - vmin)*id;
1603
+ const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
1604
+
1605
+ const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
1606
+ const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
1607
+
1608
+ dsti->qs[j] = xi0;
1609
+ dsti->qs[j] |= xi1 << 4;
1610
+ }
1611
+ }
1612
+
1613
+ template <cpy_kernel_t cpy_blck, int qk>
1614
+ static void cpy_f32_q(const char * cx, char * cdst, const int ne,
1615
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
1616
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
1617
+ const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
1618
+ const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
1619
+ item_ct1.get_local_id(2)) *
1620
+ qk;
1621
+
1622
+ if (i >= ne) {
1623
+ return;
1624
+ }
1625
+
1626
+ const int i03 = i/(ne00 * ne01 * ne02);
1627
+ const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
1628
+ const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
1629
+ const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
1630
+ const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
1631
+
1632
+ const int i13 = i/(ne10 * ne11 * ne12);
1633
+ const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
1634
+ const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
1635
+ const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
1636
+ const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
1637
+
1638
+ cpy_blck(cx + x_offset, cdst + dst_offset);
1639
+ }
1640
+
1641
+ static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
1642
+ const sycl::nd_item<3> &item_ct1) {
1643
+ const int row = item_ct1.get_group(1);
1644
+ const int col = item_ct1.get_local_id(2);
1645
+
1646
+ float sum = 0.0f;
1647
+ for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
1648
+ sum += x[row * ncols + i];
1649
+ }
1650
+
1651
+ sum = warp_reduce_sum(sum, item_ct1);
1652
+
1653
+ if (col == 0) {
1654
+ dst[row] = sum;
1655
+ }
1656
+ }
1657
+
1658
+
1659
+ template<typename T>
1660
+ static inline void ggml_sycl_swap(T & a, T & b) {
1661
+ T tmp = a;
1662
+ a = b;
1663
+ b = tmp;
1664
+ }
1665
+
1666
+ template <ggml_sort_order order>
1667
+ __dpct_inline__ static void
1668
+ k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
1669
+ const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
1670
+ // bitonic sort
1671
+ int col = item_ct1.get_local_id(2);
1672
+ int row = item_ct1.get_group(1);
1673
+
1674
+ if (col >= ncols_pad) {
1675
+ return;
1676
+ }
1677
+
1678
+ const float * x_row = x + row * ncols;
1679
+ auto dst_row = (int *)dpct_local;
1680
+
1681
+ // initialize indices
1682
+ dst_row[col] = col;
1683
+
1684
+ item_ct1.barrier(sycl::access::fence_space::local_space);
1685
+
1686
+ for (int k = 2; k <= ncols_pad; k *= 2) {
1687
+ for (int j = k / 2; j > 0; j /= 2) {
1688
+ int ixj = col ^ j;
1689
+ if (ixj > col) {
1690
+ if ((col & k) == 0) {
1691
+ if (dst_row[col] >= ncols ||
1692
+ (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
1693
+ x_row[dst_row[col]] > x_row[dst_row[ixj]] :
1694
+ x_row[dst_row[col]] < x_row[dst_row[ixj]]))
1695
+ ) {
1696
+ ggml_sycl_swap(dst_row[col], dst_row[ixj]);
1697
+ }
1698
+ } else {
1699
+ if (dst_row[ixj] >= ncols ||
1700
+ (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
1701
+ x_row[dst_row[col]] < x_row[dst_row[ixj]] :
1702
+ x_row[dst_row[col]] > x_row[dst_row[ixj]]))
1703
+ ) {
1704
+ ggml_sycl_swap(dst_row[col], dst_row[ixj]);
1705
+ }
1706
+ }
1707
+ }
1708
+ /*
1709
+ DPCT1118:1: SYCL group functions and algorithms must be encountered
1710
+ in converged control flow. You may need to adjust the code.
1711
+ */
1712
+ item_ct1.barrier(sycl::access::fence_space::local_space);
1713
+ }
1714
+ }
1715
+
1716
+ // copy the result to dst without the padding
1717
+ if (col < ncols) {
1718
+ dst[row * ncols + col] = dst_row[col];
1719
+ }
1720
+ }
1721
+
1722
+
1723
+ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
1724
+ const sycl::nd_item<3> &item_ct1) {
1725
+ const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
1726
+ item_ct1.get_local_id(1);
1727
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
1728
+ item_ct1.get_local_id(2);
1729
+
1730
+ if (col >= ncols) {
1731
+ return;
1732
+ }
1733
+
1734
+ const int i = row*ncols + col;
1735
+ //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
1736
+ //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
1737
+ dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
1738
+ }
1739
+
1740
+ static void scale_f32(const float * x, float * dst, const float scale, const int k,
1741
+ const sycl::nd_item<3> &item_ct1) {
1742
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
1743
+ item_ct1.get_local_id(2);
1744
+
1745
+ if (i >= k) {
1746
+ return;
1747
+ }
1748
+
1749
+ dst[i] = scale * x[i];
1750
+ }
1751
+
1752
+ static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
1753
+ const sycl::nd_item<3> &item_ct1) {
1754
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
1755
+ item_ct1.get_local_id(2);
1756
+
1757
+ if (i >= k) {
1758
+ return;
1759
+ }
1760
+
1761
+ dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
1762
+ }
1763
+
1764
+ template <typename Ti, typename To>
1765
+ static void pool2d_nchw_kernel(
1766
+ const int ih, const int iw, const int oh, const int ow,
1767
+ const int kh, const int kw, const int sh, const int sw,
1768
+ const int ph, const int pw, const int parallel_elements,
1769
+ const Ti* src, To* dst, const enum ggml_op_pool op,
1770
+ const sycl::nd_item<3> &item_ct1) {
1771
+ int idx = item_ct1.get_local_id(2) +
1772
+ item_ct1.get_group(2) * item_ct1.get_local_range(2);
1773
+ if (idx >= parallel_elements) {
1774
+ return;
1775
+ }
1776
+
1777
+ const int I_HW = ih * iw;
1778
+ const int O_HW = oh * ow;
1779
+ const int nc = idx / O_HW;
1780
+ const int cur_oh = idx % O_HW / ow;
1781
+ const int cur_ow = idx % O_HW % ow;
1782
+ const Ti* i_ptr = src + nc * I_HW;
1783
+ To* o_ptr = dst + nc * O_HW;
1784
+ const int start_h = cur_oh * sh - ph;
1785
+ const int bh = sycl::max(0, start_h);
1786
+ const int eh = sycl::min(ih, start_h + kh);
1787
+ const int start_w = cur_ow * sw - pw;
1788
+ const int bw = sycl::max(0, start_w);
1789
+ const int ew = sycl::min(iw, start_w + kw);
1790
+
1791
+ To res = 0;
1792
+
1793
+ switch (op) {
1794
+ case GGML_OP_POOL_AVG: res = 0; break;
1795
+ case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
1796
+ default:
1797
+ res = (To) sycl::nan(uint32_t(0));
1798
+ break;
1799
+ }
1800
+
1801
+ for (int i = bh; i < eh; i += 1) {
1802
+ for (int j = bw; j < ew; j += 1) {
1803
+ #if DPCT_COMPATIBILITY_TEMP >= 350
1804
+ /*
1805
+ DPCT1098:106: The '*' expression is used instead of the __ldg
1806
+ call. These two expressions do not provide the exact same
1807
+ functionality. Check the generated code for potential precision
1808
+ and/or performance issues.
1809
+ */
1810
+ Ti cur = *(i_ptr + i * iw + j);
1811
+ #else
1812
+ Ti cur = i_ptr[i * iw + j];
1813
+ #endif
1814
+ switch (op) {
1815
+ case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
1816
+ case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
1817
+ default:
1818
+ res = (To) sycl::nan(uint32_t(0));
1819
+ break;
1820
+ }
1821
+ }
1822
+ }
1823
+ o_ptr[cur_oh * ow + cur_ow] = res;
1824
+ }
1825
+
1826
+ template <int qk, int qr, dequantize_kernel_t dq>
1827
+ static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
1828
+ ggml_tensor *dst, const void *src0_dd,
1829
+ const int32_t *src1_dd, float *dst_dd,
1830
+ queue_ptr stream) {
1831
+
1832
+ GGML_TENSOR_BINARY_OP_LOCALS
1833
+
1834
+ const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
1835
+ const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
1836
+ const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
1837
+
1838
+ // strides in elements
1839
+ //const size_t s0 = nb0 / ggml_element_size(dst);
1840
+ const size_t s1 = nb1 / ggml_element_size(dst);
1841
+ const size_t s2 = nb2 / ggml_element_size(dst);
1842
+ const size_t s3 = nb3 / ggml_element_size(dst);
1843
+
1844
+ const size_t s10 = nb10 / ggml_element_size(src1);
1845
+ const size_t s11 = nb11 / ggml_element_size(src1);
1846
+ const size_t s12 = nb12 / ggml_element_size(src1);
1847
+ //const size_t s13 = nb13 / ggml_element_size(src1);
1848
+
1849
+ GGML_ASSERT(ne00 % 2 == 0);
1850
+
1851
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
1852
+ [=](sycl::nd_item<3> item_ct1) {
1853
+ k_get_rows<qk, qr, dq>(
1854
+ src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
1855
+ s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
1856
+ });
1857
+
1858
+ GGML_UNUSED(dst);
1859
+ GGML_UNUSED(ctx);
1860
+ }
1861
+
1862
+ template <typename src0_t>
1863
+ static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
1864
+ const ggml_tensor *src1, ggml_tensor *dst,
1865
+ const src0_t *src0_dd, const int32_t *src1_dd,
1866
+ float *dst_dd, queue_ptr stream) {
1867
+
1868
+ GGML_TENSOR_BINARY_OP_LOCALS
1869
+
1870
+ const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
1871
+ const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
1872
+ const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
1873
+
1874
+ // strides in elements
1875
+ //const size_t s0 = nb0 / ggml_element_size(dst);
1876
+ const size_t s1 = nb1 / ggml_element_size(dst);
1877
+ const size_t s2 = nb2 / ggml_element_size(dst);
1878
+ const size_t s3 = nb3 / ggml_element_size(dst);
1879
+
1880
+ const size_t s10 = nb10 / ggml_element_size(src1);
1881
+ const size_t s11 = nb11 / ggml_element_size(src1);
1882
+ const size_t s12 = nb12 / ggml_element_size(src1);
1883
+ //const size_t s13 = nb13 / ggml_element_size(src1);
1884
+
1885
+ {
1886
+ dpct::has_capability_or_fail(stream->get_device(),
1887
+ {sycl::aspect::fp16});
1888
+
1889
+ stream->parallel_for(
1890
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
1891
+ [=](sycl::nd_item<3> item_ct1) {
1892
+ k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
1893
+ s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
1894
+ });
1895
+ }
1896
+
1897
+ GGML_UNUSED(dst);
1898
+ GGML_UNUSED(ctx);
1899
+ }
1900
+
1901
+ static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
1902
+ const int ky, const int kx_padded,
1903
+ queue_ptr stream) {
1904
+ const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
1905
+ const sycl::range<3> num_blocks(1, ky, block_num_x);
1906
+ int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
1907
+ static_assert(QK8_1 % WARP_SIZE == 0);
1908
+ const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
1909
+ {
1910
+ dpct::has_capability_or_fail(stream->get_device(),
1911
+ {sycl::aspect::fp16});
1912
+
1913
+ stream->parallel_for(
1914
+ sycl::nd_range<3>(num_blocks * block_size, block_size),
1915
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
1916
+ quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
1917
+ });
1918
+ }
1919
+ }
1920
+
1921
+ static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
1922
+ float *dst, const int ncols_x,
1923
+ const int nrows_x,
1924
+ const int nchannels_x,
1925
+ const int nchannels_y,
1926
+ queue_ptr stream) {
1927
+
1928
+ const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
1929
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
1930
+ {
1931
+ dpct::has_capability_or_fail(stream->get_device(),
1932
+ {sycl::aspect::fp16});
1933
+
1934
+ stream->parallel_for(
1935
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
1936
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
1937
+ mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
1938
+ nchannels_y, item_ct1);
1939
+ });
1940
+ }
1941
+ }
1942
+
1943
+ static void ggml_mul_mat_vec_nc_f16_f32_sycl(
1944
+ const void *vx, const float *y, float *dst, const int ncols_x,
1945
+ const int nrows_x, const int row_stride_x, const int nchannels_x,
1946
+ const int nchannels_y, const int channel_stride_x, queue_ptr stream) {
1947
+
1948
+ const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
1949
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
1950
+ {
1951
+ dpct::has_capability_or_fail(stream->get_device(),
1952
+ {sycl::aspect::fp16});
1953
+
1954
+ stream->parallel_for(
1955
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
1956
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
1957
+ mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
1958
+ row_stride_x, channel_stride_x,
1959
+ nchannels_y / nchannels_x, item_ct1);
1960
+ });
1961
+ }
1962
+ }
1963
+
1964
+ static void
1965
+ ggml_cpy_f16_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00,
1966
+ const int ne01, const int ne02, const int nb00,
1967
+ const int nb01, const int nb02, const int nb03,
1968
+ const int ne10, const int ne11, const int ne12,
1969
+ const int nb10, const int nb11, const int nb12,
1970
+ const int nb13, queue_ptr stream) {
1971
+
1972
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
1973
+ {
1974
+ dpct::has_capability_or_fail(stream->get_device(),
1975
+ {sycl::aspect::fp16});
1976
+
1977
+ stream->parallel_for(
1978
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
1979
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
1980
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
1981
+ [=](sycl::nd_item<3> item_ct1) {
1982
+ cpy_f32_f16<cpy_1_f16_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00,
1983
+ nb01, nb02, nb03, ne10, ne11, ne12,
1984
+ nb10, nb11, nb12, nb13, item_ct1);
1985
+ });
1986
+ }
1987
+ }
1988
+
1989
+ static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
1990
+ const int ne00, const int ne01,
1991
+ const int ne02, const int nb00,
1992
+ const int nb01, const int nb02,
1993
+ const int nb03, const int ne10,
1994
+ const int ne11, const int ne12,
1995
+ const int nb10, const int nb11,
1996
+ const int nb12, const int nb13,
1997
+ queue_ptr stream) {
1998
+
1999
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
2000
+ {
2001
+ dpct::has_capability_or_fail(stream->get_device(),
2002
+ {sycl::aspect::fp16});
2003
+
2004
+ stream->parallel_for(
2005
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
2006
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
2007
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
2008
+ [=](sycl::nd_item<3> item_ct1) {
2009
+ cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
2010
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
2011
+ item_ct1);
2012
+ });
2013
+ }
2014
+ }
2015
+
2016
+ static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
2017
+ const int ne00, const int ne01,
2018
+ const int ne02, const int nb00,
2019
+ const int nb01, const int nb02,
2020
+ const int nb03, const int ne10,
2021
+ const int ne11, const int ne12,
2022
+ const int nb10, const int nb11,
2023
+ const int nb12, const int nb13,
2024
+ queue_ptr stream) {
2025
+
2026
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
2027
+ {
2028
+ dpct::has_capability_or_fail(stream->get_device(),
2029
+ {sycl::aspect::fp16});
2030
+
2031
+ stream->parallel_for(
2032
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
2033
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
2034
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
2035
+ [=](sycl::nd_item<3> item_ct1) {
2036
+ cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
2037
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
2038
+ item_ct1);
2039
+ });
2040
+ }
2041
+ }
2042
+
2043
+ static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
2044
+ const int ne00, const int ne01,
2045
+ const int ne02, const int nb00,
2046
+ const int nb01, const int nb02,
2047
+ const int nb03, const int ne10,
2048
+ const int ne11, const int ne12,
2049
+ const int nb10, const int nb11,
2050
+ const int nb12, const int nb13,
2051
+ queue_ptr stream) {
2052
+
2053
+ GGML_ASSERT(ne % QK8_0 == 0);
2054
+ const int num_blocks = ne / QK8_0;
2055
+ stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
2056
+ sycl::range<3>(1, 1, 1)),
2057
+ [=](sycl::nd_item<3> item_ct1) {
2058
+ cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
2059
+ cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
2060
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
2061
+ item_ct1);
2062
+ });
2063
+ }
2064
+
2065
+ static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
2066
+ const int ne00, const int ne01,
2067
+ const int ne02, const int nb00,
2068
+ const int nb01, const int nb02,
2069
+ const int nb03, const int ne10,
2070
+ const int ne11, const int ne12,
2071
+ const int nb10, const int nb11,
2072
+ const int nb12, const int nb13,
2073
+ queue_ptr stream) {
2074
+
2075
+ GGML_ASSERT(ne % QK4_0 == 0);
2076
+ const int num_blocks = ne / QK4_0;
2077
+ stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
2078
+ sycl::range<3>(1, 1, 1)),
2079
+ [=](sycl::nd_item<3> item_ct1) {
2080
+ cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
2081
+ cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
2082
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
2083
+ item_ct1);
2084
+ });
2085
+ }
2086
+
2087
+ static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
2088
+ const int ne00, const int ne01,
2089
+ const int ne02, const int nb00,
2090
+ const int nb01, const int nb02,
2091
+ const int nb03, const int ne10,
2092
+ const int ne11, const int ne12,
2093
+ const int nb10, const int nb11,
2094
+ const int nb12, const int nb13,
2095
+ queue_ptr stream) {
2096
+
2097
+ GGML_ASSERT(ne % QK4_1 == 0);
2098
+ const int num_blocks = ne / QK4_1;
2099
+ stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
2100
+ sycl::range<3>(1, 1, 1)),
2101
+ [=](sycl::nd_item<3> item_ct1) {
2102
+ cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
2103
+ cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
2104
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
2105
+ item_ct1);
2106
+ });
2107
+ }
2108
+
2109
+ static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
2110
+ const int ne00, const int ne01,
2111
+ const int ne02, const int nb00,
2112
+ const int nb01, const int nb02,
2113
+ const int nb03, const int ne10,
2114
+ const int ne11, const int ne12,
2115
+ const int nb10, const int nb11,
2116
+ const int nb12, const int nb13,
2117
+ queue_ptr stream) {
2118
+
2119
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
2120
+ {
2121
+ dpct::has_capability_or_fail(stream->get_device(),
2122
+ {sycl::aspect::fp16});
2123
+
2124
+ stream->parallel_for(
2125
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
2126
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
2127
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
2128
+ [=](sycl::nd_item<3> item_ct1) {
2129
+ cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
2130
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
2131
+ item_ct1);
2132
+ });
2133
+ }
2134
+ }
2135
+
2136
+ static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
2137
+ const int ne00, const int ne01,
2138
+ const int ne02, const int nb00,
2139
+ const int nb01, const int nb02,
2140
+ const int nb03, const int ne10,
2141
+ const int ne11, const int ne12,
2142
+ const int nb10, const int nb11,
2143
+ const int nb12, const int nb13,
2144
+ queue_ptr stream) {
2145
+
2146
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
2147
+ {
2148
+ // dpct::has_capability_or_fail(stream->get_device(),
2149
+ // {sycl::aspect::fp16});
2150
+
2151
+ stream->parallel_for(
2152
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
2153
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
2154
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
2155
+ [=](sycl::nd_item<3> item_ct1) {
2156
+ cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
2157
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
2158
+ item_ct1);
2159
+ });
2160
+ }
2161
+ }
2162
+
2163
+ static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
2164
+ const int ne00, const int ne01,
2165
+ const int ne02, const int nb00,
2166
+ const int nb01, const int nb02,
2167
+ const int nb03, const int ne10,
2168
+ const int ne11, const int ne12,
2169
+ const int nb10, const int nb11,
2170
+ const int nb12, const int nb13,
2171
+ queue_ptr stream) {
2172
+
2173
+ const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
2174
+ {
2175
+ // dpct::has_capability_or_fail(stream->get_device(),
2176
+ // {sycl::aspect::fp16});
2177
+
2178
+ stream->parallel_for(
2179
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
2180
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
2181
+ sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
2182
+ [=](sycl::nd_item<3> item_ct1) {
2183
+ cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
2184
+ nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
2185
+ item_ct1);
2186
+ });
2187
+ }
2188
+ }
2189
+
2190
+ static void scale_f32_sycl(const float *x, float *dst, const float scale,
2191
+ const int k, queue_ptr stream) {
2192
+ const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
2193
+ stream->parallel_for(
2194
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
2195
+ sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
2196
+ sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
2197
+ [=](sycl::nd_item<3> item_ct1) {
2198
+ scale_f32(x, dst, scale, k, item_ct1);
2199
+ });
2200
+ }
2201
+
2202
+ static void clamp_f32_sycl(const float *x, float *dst, const float min,
2203
+ const float max, const int k,
2204
+ queue_ptr stream) {
2205
+ const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
2206
+ stream->parallel_for(
2207
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
2208
+ sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
2209
+ sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
2210
+ [=](sycl::nd_item<3> item_ct1) {
2211
+ clamp_f32(x, dst, min, max, k, item_ct1);
2212
+ });
2213
+ }
2214
+
2215
+ static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
2216
+ const int nrows, queue_ptr stream) {
2217
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
2218
+ const sycl::range<3> block_nums(1, nrows, 1);
2219
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
2220
+ [=](sycl::nd_item<3> item_ct1)
2221
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
2222
+ k_sum_rows_f32(x, dst, ncols, item_ct1);
2223
+ });
2224
+ }
2225
+
2226
+ static int next_power_of_2(int x) {
2227
+ int n = 1;
2228
+ while (n < x) {
2229
+ n *= 2;
2230
+ }
2231
+ return n;
2232
+ }
2233
+
2234
+ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
2235
+ const int nrows, ggml_sort_order order,
2236
+ queue_ptr stream) {
2237
+ // bitonic sort requires ncols to be power of 2
2238
+ const int ncols_pad = next_power_of_2(ncols);
2239
+
2240
+ const sycl::range<3> block_dims(1, 1, ncols_pad);
2241
+ const sycl::range<3> block_nums(1, nrows, 1);
2242
+ const size_t shared_mem = ncols_pad * sizeof(int);
2243
+
2244
+ if (order == GGML_SORT_ORDER_ASC) {
2245
+ stream->submit([&](sycl::handler &cgh) {
2246
+ sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
2247
+ sycl::range<1>(shared_mem), cgh);
2248
+
2249
+ cgh.parallel_for(
2250
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
2251
+ [=](sycl::nd_item<3> item_ct1) {
2252
+ k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(
2253
+ x, dst, ncols, ncols_pad, item_ct1,
2254
+ dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
2255
+ .get());
2256
+ });
2257
+ });
2258
+ } else if (order == GGML_SORT_ORDER_DESC) {
2259
+ stream->submit([&](sycl::handler &cgh) {
2260
+ sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
2261
+ sycl::range<1>(shared_mem), cgh);
2262
+
2263
+ cgh.parallel_for(
2264
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
2265
+ [=](sycl::nd_item<3> item_ct1) {
2266
+ k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(
2267
+ x, dst, ncols, ncols_pad, item_ct1,
2268
+ dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
2269
+ .get());
2270
+ });
2271
+ });
2272
+ } else {
2273
+ GGML_ABORT("fatal error");
2274
+ }
2275
+ }
2276
+
2277
+ static void argmax_f32_i32_sycl(const float *x, int *dst, const int ncols,
2278
+ const int nrows, queue_ptr stream) {
2279
+ const sycl::range<3> block_dims(1, 1, SYCL_ARGMAX_BLOCK_SIZE);
2280
+ const sycl::range<3> block_nums(1, nrows, 1);
2281
+ const size_t shared_mem = 256 * sizeof(float);
2282
+
2283
+ stream->submit([&](sycl::handler &cgh) {
2284
+ sycl::local_accessor<float, 1> shared_data(
2285
+ sycl::range<1>(shared_mem/sizeof(float)), cgh);
2286
+ sycl::local_accessor<int, 1> shared_indices(
2287
+ sycl::range<1>(shared_mem/sizeof(float)), cgh);
2288
+
2289
+ cgh.parallel_for(
2290
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
2291
+ [=](sycl::nd_item<3> item_ct1) {
2292
+ const int tid = item_ct1.get_local_id(2);
2293
+ const int row = item_ct1.get_global_id(1);
2294
+
2295
+ float max_val = -INFINITY;
2296
+ int max_idx = -1;
2297
+
2298
+ for (int col = tid; col < ncols; col += 256) {
2299
+ float val = x[row * ncols + col];
2300
+ if (val > max_val) {
2301
+ max_val = val;
2302
+ max_idx = col;
2303
+ }
2304
+ }
2305
+
2306
+ shared_data[tid] = max_val;
2307
+ shared_indices[tid] = max_idx;
2308
+ item_ct1.barrier(sycl::access::fence_space::local_space);
2309
+
2310
+ for (int stride = 256/2; stride > 0; stride >>= 1) {
2311
+ if (tid < stride) {
2312
+ float val1 = shared_data[tid];
2313
+ float val2 = shared_data[tid + stride];
2314
+ if (val2 > val1) {
2315
+ shared_data[tid] = val2;
2316
+ shared_indices[tid] = shared_indices[tid + stride];
2317
+ }
2318
+ }
2319
+ item_ct1.barrier(sycl::access::fence_space::local_space);
2320
+ }
2321
+
2322
+
2323
+ if (tid == 0) {
2324
+ dst[row] = shared_indices[0];
2325
+ }
2326
+ });
2327
+ });
2328
+ }
2329
+ static void diag_mask_inf_f32_sycl(const float *x, float *dst,
2330
+ const int ncols_x, const int nrows_x,
2331
+ const int rows_per_channel, const int n_past,
2332
+ queue_ptr stream) {
2333
+ const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
2334
+ const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
2335
+ const sycl::range<3> block_nums(1, block_num_x, nrows_x);
2336
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
2337
+ [=](sycl::nd_item<3> item_ct1) {
2338
+ diag_mask_inf_f32(x, dst, ncols_x,
2339
+ rows_per_channel, n_past,
2340
+ item_ct1);
2341
+ });
2342
+ }
2343
+
2344
+ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
2345
+ const struct ggml_tensor *src,
2346
+ int64_t i3, int64_t i2,
2347
+ int64_t i1_low, int64_t i1_high,
2348
+ queue_ptr stream) try {
2349
+
2350
+ dpct::memcpy_direction kind;
2351
+ char * src_ptr;
2352
+ if (src->backend == GGML_BACKEND_TYPE_CPU) {
2353
+ kind = dpct::host_to_device;
2354
+ src_ptr = (char *) src->data;
2355
+ // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
2356
+ } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
2357
+ GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
2358
+ kind = dpct::device_to_device;
2359
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
2360
+ int id;
2361
+ SYCL_CHECK(CHECK_TRY_ERROR(
2362
+ id = get_current_device_id()));
2363
+ // GGML_SYCL_DEBUG("current device index %d\n", id);
2364
+ src_ptr = (char *) extra->data_device[id];
2365
+ } else {
2366
+ // GGML_SYCL_DEBUG("GGML_ABORT("fatal error")\n");
2367
+ GGML_ABORT("fatal error");
2368
+ }
2369
+ char * dst_ptr = (char *) dst;
2370
+
2371
+ GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
2372
+ GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
2373
+ const enum ggml_type type = src->type;
2374
+ const int64_t ts = ggml_type_size(type);
2375
+ const int64_t bs = ggml_blck_size(type);
2376
+ int64_t i1_diff = i1_high - i1_low;
2377
+
2378
+ const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
2379
+ if (nb0 == ts && nb1 == ts*ne0/bs) {
2380
+ // GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
2381
+ // return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
2382
+ return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
2383
+ kind, *stream));
2384
+
2385
+ } else if (nb0 == ts) {
2386
+ return CHECK_TRY_ERROR(
2387
+ dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
2388
+ ts * ne0 / bs, i1_diff, kind, *stream));
2389
+ } else {
2390
+ for (int64_t i1 = 0; i1 < i1_diff; i1++) {
2391
+ const void * rx = (const void *) ((const char *) x + i1*nb1);
2392
+ void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
2393
+ // pretend the row is a matrix with cols=1
2394
+ dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
2395
+ rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
2396
+ /*
2397
+ DPCT1001:85: The statement could not be removed.
2398
+ */
2399
+ /*
2400
+ DPCT1000:86: Error handling if-stmt was detected but could not be
2401
+ rewritten.
2402
+ */
2403
+ if (r != 0) return r;
2404
+ }
2405
+ return 0;
2406
+ }
2407
+ }
2408
+ catch (sycl::exception const &exc) {
2409
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
2410
+ << ", line:" << __LINE__ << std::endl;
2411
+ std::exit(1);
2412
+ }
2413
+
2414
+ static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2415
+ const ggml_tensor *src1, ggml_tensor *dst,
2416
+ const float *src0_d, const float *src1_d,
2417
+ float *dst_d, const queue_ptr &stream) {
2418
+
2419
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
2420
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
2421
+
2422
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
2423
+ GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
2424
+ GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
2425
+
2426
+ const int32_t * src1_i32 = (const int32_t *) src1_d;
2427
+
2428
+ switch (src0->type) {
2429
+ case GGML_TYPE_F16:
2430
+ get_rows_sycl_float(ctx, src0, src1, dst, (const sycl::half *)src0_d,
2431
+ src1_i32, dst_d, stream);
2432
+ break;
2433
+ case GGML_TYPE_F32:
2434
+ get_rows_sycl_float(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
2435
+ break;
2436
+ case GGML_TYPE_Q4_0:
2437
+ get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
2438
+ break;
2439
+ case GGML_TYPE_Q4_1:
2440
+ get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
2441
+ break;
2442
+ case GGML_TYPE_Q5_0:
2443
+ get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
2444
+ break;
2445
+ case GGML_TYPE_Q5_1:
2446
+ get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
2447
+ break;
2448
+ case GGML_TYPE_Q8_0:
2449
+ get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
2450
+ break;
2451
+ default:
2452
+ // TODO: k-quants
2453
+ GGML_LOG_ERROR("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
2454
+ GGML_ABORT("fatal error");
2455
+ break;
2456
+ }
2457
+ }
2458
+
2459
+
2460
+ static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2461
+ const ggml_tensor *src1, ggml_tensor *dst,
2462
+ const float *src0_d, const float *src1_d,
2463
+ float *dst_d,
2464
+ const queue_ptr &main_stream) {
2465
+
2466
+ ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
2467
+
2468
+ GGML_UNUSED(src1);
2469
+ GGML_UNUSED(src1_d);
2470
+ }
2471
+
2472
+
2473
+ inline void ggml_sycl_op_mul_mat_sycl(
2474
+ ggml_backend_sycl_context & ctx,
2475
+ const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
2476
+ const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
2477
+ float *dst_dd_i, const int64_t row_low, const int64_t row_high,
2478
+ const int64_t src1_ncols, const int64_t src1_padded_row_size,
2479
+ const queue_ptr &stream) try {
2480
+
2481
+ GGML_ASSERT(src0_dd_i != nullptr);
2482
+ GGML_ASSERT(src1_ddf_i != nullptr);
2483
+ GGML_ASSERT(dst_dd_i != nullptr);
2484
+
2485
+ const int64_t ne00 = src0->ne[0];
2486
+ const int64_t ne10 = src1->ne[0];
2487
+
2488
+
2489
+ const int64_t row_diff = row_high - row_low;
2490
+
2491
+ int id;
2492
+ SYCL_CHECK(
2493
+ CHECK_TRY_ERROR(id = get_current_device_id()));
2494
+ #if !GGML_SYCL_DNNL
2495
+ const int64_t ne0 = dst->ne[0];
2496
+ // the main device has a larger memory buffer to hold the results from all GPUs
2497
+ // ldc == nrows of the matrix that cuBLAS writes into
2498
+ int ldc = id == ctx.device ? ne0 : row_diff;
2499
+ #endif
2500
+
2501
+ #ifdef GGML_SYCL_F16
2502
+ bool use_fp16 = true; // TODO(Yu) SYCL capability check
2503
+ #else
2504
+ bool use_fp16 = false;
2505
+ #endif
2506
+ if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
2507
+ use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
2508
+ dst->op_params[0] == GGML_PREC_DEFAULT) {
2509
+
2510
+ // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
2511
+ ggml_sycl_pool_alloc<sycl::half> src0_as_f16(ctx.pool());
2512
+ if (src0->type != GGML_TYPE_F16) {
2513
+ const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
2514
+ GGML_ASSERT(to_fp16_sycl != nullptr);
2515
+ size_t ne = row_diff*ne00;
2516
+ src0_as_f16.alloc(ne);
2517
+ to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
2518
+ }
2519
+ const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
2520
+ ? (const sycl::half *)src0_dd_i
2521
+ : src0_as_f16.get();
2522
+
2523
+ ggml_sycl_pool_alloc<sycl::half> src1_as_f16(ctx.pool());
2524
+ if (src1->type != GGML_TYPE_F16) {
2525
+ const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
2526
+ GGML_ASSERT(to_fp16_sycl != nullptr);
2527
+ size_t ne = src1_ncols*ne10;
2528
+ src1_as_f16.alloc(ne);
2529
+ to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
2530
+ }
2531
+ const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
2532
+ ? (const sycl::half *)src1->data + src1_padded_row_size
2533
+ : src1_as_f16.get();
2534
+ ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool(), row_diff * src1_ncols);
2535
+
2536
+ #if !GGML_SYCL_DNNL
2537
+ const sycl::half alpha_f16 = 1.0f;
2538
+ const sycl::half beta_f16 = 0.0f;
2539
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
2540
+ *stream, oneapi::mkl::transpose::trans,
2541
+ oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
2542
+ &alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
2543
+ src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
2544
+ dst_f16.get(), dpct::library_data_t::real_half, ldc,
2545
+ dpct::library_data_t::real_half)));
2546
+ const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
2547
+ to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
2548
+ #else
2549
+ auto dnnl_stream = ctx.stream_dnnl(stream);
2550
+ DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ptr, DnnlGemmWrapper::to_dt<sycl::half>(),
2551
+ src0_ptr, DnnlGemmWrapper::to_dt<sycl::half>(), dst_f16.get(), DnnlGemmWrapper::to_dt<sycl::half>());
2552
+ const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
2553
+ to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff* src1_ncols, stream);
2554
+ #endif
2555
+ }
2556
+ else {
2557
+ // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
2558
+ ggml_sycl_pool_alloc<float> src0_ddq_as_f32(ctx.pool());
2559
+ ggml_sycl_pool_alloc<float> src1_ddq_as_f32(ctx.pool());
2560
+ if (src0->type != GGML_TYPE_F32) {
2561
+ const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
2562
+ GGML_ASSERT(to_fp32_sycl != nullptr);
2563
+ src0_ddq_as_f32.alloc(row_diff*ne00);
2564
+ to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
2565
+ }
2566
+ if (src1->type != GGML_TYPE_F32) {
2567
+ const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src1->type);
2568
+ GGML_ASSERT(to_fp32_sycl != nullptr);
2569
+ src1_ddq_as_f32.alloc(src1_ncols*ne10);
2570
+ to_fp32_sycl(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
2571
+ }
2572
+ const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
2573
+ const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
2574
+
2575
+ #if !GGML_SYCL_DNNL
2576
+ const float alpha = 1.0f;
2577
+ const float beta = 0.0f;
2578
+ # ifdef GGML_SYCL_NVIDIA
2579
+ SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
2580
+ oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ *stream }, oneapi::mkl::transpose::trans,
2581
+ oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10, dpct::get_value(&alpha, *stream), src0_ddf_i,
2582
+ ne00, src1_ddf1_i, ne10, dpct::get_value(&beta, *stream), dst_dd_i, ldc)));
2583
+ # else
2584
+ SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
2585
+ *stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
2586
+ dpct::get_value(&alpha, *stream), src0_ddf_i, ne00, src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
2587
+ dst_dd_i, ldc)));
2588
+ # endif
2589
+ #else
2590
+ auto dnnl_stream = ctx.stream_dnnl(stream);
2591
+ DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ddf1_i, DnnlGemmWrapper::to_dt<float>(),
2592
+ src0_ddf_i, DnnlGemmWrapper::to_dt<float>(), dst_dd_i, DnnlGemmWrapper::to_dt<float>());
2593
+ #endif
2594
+ }
2595
+ GGML_UNUSED(dst);
2596
+ GGML_UNUSED(src1_ddq_i);
2597
+ GGML_UNUSED(src1_padded_row_size);
2598
+ }
2599
+ catch (sycl::exception const &exc) {
2600
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
2601
+ << ", line:" << __LINE__ << std::endl;
2602
+ std::exit(1);
2603
+ }
2604
+
2605
+ static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2606
+ const ggml_tensor *src1, ggml_tensor *dst,
2607
+ const float *src0_dd, const float *src1_dd,
2608
+ float *dst_dd, const queue_ptr &main_stream) {
2609
+
2610
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
2611
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
2612
+
2613
+ const int32_t * opts = (const int32_t *)dst->op_params;
2614
+ enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
2615
+ const int k0 = opts[1];
2616
+ const int k1 = opts[2];
2617
+ const int s0 = opts[3];
2618
+ const int s1 = opts[4];
2619
+ const int p0 = opts[5];
2620
+ const int p1 = opts[6];
2621
+
2622
+ const int64_t IH = src0->ne[1];
2623
+ const int64_t IW = src0->ne[0];
2624
+
2625
+ const int64_t N = dst->ne[3];
2626
+ const int64_t OC = dst->ne[2];
2627
+ const int64_t OH = dst->ne[1];
2628
+ const int64_t OW = dst->ne[0];
2629
+
2630
+ const int parallel_elements = N * OC * OH * OW;
2631
+ const int num_blocks = (parallel_elements + SYCL_POOL2D_BLOCK_SIZE - 1) / SYCL_POOL2D_BLOCK_SIZE;
2632
+ sycl::range<3> block_nums(1, 1, num_blocks);
2633
+ main_stream->parallel_for(
2634
+ sycl::nd_range<3>(block_nums *
2635
+ sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
2636
+ sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
2637
+ [=](sycl::nd_item<3> item_ct1) {
2638
+ pool2d_nchw_kernel(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0,
2639
+ parallel_elements, src0_dd, dst_dd, op,
2640
+ item_ct1);
2641
+ });
2642
+
2643
+ GGML_UNUSED(src1);
2644
+ GGML_UNUSED(src1_dd);
2645
+ GGML_UNUSED(ctx);
2646
+ }
2647
+
2648
+ inline void ggml_sycl_op_sum(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2649
+ const ggml_tensor *src1, ggml_tensor *dst,
2650
+ const float *src0_dd, const float *src1_dd,
2651
+ float *dst_dd,
2652
+ const queue_ptr &main_stream) {
2653
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
2654
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
2655
+
2656
+ const int64_t ne = ggml_nelements(src0);
2657
+
2658
+ sum_rows_f32_sycl(src0_dd, dst_dd, ne, 1, main_stream);
2659
+
2660
+ GGML_UNUSED(src1);
2661
+ GGML_UNUSED(dst);
2662
+ GGML_UNUSED(src1_dd);
2663
+ GGML_UNUSED(ctx);
2664
+ }
2665
+
2666
+ inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2667
+ const ggml_tensor *src1, ggml_tensor *dst,
2668
+ const float *src0_dd, const float *src1_dd,
2669
+ float *dst_dd,
2670
+ const queue_ptr &main_stream) {
2671
+
2672
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
2673
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
2674
+
2675
+ const int64_t ncols = src0->ne[0];
2676
+ const int64_t nrows = ggml_nrows(src0);
2677
+
2678
+ sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
2679
+
2680
+ GGML_UNUSED(src1);
2681
+ GGML_UNUSED(dst);
2682
+ GGML_UNUSED(src1_dd);
2683
+ GGML_UNUSED(ctx);
2684
+ }
2685
+
2686
+ inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2687
+ const ggml_tensor *src1, ggml_tensor *dst,
2688
+ const float *src0_dd, const float *src1_dd,
2689
+ float *dst_dd,
2690
+ const queue_ptr &main_stream) {
2691
+
2692
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
2693
+ GGML_ASSERT( dst->type == GGML_TYPE_I32);
2694
+
2695
+ const int64_t ncols = src0->ne[0];
2696
+ const int64_t nrows = ggml_nrows(src0);
2697
+
2698
+ enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
2699
+
2700
+ argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
2701
+
2702
+ GGML_UNUSED(src1);
2703
+ GGML_UNUSED(dst);
2704
+ GGML_UNUSED(src1_dd);
2705
+ GGML_UNUSED(ctx);
2706
+ }
2707
+
2708
+ inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2709
+ const ggml_tensor *src1, ggml_tensor *dst,
2710
+ const float *src0_dd, const float *src1_dd,
2711
+ float *dst_dd,
2712
+ const queue_ptr &main_stream) {
2713
+
2714
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
2715
+ GGML_ASSERT( dst->type == GGML_TYPE_I32);
2716
+
2717
+ const int64_t ncols = src0->ne[0];
2718
+ const int64_t nrows = ggml_nrows(src0);
2719
+
2720
+ argmax_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, main_stream);
2721
+
2722
+ GGML_UNUSED(src1);
2723
+ GGML_UNUSED(dst);
2724
+ GGML_UNUSED(src1_dd);
2725
+ GGML_UNUSED(ctx);
2726
+ }
2727
+
2728
+ inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2729
+ const ggml_tensor *src1,
2730
+ ggml_tensor *dst, const float *src0_dd,
2731
+ const float *src1_dd, float *dst_dd,
2732
+ const queue_ptr &main_stream) {
2733
+
2734
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
2735
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
2736
+
2737
+ const int64_t ne00 = src0->ne[0];
2738
+ const int64_t ne01 = src0->ne[1];
2739
+ const int nrows0 = ggml_nrows(src0);
2740
+
2741
+ const int n_past = ((int32_t *) dst->op_params)[0];
2742
+
2743
+ diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
2744
+
2745
+ GGML_UNUSED(src1);
2746
+ GGML_UNUSED(dst);
2747
+ GGML_UNUSED(src1_dd);
2748
+ GGML_UNUSED(ctx);
2749
+ }
2750
+
2751
+ inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
2752
+ ggml_tensor *dst, const float *src0_dd,
2753
+ const float *src1_dd, float *dst_dd,
2754
+ const queue_ptr &main_stream) {
2755
+
2756
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
2757
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
2758
+
2759
+ float scale;
2760
+ memcpy(&scale, dst->op_params, sizeof(float));
2761
+
2762
+ scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
2763
+ /*
2764
+ DPCT1010:87: SYCL uses exceptions to report errors and does not use the
2765
+ error codes. The call was replaced with 0. You need to rewrite this code.
2766
+ */
2767
+ SYCL_CHECK(0);
2768
+
2769
+ GGML_UNUSED(src1);
2770
+ GGML_UNUSED(dst);
2771
+ GGML_UNUSED(src1_dd);
2772
+ GGML_UNUSED(ctx);
2773
+ }
2774
+
2775
+ inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
2776
+ ggml_tensor *dst, const float *src0_dd,
2777
+ const float *src1_dd, float *dst_dd,
2778
+ const queue_ptr &main_stream) {
2779
+
2780
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
2781
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
2782
+
2783
+ float min;
2784
+ float max;
2785
+ memcpy(&min, dst->op_params, sizeof(float));
2786
+ memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
2787
+
2788
+ clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
2789
+ /*
2790
+ DPCT1010:88: SYCL uses exceptions to report errors and does not use the
2791
+ error codes. The call was replaced with 0. You need to rewrite this code.
2792
+ */
2793
+ SYCL_CHECK(0);
2794
+
2795
+ GGML_UNUSED(src1);
2796
+ GGML_UNUSED(dst);
2797
+ GGML_UNUSED(src1_dd);
2798
+ GGML_UNUSED(ctx);
2799
+ }
2800
+
2801
+ static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
2802
+ static bool peer_access_enabled = false;
2803
+
2804
+ const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
2805
+
2806
+ if (peer_access_enabled == enable_peer_access) {
2807
+ return;
2808
+ }
2809
+
2810
+ #ifdef NDEBUG
2811
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
2812
+ SYCL_CHECK(ggml_sycl_set_device(i));
2813
+ }
2814
+
2815
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
2816
+ SYCL_CHECK(ggml_sycl_set_device(i));
2817
+
2818
+ for (int id_other = 0; id_other < ggml_sycl_info().device_count; ++id_other) {
2819
+ if (i == id_other) {
2820
+ continue;
2821
+ }
2822
+ if (i != main_device && id_other != main_device) {
2823
+ continue;
2824
+ }
2825
+
2826
+ // int can_access_peer;
2827
+ // SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
2828
+ // if (can_access_peer) {
2829
+ // if (enable_peer_access) {
2830
+ // SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
2831
+ // } else {
2832
+ // SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
2833
+ // }
2834
+ // }
2835
+ }
2836
+ }
2837
+ #endif // NDEBUG
2838
+
2839
+ peer_access_enabled = enable_peer_access;
2840
+ }
2841
+
2842
+ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
2843
+ const ggml_tensor *src1, ggml_tensor *dst,
2844
+ ggml_sycl_op_mul_mat_t op,
2845
+ const bool convert_src1_to_q8_1) try {
2846
+
2847
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
2848
+
2849
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
2850
+ const int64_t nrows1 = ggml_nrows(src1);
2851
+
2852
+ GGML_ASSERT(ne03 == ne13);
2853
+
2854
+ const int64_t ne0 = dst->ne[0];
2855
+ const int64_t ne1 = dst->ne[1];
2856
+
2857
+ const int nb2 = dst->nb[2];
2858
+ const int nb3 = dst->nb[3];
2859
+
2860
+ GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
2861
+ GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
2862
+ GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
2863
+
2864
+ GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
2865
+
2866
+ const int64_t i02_divisor = ne12 / ne02;
2867
+
2868
+ const size_t src0_ts = ggml_type_size(src0->type);
2869
+ const size_t src0_bs = ggml_blck_size(src0->type);
2870
+ const size_t q8_1_ts = sizeof(block_q8_1);
2871
+ const size_t q8_1_bs = QK8_1;
2872
+
2873
+ ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
2874
+ ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
2875
+
2876
+ const bool src0_is_contiguous = ggml_is_contiguous(src0);
2877
+ const bool src1_is_contiguous = ggml_is_contiguous(src1);
2878
+
2879
+ int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
2880
+
2881
+ const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
2882
+ GGML_ASSERT(!(split && ne02 > 1));
2883
+ GGML_ASSERT(!(split && ne03 > 1));
2884
+ GGML_ASSERT(!(split && ne02 < ne12));
2885
+
2886
+ std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
2887
+ if (split) {
2888
+ // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
2889
+ // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
2890
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
2891
+ tensor_split = buft_ctx->tensor_split;
2892
+ }
2893
+
2894
+ struct dev_data {
2895
+ ggml_sycl_pool_alloc<char> src0_dd_alloc;
2896
+ ggml_sycl_pool_alloc<float> src1_ddf_alloc;
2897
+ ggml_sycl_pool_alloc<char> src1_ddq_alloc;
2898
+ ggml_sycl_pool_alloc<float> dst_dd_alloc;
2899
+
2900
+ char *src0_dd = nullptr;
2901
+ float *src1_ddf = nullptr; // float
2902
+ char *src1_ddq = nullptr; // q8_1
2903
+ float *dst_dd = nullptr;
2904
+
2905
+ int64_t row_low;
2906
+ int64_t row_high;
2907
+ };
2908
+
2909
+ dev_data dev[GGML_SYCL_MAX_DEVICES];
2910
+
2911
+ int used_devices = 0;
2912
+ queue_ptr main_stream = ctx.stream();
2913
+
2914
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
2915
+ // by default, use all rows
2916
+ dev[i].row_low = 0;
2917
+ dev[i].row_high = ne01;
2918
+
2919
+ // for multi GPU, get the row boundaries from tensor split
2920
+ // and round to mul_mat_q tile sizes
2921
+ if (split) {
2922
+ const int64_t rounding = get_row_rounding(src0->type, tensor_split);
2923
+
2924
+ if (i != 0) {
2925
+ dev[i].row_low = ne01*tensor_split[i];
2926
+ if (dev[i].row_low < ne01) {
2927
+ dev[i].row_low -= dev[i].row_low % rounding;
2928
+ }
2929
+ }
2930
+
2931
+ if (i != ggml_sycl_info().device_count - 1) {
2932
+ dev[i].row_high = ne01*tensor_split[i + 1];
2933
+ if (dev[i].row_high < ne01) {
2934
+ dev[i].row_high -= dev[i].row_high % rounding;
2935
+ }
2936
+ }
2937
+ }
2938
+ }
2939
+
2940
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
2941
+ if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
2942
+ continue;
2943
+ }
2944
+
2945
+ used_devices++;
2946
+
2947
+ const bool src1_on_device = i == ctx.device;
2948
+ const bool dst_on_device = i == ctx.device;
2949
+
2950
+ ggml_sycl_set_device(i);
2951
+ queue_ptr stream = ctx.stream(i, 0);
2952
+
2953
+ if (src0_is_contiguous) {
2954
+ dev[i].src0_dd = (char *) src0->data;
2955
+ } else {
2956
+ dev[i].src0_dd = dev[i].src0_dd_alloc.alloc(ctx.pool(i), ggml_nbytes(src0));
2957
+ }
2958
+
2959
+ if (src1_on_device && src1_is_contiguous) {
2960
+ dev[i].src1_ddf = (float *) src1->data;
2961
+ } else {
2962
+ dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ctx.pool(i), ggml_nelements(src1));
2963
+ }
2964
+
2965
+ if (convert_src1_to_q8_1) {
2966
+ dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
2967
+
2968
+ if (src1_on_device && src1_is_contiguous) {
2969
+ quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
2970
+ /*
2971
+ DPCT1010:90: SYCL uses exceptions to report errors and does not
2972
+ use the error codes. The call was replaced with 0. You need to
2973
+ rewrite this code.
2974
+ */
2975
+ SYCL_CHECK(0);
2976
+ }
2977
+ }
2978
+
2979
+ if (dst_on_device) {
2980
+ dev[i].dst_dd = (float *) dst->data;
2981
+ } else {
2982
+ const size_t size_dst_ddf = split ? (dev[i].row_high - dev[i].row_low)*ne1 : ggml_nelements(dst);
2983
+ dev[i].dst_dd = dev[i].dst_dd_alloc.alloc(ctx.pool(i), size_dst_ddf);
2984
+ }
2985
+ }
2986
+
2987
+ // if multiple devices are used they need to wait for the main device
2988
+ // here an event is recorded that signals that the main device has finished calculating the input data
2989
+ if (split && used_devices > 1) {
2990
+ ggml_sycl_set_device(ctx.device);
2991
+ /*
2992
+ DPCT1024:91: The original code returned the error code that was further
2993
+ consumed by the program logic. This original code was replaced with 0.
2994
+ You may need to rewrite the program logic consuming the error code.
2995
+ */
2996
+ SYCL_CHECK(CHECK_TRY_ERROR(
2997
+ *src0_extra->events[ctx.device][0] =
2998
+ ctx.stream()->ext_oneapi_submit_barrier()));
2999
+ }
3000
+
3001
+ const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
3002
+ for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
3003
+ const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_SYCL_MAX_STREAMS : 0;
3004
+ const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
3005
+
3006
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
3007
+ if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
3008
+ continue;
3009
+ }
3010
+
3011
+ const bool src1_on_device = i == ctx.device;
3012
+ const bool dst_on_device = i == ctx.device;
3013
+ const int64_t row_diff = dev[i].row_high - dev[i].row_low;
3014
+
3015
+ ggml_sycl_set_device(i);
3016
+ queue_ptr stream = ctx.stream(i, is);
3017
+
3018
+ // wait for main GPU data if necessary
3019
+ if (split && (i != ctx.device || is != 0)) {
3020
+ /*
3021
+ DPCT1009:163: SYCL uses exceptions to report errors and does not
3022
+ use the error codes. The original code was commented out and a
3023
+ warning string was inserted. You need to rewrite this code.
3024
+ */
3025
+ SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
3026
+ {*src0_extra->events[ctx.device][0]})));
3027
+ }
3028
+
3029
+ for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
3030
+ const int64_t i03 = i0 / ne12;
3031
+ const int64_t i02 = i0 % ne12;
3032
+
3033
+ const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
3034
+
3035
+ // for split tensors the data begins at i0 == i0_offset_low
3036
+ char * src0_dd_i = dev[i].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
3037
+ float * src1_ddf_i = dev[i].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
3038
+ char * src1_ddq_i = dev[i].src1_ddq + src1_ddq_i_offset;
3039
+ float * dst_dd_i = dev[i].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
3040
+
3041
+ // the main device memory buffer can be on VRAM scratch, with space for all partial results
3042
+ // in that case an offset on dst_ddf_i is needed
3043
+ if (i == ctx.device) {
3044
+ dst_dd_i += dev[i].row_low; // offset is 0 if no tensor split
3045
+ }
3046
+
3047
+ // copy src0, src1 to device if necessary
3048
+ if (src1_is_contiguous) {
3049
+ if (i != ctx.device) {
3050
+ if (convert_src1_to_q8_1) {
3051
+ char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
3052
+ SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
3053
+ src1_ddq_i, src1_ddq_i_source,
3054
+ src1_ncols * src1_padded_col_size * q8_1_ts /
3055
+ q8_1_bs).wait()));
3056
+ } else {
3057
+
3058
+ float * src1_ddf_i_source = (float *) src1_extra->data_device[ctx.device];
3059
+ src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
3060
+
3061
+ SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream,
3062
+ src1_ddf_i, src1_ddf_i_source,
3063
+ src1_ncols * ne10 * sizeof(float))));
3064
+ }
3065
+ }
3066
+ } else if (src1_on_device && !src1_is_contiguous) {
3067
+ SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
3068
+ src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
3069
+ } else {
3070
+ GGML_ABORT("fatal error");
3071
+ }
3072
+
3073
+ if (convert_src1_to_q8_1 && !src1_is_contiguous) {
3074
+ quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
3075
+ /*
3076
+ DPCT1010:92: SYCL uses exceptions to report errors and does
3077
+ not use the error codes. The call was replaced with 0. You
3078
+ need to rewrite this code.
3079
+ */
3080
+ SYCL_CHECK(0);
3081
+ }
3082
+
3083
+ if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
3084
+ SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[i].row_low, dev[i].row_high, stream));
3085
+ }
3086
+ if (src1->type == GGML_TYPE_F16) {
3087
+ src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
3088
+ }
3089
+ // do the computation
3090
+ SYCL_CHECK(CHECK_TRY_ERROR(op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
3091
+ dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream)));
3092
+ /*
3093
+ DPCT1010:93: SYCL uses exceptions to report errors and does not
3094
+ use the error codes. The call was replaced with 0. You need to
3095
+ rewrite this code.
3096
+ */
3097
+ SYCL_CHECK(0);
3098
+
3099
+ // copy dst to host or other device if necessary
3100
+ if (!dst_on_device) {
3101
+ void * dst_off_device = dst->data;
3102
+ if (split) {
3103
+ // src0 = weight matrix is saved as a transposed matrix for better memory layout.
3104
+ // dst is NOT transposed.
3105
+ // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
3106
+ // Instead they need to be copied to the correct slice in ne0 = dst row index.
3107
+ // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
3108
+ float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
3109
+ GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
3110
+ dhf_dst_i += src1_col_0*ne0 + dev[i].row_low;
3111
+
3112
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
3113
+ dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
3114
+ row_diff * sizeof(float), row_diff * sizeof(float),
3115
+ src1_ncols, dpct::device_to_device, *stream)));
3116
+ } else {
3117
+ float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
3118
+ GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
3119
+ dhf_dst_i += src1_col_0*ne0;
3120
+ SYCL_CHECK(CHECK_TRY_ERROR(
3121
+ stream->memcpy(dhf_dst_i, dst_dd_i,
3122
+ src1_ncols * ne0 * sizeof(float)).wait()));
3123
+ }
3124
+ }
3125
+
3126
+ // add event for the main device to wait on until other device is done
3127
+ if (split && (i != ctx.device || is != 0)) {
3128
+ /*
3129
+ DPCT1024:94: The original code returned the error code that
3130
+ was further consumed by the program logic. This original
3131
+ code was replaced with 0. You may need to rewrite the
3132
+ program logic consuming the error code.
3133
+ */
3134
+ SYCL_CHECK(CHECK_TRY_ERROR(
3135
+ *src0_extra->events[i][is] =
3136
+ stream->ext_oneapi_submit_barrier()));
3137
+ }
3138
+ }
3139
+ }
3140
+ }
3141
+
3142
+ // main device waits for all other devices to be finished
3143
+ if (split && ggml_sycl_info().device_count > 1) {
3144
+ int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
3145
+ is_max = is_max <= GGML_SYCL_MAX_STREAMS ? is_max : GGML_SYCL_MAX_STREAMS;
3146
+
3147
+ ggml_sycl_set_device(ctx.device);
3148
+ for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
3149
+ if (dev[i].row_low == dev[i].row_high) {
3150
+ continue;
3151
+ }
3152
+ for (int64_t is = 0; is < is_max; ++is) {
3153
+ SYCL_CHECK(CHECK_TRY_ERROR(
3154
+ ctx.stream()->ext_oneapi_submit_barrier(
3155
+ {*src0_extra->events[i][is]})));
3156
+ }
3157
+ }
3158
+ }
3159
+ }
3160
+ catch (sycl::exception const &exc) {
3161
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
3162
+ << ", line:" << __LINE__ << std::endl;
3163
+ std::exit(1);
3164
+ }
3165
+
3166
+
3167
+ static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3168
+ GGML_SYCL_DEBUG("call %s\n", __func__);
3169
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_repeat);
3170
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
3171
+ }
3172
+
3173
+ static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3174
+ GGML_SYCL_DEBUG("call %s\n", __func__);
3175
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_get_rows);
3176
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
3177
+ }
3178
+
3179
+ static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3180
+ GGML_SYCL_DEBUG("call %s\n", __func__);
3181
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_norm);
3182
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
3183
+ }
3184
+
3185
+ static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3186
+ GGML_SYCL_DEBUG("call %s\n", __func__);
3187
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rms_norm);
3188
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
3189
+ }
3190
+
3191
+ static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3192
+ GGML_SYCL_DEBUG("call %s\n", __func__);
3193
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_group_norm);
3194
+ GGML_SYCL_DEBUG("call %s done\n", __func__);
3195
+ }
3196
+
3197
+ static void ggml_sycl_mul_mat_vec_p021(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
3198
+ const ggml_tensor *src1,
3199
+ ggml_tensor *dst) try {
3200
+ GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
3201
+ GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
3202
+ GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
3203
+ GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
3204
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
3205
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
3206
+
3207
+ const int64_t ne00 = src0->ne[0];
3208
+ const int64_t ne01 = src0->ne[1];
3209
+ const int64_t ne02 = src0->ne[2];
3210
+
3211
+ const int64_t ne12 = src1->ne[2];
3212
+
3213
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
3214
+ queue_ptr main_stream = ctx.stream();
3215
+
3216
+ void * src0_ddq = src0->data;
3217
+ float * src1_ddf = (float *) src1->data;
3218
+ float * dst_ddf = (float *) dst->data;
3219
+
3220
+ ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
3221
+ }
3222
+ catch (sycl::exception const &exc) {
3223
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
3224
+ << ", line:" << __LINE__ << std::endl;
3225
+ std::exit(1);
3226
+ }
3227
+
3228
+ static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
3229
+ const ggml_tensor *src1,
3230
+ ggml_tensor *dst) try {
3231
+ GGML_ASSERT(!ggml_is_transposed(src0));
3232
+ GGML_ASSERT(!ggml_is_transposed(src1));
3233
+ GGML_ASSERT(!ggml_is_permuted(src0));
3234
+ GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
3235
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
3236
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
3237
+
3238
+ const int64_t ne00 = src0->ne[0];
3239
+ const int64_t ne01 = src0->ne[1];
3240
+ const int64_t ne02 = src0->ne[2];
3241
+
3242
+ const int64_t nb01 = src0->nb[1];
3243
+ const int64_t nb02 = src0->nb[2];
3244
+
3245
+ const int64_t ne12 = src1->ne[2];
3246
+
3247
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
3248
+ queue_ptr main_stream = ctx.stream();
3249
+
3250
+ void * src0_ddq = src0->data;
3251
+ float * src1_ddf = (float *) src1->data;
3252
+ float * dst_ddf = (float *) dst->data;
3253
+
3254
+ const int64_t row_stride_x = nb01 / sizeof(sycl::half);
3255
+ const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
3256
+
3257
+ ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
3258
+ }
3259
+ catch (sycl::exception const &exc) {
3260
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
3261
+ << ", line:" << __LINE__ << std::endl;
3262
+ std::exit(1);
3263
+ }
3264
+
3265
+ static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
3266
+ const sycl::half *src1_as_f16, char *dst,
3267
+ const void **ptrs_src, void **ptrs_dst,
3268
+ int64_t ne12, int64_t ne13, int64_t ne23,
3269
+ size_t nb02, size_t nb03, size_t nb12,
3270
+ size_t nb13, size_t nbd2, size_t nbd3,
3271
+ int64_t r2, int64_t r3,
3272
+ const sycl::nd_item<3> &item_ct1) {
3273
+ int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
3274
+ item_ct1.get_local_id(2);
3275
+ int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
3276
+ item_ct1.get_local_id(1);
3277
+
3278
+ if (i13 >= ne13 || i12 >= ne12) {
3279
+ return;
3280
+ }
3281
+
3282
+ int64_t i03 = i13 / r3;
3283
+ int64_t i02 = i12 / r2;
3284
+
3285
+ ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
3286
+ ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
3287
+ ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
3288
+ }
3289
+
3290
+ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
3291
+ const ggml_tensor *src0,
3292
+ const ggml_tensor *src1,
3293
+ ggml_tensor *dst) try {
3294
+ GGML_ASSERT(!ggml_is_transposed(src0));
3295
+ GGML_ASSERT(!ggml_is_transposed(src1));
3296
+ GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
3297
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
3298
+
3299
+ GGML_TENSOR_BINARY_OP_LOCALS
3300
+
3301
+
3302
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
3303
+ queue_ptr main_stream = ctx.stream();;
3304
+
3305
+ void * src0_ddq = src0->data;
3306
+ sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
3307
+ float * src1_ddf = (float *) src1->data;
3308
+ float * dst_ddf = (float *) dst->data;
3309
+
3310
+ // convert src1 to fp16
3311
+ ggml_sycl_pool_alloc<sycl::half> src1_f16_alloc(ctx.pool());
3312
+ if (src1->type != GGML_TYPE_F16) {
3313
+ const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
3314
+ const int64_t ne_src1 = ggml_nelements(src1);
3315
+ src1_f16_alloc.alloc(ne_src1);
3316
+ GGML_ASSERT(to_fp16_sycl != nullptr);
3317
+ to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
3318
+ }
3319
+ sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
3320
+ : src1_f16_alloc.get();
3321
+
3322
+ char * dst_t;
3323
+
3324
+ dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
3325
+ dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
3326
+
3327
+ // dst strides
3328
+ size_t nbd2 = dst->nb[2];
3329
+ size_t nbd3 = dst->nb[3];
3330
+
3331
+ const float alpha_f32 = 1.0f;
3332
+ const float beta_f32 = 0.0f;
3333
+
3334
+ const void * alpha = &alpha_f32;
3335
+ const void * beta = &beta_f32;
3336
+
3337
+ dst_t = (char *) dst_ddf;
3338
+
3339
+ GGML_ASSERT(ne12 % ne02 == 0);
3340
+ GGML_ASSERT(ne13 % ne03 == 0);
3341
+
3342
+ // broadcast factors
3343
+ const int64_t r2 = ne12/ne02;
3344
+ const int64_t r3 = ne13/ne03;
3345
+
3346
+ if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
3347
+ // there is no broadcast and src0, src1 are contiguous across dims 2, 3
3348
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
3349
+ *main_stream, oneapi::mkl::transpose::trans,
3350
+ oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
3351
+ (const char *)src0_as_f16, dpct::library_data_t::real_half,
3352
+ nb01 / nb00, nb02 / nb00,
3353
+ (const char *)src1_f16, dpct::library_data_t::real_half,
3354
+ nb11 / nb10, nb12 / nb10, beta,
3355
+ (char *)dst_t, cu_data_type, ne01, nb2 / nb0,
3356
+ ne12 * ne13, cu_compute_type)));
3357
+ } else {
3358
+ const int ne23 = ne12*ne13;
3359
+
3360
+ ggml_sycl_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
3361
+ ggml_sycl_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
3362
+
3363
+ sycl::range<3> block_dims(1, ne12, ne13);
3364
+ /*
3365
+ DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
3366
+ the limit. To get the device limit, query
3367
+ info::device::max_work_group_size. Adjust the work-group size if needed.
3368
+ */
3369
+ {
3370
+ dpct::has_capability_or_fail(main_stream->get_device(),
3371
+ {sycl::aspect::fp16});
3372
+
3373
+ main_stream->submit([&](sycl::handler &cgh) {
3374
+ const void **ptrs_src_get = ptrs_src.get();
3375
+ void **ptrs_dst_get = ptrs_dst.get();
3376
+ size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2;
3377
+ size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2;
3378
+ cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
3379
+ [=](sycl::nd_item<3> item_ct1) {
3380
+ k_compute_batched_ptrs(
3381
+ src0_as_f16, src1_f16,
3382
+ dst_t, ptrs_src_get,
3383
+ ptrs_dst_get, ne12, ne13, ne23,
3384
+ nb02, nb03, nb12_scaled, nb13_scaled,
3385
+ nbd2, nbd3, r2, r3, item_ct1);
3386
+ });
3387
+ });
3388
+ }
3389
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
3390
+ *main_stream, oneapi::mkl::transpose::trans,
3391
+ oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
3392
+ (const void **)(ptrs_src.get() + 0 * ne23),
3393
+ dpct::library_data_t::real_half, nb01 / nb00,
3394
+ (const void **)(ptrs_src.get() + 1 * ne23),
3395
+ dpct::library_data_t::real_half, nb11 / nb10, beta,
3396
+ (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
3397
+ cu_compute_type)));
3398
+ }
3399
+ }
3400
+ catch (sycl::exception const &exc) {
3401
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
3402
+ << ", line:" << __LINE__ << std::endl;
3403
+ std::exit(1);
3404
+ }
3405
+
3406
+ inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
3407
+ // TODO: accuracy issues in MMQ
3408
+ GGML_UNUSED(type);
3409
+ return false;
3410
+ }
3411
+
3412
+ bool ggml_sycl_supports_dmmv(enum ggml_type type) {
3413
+ switch (type) {
3414
+ case GGML_TYPE_Q4_0:
3415
+ case GGML_TYPE_Q4_1:
3416
+ case GGML_TYPE_Q5_0:
3417
+ case GGML_TYPE_Q5_1:
3418
+ case GGML_TYPE_Q8_0:
3419
+ case GGML_TYPE_Q2_K:
3420
+ case GGML_TYPE_Q3_K:
3421
+ case GGML_TYPE_Q4_K:
3422
+ case GGML_TYPE_Q5_K:
3423
+ case GGML_TYPE_Q6_K:
3424
+ case GGML_TYPE_F16:
3425
+ return true;
3426
+ default:
3427
+ return false;
3428
+ }
3429
+ }
3430
+
3431
+ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3432
+ const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
3433
+ int64_t min_compute_capability = INT_MAX;
3434
+
3435
+ if (split) {
3436
+ ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
3437
+ auto & tensor_split = buft_ctx->tensor_split;
3438
+ for (int id = 0; id < ggml_sycl_info().device_count; ++id) {
3439
+ // skip devices that are not going to do any work:
3440
+ if (tensor_split[id] >= (id + 1 < ggml_sycl_info().device_count ? tensor_split[id + 1] : 1.0f)) {
3441
+ continue;
3442
+ }
3443
+
3444
+ if (min_compute_capability > ggml_sycl_info().devices[id].cc) {
3445
+ min_compute_capability = ggml_sycl_info().devices[id].cc;
3446
+ }
3447
+ }
3448
+ } else {
3449
+ min_compute_capability = ggml_sycl_info().devices[ctx.device].cc;
3450
+ }
3451
+
3452
+ // check data types and tensor shapes for custom matrix multiplication kernels:
3453
+ bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
3454
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
3455
+ && src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
3456
+
3457
+ bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
3458
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
3459
+ && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
3460
+
3461
+ bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
3462
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
3463
+
3464
+ // mmvq and mmq need the __dp4a instruction which is available for gen12+
3465
+ // Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
3466
+ use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
3467
+ #ifdef SYCL_USE_XMX
3468
+ use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
3469
+ #endif // SYCL_USE_XMX
3470
+
3471
+ // mmvq path is faster in the CUDA backend.
3472
+ if (ctx.stream()->get_backend() == sycl::backend::ext_oneapi_cuda)
3473
+ use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
3474
+
3475
+ if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
3476
+ // TODO: Refactor and cleanup of mul mat dispatching.
3477
+ if (src0->ne[3] == 1 && src1->ne[3] == 1) {
3478
+ // KQ single-batch
3479
+ // mmv p021 was specific for these dimensions
3480
+ ggml_sycl_mul_mat_vec_p021(ctx, src0, src1, dst);
3481
+ } else {
3482
+ // The kernel from the if path is faster for that specific case, but does not support all mul mats.
3483
+ ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
3484
+ }
3485
+ } else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
3486
+ // KQV single-batch
3487
+ ggml_sycl_mul_mat_vec_nc(ctx, src0, src1, dst);
3488
+ } else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
3489
+ // KQ + KQV multi-batch
3490
+ ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
3491
+ } else if (use_dequantize_mul_mat_vec) {
3492
+ ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
3493
+ } else if (use_mul_mat_vec_q) {
3494
+ ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
3495
+ } else if (use_mul_mat_q) {
3496
+ ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
3497
+ } else {
3498
+ ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
3499
+ }
3500
+ }
3501
+
3502
+
3503
+ struct mmid_row_mapping {
3504
+ int32_t i1;
3505
+ int32_t i2;
3506
+ };
3507
+
3508
+ __dpct_inline__ static void k_copy_src1_to_contiguous(
3509
+ const char *__restrict__ src1_original, char *__restrict__ src1_contiguous,
3510
+ int *__restrict__ cur_src1_row, mmid_row_mapping *__restrict__ row_mapping,
3511
+ const char *__restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
3512
+ int64_t ne11, int64_t ne10, size_t nb11, size_t nb12,
3513
+ const sycl::nd_item<3> &item_ct1, int &src1_row) {
3514
+ int32_t iid1 = item_ct1.get_group(2);
3515
+ int32_t id = item_ct1.get_group(1);
3516
+
3517
+ const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
3518
+
3519
+ if (row_id_i != i02) {
3520
+ return;
3521
+ }
3522
+
3523
+ const int64_t i11 = id % ne11;
3524
+ const int64_t i12 = iid1;
3525
+
3526
+ if (item_ct1.get_local_id(2) == 0) {
3527
+ src1_row =
3528
+ dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
3529
+ cur_src1_row, 1);
3530
+ row_mapping[src1_row] = {id, iid1};
3531
+ }
3532
+ /*
3533
+ DPCT1065:194: Consider replacing sycl::nd_item::barrier() with
3534
+ sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
3535
+ performance if there is no access to global memory.
3536
+ */
3537
+ item_ct1.barrier();
3538
+
3539
+ const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
3540
+ float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
3541
+
3542
+ #pragma unroll
3543
+ for (int i = item_ct1.get_local_id(2); i < ne10;
3544
+ i += item_ct1.get_local_range(2)) {
3545
+ src1_row_contiguous[i] = src1_row_original[i];
3546
+ }
3547
+ }
3548
+
3549
+ __dpct_inline__ static void k_copy_dst_from_contiguous(
3550
+ char *__restrict__ dst_original, const char *__restrict__ dst_contiguous,
3551
+ const mmid_row_mapping *__restrict__ row_mapping, int64_t ne0, size_t nb1,
3552
+ size_t nb2, const sycl::nd_item<3> &item_ct1) {
3553
+ int32_t i = item_ct1.get_group(2);
3554
+
3555
+ const int32_t i1 = row_mapping[i].i1;
3556
+ const int32_t i2 = row_mapping[i].i2;
3557
+
3558
+ const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
3559
+ float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
3560
+
3561
+ #pragma unroll
3562
+ for (int j = item_ct1.get_local_id(2); j < ne0;
3563
+ j += item_ct1.get_local_range(2)) {
3564
+ dst_row_original[j] = dst_row_contiguous[j];
3565
+ }
3566
+ }
3567
+
3568
+ static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
3569
+ const ggml_tensor *src1,
3570
+ ggml_tensor *dst) try {
3571
+ GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
3572
+
3573
+ const ggml_tensor *ids = dst->src[2];
3574
+ GGML_TENSOR_BINARY_OP_LOCALS
3575
+
3576
+ const queue_ptr stream = ctx.stream();
3577
+
3578
+ const int64_t n_as = ne02;
3579
+ const int64_t n_ids = ids->ne[0];
3580
+
3581
+ std::vector<char> ids_host(ggml_nbytes(ids));
3582
+ const char * ids_dev = (const char *) ids->data;
3583
+
3584
+ SYCL_CHECK(CHECK_TRY_ERROR(
3585
+ stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
3586
+ SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
3587
+
3588
+ ggml_tensor src0_row = *src0;
3589
+ ggml_tensor src1_row = *src1;
3590
+ ggml_tensor dst_row = *dst;
3591
+
3592
+ char *src0_original = (char *)src0->data;
3593
+ char *src1_original = (char *)src1->data;
3594
+ char *dst_original = (char *)dst->data;
3595
+
3596
+ src0_row.ne[2] = 1;
3597
+ src0_row.ne[3] = 1;
3598
+ src0_row.nb[3] = nb02;
3599
+
3600
+ src1_row.ne[1] = 1;
3601
+ src1_row.ne[2] = 1;
3602
+ src1_row.ne[3] = 1;
3603
+ src1_row.nb[2] = nb11;
3604
+ src1_row.nb[3] = nb11;
3605
+
3606
+ dst_row.ne[1] = 1;
3607
+ dst_row.ne[2] = 1;
3608
+ dst_row.ne[3] = 1;
3609
+ dst_row.nb[2] = nb1;
3610
+ dst_row.nb[3] = nb1;
3611
+ if (ne12 == 1) {
3612
+ for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
3613
+ for (int64_t id = 0; id < n_ids; id++) {
3614
+ const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
3615
+ GGML_ASSERT(i02 >= 0 && i02 < n_as);
3616
+
3617
+ const int64_t i11 = id % ne11;
3618
+ const int64_t i12 = iid1;
3619
+
3620
+ const int64_t i1 = id;
3621
+ const int64_t i2 = i12;
3622
+
3623
+ src0_row.data = src0_original + i02*nb02;
3624
+ src1_row.data = src1_original + + i11*nb11 + i12*nb12;
3625
+ dst_row.data = dst_original + i1*nb1 + i2*nb2;
3626
+
3627
+ ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
3628
+ }
3629
+ }
3630
+ } else {
3631
+ ggml_sycl_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
3632
+ ggml_sycl_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
3633
+
3634
+ src1_row.data = src1_contiguous.get();
3635
+ dst_row.data = dst_contiguous.get();
3636
+
3637
+ for (int64_t i02 = 0; i02 < n_as; i02++) {
3638
+ int64_t num_src1_rows = 0;
3639
+ for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
3640
+ for (int64_t id = 0; id < n_ids; id++) {
3641
+ const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
3642
+
3643
+ GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
3644
+
3645
+ if (row_id_i != i02) {
3646
+ continue;
3647
+ }
3648
+
3649
+ num_src1_rows++;
3650
+ }
3651
+ }
3652
+
3653
+ if (num_src1_rows == 0) {
3654
+ continue;
3655
+ }
3656
+
3657
+
3658
+ ggml_sycl_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
3659
+ ggml_sycl_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
3660
+ SYCL_CHECK(CHECK_TRY_ERROR(
3661
+ stream->memset(dev_cur_src1_row.get(), 0, sizeof(int))));
3662
+
3663
+ {
3664
+ sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u));
3665
+ sycl::range<3> grid_dims(1, n_ids, ids->ne[1]);
3666
+ stream->submit([&](sycl::handler &cgh) {
3667
+ sycl::local_accessor<int, 0> src1_row_acc(cgh);
3668
+
3669
+ char *__restrict src1_contiguous_get =
3670
+ src1_contiguous.get();
3671
+ int *__restrict dev_cur_src1_row_get =
3672
+ dev_cur_src1_row.get();
3673
+ mmid_row_mapping *__restrict dev_row_mapping_get =
3674
+ dev_row_mapping.get();
3675
+ size_t ids_nb_ct6 = ids->nb[1];
3676
+ size_t ids_nb_ct7 = ids->nb[0];
3677
+
3678
+ cgh.parallel_for(
3679
+ sycl::nd_range<3>(grid_dims * block_dims, block_dims),
3680
+ [=](sycl::nd_item<3> item_ct1) {
3681
+ k_copy_src1_to_contiguous(
3682
+ src1_original, src1_contiguous_get,
3683
+ dev_cur_src1_row_get,
3684
+ dev_row_mapping_get, ids_dev, i02,
3685
+ ids_nb_ct6, ids_nb_ct7, ne11, ne10, nb11, nb12,
3686
+ item_ct1, src1_row_acc);
3687
+ });
3688
+ });
3689
+ }
3690
+
3691
+ src0_row.data = src0_original + i02*nb02;
3692
+
3693
+ GGML_ASSERT(nb11 == sizeof(float)*ne10);
3694
+ GGML_ASSERT(nb1 == sizeof(float)*ne0);
3695
+ src1_row.ne[1] = num_src1_rows;
3696
+
3697
+ src1_row.nb[1] = nb11;
3698
+ src1_row.nb[2] = num_src1_rows*nb11;
3699
+ src1_row.nb[3] = num_src1_rows*nb11;
3700
+
3701
+ dst_row.ne[1] = num_src1_rows;
3702
+ dst_row.nb[1] = nb1;
3703
+ dst_row.nb[2] = num_src1_rows*nb1;
3704
+ dst_row.nb[3] = num_src1_rows*nb1;
3705
+
3706
+ ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
3707
+
3708
+ {
3709
+ sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u));
3710
+ sycl::range<3> grid_dims(1, 1, num_src1_rows);
3711
+ stream->submit([&](sycl::handler &cgh) {
3712
+ const char *__restrict dst_contiguous_get =
3713
+ dst_contiguous.get();
3714
+ const mmid_row_mapping *__restrict dev_row_mapping_get =
3715
+ dev_row_mapping.get();
3716
+
3717
+ cgh.parallel_for(
3718
+ sycl::nd_range<3>(grid_dims * block_dims, block_dims),
3719
+ [=](sycl::nd_item<3> item_ct1) {
3720
+ k_copy_dst_from_contiguous(dst_original,
3721
+ dst_contiguous_get,
3722
+ dev_row_mapping_get,
3723
+ ne0, nb1, nb2, item_ct1);
3724
+ });
3725
+ });
3726
+ }
3727
+ }
3728
+ }
3729
+ }
3730
+ catch (sycl::exception const &exc) {
3731
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
3732
+ << ", line:" << __LINE__ << std::endl;
3733
+ std::exit(1);
3734
+ }
3735
+
3736
+ static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3737
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_scale);
3738
+ }
3739
+
3740
+ static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3741
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_clamp);
3742
+ }
3743
+
3744
+ static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
3745
+ ggml_tensor *dst) try {
3746
+ const int64_t ne = ggml_nelements(src0);
3747
+ GGML_ASSERT(ne == ggml_nelements(src1));
3748
+
3749
+ GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
3750
+ GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
3751
+
3752
+ GGML_TENSOR_BINARY_OP_LOCALS01;
3753
+
3754
+ SYCL_CHECK(ggml_sycl_set_device(ctx.device));
3755
+ queue_ptr main_stream = ctx.stream();
3756
+
3757
+ char * src0_ddc = (char *) src0->data;
3758
+ char * src1_ddc = (char *) src1->data;
3759
+
3760
+ if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
3761
+ ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3762
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
3763
+ ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3764
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
3765
+ ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3766
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
3767
+ ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3768
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
3769
+ ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3770
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
3771
+ ggml_cpy_f16_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3772
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
3773
+ ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3774
+ } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
3775
+ ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3776
+ } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
3777
+ ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
3778
+ } else {
3779
+ GGML_LOG_ERROR("%s: unsupported type combination (%s to %s)\n", __func__,
3780
+ ggml_type_name(src0->type), ggml_type_name(src1->type));
3781
+ GGML_ABORT("fatal error");
3782
+ }
3783
+
3784
+ GGML_UNUSED(dst);
3785
+ }
3786
+ catch (sycl::exception const &exc) {
3787
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
3788
+ << ", line:" << __LINE__ << std::endl;
3789
+ std::exit(1);
3790
+ }
3791
+
3792
+ static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3793
+ // TODO: why do we pass dst as src1 here?
3794
+ ggml_sycl_cpy(ctx, src0, dst, nullptr);
3795
+ GGML_UNUSED(src1);
3796
+ }
3797
+
3798
+ static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3799
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_diag_mask_inf);
3800
+ }
3801
+
3802
+ static void ggml_sycl_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3803
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_soft_max);
3804
+ }
3805
+
3806
+ static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3807
+ GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
3808
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rope);
3809
+ }
3810
+
3811
+ static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3812
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pool2d);
3813
+ }
3814
+
3815
+ static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3816
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_im2col);
3817
+ }
3818
+
3819
+ static void ggml_sycl_sum(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3820
+ GGML_ASSERT(ggml_is_contiguous(src0));
3821
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sum);
3822
+ }
3823
+
3824
+ static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3825
+ GGML_ASSERT(ggml_is_contiguous(src0));
3826
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sum_rows);
3827
+ }
3828
+
3829
+ static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3830
+ GGML_ASSERT(ggml_is_contiguous(src0));
3831
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_argsort);
3832
+ }
3833
+
3834
+ static void ggml_sycl_argmax(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3835
+ GGML_ASSERT(ggml_is_contiguous(src0));
3836
+ ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_argmax);
3837
+ }
3838
+
3839
+ static void ggml_sycl_nop(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
3840
+ GGML_UNUSED(src0);
3841
+ GGML_UNUSED(src1);
3842
+ GGML_UNUSED(dst);
3843
+ GGML_UNUSED(ctx);
3844
+ }
3845
+
3846
+ void ggml_sycl_set_main_device(const int main_device) try {
3847
+ if (dpct::get_current_device_id() == static_cast<unsigned int> (main_device)) {
3848
+ return;
3849
+ }
3850
+ check_allow_gpu_index(main_device);
3851
+ dpct::select_device(main_device);
3852
+
3853
+ if (g_ggml_sycl_debug) {
3854
+ dpct::device_info prop;
3855
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
3856
+ prop, dpct::dev_mgr::instance().get_device(main_device))));
3857
+ GGML_LOG_INFO("Using device %d (%s) as main device\n",
3858
+ main_device, prop.get_name());
3859
+ }
3860
+ }
3861
+ catch (sycl::exception const &exc) {
3862
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
3863
+ << ", line:" << __LINE__ << std::endl;
3864
+ std::exit(1);
3865
+ }
3866
+
3867
+ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * tensor) {
3868
+ if (!g_sycl_loaded) return false;
3869
+
3870
+ ggml_sycl_func_t func;
3871
+
3872
+ switch (tensor->op) {
3873
+ case GGML_OP_ARGMAX:
3874
+ func = ggml_sycl_argmax;
3875
+ break;
3876
+ case GGML_OP_CONV_TRANSPOSE_1D:
3877
+ func = ggml_sycl_op_conv_transpose_1d;
3878
+ break;
3879
+ case GGML_OP_REPEAT:
3880
+ func = ggml_sycl_repeat;
3881
+ break;
3882
+ case GGML_OP_GET_ROWS:
3883
+ func = ggml_sycl_get_rows;
3884
+ break;
3885
+ case GGML_OP_DUP:
3886
+ func = ggml_sycl_dup;
3887
+ break;
3888
+ case GGML_OP_ADD:
3889
+ case GGML_OP_ADD1: // TODO: more efficient implementation
3890
+ func = ggml_sycl_add;
3891
+ break;
3892
+ case GGML_OP_SUB:
3893
+ func = ggml_sycl_sub;
3894
+ break;
3895
+ case GGML_OP_ACC:
3896
+ func = ggml_sycl_acc;
3897
+ break;
3898
+ case GGML_OP_MUL:
3899
+ func = ggml_sycl_mul;
3900
+ break;
3901
+ case GGML_OP_LOG:
3902
+ func = ggml_sycl_log;
3903
+ break;
3904
+ case GGML_OP_DIV:
3905
+ func = ggml_sycl_div;
3906
+ break;
3907
+ case GGML_OP_UNARY:
3908
+ switch (ggml_get_unary_op(tensor)) {
3909
+ case GGML_UNARY_OP_NEG:
3910
+ func = ggml_sycl_neg;
3911
+ break;
3912
+ case GGML_UNARY_OP_STEP:
3913
+ func = ggml_sycl_step;
3914
+ break;
3915
+ case GGML_UNARY_OP_GELU:
3916
+ func = ggml_sycl_gelu;
3917
+ break;
3918
+ case GGML_UNARY_OP_SILU:
3919
+ func = ggml_sycl_silu;
3920
+ break;
3921
+ case GGML_UNARY_OP_GELU_QUICK:
3922
+ func = ggml_sycl_gelu_quick;
3923
+ break;
3924
+ case GGML_UNARY_OP_TANH:
3925
+ func = ggml_sycl_tanh;
3926
+ break;
3927
+ case GGML_UNARY_OP_RELU:
3928
+ func = ggml_sycl_relu;
3929
+ break;
3930
+ case GGML_UNARY_OP_SIGMOID:
3931
+ func = ggml_sycl_sigmoid;
3932
+ break;
3933
+ case GGML_UNARY_OP_HARDSIGMOID:
3934
+ func = ggml_sycl_hardsigmoid;
3935
+ break;
3936
+ case GGML_UNARY_OP_HARDSWISH:
3937
+ func = ggml_sycl_hardswish;
3938
+ break;
3939
+ case GGML_UNARY_OP_EXP:
3940
+ func = ggml_sycl_exp;
3941
+ break;
3942
+ default:
3943
+ return false;
3944
+ }
3945
+ break;
3946
+ case GGML_OP_NORM:
3947
+ func = ggml_sycl_norm;
3948
+ break;
3949
+ case GGML_OP_GROUP_NORM:
3950
+ func = ggml_sycl_group_norm;
3951
+ break;
3952
+ case GGML_OP_CONCAT:
3953
+ func = ggml_sycl_op_concat;
3954
+ break;
3955
+ case GGML_OP_UPSCALE:
3956
+ func = ggml_sycl_upscale;
3957
+ break;
3958
+ case GGML_OP_PAD:
3959
+ func = ggml_sycl_pad;
3960
+ break;
3961
+ case GGML_OP_LEAKY_RELU:
3962
+ func = ggml_sycl_leaky_relu;
3963
+ break;
3964
+ case GGML_OP_RMS_NORM:
3965
+ func = ggml_sycl_rms_norm;
3966
+ break;
3967
+ case GGML_OP_MUL_MAT:
3968
+ if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
3969
+ return false;
3970
+ }
3971
+ func = ggml_sycl_mul_mat;
3972
+ break;
3973
+ case GGML_OP_MUL_MAT_ID:
3974
+ if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
3975
+ return false;
3976
+ }
3977
+ func = ggml_sycl_mul_mat_id;
3978
+ break;
3979
+ case GGML_OP_OUT_PROD:
3980
+ func = ggml_sycl_op_out_prod;
3981
+ break;
3982
+ case GGML_OP_SCALE:
3983
+ func = ggml_sycl_scale;
3984
+ break;
3985
+ case GGML_OP_SQR:
3986
+ func = ggml_sycl_sqr;
3987
+ break;
3988
+ case GGML_OP_SQRT:
3989
+ func = ggml_sycl_sqrt;
3990
+ break;
3991
+ case GGML_OP_SIN:
3992
+ func = ggml_sycl_sin;
3993
+ break;
3994
+ case GGML_OP_COS:
3995
+ func = ggml_sycl_cos;
3996
+ break;
3997
+ case GGML_OP_CLAMP:
3998
+ func = ggml_sycl_clamp;
3999
+ break;
4000
+ case GGML_OP_CPY:
4001
+ func = ggml_sycl_cpy;
4002
+ break;
4003
+ case GGML_OP_CONT:
4004
+ func = ggml_sycl_dup;
4005
+ break;
4006
+ case GGML_OP_NONE:
4007
+ case GGML_OP_RESHAPE:
4008
+ case GGML_OP_VIEW:
4009
+ case GGML_OP_PERMUTE:
4010
+ case GGML_OP_TRANSPOSE:
4011
+ func = ggml_sycl_nop;
4012
+ break;
4013
+ case GGML_OP_DIAG_MASK_INF:
4014
+ func = ggml_sycl_diag_mask_inf;
4015
+ break;
4016
+ case GGML_OP_SOFT_MAX:
4017
+ func = ggml_sycl_soft_max;
4018
+ break;
4019
+ case GGML_OP_ROPE:
4020
+ func = ggml_sycl_rope;
4021
+ break;
4022
+ case GGML_OP_IM2COL:
4023
+ func = ggml_sycl_im2col;
4024
+ break;
4025
+ case GGML_OP_POOL_2D:
4026
+ func = ggml_sycl_pool2d;
4027
+ break;
4028
+ case GGML_OP_SUM:
4029
+ func = ggml_sycl_sum;
4030
+ break;
4031
+ case GGML_OP_SUM_ROWS:
4032
+ func = ggml_sycl_sum_rows;
4033
+ break;
4034
+ case GGML_OP_ARGSORT:
4035
+ func = ggml_sycl_argsort;
4036
+ break;
4037
+ case GGML_OP_TIMESTEP_EMBEDDING:
4038
+ func = ggml_sycl_op_timestep_embedding;
4039
+ break;
4040
+ case GGML_OP_RWKV_WKV6:
4041
+ func = ggml_sycl_op_rwkv_wkv6;
4042
+ break;
4043
+ default:
4044
+ return false;
4045
+ }
4046
+
4047
+ if (tensor->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(tensor->src[0]->buffer)) {
4048
+ ggml_sycl_set_peer_access(tensor->src[1]->ne[1], ctx.device);
4049
+ }
4050
+
4051
+ func(ctx, tensor->src[0], tensor->src[1], tensor);
4052
+ return true;
4053
+ }
4054
+
4055
+ GGML_API void ggml_backend_sycl_get_device_description(int device, char *description,
4056
+ size_t description_size) try {
4057
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_description\n");
4058
+ dpct::device_info prop;
4059
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
4060
+ prop, dpct::dev_mgr::instance().get_device(device))));
4061
+ snprintf(description, description_size, "%s", prop.get_name());
4062
+ }
4063
+ catch (sycl::exception const &exc) {
4064
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4065
+ << ", line:" << __LINE__ << std::endl;
4066
+ std::exit(1);
4067
+ }
4068
+
4069
+ void ggml_backend_sycl_get_device_memory(int device, size_t *free,
4070
+ size_t *total) try {
4071
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
4072
+ ggml_sycl_set_device(device);
4073
+
4074
+ /*
4075
+ DPCT1009:218: SYCL uses exceptions to report errors and does not use the
4076
+ error codes. The original code was commented out and a warning string was
4077
+ inserted. You need to rewrite this code.
4078
+ */
4079
+ /*
4080
+ DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for
4081
+ device information which may not be supported by all compilers or runtimes.
4082
+ You may need to adjust the code.
4083
+ */
4084
+ SYCL_CHECK(CHECK_TRY_ERROR(
4085
+ dpct::dev_mgr::instance().get_device(device).get_memory_info(*free, *total)));
4086
+ }
4087
+ catch (sycl::exception const &exc) {
4088
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4089
+ << ", line:" << __LINE__ << std::endl;
4090
+ std::exit(1);
4091
+ }
4092
+
4093
+ ////////////////////////////////////////////////////////////////////////////////
4094
+
4095
+ // backend
4096
+
4097
+ static const char * ggml_backend_sycl_get_name(ggml_backend_t backend) {
4098
+
4099
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
4100
+
4101
+ return sycl_ctx->name.c_str();
4102
+ }
4103
+
4104
+ static void ggml_backend_sycl_free(ggml_backend_t backend) {
4105
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
4106
+
4107
+ delete sycl_ctx;
4108
+ delete backend;
4109
+ }
4110
+
4111
+ static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
4112
+ ggml_tensor *tensor,
4113
+ const void *data, size_t offset,
4114
+ size_t size) try {
4115
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
4116
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
4117
+
4118
+ GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
4119
+ const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
4120
+ SYCL_CHECK(CHECK_TRY_ERROR(
4121
+ (stream)->memcpy((char *)tensor->data + offset, data, size)));
4122
+ }
4123
+ catch (sycl::exception const &exc) {
4124
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4125
+ << ", line:" << __LINE__ << std::endl;
4126
+ std::exit(1);
4127
+ }
4128
+
4129
+ static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
4130
+ const ggml_tensor *tensor,
4131
+ void *data, size_t offset,
4132
+ size_t size) try {
4133
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
4134
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
4135
+
4136
+ GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
4137
+ const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
4138
+ SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
4139
+ data, (const char *)tensor->data + offset, size).wait()));
4140
+ }
4141
+ catch (sycl::exception const &exc) {
4142
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4143
+ << ", line:" << __LINE__ << std::endl;
4144
+ std::exit(1);
4145
+ }
4146
+
4147
+ static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
4148
+ const ggml_tensor *src,
4149
+ ggml_tensor *dst) try {
4150
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
4151
+ if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
4152
+ /*
4153
+ DPCT1009:215: SYCL uses exceptions to report errors and does not use the
4154
+ error codes. The original code was commented out and a warning string
4155
+ was inserted. You need to rewrite this code.
4156
+ */
4157
+ const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
4158
+ SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
4159
+ dst->data, src->data, ggml_nbytes(dst)).wait()));
4160
+ return true;
4161
+ }
4162
+
4163
+ return false;
4164
+ }
4165
+ catch (sycl::exception const &exc) {
4166
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4167
+ << ", line:" << __LINE__ << std::endl;
4168
+ std::exit(1);
4169
+ }
4170
+
4171
+ static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
4172
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
4173
+ const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
4174
+ SYCL_CHECK(CHECK_TRY_ERROR((stream)->wait()));
4175
+
4176
+ GGML_UNUSED(backend);
4177
+ }
4178
+ catch (sycl::exception const &exc) {
4179
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4180
+ << ", line:" << __LINE__ << std::endl;
4181
+ std::exit(1);
4182
+ }
4183
+
4184
+ static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
4185
+ ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
4186
+ ggml_sycl_set_main_device(sycl_ctx->device);
4187
+
4188
+
4189
+ for (int i = 0; i < cgraph->n_nodes; i++) {
4190
+ ggml_tensor * node = cgraph->nodes[i];
4191
+ if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
4192
+ continue;
4193
+ }
4194
+ #ifndef NDEBUG
4195
+ assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
4196
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
4197
+ if (node->src[j] != nullptr) {
4198
+ assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
4199
+ }
4200
+ }
4201
+ #endif
4202
+ bool ok = ggml_sycl_compute_forward(*sycl_ctx, node);
4203
+ if (!ok) {
4204
+ GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
4205
+ }
4206
+ GGML_ASSERT(ok);
4207
+ }
4208
+
4209
+ return GGML_STATUS_SUCCESS;
4210
+ }
4211
+
4212
+ static void ggml_backend_sycl_event_record(ggml_backend_t backend, ggml_backend_event_t event)
4213
+ try
4214
+ {
4215
+ ggml_backend_sycl_context *sycl_ctx =
4216
+ (ggml_backend_sycl_context *)backend->context;
4217
+
4218
+ sycl::event *sycl_event = static_cast<sycl::event *>(event->context);
4219
+
4220
+ const queue_ptr &stream = sycl_ctx->stream(sycl_ctx->device, 0);
4221
+ // Record the current state of the queue
4222
+ SYCL_CHECK(CHECK_TRY_ERROR(*sycl_event = stream->ext_oneapi_submit_barrier()));
4223
+ }
4224
+ catch (sycl::exception const &exc)
4225
+ {
4226
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4227
+ << ", line:" << __LINE__ << std::endl;
4228
+ std::exit(1);
4229
+ }
4230
+
4231
+ static void ggml_backend_sycl_event_wait(ggml_backend_t backend, ggml_backend_event_t event) try {
4232
+
4233
+ sycl::event* sycl_event = static_cast<sycl::event*>(event->context);
4234
+
4235
+ if (ggml_backend_is_sycl(backend)) {
4236
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl_event->wait()));
4237
+ } else
4238
+ GGML_ABORT("fatal error");
4239
+ } catch (sycl::exception const& exc) {
4240
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4241
+ << ", line:" << __LINE__ << std::endl;
4242
+ std::exit(1);
4243
+ }
4244
+
4245
+ static ggml_backend_i ggml_backend_sycl_interface = {
4246
+ /* .get_name = */ ggml_backend_sycl_get_name,
4247
+ /* .free = */ ggml_backend_sycl_free,
4248
+ /* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async,
4249
+ /* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async,
4250
+ /* .cpy_tensor_async = */ NULL, // ggml_backend_sycl_cpy_tensor_async,
4251
+ // // TODO: update for the new
4252
+ // interface
4253
+ /* .synchronize = */ ggml_backend_sycl_synchronize,
4254
+ /* .graph_plan_create = */ NULL,
4255
+ /* .graph_plan_free = */ NULL,
4256
+ /* .graph_plan_update = */ NULL,
4257
+ /* .graph_plan_compute = */ NULL,
4258
+ /* .graph_compute = */ ggml_backend_sycl_graph_compute,
4259
+ /* .event_record = */ ggml_backend_sycl_event_record,
4260
+ /* .event_wait = */ ggml_backend_sycl_event_wait,
4261
+ };
4262
+
4263
+ static ggml_guid_t ggml_backend_sycl_guid() {
4264
+ static ggml_guid guid = { 0x58, 0x05, 0x13, 0x8f, 0xcd, 0x3a, 0x61, 0x9d, 0xe7, 0xcd, 0x98, 0xa9, 0x03, 0xfd, 0x7c, 0x53 };
4265
+ return &guid;
4266
+ }
4267
+
4268
+ bool ggml_backend_is_sycl(ggml_backend_t backend) {
4269
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
4270
+ }
4271
+
4272
+ int ggml_backend_sycl_get_device_count() {
4273
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
4274
+ return ggml_sycl_info().device_count;
4275
+ }
4276
+
4277
+
4278
+ // backend device
4279
+
4280
+ struct ggml_backend_sycl_device_context {
4281
+ int device;
4282
+ std::string name;
4283
+ std::string description;
4284
+ };
4285
+
4286
+ static const char * ggml_backend_sycl_device_get_name(ggml_backend_dev_t dev) {
4287
+ ggml_backend_sycl_device_context * ctx = (ggml_backend_sycl_device_context *)dev->context;
4288
+ return ctx->name.c_str();
4289
+ }
4290
+
4291
+ static const char * ggml_backend_sycl_device_get_description(ggml_backend_dev_t dev) {
4292
+ ggml_backend_sycl_device_context * ctx = (ggml_backend_sycl_device_context *)dev->context;
4293
+ return ctx->description.c_str();
4294
+ }
4295
+
4296
+ static void ggml_backend_sycl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
4297
+ ggml_backend_sycl_device_context * ctx = (ggml_backend_sycl_device_context *)dev->context;
4298
+ ggml_sycl_set_device(ctx->device);
4299
+ SYCL_CHECK(CHECK_TRY_ERROR(
4300
+ dpct::dev_mgr::instance().get_device(ctx->device).get_memory_info(*free, *total)));
4301
+ }
4302
+
4303
+ static enum ggml_backend_dev_type ggml_backend_sycl_device_get_type(ggml_backend_dev_t dev) {
4304
+ GGML_UNUSED(dev);
4305
+ return GGML_BACKEND_DEVICE_TYPE_GPU;
4306
+ }
4307
+
4308
+ static void ggml_backend_sycl_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
4309
+ props->name = ggml_backend_sycl_device_get_name(dev);
4310
+ props->description = ggml_backend_sycl_device_get_description(dev);
4311
+ props->type = ggml_backend_sycl_device_get_type(dev);
4312
+ ggml_backend_sycl_device_get_memory(dev, &props->memory_free, &props->memory_total);
4313
+
4314
+ bool host_buffer = getenv("GGML_SYCL_NO_PINNED") == nullptr;
4315
+ #ifdef GGML_SYCL_NO_PEER_COPY
4316
+ bool events = false;
4317
+ #else
4318
+ bool events = true;
4319
+ #endif
4320
+
4321
+ props->caps = {
4322
+ /* .async = */ true,
4323
+ /* .host_buffer = */ host_buffer,
4324
+ /* .buffer_from_host_ptr = */ false,
4325
+ /* .events = */ events,
4326
+ };
4327
+ }
4328
+
4329
+ static ggml_backend_t ggml_backend_sycl_device_init(ggml_backend_dev_t dev, const char * params) {
4330
+ GGML_UNUSED(params);
4331
+ ggml_backend_sycl_device_context * ctx = (ggml_backend_sycl_device_context *)dev->context;
4332
+ return ggml_backend_sycl_init(ctx->device);
4333
+ }
4334
+
4335
+ static ggml_backend_buffer_type_t ggml_backend_sycl_device_get_buffer_type(ggml_backend_dev_t dev) {
4336
+ ggml_backend_sycl_device_context * ctx = (ggml_backend_sycl_device_context *)dev->context;
4337
+ return ggml_backend_sycl_buffer_type(ctx->device);
4338
+ }
4339
+
4340
+ static ggml_backend_buffer_type_t ggml_backend_sycl_device_get_host_buffer_type(ggml_backend_dev_t dev) {
4341
+ GGML_UNUSED(dev);
4342
+ return ggml_backend_sycl_host_buffer_type();
4343
+ }
4344
+
4345
+ static ggml_backend_buffer_t ggml_backend_sycl_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
4346
+ GGML_UNUSED(dev);
4347
+ GGML_UNUSED(ptr);
4348
+ GGML_UNUSED(size);
4349
+ GGML_UNUSED(max_tensor_size);
4350
+ return nullptr;
4351
+ }
4352
+
4353
+ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
4354
+ switch (op->op) {
4355
+ case GGML_OP_CONV_TRANSPOSE_1D:
4356
+ {
4357
+ ggml_type src0_type = op->src[0]->type;
4358
+ ggml_type src1_type = op->src[1]->type;
4359
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
4360
+ return true;
4361
+ }
4362
+ return false;
4363
+ } break;
4364
+ case GGML_OP_UNARY:
4365
+ switch (ggml_get_unary_op(op)) {
4366
+ case GGML_UNARY_OP_NEG:
4367
+ case GGML_UNARY_OP_STEP:
4368
+ case GGML_UNARY_OP_GELU:
4369
+ case GGML_UNARY_OP_SILU:
4370
+ case GGML_UNARY_OP_RELU:
4371
+ case GGML_UNARY_OP_SIGMOID:
4372
+ case GGML_UNARY_OP_HARDSIGMOID:
4373
+ case GGML_UNARY_OP_HARDSWISH:
4374
+ case GGML_UNARY_OP_GELU_QUICK:
4375
+ case GGML_UNARY_OP_TANH:
4376
+ case GGML_UNARY_OP_EXP:
4377
+ return ggml_is_contiguous(op->src[0]);
4378
+ default:
4379
+ return false;
4380
+ }
4381
+ break;
4382
+ case GGML_OP_MUL_MAT:
4383
+ case GGML_OP_MUL_MAT_ID:
4384
+ {
4385
+ struct ggml_tensor * a;
4386
+ struct ggml_tensor * b;
4387
+ if (op->op == GGML_OP_MUL_MAT) {
4388
+ a = op->src[0];
4389
+ b = op->src[1];
4390
+ } else {
4391
+ a = op->src[2];
4392
+ b = op->src[1];
4393
+ }
4394
+ if (a->ne[3] != b->ne[3]) {
4395
+ return false;
4396
+ }
4397
+ ggml_type a_type = a->type;
4398
+ if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
4399
+ a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||
4400
+ a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ2_S ||
4401
+ a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ1_M
4402
+ ) {
4403
+ if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
4404
+ return false;
4405
+ }
4406
+ }
4407
+ ggml_type src0_type = op->src[0]->type;
4408
+ if (src0_type == GGML_TYPE_BF16) {
4409
+ return false;
4410
+ }
4411
+ return true;
4412
+ } break;
4413
+ case GGML_OP_OUT_PROD:
4414
+ return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
4415
+ case GGML_OP_GET_ROWS:
4416
+ {
4417
+ switch (op->src[0]->type) {
4418
+ case GGML_TYPE_F16:
4419
+ case GGML_TYPE_F32:
4420
+ case GGML_TYPE_Q4_0:
4421
+ case GGML_TYPE_Q4_1:
4422
+ case GGML_TYPE_Q5_0:
4423
+ case GGML_TYPE_Q5_1:
4424
+ case GGML_TYPE_Q8_0:
4425
+ return true;
4426
+ default:
4427
+ return false;
4428
+ }
4429
+ } break;
4430
+ case GGML_OP_CPY:
4431
+ {
4432
+ ggml_type src0_type = op->src[0]->type;
4433
+ ggml_type src1_type = op->src[1]->type;
4434
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
4435
+ return true;
4436
+ }
4437
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
4438
+ return true;
4439
+ }
4440
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
4441
+ return true;
4442
+ }
4443
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
4444
+ return true;
4445
+ }
4446
+ if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
4447
+ return true;
4448
+ }
4449
+ if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
4450
+ return true;
4451
+ }
4452
+ if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
4453
+ return true;
4454
+ }
4455
+ return false;
4456
+ } break;
4457
+ case GGML_OP_CONCAT:
4458
+ {
4459
+ ggml_type src0_type = op->src[0]->type;
4460
+ return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
4461
+ } break;
4462
+ case GGML_OP_DUP:
4463
+ case GGML_OP_ARGMAX:
4464
+ case GGML_OP_NONE:
4465
+ case GGML_OP_RESHAPE:
4466
+ case GGML_OP_REPEAT:
4467
+ case GGML_OP_VIEW:
4468
+ case GGML_OP_PERMUTE:
4469
+ case GGML_OP_TRANSPOSE:
4470
+ case GGML_OP_NORM:
4471
+ case GGML_OP_ADD:
4472
+ case GGML_OP_ADD1:
4473
+ case GGML_OP_LOG:
4474
+ case GGML_OP_SUB:
4475
+ case GGML_OP_MUL:
4476
+ case GGML_OP_DIV:
4477
+ case GGML_OP_RMS_NORM:
4478
+ case GGML_OP_SCALE:
4479
+ case GGML_OP_SQR:
4480
+ case GGML_OP_SQRT:
4481
+ case GGML_OP_SIN:
4482
+ case GGML_OP_COS:
4483
+ case GGML_OP_CLAMP:
4484
+ return true;
4485
+ case GGML_OP_CONT:
4486
+ return op->src[0]->type != GGML_TYPE_BF16;
4487
+ case GGML_OP_DIAG_MASK_INF:
4488
+ case GGML_OP_SOFT_MAX:
4489
+ return true;
4490
+ case GGML_OP_ROPE:
4491
+ {
4492
+ const int mode = ((const int32_t *) op->op_params)[2];
4493
+ if (mode & GGML_ROPE_TYPE_MROPE) {
4494
+ return false;
4495
+ }
4496
+ if (mode & GGML_ROPE_TYPE_VISION) {
4497
+ return false;
4498
+ }
4499
+ return ggml_is_contiguous(op->src[0]);
4500
+ }
4501
+ case GGML_OP_IM2COL:
4502
+ // TODO: add support for the new F32 operations
4503
+ return op->src[0]->type == GGML_TYPE_F16;
4504
+ case GGML_OP_POOL_2D:
4505
+ case GGML_OP_SUM:
4506
+ case GGML_OP_SUM_ROWS:
4507
+ case GGML_OP_ARGSORT:
4508
+ case GGML_OP_ACC:
4509
+ case GGML_OP_GROUP_NORM:
4510
+ case GGML_OP_UPSCALE:
4511
+ case GGML_OP_PAD:
4512
+ case GGML_OP_LEAKY_RELU:
4513
+ case GGML_OP_TIMESTEP_EMBEDDING:
4514
+ case GGML_OP_RWKV_WKV6:
4515
+ return true;
4516
+ default:
4517
+ return false;
4518
+ }
4519
+
4520
+ GGML_UNUSED(dev);
4521
+ }
4522
+
4523
+ static bool ggml_backend_sycl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
4524
+ if (buft->iface.get_name != ggml_backend_sycl_buffer_type_get_name) {
4525
+ return false;
4526
+ }
4527
+ ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
4528
+ ggml_backend_sycl_device_context * sycl_ctx = (ggml_backend_sycl_device_context *)dev->context;
4529
+ return buft_ctx->device == sycl_ctx->device;
4530
+ }
4531
+
4532
+ static int64_t get_op_batch_size(const ggml_tensor * op) {
4533
+ switch (op->op) {
4534
+ case GGML_OP_GET_ROWS:
4535
+ return 0;
4536
+ case GGML_OP_MUL_MAT:
4537
+ return op->ne[1];
4538
+ case GGML_OP_MUL_MAT_ID:
4539
+ case GGML_OP_ROPE:
4540
+ return op->ne[2];
4541
+ default:
4542
+ return ggml_nrows(op);
4543
+ }
4544
+ }
4545
+
4546
+ static bool ggml_backend_sycl_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
4547
+ const int min_batch_size = 32;
4548
+ return get_op_batch_size(op) >= min_batch_size;
4549
+ GGML_UNUSED(dev);
4550
+ }
4551
+
4552
+ static ggml_backend_event_t
4553
+ ggml_backend_sycl_device_event_new(ggml_backend_dev_t dev) {
4554
+
4555
+ #ifdef GGML_SYCL_NO_PEER_COPY
4556
+ return nullptr;
4557
+ #else
4558
+ sycl::event *event_ptr = new sycl::event();
4559
+
4560
+ return new ggml_backend_event{
4561
+ /* .device = */ dev,
4562
+ /* .context = */ event_ptr,
4563
+ };
4564
+ #endif
4565
+ }
4566
+
4567
+ static void ggml_backend_sycl_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) try {
4568
+ GGML_UNUSED(dev);
4569
+ if (event == nullptr) {
4570
+ return;
4571
+ }
4572
+
4573
+ if (event->context != nullptr) {
4574
+ sycl::event *sycl_event = static_cast<sycl::event *>(event->context);
4575
+ delete sycl_event;
4576
+ event->context = nullptr;
4577
+ }
4578
+
4579
+ delete event;
4580
+ } catch (sycl::exception const &exc) {
4581
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4582
+ << ", line:" << __LINE__ << std::endl;
4583
+ std::exit(1);
4584
+ }
4585
+
4586
+
4587
+ static void ggml_backend_sycl_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) try {
4588
+ GGML_UNUSED(dev);
4589
+
4590
+ sycl::event *sycl_event = static_cast<sycl::event *>(event->context);
4591
+ SYCL_CHECK(CHECK_TRY_ERROR(sycl_event->wait()));
4592
+ } catch (sycl::exception const &exc) {
4593
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
4594
+ << ", line:" << __LINE__ << std::endl;
4595
+ std::exit(1);
4596
+ }
4597
+
4598
+ static const ggml_backend_device_i ggml_backend_sycl_device_interface = {
4599
+ /* .get_name = */ ggml_backend_sycl_device_get_name,
4600
+ /* .get_description = */ ggml_backend_sycl_device_get_description,
4601
+ /* .get_memory = */ ggml_backend_sycl_device_get_memory,
4602
+ /* .get_type = */ ggml_backend_sycl_device_get_type,
4603
+ /* .get_props = */ ggml_backend_sycl_device_get_props,
4604
+ /* .init_backend = */ ggml_backend_sycl_device_init,
4605
+ /* .get_buffer_type = */ ggml_backend_sycl_device_get_buffer_type,
4606
+ /* .get_host_buffer_type = */ ggml_backend_sycl_device_get_host_buffer_type,
4607
+ /* .buffer_from_host_ptr = */ ggml_backend_sycl_device_buffer_from_host_ptr,
4608
+ /* .supports_op = */ ggml_backend_sycl_device_supports_op,
4609
+ /* .supports_buft = */ ggml_backend_sycl_device_supports_buft,
4610
+ /* .offload_op = */ ggml_backend_sycl_device_offload_op,
4611
+ /* .event_new = */ ggml_backend_sycl_device_event_new,
4612
+ /* .event_free = */ ggml_backend_sycl_device_event_free,
4613
+ /* .event_synchronize = */ ggml_backend_sycl_device_event_synchronize,
4614
+ };
4615
+
4616
+ // backend reg
4617
+
4618
+ struct ggml_backend_sycl_reg_context {
4619
+ std::vector<ggml_backend_dev_t> devices;
4620
+ };
4621
+
4622
+ static const char * ggml_backend_sycl_reg_get_name(ggml_backend_reg_t reg) {
4623
+ GGML_UNUSED(reg);
4624
+ return GGML_SYCL_NAME;
4625
+ }
4626
+
4627
+ static size_t ggml_backend_sycl_reg_get_device_count(ggml_backend_reg_t reg) {
4628
+ ggml_backend_sycl_reg_context * ctx = (ggml_backend_sycl_reg_context *)reg->context;
4629
+ return ctx->devices.size();
4630
+ }
4631
+
4632
+ static ggml_backend_dev_t ggml_backend_sycl_reg_get_device(ggml_backend_reg_t reg, size_t index) {
4633
+ ggml_backend_sycl_reg_context * ctx = (ggml_backend_sycl_reg_context *)reg->context;
4634
+ GGML_ASSERT(index < ctx->devices.size());
4635
+ return ctx->devices[index];
4636
+ }
4637
+
4638
+ static void *ggml_backend_sycl_reg_get_proc_address(ggml_backend_reg_t reg, const char *name) {
4639
+ GGML_UNUSED(reg);
4640
+
4641
+ // TODO: update to the current function signature
4642
+ //if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
4643
+ // return (void *)ggml_backend_sycl_split_buffer_type;
4644
+ //}
4645
+
4646
+ // SYCL doesn't support registering host memory, left here for reference
4647
+ // "ggml_backend_register_host_buffer"
4648
+ // "ggml_backend_unregister_host_buffer"
4649
+ GGML_UNUSED(name);
4650
+ return nullptr;
4651
+ }
4652
+
4653
+ static const ggml_backend_reg_i ggml_backend_sycl_reg_interface = {
4654
+ /* .get_name = */ ggml_backend_sycl_reg_get_name,
4655
+ /* .get_device_count = */ ggml_backend_sycl_reg_get_device_count,
4656
+ /* .get_device = */ ggml_backend_sycl_reg_get_device,
4657
+ /* .get_proc_address = */ ggml_backend_sycl_reg_get_proc_address,
4658
+ };
4659
+
4660
+
4661
+ // backend registry
4662
+
4663
+ ggml_backend_reg_t ggml_backend_sycl_reg() {
4664
+ static ggml_backend_reg reg;
4665
+ static bool initialized = false;
4666
+
4667
+ {
4668
+ static std::mutex mutex;
4669
+ std::lock_guard<std::mutex> lock(mutex);
4670
+ if (!initialized) {
4671
+ ggml_backend_sycl_reg_context * ctx = new ggml_backend_sycl_reg_context;
4672
+
4673
+ for (int i = 0; i < ggml_sycl_info().device_count; i++) {
4674
+ ggml_backend_sycl_device_context * dev_ctx = new ggml_backend_sycl_device_context;
4675
+ dev_ctx->device = i;
4676
+ dev_ctx->name = GGML_SYCL_NAME + std::to_string(i);
4677
+
4678
+ ggml_sycl_set_device(i);
4679
+
4680
+ dpct::device_info prop;
4681
+ SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
4682
+ prop, dpct::dev_mgr::instance().get_device(i))));
4683
+
4684
+ dev_ctx->description = prop.get_name();
4685
+
4686
+ ggml_backend_dev_t dev = new ggml_backend_device {
4687
+ /* .iface = */ ggml_backend_sycl_device_interface,
4688
+ /* .reg = */ &reg,
4689
+ /* .context = */ dev_ctx
4690
+ };
4691
+ ctx->devices.push_back(dev);
4692
+ }
4693
+
4694
+ reg = ggml_backend_reg {
4695
+ /* .api_version = */ GGML_BACKEND_API_VERSION,
4696
+ /* .iface = */ ggml_backend_sycl_reg_interface,
4697
+ /* .context = */ ctx
4698
+ };
4699
+ }
4700
+
4701
+ initialized = true;
4702
+ }
4703
+
4704
+ return &reg;
4705
+ }
4706
+
4707
+ ggml_backend_t ggml_backend_sycl_init(int device) {
4708
+ GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
4709
+ ggml_check_sycl();
4710
+
4711
+ check_allow_gpu_index(device);
4712
+
4713
+ ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context(device);
4714
+ if (ctx == nullptr) {
4715
+ GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
4716
+ return nullptr;
4717
+ };
4718
+
4719
+ ggml_backend_t sycl_backend = new ggml_backend {
4720
+ /* .guid = */ ggml_backend_sycl_guid(),
4721
+ /* .interface = */ ggml_backend_sycl_interface,
4722
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_sycl_reg(), device),
4723
+ /* .context = */ ctx
4724
+ };
4725
+
4726
+ return sycl_backend;
4727
+ }
4728
+
4729
+ GGML_BACKEND_DL_IMPL(ggml_backend_sycl_reg)