whispercpp 1.3.0 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (132) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +5 -0
  3. data/LICENSE +1 -1
  4. data/README.md +165 -434
  5. data/Rakefile +60 -11
  6. data/ext/.gitignore +13 -0
  7. data/ext/cpu.mk +9 -0
  8. data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
  9. data/ext/extconf.rb +185 -16
  10. data/ext/ggml/include/ggml-alloc.h +76 -0
  11. data/ext/ggml/include/ggml-backend.h +352 -0
  12. data/ext/ggml/include/ggml-blas.h +25 -0
  13. data/ext/ggml/include/ggml-cann.h +123 -0
  14. data/ext/ggml/include/ggml-cpp.h +38 -0
  15. data/ext/ggml/include/ggml-cpu.h +135 -0
  16. data/ext/ggml/include/ggml-cuda.h +47 -0
  17. data/ext/ggml/include/ggml-kompute.h +50 -0
  18. data/ext/ggml/include/ggml-metal.h +66 -0
  19. data/ext/ggml/include/ggml-opencl.h +26 -0
  20. data/ext/ggml/include/ggml-opt.h +216 -0
  21. data/ext/ggml/include/ggml-rpc.h +28 -0
  22. data/ext/ggml/include/ggml-sycl.h +49 -0
  23. data/ext/ggml/include/ggml-vulkan.h +31 -0
  24. data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
  25. data/ext/ggml/src/ggml-alloc.c +1037 -0
  26. data/ext/ggml/src/ggml-amx/common.h +94 -0
  27. data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
  28. data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
  29. data/ext/ggml/src/ggml-amx/mmq.h +17 -0
  30. data/ext/ggml/src/ggml-backend-impl.h +256 -0
  31. data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
  32. data/ext/ggml/src/ggml-backend.cpp +1999 -0
  33. data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
  34. data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
  35. data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
  36. data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
  37. data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
  38. data/ext/ggml/src/ggml-cann/common.h +286 -0
  39. data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
  40. data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
  41. data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
  42. data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
  43. data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
  44. data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
  45. data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
  46. data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
  47. data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
  48. data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
  49. data/ext/ggml/src/ggml-common.h +1853 -0
  50. data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
  51. data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
  52. data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
  53. data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
  54. data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
  55. data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
  56. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
  57. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
  58. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
  59. data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
  60. data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
  61. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
  62. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
  63. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
  64. data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
  65. data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
  66. data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
  67. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
  68. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
  69. data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
  70. data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
  71. data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
  72. data/ext/ggml/src/ggml-impl.h +556 -0
  73. data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
  74. data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
  75. data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
  76. data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
  77. data/ext/ggml/src/ggml-opt.cpp +854 -0
  78. data/ext/ggml/src/ggml-quants.c +5238 -0
  79. data/ext/ggml/src/ggml-quants.h +100 -0
  80. data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
  81. data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
  82. data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
  83. data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
  84. data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
  85. data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
  86. data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
  87. data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
  88. data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
  89. data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
  90. data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
  91. data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
  92. data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
  93. data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
  94. data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
  95. data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
  96. data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
  97. data/ext/ggml/src/ggml-threading.cpp +12 -0
  98. data/ext/ggml/src/ggml-threading.h +14 -0
  99. data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
  100. data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
  101. data/ext/ggml/src/ggml.c +7694 -0
  102. data/ext/{whisper.h → include/whisper.h} +23 -22
  103. data/ext/metal-embed.mk +17 -0
  104. data/ext/metal.mk +6 -0
  105. data/ext/ruby_whisper.cpp +1492 -9
  106. data/ext/ruby_whisper.h +10 -0
  107. data/ext/scripts/get-flags.mk +38 -0
  108. data/ext/src/coreml/whisper-decoder-impl.h +146 -0
  109. data/ext/src/coreml/whisper-decoder-impl.m +201 -0
  110. data/ext/src/coreml/whisper-encoder-impl.h +142 -0
  111. data/ext/src/coreml/whisper-encoder-impl.m +197 -0
  112. data/ext/src/coreml/whisper-encoder.h +26 -0
  113. data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
  114. data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
  115. data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
  116. data/extsources.rb +6 -0
  117. data/lib/whisper/model/uri.rb +157 -0
  118. data/lib/whisper.rb +2 -0
  119. data/tests/helper.rb +7 -0
  120. data/tests/jfk_reader/.gitignore +5 -0
  121. data/tests/jfk_reader/extconf.rb +3 -0
  122. data/tests/jfk_reader/jfk_reader.c +68 -0
  123. data/tests/test_callback.rb +160 -0
  124. data/tests/test_error.rb +20 -0
  125. data/tests/test_model.rb +71 -0
  126. data/tests/test_package.rb +31 -0
  127. data/tests/test_params.rb +160 -0
  128. data/tests/test_segment.rb +83 -0
  129. data/tests/test_whisper.rb +211 -123
  130. data/whispercpp.gemspec +36 -0
  131. metadata +137 -11
  132. data/ext/ggml.c +0 -21755
@@ -0,0 +1,1884 @@
1
+ // Copyright 2024 Mozilla Foundation
2
+ //
3
+ // Permission is hereby granted, free of charge, to any person obtaining
4
+ // a copy of this software and associated documentation files (the
5
+ // "Software"), to deal in the Software without restriction, including
6
+ // without limitation the rights to use, copy, modify, merge, publish,
7
+ // distribute, sublicense, and/or sell copies of the Software, and to
8
+ // permit persons to whom the Software is furnished to do so, subject to
9
+ // the following conditions:
10
+ //
11
+ // The above copyright notice and this permission notice shall be
12
+ // included in all copies or substantial portions of the Software.
13
+ //
14
+ // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15
+ // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16
+ // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17
+ // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
18
+ // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
19
+ // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20
+ // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ // SOFTWARE.
22
+
23
+ //
24
+ // _ _ ___ _ _ ___
25
+ // | |_(_)_ _ _ _| _ ) | /_\ / __|
26
+ // | _| | ' \ || | _ \ |__ / _ \\__ \.
27
+ // \__|_|_||_\_, |___/____/_/ \_\___/
28
+ // |__/
29
+ //
30
+ // BASIC LINEAR ALGEBRA SUBPROGRAMS
31
+ //
32
+ //
33
+ // This file implements multithreaded CPU matrix multiplication for the
34
+ // common contiguous use case C = Aᵀ * B. These kernels are designed to
35
+ // have excellent performance[1] for matrices that fit in the CPU cache
36
+ // without imposing any overhead such as cache filling or malloc calls.
37
+ //
38
+ // This implementation does not guarantee any upper bound with rounding
39
+ // errors, which grow along with k. Our goal's to maximally exploit the
40
+ // hardware for performance, and then use whatever resources remain for
41
+ // improving numerical accuracy.
42
+ //
43
+ // [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
44
+ // Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
45
+
46
+ #if defined(__GNUC__)
47
+ #pragma GCC diagnostic ignored "-Wpedantic"
48
+ #pragma GCC diagnostic ignored "-Wignored-attributes"
49
+ #endif
50
+
51
+ #include "sgemm.h"
52
+ #include "ggml-impl.h"
53
+ #include "ggml-cpu-impl.h"
54
+ #include "ggml-quants.h"
55
+
56
+ #ifdef _MSC_VER
57
+ #define NOINLINE __declspec(noinline)
58
+ #else
59
+ #define NOINLINE __attribute__((__noinline__))
60
+ #endif
61
+
62
+ #if defined(__ARM_NEON) || defined(__AVX512F__)
63
+ #define VECTOR_REGISTERS 32
64
+ #else
65
+ #define VECTOR_REGISTERS 16
66
+ #endif
67
+
68
+ #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
69
+
70
+ namespace {
71
+
72
+ inline float unhalf(ggml_fp16_t d) {
73
+ return GGML_FP16_TO_FP32(d);
74
+ }
75
+
76
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
77
+ // VECTORIZED ARITHMETIC OPERATIONS
78
+
79
+ #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
80
+ inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
81
+ inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
82
+ inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
83
+ #endif // __SSE__
84
+
85
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
86
+ inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
87
+ inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
88
+ inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
89
+ #endif // __AVX__
90
+
91
+ #if defined(__AVX512F__)
92
+ inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
93
+ inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
94
+ inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
95
+ #endif // __AVX512F__
96
+
97
+ #if defined(__ARM_NEON)
98
+ inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
99
+ inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
100
+ inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
101
+ #endif // __ARM_NEON
102
+
103
+ #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
104
+ inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
105
+ inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
106
+ inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
107
+ #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
108
+
109
+ #if defined(__MMA__)
110
+ typedef vector unsigned char vec_t;
111
+ typedef __vector_quad acc_t;
112
+ #endif
113
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
114
+ // VECTORIZED FUSED MULTIPLY ADD
115
+
116
+ /**
117
+ * Computes a * b + c.
118
+ */
119
+ template <typename T, typename U>
120
+ inline U madd(T a, T b, U c) {
121
+ return add(mul(a, b), c);
122
+ }
123
+
124
+ #if defined(__FMA__)
125
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
126
+ template <>
127
+ inline __m256 madd(__m256 a, __m256 b, __m256 c) {
128
+ return _mm256_fmadd_ps(a, b, c);
129
+ }
130
+ #endif
131
+ #if defined(__AVX512F__)
132
+ template <>
133
+ inline __m512 madd(__m512 a, __m512 b, __m512 c) {
134
+ return _mm512_fmadd_ps(a, b, c);
135
+ }
136
+ #endif
137
+ #endif
138
+
139
+ #if defined(__ARM_FEATURE_FMA)
140
+ template <>
141
+ inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
142
+ return vfmaq_f32(c, b, a);
143
+ }
144
+ #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
145
+ template <>
146
+ inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
147
+ return vfmaq_f16(c, b, a);
148
+ }
149
+ #endif
150
+ #endif
151
+
152
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
153
+ // VECTORIZED HORIZONTAL SUM
154
+
155
+ #if defined(__ARM_NEON)
156
+ inline float hsum(float32x4_t x) {
157
+ return vaddvq_f32(x);
158
+ }
159
+ #endif // __ARM_NEON
160
+
161
+ #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
162
+ inline float hsum(float16x8_t x) {
163
+ return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
164
+ vcvt_f32_f16(vget_high_f16(x))));
165
+ }
166
+ #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
167
+
168
+ #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
169
+ inline float hsum(__m128 x) {
170
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
171
+ x = _mm_add_ps(x, _mm_movehl_ps(x, x));
172
+ x = _mm_add_ss(x, _mm_movehdup_ps(x));
173
+ #else
174
+ __m128 t;
175
+ t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
176
+ x = _mm_add_ps(x, t);
177
+ t = _mm_movehl_ps(t, x);
178
+ x = _mm_add_ss(x, t);
179
+ #endif
180
+ return _mm_cvtss_f32(x);
181
+ }
182
+ #endif
183
+
184
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
185
+ inline float hsum(__m256 x) {
186
+ return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
187
+ _mm256_castps256_ps128(x)));
188
+ }
189
+ #endif // __AVX__
190
+
191
+ #if defined(__AVX512F__)
192
+ inline float hsum(__m512 x) {
193
+ return _mm512_reduce_add_ps(x);
194
+ }
195
+ #endif // __AVX512F__
196
+
197
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
198
+ // VECTORIZED MEMORY LOADING
199
+
200
+ template <typename T, typename U> T load(const U *);
201
+
202
+ #if defined(__ARM_NEON)
203
+ template <> inline float32x4_t load(const float *p) {
204
+ return vld1q_f32(p);
205
+ }
206
+ #if !defined(_MSC_VER)
207
+ template <> inline float16x8_t load(const ggml_fp16_t *p) {
208
+ return vld1q_f16((const float16_t *)p);
209
+ }
210
+ template <> inline float32x4_t load(const ggml_fp16_t *p) {
211
+ return vcvt_f32_f16(vld1_f16((const float16_t *)p));
212
+ }
213
+ #endif // _MSC_VER
214
+ #endif // __ARM_NEON
215
+
216
+ #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
217
+ template <> inline __m128 load(const float *p) {
218
+ return _mm_loadu_ps(p);
219
+ }
220
+ #endif // __SSE__
221
+
222
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
223
+ template <> inline __m256 load(const float *p) {
224
+ return _mm256_loadu_ps(p);
225
+ }
226
+ #endif // __AVX__
227
+
228
+ #if defined(__F16C__)
229
+ template <> inline __m256 load(const ggml_fp16_t *p) {
230
+ return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
231
+ }
232
+ #endif // __F16C__
233
+
234
+ #if defined(__AVX512F__)
235
+ template <> inline __m512 load(const float *p) {
236
+ return _mm512_loadu_ps(p);
237
+ }
238
+ template <> inline __m512 load(const ggml_fp16_t *p) {
239
+ return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
240
+ }
241
+ #endif // __AVX512F__
242
+
243
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
244
+ // CONSTANTS
245
+
246
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
247
+ static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
248
+ static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
249
+ #endif
250
+
251
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
252
+ // FLOATING POINT MATRIX MULTIPLICATION
253
+
254
+ template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
255
+ class tinyBLAS {
256
+ public:
257
+ tinyBLAS(int64_t k,
258
+ const TA *A, int64_t lda,
259
+ const TB *B, int64_t ldb,
260
+ TC *C, int64_t ldc,
261
+ int ith, int nth)
262
+ : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
263
+ }
264
+
265
+ void matmul(int64_t m, int64_t n) {
266
+ mnpack(0, m, 0, n);
267
+ }
268
+
269
+ private:
270
+ NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
271
+ int64_t mc, nc, mp, np;
272
+ switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
273
+ #if VECTOR_REGISTERS == 32
274
+ case 0x55:
275
+ mc = 5;
276
+ nc = 5;
277
+ gemm<5, 5>(m0, m, n0, n);
278
+ break;
279
+ case 0x45:
280
+ mc = 4;
281
+ nc = 5;
282
+ gemm<4, 5>(m0, m, n0, n);
283
+ break;
284
+ case 0x54:
285
+ mc = 5;
286
+ nc = 4;
287
+ gemm<5, 4>(m0, m, n0, n);
288
+ break;
289
+ case 0x44:
290
+ mc = 4;
291
+ nc = 4;
292
+ gemm<4, 4>(m0, m, n0, n);
293
+ break;
294
+ case 0x53:
295
+ mc = 5;
296
+ nc = 3;
297
+ gemm<5, 3>(m0, m, n0, n);
298
+ break;
299
+ case 0x35:
300
+ mc = 3;
301
+ nc = 5;
302
+ gemm<3, 5>(m0, m, n0, n);
303
+ break;
304
+ case 0x43:
305
+ mc = 4;
306
+ nc = 3;
307
+ gemm<4, 3>(m0, m, n0, n);
308
+ break;
309
+ #else
310
+ case 0x55:
311
+ case 0x54:
312
+ case 0x53:
313
+ case 0x45:
314
+ case 0x44:
315
+ case 0x43:
316
+ mc = 4;
317
+ nc = 3;
318
+ gemm<4, 3>(m0, m, n0, n);
319
+ break;
320
+ case 0x35:
321
+ #endif
322
+ case 0x34:
323
+ mc = 3;
324
+ nc = 4;
325
+ gemm<3, 4>(m0, m, n0, n);
326
+ break;
327
+ case 0x52:
328
+ mc = 5;
329
+ nc = 2;
330
+ gemm<5, 2>(m0, m, n0, n);
331
+ break;
332
+ case 0x33:
333
+ mc = 3;
334
+ nc = 3;
335
+ gemm<3, 3>(m0, m, n0, n);
336
+ break;
337
+ case 0x25:
338
+ mc = 2;
339
+ nc = 5;
340
+ gemm<2, 5>(m0, m, n0, n);
341
+ break;
342
+ case 0x42:
343
+ mc = 4;
344
+ nc = 2;
345
+ gemm<4, 2>(m0, m, n0, n);
346
+ break;
347
+ case 0x24:
348
+ mc = 2;
349
+ nc = 4;
350
+ gemm<2, 4>(m0, m, n0, n);
351
+ break;
352
+ case 0x32:
353
+ mc = 3;
354
+ nc = 2;
355
+ gemm<3, 2>(m0, m, n0, n);
356
+ break;
357
+ case 0x23:
358
+ mc = 2;
359
+ nc = 3;
360
+ gemm<2, 3>(m0, m, n0, n);
361
+ break;
362
+ case 0x51:
363
+ mc = 5;
364
+ nc = 1;
365
+ gemm<5, 1>(m0, m, n0, n);
366
+ break;
367
+ case 0x41:
368
+ mc = 4;
369
+ nc = 1;
370
+ gemm<4, 1>(m0, m, n0, n);
371
+ break;
372
+ case 0x22:
373
+ mc = 2;
374
+ nc = 2;
375
+ gemm<2, 2>(m0, m, n0, n);
376
+ break;
377
+ case 0x15:
378
+ mc = 1;
379
+ nc = 5;
380
+ gemm<1, 5>(m0, m, n0, n);
381
+ break;
382
+ case 0x14:
383
+ mc = 1;
384
+ nc = 4;
385
+ gemm<1, 4>(m0, m, n0, n);
386
+ break;
387
+ case 0x31:
388
+ mc = 3;
389
+ nc = 1;
390
+ gemm<3, 1>(m0, m, n0, n);
391
+ break;
392
+ case 0x13:
393
+ mc = 1;
394
+ nc = 3;
395
+ gemm<1, 3>(m0, m, n0, n);
396
+ break;
397
+ case 0x21:
398
+ mc = 2;
399
+ nc = 1;
400
+ gemm<2, 1>(m0, m, n0, n);
401
+ break;
402
+ case 0x12:
403
+ mc = 1;
404
+ nc = 2;
405
+ gemm<1, 2>(m0, m, n0, n);
406
+ break;
407
+ case 0x11:
408
+ mc = 1;
409
+ nc = 1;
410
+ gemm<1, 1>(m0, m, n0, n);
411
+ break;
412
+ default:
413
+ return;
414
+ }
415
+ mp = m0 + (m - m0) / mc * mc;
416
+ np = n0 + (n - n0) / nc * nc;
417
+ mnpack(mp, m, n0, np);
418
+ mnpack(m0, m, np, n);
419
+ }
420
+
421
+ template <int RM, int RN>
422
+ NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
423
+ int64_t ytiles = (m - m0) / RM;
424
+ int64_t xtiles = (n - n0) / RN;
425
+ int64_t tiles = xtiles * ytiles;
426
+ int64_t duty = (tiles + nth - 1) / nth;
427
+ int64_t start = duty * ith;
428
+ int64_t end = start + duty;
429
+ if (end > tiles)
430
+ end = tiles;
431
+ for (int64_t job = start; job < end; ++job) {
432
+ int64_t ii = m0 + job / xtiles * RM;
433
+ int64_t jj = n0 + job % xtiles * RN;
434
+ D Cv[RN][RM] = {};
435
+ for (int64_t l = 0; l < k; l += KN)
436
+ for (int64_t j = 0; j < RN; ++j)
437
+ for (int64_t i = 0; i < RM; ++i)
438
+ Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l),
439
+ load<V>(B + ldb * (jj + j) + l),
440
+ Cv[j][i]);
441
+ for (int64_t j = 0; j < RN; ++j)
442
+ for (int64_t i = 0; i < RM; ++i)
443
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
444
+ }
445
+ }
446
+
447
+ const TA *const A;
448
+ const TB *const B;
449
+ TC *const C;
450
+ const int64_t k;
451
+ const int64_t lda;
452
+ const int64_t ldb;
453
+ const int64_t ldc;
454
+ const int ith;
455
+ const int nth;
456
+ };
457
+
458
+ //////////////////////////////////////////////////////////////////////////////////////////
459
+ // QUANT ZERO MATRIX MULTIPLICATION
460
+
461
+ #if defined(__ARM_FEATURE_DOTPROD)
462
+ template <typename TA>
463
+ class tinyBLAS_Q0_ARM {
464
+ public:
465
+ tinyBLAS_Q0_ARM(int64_t k,
466
+ const TA *A, int64_t lda,
467
+ const block_q8_0 *B, int64_t ldb,
468
+ float *C, int64_t ldc,
469
+ int ith, int nth)
470
+ : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
471
+ }
472
+
473
+ void matmul(int64_t m, int64_t n) {
474
+ mnpack(0, m, 0, n);
475
+ }
476
+
477
+ private:
478
+ NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
479
+ int64_t mc, nc, mp, np;
480
+ switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) {
481
+ case 0x33:
482
+ mc = 3;
483
+ nc = 3;
484
+ gemm<3, 3>(m0, m, n0, n);
485
+ break;
486
+ case 0x32:
487
+ mc = 3;
488
+ nc = 2;
489
+ gemm<3, 2>(m0, m, n0, n);
490
+ break;
491
+ case 0x23:
492
+ mc = 2;
493
+ nc = 3;
494
+ gemm<2, 3>(m0, m, n0, n);
495
+ break;
496
+ case 0x22:
497
+ mc = 2;
498
+ nc = 2;
499
+ gemm<2, 2>(m0, m, n0, n);
500
+ break;
501
+ case 0x31:
502
+ mc = 3;
503
+ nc = 1;
504
+ gemm<3, 1>(m0, m, n0, n);
505
+ break;
506
+ case 0x13:
507
+ mc = 1;
508
+ nc = 3;
509
+ gemm<1, 3>(m0, m, n0, n);
510
+ break;
511
+ case 0x21:
512
+ mc = 2;
513
+ nc = 1;
514
+ gemm<2, 1>(m0, m, n0, n);
515
+ break;
516
+ case 0x12:
517
+ mc = 1;
518
+ nc = 2;
519
+ gemm<1, 2>(m0, m, n0, n);
520
+ break;
521
+ case 0x11:
522
+ mc = 1;
523
+ nc = 1;
524
+ gemm<1, 1>(m0, m, n0, n);
525
+ break;
526
+ default:
527
+ return;
528
+ }
529
+ mp = m0 + (m - m0) / mc * mc;
530
+ np = n0 + (n - n0) / nc * nc;
531
+ mnpack(mp, m, n0, np);
532
+ mnpack(m0, m, np, n);
533
+ }
534
+
535
+ template <int RM, int RN>
536
+ NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
537
+ int64_t ytiles = (m - m0) / RM;
538
+ int64_t xtiles = (n - n0) / RN;
539
+ int64_t tiles = xtiles * ytiles;
540
+ int64_t duty = (tiles + nth - 1) / nth;
541
+ int64_t start = duty * ith;
542
+ int64_t end = start + duty;
543
+ if (end > tiles)
544
+ end = tiles;
545
+ for (int64_t job = start; job < end; ++job) {
546
+ int64_t ii = m0 + job / xtiles * RM;
547
+ int64_t jj = n0 + job % xtiles * RN;
548
+ float32x4_t Cv[RN][RM] = {};
549
+ for (int64_t l = 0; l < k; ++l)
550
+ for (int64_t j = 0; j < RN; ++j)
551
+ for (int64_t i = 0; i < RM; ++i)
552
+ Cv[j][i] = vmlaq_n_f32(Cv[j][i],
553
+ vcvtq_f32_s32(vdotq_s32(
554
+ vdotq_s32(vdupq_n_s32(0),
555
+ load_lo(A + lda * (ii + i) + l),
556
+ load_lo(B + ldb * (jj + j) + l)),
557
+ load_hi(A + lda * (ii + i) + l),
558
+ load_hi(B + ldb * (jj + j) + l))),
559
+ unhalf(A[lda * (ii + i) + l].d) *
560
+ unhalf(B[ldb * (jj + j) + l].d));
561
+ for (int64_t j = 0; j < RN; ++j)
562
+ for (int64_t i = 0; i < RM; ++i)
563
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
564
+ }
565
+ }
566
+
567
+ inline int8x16_t load_lo(const block_q8_0 *b) {
568
+ return vld1q_s8(b->qs);
569
+ }
570
+
571
+ inline int8x16_t load_hi(const block_q8_0 *b) {
572
+ return vld1q_s8(b->qs + 16);
573
+ }
574
+
575
+ inline int8x16_t load_lo(const block_q4_0 *b) {
576
+ return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
577
+ vdupq_n_u8(0x0f))),
578
+ vdupq_n_s8(0x8));
579
+ }
580
+
581
+ inline int8x16_t load_hi(const block_q4_0 *b) {
582
+ return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
583
+ vdupq_n_s8(0x8));
584
+ }
585
+
586
+ const TA *const A;
587
+ const block_q8_0 *const B;
588
+ float *const C;
589
+ const int64_t k;
590
+ const int64_t lda;
591
+ const int64_t ldb;
592
+ const int64_t ldc;
593
+ const int ith;
594
+ const int nth;
595
+ };
596
+ #endif // __ARM_FEATURE_DOTPROD
597
+
598
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
599
+ template <typename TA, typename TB, typename TC>
600
+ class tinyBLAS_Q0_AVX {
601
+ public:
602
+ tinyBLAS_Q0_AVX(int64_t k,
603
+ const TA *A, int64_t lda,
604
+ const TB *B, int64_t ldb,
605
+ TC *C, int64_t ldc,
606
+ int ith, int nth)
607
+ : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
608
+ }
609
+
610
+ void matmul(int64_t m, int64_t n) {
611
+ mnpack(0, m, 0, n);
612
+ }
613
+
614
+ private:
615
+ void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
616
+ int64_t mc, nc, mp, np;
617
+ switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) {
618
+ #if VECTOR_REGISTERS == 32
619
+ case 0x44:
620
+ mc = 4;
621
+ nc = 4;
622
+ #if defined(__AVX2__) && defined(__F16C__)
623
+ gemm4xN<4>(m0, m, n0, n);
624
+ #else
625
+ gemm<4, 4>(m0, m, n0, n);
626
+ #endif
627
+ break;
628
+ case 0x43:
629
+ mc = 4;
630
+ nc = 3;
631
+ #if defined(__AVX2__) && defined(__F16C__)
632
+ gemm4xN<3>(m0, m, n0, n);
633
+ #else
634
+ gemm<4, 3>(m0, m, n0, n);
635
+ #endif
636
+ break;
637
+ case 0x34:
638
+ mc = 3;
639
+ nc = 4;
640
+ #if defined(__AVX2__) && defined(__F16C__)
641
+ gemmMx4<3>(m0, m, n0, n);
642
+ #else
643
+ gemm<3, 4>(m0, m, n0, n);
644
+ #endif
645
+ break;
646
+ case 0x33:
647
+ mc = 3;
648
+ nc = 3;
649
+ gemm<3, 3>(m0, m, n0, n);
650
+ break;
651
+ case 0x42:
652
+ mc = 4;
653
+ nc = 2;
654
+ #if defined(__AVX2__) && defined(__F16C__)
655
+ gemm4xN<2>(m0, m, n0, n);
656
+ #else
657
+ gemm<4, 2>(m0, m, n0, n);
658
+ #endif
659
+ break;
660
+ case 0x24:
661
+ mc = 2;
662
+ nc = 4;
663
+ #if defined(__AVX2__) && defined(__F16C__)
664
+ gemmMx4<2>(m0, m, n0, n);
665
+ #else
666
+ gemm<2, 4>(m0, m, n0, n);
667
+ #endif
668
+ break;
669
+ #else
670
+ case 0x44:
671
+ case 0x43:
672
+ case 0x42:
673
+ mc = 4;
674
+ nc = 2;
675
+ #if defined(__AVX2__) && defined(__F16C__)
676
+ gemm4xN<2>(m0, m, n0, n);
677
+ #else
678
+ gemm<4, 2>(m0, m, n0, n);
679
+ #endif
680
+ break;
681
+ case 0x34:
682
+ case 0x24:
683
+ mc = 2;
684
+ nc = 4;
685
+ #if defined(__AVX2__) && defined(__F16C__)
686
+ gemmMx4<2>(m0, m, n0, n);
687
+ #else
688
+ gemm<2, 4>(m0, m, n0, n);
689
+ #endif
690
+ break;
691
+ case 0x33:
692
+ #endif
693
+ case 0x32:
694
+ mc = 3;
695
+ nc = 2;
696
+ gemm<3, 2>(m0, m, n0, n);
697
+ break;
698
+ case 0x23:
699
+ mc = 2;
700
+ nc = 3;
701
+ gemm<2, 3>(m0, m, n0, n);
702
+ break;
703
+ case 0x41:
704
+ mc = 4;
705
+ nc = 1;
706
+ #if defined(__AVX2__) && defined(__F16C__)
707
+ gemm4xN<1>(m0, m, n0, n);
708
+ #else
709
+ gemm<4, 1>(m0, m, n0, n);
710
+ #endif
711
+ break;
712
+ case 0x22:
713
+ mc = 2;
714
+ nc = 2;
715
+ gemm<2, 2>(m0, m, n0, n);
716
+ break;
717
+ case 0x14:
718
+ mc = 1;
719
+ nc = 4;
720
+ #if defined(__AVX2__) && defined(__F16C__)
721
+ gemmMx4<1>(m0, m, n0, n);
722
+ #else
723
+ gemm<1, 4>(m0, m, n0, n);
724
+ #endif
725
+ break;
726
+ case 0x31:
727
+ mc = 3;
728
+ nc = 1;
729
+ gemm<3, 1>(m0, m, n0, n);
730
+ break;
731
+ case 0x13:
732
+ mc = 1;
733
+ nc = 3;
734
+ gemm<1, 3>(m0, m, n0, n);
735
+ break;
736
+ case 0x21:
737
+ mc = 2;
738
+ nc = 1;
739
+ gemm<2, 1>(m0, m, n0, n);
740
+ break;
741
+ case 0x12:
742
+ mc = 1;
743
+ nc = 2;
744
+ gemm<1, 2>(m0, m, n0, n);
745
+ break;
746
+ case 0x11:
747
+ mc = 1;
748
+ nc = 1;
749
+ gemm<1, 1>(m0, m, n0, n);
750
+ break;
751
+ default:
752
+ return;
753
+ }
754
+ mp = m0 + (m - m0) / mc * mc;
755
+ np = n0 + (n - n0) / nc * nc;
756
+ mnpack(mp, m, n0, np);
757
+ mnpack(m0, m, np, n);
758
+ }
759
+
760
+ #if defined(__AVX2__) && defined(__F16C__)
761
+ // Templated functions for gemm of dimensions 4xN
762
+ template <int RN>
763
+ NOINLINE void gemm4xN(int64_t m0, int64_t m, int64_t n0, int64_t n) {
764
+ int64_t ytiles = (m - m0) / 4;
765
+ int64_t xtiles = (n - n0) / RN;
766
+ int64_t tiles = xtiles * ytiles;
767
+ int64_t duty = (tiles + nth - 1) / nth;
768
+ int64_t start = duty * ith;
769
+ int64_t end = start + duty;
770
+ if (end > tiles)
771
+ end = tiles;
772
+ for (int64_t job = start; job < end; ++job) {
773
+ int64_t ii = m0 + job / xtiles * 4;
774
+ int64_t jj = n0 + job % xtiles * RN;
775
+ __m256 Cv[RN][4] = {};
776
+ for (int64_t l = 0; l < k; ++l) {
777
+ uint64_t a_delta = ((uint64_t)A[lda * (ii + 3) + l].d << 48) | ((uint64_t)A[lda * (ii + 2) + l].d << 32) | ((uint64_t)A[lda * (ii + 1) + l].d << 16) | (A[lda * (ii + 0) + l].d);
778
+ // Convert delta values for four blocks to float values
779
+ __m128 da = _mm_cvtph_ps(_mm_set_epi64x(0, a_delta));
780
+ __m256i avec0 = load(A + lda * (ii + 0) + l);
781
+ __m256i avec1 = load(A + lda * (ii + 1) + l);
782
+ __m256i avec2 = load(A + lda * (ii + 2) + l);
783
+ __m256i avec3 = load(A + lda * (ii + 3) + l);
784
+ for (int64_t j = 0; j < RN; ++j) {
785
+ __m128 db = _mm_set1_ps(unhalf(B[ldb * (jj + j) + l].d));
786
+ // Computation of product of delta values for four blocks and replicate it across 256 bit lane
787
+ __m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
788
+ dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
789
+ // Computation of dot product and multiplication with appropriate delta value products
790
+ Cv[j][0] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
791
+ updot(_mm256_sign_epi8(avec0, avec0),
792
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec0)),
793
+ Cv[j][0]);
794
+ Cv[j][1] = madd(_mm256_shuffle_ps(dvec, dvec, 85),
795
+ updot(_mm256_sign_epi8(avec1, avec1),
796
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec1)),
797
+ Cv[j][1]);
798
+ Cv[j][2] = madd(_mm256_shuffle_ps(dvec, dvec, 170),
799
+ updot(_mm256_sign_epi8(avec2, avec2),
800
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec2)),
801
+ Cv[j][2]);
802
+ Cv[j][3] = madd(_mm256_shuffle_ps(dvec, dvec, 255),
803
+ updot(_mm256_sign_epi8(avec3, avec3),
804
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec3)),
805
+ Cv[j][3]);
806
+ }
807
+ }
808
+
809
+ for (int64_t j = 0; j < RN; ++j)
810
+ for (int64_t i = 0; i < 4; ++i)
811
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
812
+ }
813
+ }
814
+
815
+ // Templated functions for gemm of dimensions Mx4
816
+ template <int RM>
817
+ NOINLINE void gemmMx4(int64_t m0, int64_t m, int64_t n0, int64_t n) {
818
+ int64_t ytiles = (m - m0) / RM;
819
+ int64_t xtiles = (n - n0) / 4;
820
+ int64_t tiles = xtiles * ytiles;
821
+ int64_t duty = (tiles + nth - 1) / nth;
822
+ int64_t start = duty * ith;
823
+ int64_t end = start + duty;
824
+ if (end > tiles)
825
+ end = tiles;
826
+ for (int64_t job = start; job < end; ++job) {
827
+ int64_t ii = m0 + job / xtiles * RM;
828
+ int64_t jj = n0 + job % xtiles * 4;
829
+ __m256 Cv[4][RM] = {};
830
+ for (int64_t l = 0; l < k; ++l) {
831
+ uint64_t b_delta = ((uint64_t)B[ldb * (jj + 3) + l].d << 48) | ((uint64_t)B[ldb * (jj + 2) + l].d << 32) | ((uint64_t)B[ldb * (jj + 1) + l].d << 16) | (B[ldb * (jj + 0) + l].d);
832
+ // Convert delta values for four blocks to float values
833
+ __m128 db = _mm_cvtph_ps(_mm_set_epi64x(0, b_delta));
834
+ __m256i bvec0 = load(B + ldb * (jj + 0) + l);
835
+ __m256i bvec1 = load(B + ldb * (jj + 1) + l);
836
+ __m256i bvec2 = load(B + ldb * (jj + 2) + l);
837
+ __m256i bvec3 = load(B + ldb * (jj + 3) + l);
838
+ for (int64_t i = 0; i < RM; ++i) {
839
+ __m128 da = _mm_set1_ps(unhalf((A[lda * (ii + i) + l].d)));
840
+ // Computation of product of delta values for four blocks and replicate it across 256 bit lane
841
+ __m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
842
+ dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
843
+ // Computation of dot product and multiplication with appropriate delta value products
844
+ Cv[0][i] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
845
+ updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
846
+ load(A + lda * (ii + i) + l)),
847
+ _mm256_sign_epi8(bvec0, load(A + lda * (ii + i) + l))),
848
+ Cv[0][i]);
849
+ Cv[1][i] = madd(_mm256_shuffle_ps(dvec, dvec, 85),
850
+ updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
851
+ load(A + lda * (ii + i) + l)),
852
+ _mm256_sign_epi8(bvec1, load(A + lda * (ii + i) + l))),
853
+ Cv[1][i]);
854
+ Cv[2][i] = madd(_mm256_shuffle_ps(dvec, dvec, 170),
855
+ updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
856
+ load(A + lda * (ii + i) + l)),
857
+ _mm256_sign_epi8(bvec2, load(A + lda * (ii + i) + l))),
858
+ Cv[2][i]);
859
+ Cv[3][i] = madd(_mm256_shuffle_ps(dvec, dvec, 255),
860
+ updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
861
+ load(A + lda * (ii + i) + l)),
862
+ _mm256_sign_epi8(bvec3, load(A + lda * (ii + i) + l))),
863
+ Cv[3][i]);
864
+ }
865
+ }
866
+ for (int64_t j = 0; j < 4; ++j)
867
+ for (int64_t i = 0; i < RM; ++i)
868
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
869
+ }
870
+ }
871
+ #endif
872
+
873
+ template <int RM, int RN>
874
+ NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
875
+ int64_t ytiles = (m - m0) / RM;
876
+ int64_t xtiles = (n - n0) / RN;
877
+ int64_t tiles = xtiles * ytiles;
878
+ int64_t duty = (tiles + nth - 1) / nth;
879
+ int64_t start = duty * ith;
880
+ int64_t end = start + duty;
881
+ if (end > tiles)
882
+ end = tiles;
883
+ for (int64_t job = start; job < end; ++job) {
884
+ int64_t ii = m0 + job / xtiles * RM;
885
+ int64_t jj = n0 + job % xtiles * RN;
886
+ __m256 Cv[RN][RM] = {};
887
+ for (int64_t l = 0; l < k; ++l)
888
+ for (int64_t j = 0; j < RN; ++j)
889
+ for (int64_t i = 0; i < RM; ++i) {
890
+ #if defined(__AVX2__)
891
+ __m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
892
+ load(A + lda * (ii + i) + l)),
893
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l),
894
+ load(A + lda * (ii + i) + l)));
895
+ #else
896
+ __m128i ali0 = load0(A + lda * (ii + i) + l);
897
+ __m128i ali1 = load1(A + lda * (ii + i) + l);
898
+ __m128i blj0 = load0(B + ldb * (jj + j) + l);
899
+ __m128i blj1 = load1(B + ldb * (jj + j) + l);
900
+
901
+ __m128i sepAA0 = _mm_sign_epi8(ali0, ali0);
902
+ __m128i sepAA1 = _mm_sign_epi8(ali1, ali1);
903
+ __m128i sepBA0 = _mm_sign_epi8(blj0, ali0);
904
+ __m128i sepBA1 = _mm_sign_epi8(blj1, ali1);
905
+
906
+ // updot
907
+ const __m128i oneFill = _mm_set1_epi16(1);
908
+ __m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0);
909
+ __m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1);
910
+ __m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0)));
911
+ #endif
912
+ Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
913
+ unhalf(B[ldb * (jj + j) + l].d)),
914
+ udTmp,
915
+ Cv[j][i]);
916
+ }
917
+ for (int64_t j = 0; j < RN; ++j)
918
+ for (int64_t i = 0; i < RM; ++i)
919
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
920
+ }
921
+ }
922
+
923
+ inline __m256i load(const block_q8_0 *b) {
924
+ return _mm256_loadu_si256((const __m256i *)b->qs);
925
+ }
926
+
927
+ inline __m128i load0(const block_q8_0 *b) {
928
+ return _mm_loadu_si128((const __m128i *)b->qs);
929
+ }
930
+
931
+ inline __m128i load1(const block_q8_0 *b) {
932
+ return _mm_loadu_si128(((const __m128i *)b->qs) + 1);
933
+ }
934
+
935
+ inline __m256i load(const block_q4_0 *b) {
936
+ return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
937
+ }
938
+
939
+ inline __m128i load0(const block_q4_0 *b) {
940
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
941
+ return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8));
942
+ }
943
+
944
+ inline __m128i load1(const block_q4_0 *b) {
945
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
946
+ return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8));
947
+ }
948
+
949
+ inline __m256i load(const block_q5_0 *b) {
950
+ return _mm256_or_si256(denibble(b->qs), bittobyte(b->qh));
951
+ }
952
+
953
+ inline __m128i load0(const block_q5_0* b) {
954
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
955
+ uint32_t x32;
956
+ memcpy(&x32, b->qh, sizeof(uint32_t));
957
+ __m128i qxl = _mm_and_si128(_mm_set1_epi8(15), x);
958
+ __m128i bytesl = _mm_cmpeq_epi8(_mm_set1_epi64x(-1),
959
+ _mm_or_si128(_mm_set1_epi64x(0x7fbfdfeff7fbfdfe),
960
+ _mm_shuffle_epi8(_mm_set1_epi32(x32),
961
+ _mm_set_epi64x(0x0101010101010101, 0x0000000000000000))));
962
+ bytesl = _mm_andnot_si128(bytesl, _mm_set1_epi8((char)0xF0));
963
+ return _mm_or_si128(qxl, bytesl);
964
+ }
965
+
966
+ inline __m128i load1(const block_q5_0* b) {
967
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
968
+ uint32_t x32;
969
+ memcpy(&x32, b->qh, sizeof(uint32_t));
970
+ __m128i qxh = _mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4));
971
+ __m128i bytesh = _mm_cmpeq_epi8(_mm_set1_epi64x(-1),
972
+ _mm_or_si128(_mm_set1_epi64x(0x7fbfdfeff7fbfdfe),
973
+ _mm_shuffle_epi8(_mm_set1_epi32(x32),
974
+ _mm_set_epi64x(0x0303030303030303, 0x0202020202020202))));
975
+ bytesh = _mm_andnot_si128(bytesh, _mm_set1_epi8((char)0xF0));
976
+ return _mm_or_si128(qxh, bytesh);
977
+ }
978
+
979
+ inline __m256i load(const block_iq4_nl *b) {
980
+ return MM256_SET_M128I(load1(b), load0(b));
981
+ }
982
+
983
+ inline __m128i load0(const block_iq4_nl *b) {
984
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
985
+ return _mm_shuffle_epi8(iq4nlt, _mm_and_si128(_mm_set1_epi8(15), x));
986
+ }
987
+
988
+ inline __m128i load1(const block_iq4_nl *b) {
989
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
990
+ return _mm_shuffle_epi8(iq4nlt, _mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)));
991
+ }
992
+
993
+ inline __m256 updot(__m256i u, __m256i s) {
994
+ __m256i res;
995
+ #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
996
+ res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
997
+ #else
998
+ res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
999
+ #endif
1000
+ return _mm256_cvtepi32_ps(res);
1001
+ }
1002
+
1003
+ static inline __m256i denibble(const uint8_t *p) {
1004
+ __m128i x = _mm_loadu_si128((const __m128i *)p);
1005
+ return _mm256_and_si256(_mm256_set1_epi8(15),
1006
+ _mm256_insertf128_si256(_mm256_castsi128_si256(x),
1007
+ _mm_srli_epi16(x, 4), 1));
1008
+ }
1009
+
1010
+ static inline __m256i bittobyte(const uint8_t *p) {
1011
+ uint32_t x32;
1012
+ memcpy(&x32, p, sizeof(uint32_t));
1013
+ __m256i bytes = _mm256_cmpeq_epi8(_mm256_set1_epi64x(-1),
1014
+ _mm256_or_si256(_mm256_set1_epi64x(0x7fbfdfeff7fbfdfe),
1015
+ _mm256_shuffle_epi8(_mm256_set1_epi32(x32),
1016
+ _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202,
1017
+ 0x0101010101010101, 0x0000000000000000))));
1018
+ return _mm256_andnot_si256(bytes, _mm256_set1_epi8((char)0xF0));
1019
+ }
1020
+
1021
+ const TA *const A;
1022
+ const TB *const B;
1023
+ TC *const C;
1024
+ const int64_t k;
1025
+ const int64_t lda;
1026
+ const int64_t ldb;
1027
+ const int64_t ldc;
1028
+ const int ith;
1029
+ const int nth;
1030
+ };
1031
+ #endif // __AVX__
1032
+
1033
+ //PPC Implementation
1034
+ #if defined(__MMA__)
1035
+
1036
+ #define SAVE_ACC(ACC, ii, jj) \
1037
+ __builtin_mma_disassemble_acc(vec_C, ACC); \
1038
+ for (int I = 0; I < 4; I++) { \
1039
+ for (int J = 0; J < 4; J++) { \
1040
+ *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J); \
1041
+ } \
1042
+ } \
1043
+
1044
+ template <typename TA, typename TB, typename TC>
1045
+ class tinyBLAS_PPC {
1046
+ public:
1047
+ tinyBLAS_PPC(int64_t k,
1048
+ const TA *A, int64_t lda,
1049
+ const TB *B, int64_t ldb,
1050
+ TC *C, int64_t ldc,
1051
+ int ith, int nth)
1052
+ : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
1053
+ }
1054
+
1055
+ void matmul(int64_t m, int64_t n) {
1056
+ mnpack(0, m, 0, n);
1057
+ }
1058
+
1059
+ private:
1060
+
1061
+ void (tinyBLAS_PPC::*kernel)(int64_t, int64_t);
1062
+
1063
+ void READ_BLOCK(const float* a, int64_t lda, int rows, int cols, float* vec) {
1064
+ int64_t i, j;
1065
+ float *aoffset = NULL, *boffset = NULL;
1066
+ float *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
1067
+ float *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
1068
+
1069
+ aoffset = const_cast<float*>(a);
1070
+ boffset = vec;
1071
+ j = (rows >> 3);
1072
+ if (j > 0) {
1073
+ do {
1074
+ aoffset1 = aoffset;
1075
+ aoffset2 = aoffset1 + lda;
1076
+ aoffset3 = aoffset2 + lda;
1077
+ aoffset4 = aoffset3 + lda;
1078
+ aoffset5 = aoffset4 + lda;
1079
+ aoffset6 = aoffset5 + lda;
1080
+ aoffset7 = aoffset6 + lda;
1081
+ aoffset8 = aoffset7 + lda;
1082
+ aoffset += 8 * lda;
1083
+ i = (cols >> 3);
1084
+ if (i > 0) {
1085
+ __vector_pair C1, C2, C3, C4, C5, C6, C7, C8;
1086
+ vector float c1[2], c2[2], c3[2], c4[2], c5[2], c6[2], c7[2], c8[2];
1087
+ vector float t1, t2, t3, t4, t5, t6, t7, t8;
1088
+ do {
1089
+ C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1);
1090
+ C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2);
1091
+ C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3);
1092
+ C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4);
1093
+ C5 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset5);
1094
+ C6 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset6);
1095
+ C7 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset7);
1096
+ C8 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset8);
1097
+ __builtin_vsx_disassemble_pair(c1, &C1);
1098
+ __builtin_vsx_disassemble_pair(c2, &C2);
1099
+ __builtin_vsx_disassemble_pair(c3, &C3);
1100
+ __builtin_vsx_disassemble_pair(c4, &C4);
1101
+ __builtin_vsx_disassemble_pair(c5, &C5);
1102
+ __builtin_vsx_disassemble_pair(c6, &C6);
1103
+ __builtin_vsx_disassemble_pair(c7, &C7);
1104
+ __builtin_vsx_disassemble_pair(c8, &C8);
1105
+
1106
+ t1 = vec_mergeh(c1[0], c2[0]);
1107
+ t2 = vec_mergeh(c3[0], c4[0]);
1108
+ t3 = vec_mergeh(c5[0], c6[0]);
1109
+ t4 = vec_mergeh(c7[0], c8[0]);
1110
+ t5 = vec_xxpermdi(t1, t2, 0);
1111
+ t6 = vec_xxpermdi(t3, t4, 0);
1112
+ t7 = vec_xxpermdi(t1, t2, 3);
1113
+ t8 = vec_xxpermdi(t3, t4, 3);
1114
+ vec_xst(t5, 0, boffset);
1115
+ vec_xst(t6, 0, boffset+4);
1116
+ vec_xst(t7, 0, boffset+8);
1117
+ vec_xst(t8, 0, boffset+12);
1118
+
1119
+ t1 = vec_mergel(c1[0], c2[0]);
1120
+ t2 = vec_mergel(c3[0], c4[0]);
1121
+ t3 = vec_mergel(c5[0], c6[0]);
1122
+ t4 = vec_mergel(c7[0], c8[0]);
1123
+ t5 = vec_xxpermdi(t1, t2, 0);
1124
+ t6 = vec_xxpermdi(t3, t4, 0);
1125
+ t7 = vec_xxpermdi(t1, t2, 3);
1126
+ t8 = vec_xxpermdi(t3, t4, 3);
1127
+ vec_xst(t5, 0, boffset+16);
1128
+ vec_xst(t6, 0, boffset+20);
1129
+ vec_xst(t7, 0, boffset+24);
1130
+ vec_xst(t8, 0, boffset+28);
1131
+
1132
+ t1 = vec_mergeh(c1[1], c2[1]);
1133
+ t2 = vec_mergeh(c3[1], c4[1]);
1134
+ t3 = vec_mergeh(c5[1], c6[1]);
1135
+ t4 = vec_mergeh(c7[1], c8[1]);
1136
+ t5 = vec_xxpermdi(t1, t2, 0);
1137
+ t6 = vec_xxpermdi(t3, t4, 0);
1138
+ t7 = vec_xxpermdi(t1, t2, 3);
1139
+ t8 = vec_xxpermdi(t3, t4, 3);
1140
+ vec_xst(t5, 0, boffset+32);
1141
+ vec_xst(t6, 0, boffset+36);
1142
+ vec_xst(t7, 0, boffset+40);
1143
+ vec_xst(t8, 0, boffset+44);
1144
+
1145
+ t1 = vec_mergel(c1[1], c2[1]);
1146
+ t2 = vec_mergel(c3[1], c4[1]);
1147
+ t3 = vec_mergel(c5[1], c6[1]);
1148
+ t4 = vec_mergel(c7[1], c8[1]);
1149
+ t5 = vec_xxpermdi(t1, t2, 0);
1150
+ t6 = vec_xxpermdi(t3, t4, 0);
1151
+ t7 = vec_xxpermdi(t1, t2, 3);
1152
+ t8 = vec_xxpermdi(t3, t4, 3);
1153
+ vec_xst(t5, 0, boffset+48);
1154
+ vec_xst(t6, 0, boffset+52);
1155
+ vec_xst(t7, 0, boffset+56);
1156
+ vec_xst(t8, 0, boffset+60);
1157
+
1158
+ aoffset1 += 8*lda;
1159
+ aoffset2 += 8*lda;
1160
+ aoffset3 += 8*lda;
1161
+ aoffset4 += 8*lda;
1162
+ boffset += 64;
1163
+ i--;
1164
+ } while(i > 0);
1165
+ }
1166
+ if (cols & 4) {
1167
+ vector float c1, c2, c3, c4, c5, c6, c7, c8;
1168
+ vector float t1, t2, t3, t4, t5, t6, t7, t8;
1169
+ c1 = vec_xl(0, aoffset1);
1170
+ c2 = vec_xl(0, aoffset2);
1171
+ c3 = vec_xl(0, aoffset3);
1172
+ c4 = vec_xl(0, aoffset4);
1173
+ c5 = vec_xl(0, aoffset5);
1174
+ c6 = vec_xl(0, aoffset6);
1175
+ c7 = vec_xl(0, aoffset7);
1176
+ c8 = vec_xl(0, aoffset8);
1177
+
1178
+ t1 = vec_mergeh(c1, c2);
1179
+ t2 = vec_mergeh(c3, c4);
1180
+ t3 = vec_mergeh(c5, c6);
1181
+ t4 = vec_mergeh(c7, c8);
1182
+ t5 = vec_xxpermdi(t1, t2, 0);
1183
+ t6 = vec_xxpermdi(t3, t4, 0);
1184
+ t7 = vec_xxpermdi(t1, t2, 3);
1185
+ t8 = vec_xxpermdi(t3, t4, 3);
1186
+ vec_xst(t5, 0, boffset);
1187
+ vec_xst(t6, 0, boffset+4);
1188
+ vec_xst(t7, 0, boffset+8);
1189
+ vec_xst(t8, 0, boffset+12);
1190
+
1191
+ t1 = vec_mergel(c1, c2);
1192
+ t2 = vec_mergel(c3, c4);
1193
+ t3 = vec_mergel(c5, c6);
1194
+ t4 = vec_mergel(c7, c8);
1195
+ t5 = vec_xxpermdi(t1, t2, 0);
1196
+ t6 = vec_xxpermdi(t3, t4, 0);
1197
+ t7 = vec_xxpermdi(t1, t2, 3);
1198
+ t8 = vec_xxpermdi(t3, t4, 3);
1199
+ vec_xst(t5, 0, boffset+16);
1200
+ vec_xst(t6, 0, boffset+20);
1201
+ vec_xst(t7, 0, boffset+24);
1202
+ vec_xst(t8, 0, boffset+28);
1203
+ }
1204
+ j--;
1205
+ } while(j > 0);
1206
+ }
1207
+
1208
+ if (rows & 4) {
1209
+ aoffset1 = aoffset;
1210
+ aoffset2 = aoffset1 + lda;
1211
+ aoffset3 = aoffset2 + lda;
1212
+ aoffset4 = aoffset3 + lda;
1213
+ aoffset += 4 * lda;
1214
+ i = (cols >> 3);
1215
+ if (i > 0) {
1216
+ __vector_pair C1, C2, C3, C4;
1217
+ vector float c1[2], c2[2], c3[2], c4[2];
1218
+ vector float t1, t2, t3, t4, t5, t6, t7, t8;
1219
+ do {
1220
+ C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1);
1221
+ C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2);
1222
+ C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3);
1223
+ C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4);
1224
+ __builtin_vsx_disassemble_pair(c1, &C1);
1225
+ __builtin_vsx_disassemble_pair(c2, &C2);
1226
+ __builtin_vsx_disassemble_pair(c3, &C3);
1227
+ __builtin_vsx_disassemble_pair(c4, &C4);
1228
+
1229
+ t1 = vec_mergeh(c1[0], c2[0]);
1230
+ t2 = vec_mergeh(c3[0], c4[0]);
1231
+ t3 = vec_mergel(c1[0], c2[0]);
1232
+ t4 = vec_mergel(c3[0], c4[0]);
1233
+ t5 = vec_xxpermdi(t1, t2, 0);
1234
+ t6 = vec_xxpermdi(t1, t2, 3);
1235
+ t7 = vec_xxpermdi(t3, t4, 0);
1236
+ t8 = vec_xxpermdi(t3, t4, 3);
1237
+ vec_xst(t5, 0, boffset);
1238
+ vec_xst(t6, 0, boffset+4);
1239
+ vec_xst(t7, 0, boffset+8);
1240
+ vec_xst(t8, 0, boffset+12);
1241
+
1242
+ t1 = vec_mergeh(c1[1], c2[1]);
1243
+ t2 = vec_mergeh(c3[1], c4[1]);
1244
+ t3 = vec_mergel(c1[1], c2[1]);
1245
+ t4 = vec_mergel(c3[1], c4[1]);
1246
+ t5 = vec_xxpermdi(t1, t2, 0);
1247
+ t6 = vec_xxpermdi(t1, t2, 3);
1248
+ t7 = vec_xxpermdi(t3, t4, 0);
1249
+ t8 = vec_xxpermdi(t3, t4, 3);
1250
+ vec_xst(t5, 0, boffset+16);
1251
+ vec_xst(t6, 0, boffset+20);
1252
+ vec_xst(t7, 0, boffset+24);
1253
+ vec_xst(t8, 0, boffset+28);
1254
+
1255
+ aoffset1 += 8*lda;
1256
+ aoffset2 += 8*lda;
1257
+ aoffset3 += 8*lda;
1258
+ aoffset4 += 8*lda;
1259
+ boffset += 32;
1260
+ i--;
1261
+ } while(i > 0);
1262
+ }
1263
+
1264
+ if (cols & 4) {
1265
+ vector float c1, c2, c3, c4;
1266
+ vector float t1, t2, t3, t4;
1267
+ c1 = vec_xl(0, aoffset1);
1268
+ c2 = vec_xl(0, aoffset2);
1269
+ c3 = vec_xl(0, aoffset3);
1270
+ c4 = vec_xl(0, aoffset4);
1271
+
1272
+ t1 = vec_mergeh(c1, c2);
1273
+ t2 = vec_mergeh(c3, c4);
1274
+ t3 = vec_xxpermdi(t1, t2, 0);
1275
+ t4 = vec_xxpermdi(t1, t2, 3);
1276
+ vec_xst(t3, 0, boffset);
1277
+ vec_xst(t4, 0, boffset+4);
1278
+
1279
+ t1 = vec_mergel(c1, c2);
1280
+ t2 = vec_mergel(c3, c4);
1281
+ t3 = vec_xxpermdi(t1, t2, 0);
1282
+ t4 = vec_xxpermdi(t1, t2, 3);
1283
+ vec_xst(t3, 0, boffset+8);
1284
+ vec_xst(t4, 0, boffset+12);
1285
+ }
1286
+ }
1287
+ if (rows & 3) {
1288
+ aoffset1 = aoffset;
1289
+ aoffset2 = aoffset1 + lda;
1290
+ aoffset3 = aoffset2 + lda;
1291
+ if (cols & 4) {
1292
+ vector float c1, c2, c3, c4 = {0};
1293
+ vector float t1, t2, t3, t4;
1294
+ c1 = vec_xl(0, aoffset1);
1295
+ c2 = vec_xl(0, aoffset2);
1296
+ c3 = vec_xl(0, aoffset3);
1297
+
1298
+ t1 = vec_mergeh(c1, c2);
1299
+ t2 = vec_mergeh(c3, c4);
1300
+ t3 = vec_xxpermdi(t1, t2, 0);
1301
+ t4 = vec_xxpermdi(t1, t2, 3);
1302
+ vec_xst(t3, 0, boffset);
1303
+ vec_xst(t4, 0, boffset+4);
1304
+
1305
+ t1 = vec_mergel(c1, c2);
1306
+ t2 = vec_mergel(c3, c4);
1307
+ t3 = vec_xxpermdi(t1, t2, 0);
1308
+ t4 = vec_xxpermdi(t1, t2, 3);
1309
+ vec_xst(t3, 0, boffset+8);
1310
+ vec_xst(t4, 0, boffset+12);
1311
+ }
1312
+ }
1313
+ }
1314
+
1315
+ void KERNEL_4x4(int64_t ii, int64_t jj) {
1316
+ vec_t vec_A[4], vec_B[4], vec_C[4];
1317
+ acc_t acc_0;
1318
+ __builtin_mma_xxsetaccz(&acc_0);
1319
+ for (int l = 0; l < k; l+=4) {
1320
+ READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
1321
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
1322
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
1323
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
1324
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
1325
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]);
1326
+ }
1327
+ SAVE_ACC(&acc_0, ii, jj);
1328
+ }
1329
+
1330
+ void KERNEL_4x8(int64_t ii, int64_t jj) {
1331
+ vec_t vec_A[4], vec_B[8], vec_C[4];
1332
+ acc_t acc_0, acc_1;
1333
+ __builtin_mma_xxsetaccz(&acc_0);
1334
+ __builtin_mma_xxsetaccz(&acc_1);
1335
+ for (int64_t l = 0; l < k; l+=4) {
1336
+ READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
1337
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 4, (float*)vec_B);
1338
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]);
1339
+ __builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]);
1340
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]);
1341
+ __builtin_mma_xvf32gerpp(&acc_1, vec_A[1], (vec_t)vec_B[3]);
1342
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], (vec_t)vec_B[4]);
1343
+ __builtin_mma_xvf32gerpp(&acc_1, vec_A[2], (vec_t)vec_B[5]);
1344
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], (vec_t)vec_B[6]);
1345
+ __builtin_mma_xvf32gerpp(&acc_1, vec_A[3], (vec_t)vec_B[7]);
1346
+ }
1347
+ SAVE_ACC(&acc_0, ii, jj);
1348
+ SAVE_ACC(&acc_1, ii, jj+4);
1349
+ }
1350
+
1351
+ void KERNEL_8x4(int64_t ii, int64_t jj) {
1352
+ vec_t vec_A[8], vec_B[4], vec_C[4];
1353
+ acc_t acc_0, acc_1;
1354
+ __builtin_mma_xxsetaccz(&acc_0);
1355
+ __builtin_mma_xxsetaccz(&acc_1);
1356
+ for (int64_t l = 0; l < k; l+=4) {
1357
+ READ_BLOCK(A+(ii*lda)+l, lda, 8, 4, (float*)vec_A);
1358
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
1359
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]);
1360
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]);
1361
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]);
1362
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[3], vec_B[1]);
1363
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[4], vec_B[2]);
1364
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[5], vec_B[2]);
1365
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[6], vec_B[3]);
1366
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[7], vec_B[3]);
1367
+ }
1368
+ SAVE_ACC(&acc_0, ii, jj);
1369
+ SAVE_ACC(&acc_1, ii+4, jj);
1370
+ }
1371
+
1372
+ void KERNEL_8x8(int64_t ii, int64_t jj) {
1373
+ vec_t vec_A[16], vec_B[16], vec_C[4];
1374
+ acc_t acc_0, acc_1, acc_2, acc_3;
1375
+ __builtin_mma_xxsetaccz(&acc_0);
1376
+ __builtin_mma_xxsetaccz(&acc_1);
1377
+ __builtin_mma_xxsetaccz(&acc_2);
1378
+ __builtin_mma_xxsetaccz(&acc_3);
1379
+ for (int l = 0; l < k; l+=8) {
1380
+ READ_BLOCK(A+(ii*lda)+l, lda, 8, 8, (float*)vec_A);
1381
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 8, (float*)vec_B);
1382
+ for(int x = 0; x < 16; x+=2) {
1383
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]);
1384
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x+1]);
1385
+ __builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x+1], vec_B[x]);
1386
+ __builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x+1], vec_B[x+1]);
1387
+ }
1388
+ }
1389
+ SAVE_ACC(&acc_0, ii, jj);
1390
+ SAVE_ACC(&acc_1, ii, jj+4);
1391
+ SAVE_ACC(&acc_2, ii+4, jj);
1392
+ SAVE_ACC(&acc_3, ii+4, jj+4);
1393
+ }
1394
+
1395
+ void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
1396
+ int64_t mc, nc, mp, np;
1397
+ int m_rem = MIN(m - m0, 16);
1398
+ int n_rem = MIN(n - n0, 16);
1399
+ if (m_rem >= 16 && n_rem >= 8) {
1400
+ mc = 8;
1401
+ nc = 8;
1402
+ gemm<8,8>(m0, m, n0, n);
1403
+ } else if(m_rem >= 8 && n_rem >= 16) {
1404
+ mc = 8;
1405
+ nc = 8;
1406
+ gemm<8,8>(m0, m, n0, n);
1407
+ } else if (m_rem >= 8 && n_rem >= 8) {
1408
+ mc = 8;
1409
+ nc = 8;
1410
+ gemm<8,8>(m0, m, n0, n);
1411
+ } else if (m_rem >= 4 && n_rem >= 8) {
1412
+ mc = 4;
1413
+ nc = 8;
1414
+ gemm<4,8>(m0, m, n0, n);
1415
+ } else if (m_rem >= 8 && n_rem >= 4) {
1416
+ mc = 8;
1417
+ nc = 4;
1418
+ gemm<8,4>(m0, m, n0, n);
1419
+ } else if (m_rem >= 4 && n_rem >= 4) {
1420
+ mc = 4;
1421
+ nc = 4;
1422
+ gemm<4,4>(m0, m, n0, n);
1423
+ } else if ((m_rem < 4) && (n_rem > 4)) {
1424
+ nc = 4;
1425
+ switch(m_rem) {
1426
+ case 1:
1427
+ mc = 1;
1428
+ gemm_small(m0, m, n0, n, mc, nc);
1429
+ break;
1430
+ case 2:
1431
+ mc = 2;
1432
+ gemm_small(m0, m, n0, n, mc, nc);
1433
+ break;
1434
+ case 3:
1435
+ mc = 3;
1436
+ gemm_small(m0, m, n0, n, mc, nc);
1437
+ break;
1438
+ default:
1439
+ return;
1440
+ }
1441
+ } else if ((m_rem > 4) && (n_rem < 4)) {
1442
+ mc = 4;
1443
+ switch(n_rem) {
1444
+ case 1:
1445
+ nc = 1;
1446
+ gemm_small(m0, m, n0, n, mc, nc);
1447
+ break;
1448
+ case 2:
1449
+ nc = 2;
1450
+ gemm_small(m0, m, n0, n, mc, nc);
1451
+ break;
1452
+ case 3:
1453
+ nc = 3;
1454
+ gemm_small(m0, m, n0, n, mc, nc);
1455
+ break;
1456
+ default:
1457
+ return;
1458
+ }
1459
+ } else {
1460
+ switch((m_rem << 4) | n_rem) {
1461
+ case 0x43:
1462
+ mc = 4;
1463
+ nc = 3;
1464
+ gemm_small(m0, m, n0, n, mc, nc);
1465
+ break;
1466
+ case 0x42:
1467
+ mc = 4;
1468
+ nc = 2;
1469
+ gemm_small(m0, m, n0, n, mc, nc);
1470
+ break;
1471
+ case 0x41:
1472
+ mc = 4;
1473
+ nc = 1;
1474
+ gemm_small(m0, m, n0, n, mc, nc);
1475
+ break;
1476
+ case 0x34:
1477
+ mc = 3;
1478
+ nc = 4;
1479
+ gemm_small(m0, m, n0, n, mc, nc);
1480
+ break;
1481
+ case 0x33:
1482
+ mc = 3;
1483
+ nc = 3;
1484
+ gemm_small(m0, m, n0, n, mc, nc);
1485
+ break;
1486
+ case 0x32:
1487
+ mc = 3;
1488
+ nc = 2;
1489
+ gemm_small(m0, m, n0, n, mc, nc);
1490
+ break;
1491
+ case 0x31:
1492
+ mc = 3;
1493
+ nc = 1;
1494
+ gemm_small(m0, m, n0, n, mc, nc);
1495
+ break;
1496
+ case 0x24:
1497
+ mc = 2;
1498
+ nc = 4;
1499
+ gemm_small(m0, m, n0, n, mc, nc);
1500
+ break;
1501
+ case 0x23:
1502
+ mc = 2;
1503
+ nc = 3;
1504
+ gemm_small(m0, m, n0, n, mc, nc);
1505
+ break;
1506
+ case 0x22:
1507
+ mc = 2;
1508
+ nc = 2;
1509
+ gemm_small(m0, m, n0, n, mc, nc);
1510
+ break;
1511
+ case 0x21:
1512
+ mc = 2;
1513
+ nc = 1;
1514
+ gemm_small(m0, m, n0, n, mc, nc);
1515
+ break;
1516
+ case 0x14:
1517
+ mc = 1;
1518
+ nc = 4;
1519
+ gemm_small(m0, m, n0, n, mc, nc);
1520
+ break;
1521
+ case 0x13:
1522
+ mc = 1;
1523
+ nc = 3;
1524
+ gemm_small(m0, m, n0, n, mc, nc);
1525
+ break;
1526
+ case 0x12:
1527
+ mc = 1;
1528
+ nc = 2;
1529
+ gemm_small(m0, m, n0, n, mc, nc);
1530
+ break;
1531
+ case 0x11:
1532
+ mc = 1;
1533
+ nc = 1;
1534
+ gemm_small(m0, m, n0, n, mc, nc);
1535
+ break;
1536
+ default:
1537
+ return;
1538
+ }
1539
+ }
1540
+ mp = m0 + (m - m0) / mc * mc;
1541
+ np = n0 + (n - n0) / nc * nc;
1542
+ mnpack(mp, m, n0, np);
1543
+ mnpack(m0, m, np, n);
1544
+ }
1545
+
1546
+ void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
1547
+ int64_t ytiles = (m - m0) / RM;
1548
+ int64_t xtiles = (n - n0) / RN;
1549
+ int64_t tiles = xtiles * ytiles;
1550
+ int64_t duty = (tiles + nth - 1) / nth;
1551
+ int64_t start = duty * ith;
1552
+ int64_t end = start + duty;
1553
+ if (end > tiles)
1554
+ end = tiles;
1555
+ for (int64_t job = start; job < end; ++job) {
1556
+ int64_t ii = m0 + job / xtiles * RM;
1557
+ int64_t jj = n0 + job % xtiles * RN;
1558
+ vec_t vec_C[4];
1559
+ acc_t acc_0;
1560
+ __builtin_mma_xxsetaccz(&acc_0);
1561
+ vec_t vec_A[4], vec_B[4];
1562
+ for (int l=0; l<k; l+=4) {
1563
+ if (RN >= 4 && RM == 1) {
1564
+ float* a = const_cast<float*>(A+(ii)*lda+l);
1565
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
1566
+ vec_A[0] = (vec_t)vec_xl(0,a);
1567
+ vec_A[1] = (vec_t)vec_splats(*((float*)&vec_A+1));
1568
+ vec_A[2] = (vec_t)vec_splats(*((float*)&vec_A+2));
1569
+ vec_A[3] = (vec_t)vec_splats(*((float*)&vec_A+3));
1570
+ } else {
1571
+ READ_BLOCK(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A);
1572
+ READ_BLOCK(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B);
1573
+ }
1574
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
1575
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
1576
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
1577
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]);
1578
+ }
1579
+ __builtin_mma_disassemble_acc(vec_C, &acc_0);
1580
+ for (int I = 0; I < RM; I++) {
1581
+ for (int J = 0; J < RN; J++) {
1582
+ *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J);
1583
+ }
1584
+ }
1585
+ }
1586
+ }
1587
+
1588
+ template <int RM, int RN>
1589
+ NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
1590
+ int64_t ytiles = (m - m0) / RM;
1591
+ int64_t xtiles = (n - n0) / RN;
1592
+ int64_t tiles = xtiles * ytiles;
1593
+ int64_t duty = (tiles + nth - 1) / nth;
1594
+ int64_t start = duty * ith;
1595
+ int64_t end = start + duty;
1596
+ if (RM == 4 && RN == 4) {
1597
+ kernel = &tinyBLAS_PPC::KERNEL_4x4;
1598
+ } else if (RM == 4 && RN == 8) {
1599
+ kernel = &tinyBLAS_PPC::KERNEL_4x8;
1600
+ } else if (RM == 8 && RN == 4) {
1601
+ kernel = &tinyBLAS_PPC::KERNEL_8x4;
1602
+ } else if (RM == 8 && RN == 8) {
1603
+ kernel = &tinyBLAS_PPC::KERNEL_8x8;
1604
+ }
1605
+ if (end > tiles)
1606
+ end = tiles;
1607
+ for (int64_t job = start; job < end; ++job) {
1608
+ int64_t ii = m0 + job / xtiles * RM;
1609
+ int64_t jj = n0 + job % xtiles * RN;
1610
+ (this->*kernel)(ii, jj);
1611
+ }
1612
+ }
1613
+
1614
+ const TA *const A;
1615
+ const TB *const B;
1616
+ TC *C;
1617
+ TA *At;
1618
+ TB *Bt;
1619
+ const int64_t k;
1620
+ const int64_t lda;
1621
+ const int64_t ldb;
1622
+ const int64_t ldc;
1623
+ const int ith;
1624
+ const int nth;
1625
+ };
1626
+ #endif
1627
+ } // namespace
1628
+
1629
+ /**
1630
+ * Performs optimized matrix multiplication on CPU.
1631
+ *
1632
+ * This subroutine may compute C = Aᵀ * B with column major ordering.
1633
+ * Despite its name, this isn't a generalized implementation. Work is
1634
+ * only performed when a handwritten kernel is written and available.
1635
+ * Otherwise the caller should fall back to a general matmul routine.
1636
+ *
1637
+ * For example, for single-threaded single-precision GEMM you can say
1638
+ *
1639
+ * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
1640
+ * 0, 1,
1641
+ * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
1642
+ *
1643
+ * @param m is rows in `A` and `C`
1644
+ * @param n is cols in `B` and `C`
1645
+ * @param k is cols in `A` and rows in `B`
1646
+ * @param A is first input matrix (always transposed)
1647
+ * @param lda is row stride of `A`
1648
+ * @param B is second input matrix (never transposed)
1649
+ * @param ldb is row stride of `B`
1650
+ * @param C is input/output array of output matrices
1651
+ * @param ldc is row stride of `C`
1652
+ * @param ith is thread id (must be less than `nth`)
1653
+ * @param nth is number of threads (must be greater than zero)
1654
+ * @param Atype is GGML data type of `A`
1655
+ * @param Btype is GGML data type of `B`
1656
+ * @param Ctype is GGML data type of `C`
1657
+ * @return true if this function was able to service the matmul request
1658
+ */
1659
+ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
1660
+ int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
1661
+
1662
+ assert(m >= 0);
1663
+ assert(n >= 0);
1664
+ assert(k >= 0);
1665
+ assert(lda >= k);
1666
+ assert(ldb >= k);
1667
+ assert(ldc >= m);
1668
+ assert(nth > 0);
1669
+ assert(ith < nth);
1670
+
1671
+ // only enable sgemm for prompt processing
1672
+ if (n < 2)
1673
+ return false;
1674
+
1675
+ if (Ctype != GGML_TYPE_F32)
1676
+ return false;
1677
+
1678
+ switch (Atype) {
1679
+
1680
+ case GGML_TYPE_F32: {
1681
+ if (Btype != GGML_TYPE_F32)
1682
+ return false;
1683
+ #if defined(__AVX512F__)
1684
+ if (k % 16)
1685
+ return false;
1686
+ tinyBLAS<16, __m512, __m512, float, float, float> tb{
1687
+ k, (const float *)A, lda,
1688
+ (const float *)B, ldb,
1689
+ (float *)C, ldc,
1690
+ ith, nth};
1691
+ tb.matmul(m, n);
1692
+ return true;
1693
+ #elif defined(__AVX__) || defined(__AVX2__)
1694
+ if (k % 8)
1695
+ return false;
1696
+ tinyBLAS<8, __m256, __m256, float, float, float> tb{
1697
+ k, (const float *)A, lda,
1698
+ (const float *)B, ldb,
1699
+ (float *)C, ldc,
1700
+ ith, nth};
1701
+ tb.matmul(m, n);
1702
+ return true;
1703
+ #elif defined(__ARM_NEON)
1704
+ if (n < 4)
1705
+ return false;
1706
+ if (k % 4)
1707
+ return false;
1708
+ tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
1709
+ k, (const float *)A, lda,
1710
+ (const float *)B, ldb,
1711
+ (float *)C, ldc,
1712
+ ith, nth};
1713
+ tb.matmul(m, n);
1714
+ return true;
1715
+ #elif defined(__MMA__)
1716
+ if (k % 8)
1717
+ return false;
1718
+ tinyBLAS_PPC<float, float, float> tb{
1719
+ k, (const float *)A, lda,
1720
+ (const float *)B, ldb,
1721
+ (float *)C, ldc,
1722
+ ith, nth};
1723
+ tb.matmul(m, n);
1724
+ return true;
1725
+ #else
1726
+ return false;
1727
+ #endif
1728
+ }
1729
+
1730
+ case GGML_TYPE_F16: {
1731
+ #if defined(__AVX512F__)
1732
+ if (k % 16)
1733
+ return false;
1734
+ if (Btype != GGML_TYPE_F32)
1735
+ return false;
1736
+ tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
1737
+ k, (const ggml_fp16_t *)A, lda,
1738
+ (const float *)B, ldb,
1739
+ (float *)C, ldc,
1740
+ ith, nth};
1741
+ tb.matmul(m, n);
1742
+ return true;
1743
+ #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
1744
+ if (k % 8)
1745
+ return false;
1746
+ if (Btype != GGML_TYPE_F32)
1747
+ return false;
1748
+ tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
1749
+ k, (const ggml_fp16_t *)A, lda,
1750
+ (const float *)B, ldb,
1751
+ (float *)C, ldc,
1752
+ ith, nth};
1753
+ tb.matmul(m, n);
1754
+ return true;
1755
+ #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
1756
+ if (n < 8)
1757
+ return false;
1758
+ if (k % 8)
1759
+ return false;
1760
+ if (Btype != GGML_TYPE_F16)
1761
+ return false;
1762
+ tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
1763
+ k, (const ggml_fp16_t *)A, lda,
1764
+ (const ggml_fp16_t *)B, ldb,
1765
+ (float *)C, ldc,
1766
+ ith, nth};
1767
+ tb.matmul(m, n);
1768
+ return true;
1769
+ #elif defined(__ARM_NEON) && !defined(_MSC_VER)
1770
+ if (k % 4)
1771
+ return false;
1772
+ if (Btype != GGML_TYPE_F32)
1773
+ return false;
1774
+ tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
1775
+ k, (const ggml_fp16_t *)A, lda,
1776
+ (const float *)B, ldb,
1777
+ (float *)C, ldc,
1778
+ ith, nth};
1779
+ tb.matmul(m, n);
1780
+ return true;
1781
+ #else
1782
+ return false;
1783
+ #endif
1784
+ }
1785
+
1786
+ case GGML_TYPE_Q8_0: {
1787
+ if (Btype != GGML_TYPE_Q8_0)
1788
+ return false;
1789
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
1790
+ tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{
1791
+ k, (const block_q8_0 *)A, lda,
1792
+ (const block_q8_0 *)B, ldb,
1793
+ (float *)C, ldc,
1794
+ ith, nth};
1795
+ tb.matmul(m, n);
1796
+ return true;
1797
+ #elif defined(__ARM_FEATURE_DOTPROD)
1798
+ tinyBLAS_Q0_ARM<block_q8_0> tb{
1799
+ k, (const block_q8_0 *)A, lda,
1800
+ (const block_q8_0 *)B, ldb,
1801
+ (float *)C, ldc,
1802
+ ith, nth};
1803
+ tb.matmul(m, n);
1804
+ return true;
1805
+ #else
1806
+ return false;
1807
+ #endif
1808
+ }
1809
+
1810
+ case GGML_TYPE_Q4_0: {
1811
+ if (Btype != GGML_TYPE_Q8_0)
1812
+ return false;
1813
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
1814
+ tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{
1815
+ k, (const block_q4_0 *)A, lda,
1816
+ (const block_q8_0 *)B, ldb,
1817
+ (float *)C, ldc,
1818
+ ith, nth};
1819
+ tb.matmul(m, n);
1820
+ return true;
1821
+ #elif defined(__ARM_FEATURE_DOTPROD)
1822
+ tinyBLAS_Q0_ARM<block_q4_0> tb{
1823
+ k, (const block_q4_0 *)A, lda,
1824
+ (const block_q8_0 *)B, ldb,
1825
+ (float *)C, ldc,
1826
+ ith, nth};
1827
+ tb.matmul(m, n);
1828
+ return true;
1829
+ #else
1830
+ return false;
1831
+ #endif
1832
+ }
1833
+
1834
+ case GGML_TYPE_Q5_0: {
1835
+ if (Btype != GGML_TYPE_Q8_0)
1836
+ return false;
1837
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
1838
+ tinyBLAS_Q0_AVX<block_q5_0, block_q8_0, float> tb{
1839
+ k, (const block_q5_0 *)A, lda,
1840
+ (const block_q8_0 *)B, ldb,
1841
+ (float *)C, ldc,
1842
+ ith, nth};
1843
+ tb.matmul(m, n);
1844
+ return true;
1845
+ #else
1846
+ return false;
1847
+ #endif
1848
+ }
1849
+
1850
+ case GGML_TYPE_IQ4_NL: {
1851
+ if (Btype != GGML_TYPE_Q8_0)
1852
+ return false;
1853
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
1854
+ tinyBLAS_Q0_AVX<block_iq4_nl, block_q8_0, float> tb{
1855
+ k, (const block_iq4_nl *)A, lda,
1856
+ (const block_q8_0 *)B, ldb,
1857
+ (float *)C, ldc,
1858
+ ith, nth};
1859
+ tb.matmul(m, n);
1860
+ return true;
1861
+ #else
1862
+ return false;
1863
+ #endif
1864
+ }
1865
+
1866
+ default:
1867
+ return false;
1868
+ }
1869
+
1870
+ (void)m;
1871
+ (void)n;
1872
+ (void)k;
1873
+ (void)A;
1874
+ (void)lda;
1875
+ (void)B;
1876
+ (void)ldb;
1877
+ (void)C;
1878
+ (void)ldc;
1879
+ (void)ith;
1880
+ (void)nth;
1881
+ (void)Atype;
1882
+ (void)Btype;
1883
+ (void)Ctype;
1884
+ }