whispercpp 1.3.0 → 1.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +5 -0
- data/LICENSE +1 -1
- data/README.md +165 -434
- data/Rakefile +60 -11
- data/ext/.gitignore +13 -0
- data/ext/cpu.mk +9 -0
- data/ext/{dr_wav.h → examples/dr_wav.h} +3560 -1179
- data/ext/extconf.rb +185 -16
- data/ext/ggml/include/ggml-alloc.h +76 -0
- data/ext/ggml/include/ggml-backend.h +352 -0
- data/ext/ggml/include/ggml-blas.h +25 -0
- data/ext/ggml/include/ggml-cann.h +123 -0
- data/ext/ggml/include/ggml-cpp.h +38 -0
- data/ext/ggml/include/ggml-cpu.h +135 -0
- data/ext/ggml/include/ggml-cuda.h +47 -0
- data/ext/ggml/include/ggml-kompute.h +50 -0
- data/ext/ggml/include/ggml-metal.h +66 -0
- data/ext/ggml/include/ggml-opencl.h +26 -0
- data/ext/ggml/include/ggml-opt.h +216 -0
- data/ext/ggml/include/ggml-rpc.h +28 -0
- data/ext/ggml/include/ggml-sycl.h +49 -0
- data/ext/ggml/include/ggml-vulkan.h +31 -0
- data/ext/{ggml.h → ggml/include/ggml.h} +479 -596
- data/ext/ggml/src/ggml-alloc.c +1037 -0
- data/ext/ggml/src/ggml-amx/common.h +94 -0
- data/ext/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
- data/ext/ggml/src/ggml-amx/mmq.cpp +2510 -0
- data/ext/ggml/src/ggml-amx/mmq.h +17 -0
- data/ext/ggml/src/ggml-backend-impl.h +256 -0
- data/ext/ggml/src/ggml-backend-reg.cpp +552 -0
- data/ext/ggml/src/ggml-backend.cpp +1999 -0
- data/ext/ggml/src/ggml-blas/ggml-blas.cpp +517 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.cpp +175 -0
- data/ext/ggml/src/ggml-cann/acl_tensor.h +258 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.cpp +3427 -0
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +592 -0
- data/ext/ggml/src/ggml-cann/common.h +286 -0
- data/ext/ggml/src/ggml-cann/ggml-cann.cpp +2188 -0
- data/ext/ggml/src/ggml-cann/kernels/ascendc_kernels.h +19 -0
- data/ext/ggml/src/ggml-cann/kernels/dup.cpp +236 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f16.cpp +197 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_f32.cpp +190 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q4_0.cpp +204 -0
- data/ext/ggml/src/ggml-cann/kernels/get_row_q8_0.cpp +191 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +218 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +216 -0
- data/ext/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +295 -0
- data/ext/ggml/src/ggml-common.h +1853 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.cpp +220 -0
- data/ext/ggml/src/ggml-cpu/amx/amx.h +8 -0
- data/ext/ggml/src/ggml-cpu/amx/common.h +91 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.cpp +2511 -0
- data/ext/ggml/src/ggml-cpu/amx/mmq.h +10 -0
- data/ext/ggml/src/ggml-cpu/cpu-feats-x86.cpp +323 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +4262 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.cpp +55 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-hbm.h +8 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-impl.h +386 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +10835 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.cpp +36 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu-traits.h +38 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +14123 -0
- data/ext/ggml/src/ggml-cpu/ggml-cpu.cpp +622 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1884 -0
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
- data/ext/ggml/src/ggml-cuda/vendors/hip.h +186 -0
- data/ext/ggml/src/ggml-cuda/vendors/musa.h +134 -0
- data/ext/ggml/src/ggml-impl.h +556 -0
- data/ext/ggml/src/ggml-kompute/ggml-kompute.cpp +2251 -0
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +288 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.m +4884 -0
- data/ext/ggml/src/ggml-metal/ggml-metal.metal +6732 -0
- data/ext/ggml/src/ggml-opt.cpp +854 -0
- data/ext/ggml/src/ggml-quants.c +5238 -0
- data/ext/ggml/src/ggml-quants.h +100 -0
- data/ext/ggml/src/ggml-rpc/ggml-rpc.cpp +1406 -0
- data/ext/ggml/src/ggml-sycl/common.cpp +95 -0
- data/ext/ggml/src/ggml-sycl/concat.cpp +196 -0
- data/ext/ggml/src/ggml-sycl/conv.cpp +99 -0
- data/ext/ggml/src/ggml-sycl/convert.cpp +547 -0
- data/ext/ggml/src/ggml-sycl/dmmv.cpp +1023 -0
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +1030 -0
- data/ext/ggml/src/ggml-sycl/ggml-sycl.cpp +4729 -0
- data/ext/ggml/src/ggml-sycl/im2col.cpp +126 -0
- data/ext/ggml/src/ggml-sycl/mmq.cpp +3031 -0
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +1015 -0
- data/ext/ggml/src/ggml-sycl/norm.cpp +378 -0
- data/ext/ggml/src/ggml-sycl/outprod.cpp +56 -0
- data/ext/ggml/src/ggml-sycl/rope.cpp +276 -0
- data/ext/ggml/src/ggml-sycl/softmax.cpp +251 -0
- data/ext/ggml/src/ggml-sycl/tsembd.cpp +72 -0
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +141 -0
- data/ext/ggml/src/ggml-threading.cpp +12 -0
- data/ext/ggml/src/ggml-threading.h +14 -0
- data/ext/ggml/src/ggml-vulkan/ggml-vulkan.cpp +8657 -0
- data/ext/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +593 -0
- data/ext/ggml/src/ggml.c +7694 -0
- data/ext/{whisper.h → include/whisper.h} +23 -22
- data/ext/metal-embed.mk +17 -0
- data/ext/metal.mk +6 -0
- data/ext/ruby_whisper.cpp +1492 -9
- data/ext/ruby_whisper.h +10 -0
- data/ext/scripts/get-flags.mk +38 -0
- data/ext/src/coreml/whisper-decoder-impl.h +146 -0
- data/ext/src/coreml/whisper-decoder-impl.m +201 -0
- data/ext/src/coreml/whisper-encoder-impl.h +142 -0
- data/ext/src/coreml/whisper-encoder-impl.m +197 -0
- data/ext/src/coreml/whisper-encoder.h +26 -0
- data/ext/src/openvino/whisper-openvino-encoder.cpp +108 -0
- data/ext/src/openvino/whisper-openvino-encoder.h +31 -0
- data/ext/{whisper.cpp → src/whisper.cpp} +661 -492
- data/extsources.rb +6 -0
- data/lib/whisper/model/uri.rb +157 -0
- data/lib/whisper.rb +2 -0
- data/tests/helper.rb +7 -0
- data/tests/jfk_reader/.gitignore +5 -0
- data/tests/jfk_reader/extconf.rb +3 -0
- data/tests/jfk_reader/jfk_reader.c +68 -0
- data/tests/test_callback.rb +160 -0
- data/tests/test_error.rb +20 -0
- data/tests/test_model.rb +71 -0
- data/tests/test_package.rb +31 -0
- data/tests/test_params.rb +160 -0
- data/tests/test_segment.rb +83 -0
- data/tests/test_whisper.rb +211 -123
- data/whispercpp.gemspec +36 -0
- metadata +137 -11
- data/ext/ggml.c +0 -21755
@@ -0,0 +1,1023 @@
|
|
1
|
+
#include "convert.hpp"
|
2
|
+
#include "dmmv.hpp"
|
3
|
+
#include "dequantize.hpp"
|
4
|
+
#include "presets.hpp"
|
5
|
+
|
6
|
+
|
7
|
+
static void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
8
|
+
const sycl::half *x = (const sycl::half *)vx;
|
9
|
+
|
10
|
+
// automatic half -> float type cast if dfloat == float
|
11
|
+
v.x() = x[ib + iqs + 0];
|
12
|
+
v.y() = x[ib + iqs + 1];
|
13
|
+
}
|
14
|
+
|
15
|
+
static void convert_f32(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
16
|
+
const float * x = (const float *) vx;
|
17
|
+
|
18
|
+
// automatic half -> float type cast if dfloat == float
|
19
|
+
v.x() = x[ib + iqs + 0];
|
20
|
+
v.y() = x[ib + iqs + 1];
|
21
|
+
}
|
22
|
+
|
23
|
+
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
|
24
|
+
static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows,
|
25
|
+
const sycl::nd_item<3> &item_ct1) {
|
26
|
+
// qk = quantized weights per x block
|
27
|
+
// qr = number of quantized weights per data value in x block
|
28
|
+
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
29
|
+
item_ct1.get_local_id(1);
|
30
|
+
|
31
|
+
if (row >= nrows) {
|
32
|
+
return;
|
33
|
+
}
|
34
|
+
|
35
|
+
const int tid = item_ct1.get_local_id(2);
|
36
|
+
|
37
|
+
const int iter_stride = 2*GGML_SYCL_DMMV_X;
|
38
|
+
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
39
|
+
const int y_offset = qr == 1 ? 1 : qk/2;
|
40
|
+
|
41
|
+
// partial sum for each thread
|
42
|
+
#ifdef GGML_SYCL_F16
|
43
|
+
sycl::half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
44
|
+
#else
|
45
|
+
float tmp = 0.0f;
|
46
|
+
#endif // GGML_SYCL_F16
|
47
|
+
|
48
|
+
for (int i = 0; i < ncols; i += iter_stride) {
|
49
|
+
const int col = i + vals_per_iter*tid;
|
50
|
+
const int ib = (row*ncols + col)/qk; // x block index
|
51
|
+
const int iqs = (col%qk)/qr; // x quant index
|
52
|
+
const int iybs = col - col%qk; // y block start index
|
53
|
+
|
54
|
+
// processing >2 values per i iter is faster for fast GPUs
|
55
|
+
#pragma unroll
|
56
|
+
for (int j = 0; j < vals_per_iter; j += 2) {
|
57
|
+
// process 2 vals per j iter
|
58
|
+
|
59
|
+
// dequantize
|
60
|
+
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
61
|
+
dfloat2 v;
|
62
|
+
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
63
|
+
|
64
|
+
// matrix multiplication
|
65
|
+
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
66
|
+
#ifdef GGML_SYCL_F16
|
67
|
+
dfloat2 t1{y[iybs + iqs + j / qr + 0],
|
68
|
+
y[iybs + iqs + j / qr + y_offset]};
|
69
|
+
|
70
|
+
tmp += v * t1;
|
71
|
+
#else
|
72
|
+
tmp += v.x() * y[iybs + iqs + j / qr + 0];
|
73
|
+
tmp += v.y() * y[iybs + iqs + j / qr + y_offset];
|
74
|
+
#endif // GGML_SYCL_F16
|
75
|
+
}
|
76
|
+
}
|
77
|
+
|
78
|
+
// sum up partial sums and write back result
|
79
|
+
const int mask_start = ncols > GGML_SYCL_DMMV_X ? WARP_SIZE >> 1 : WARP_SIZE >> 2;
|
80
|
+
for (int mask = mask_start; mask > 0; mask >>= 1) {
|
81
|
+
tmp +=
|
82
|
+
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
83
|
+
}
|
84
|
+
|
85
|
+
if (tid == 0) {
|
86
|
+
#ifdef GGML_SYCL_F16
|
87
|
+
dst[row] = tmp.x() + tmp.y();
|
88
|
+
#else
|
89
|
+
dst[row] = tmp;
|
90
|
+
#endif // GGML_SYCL_F16
|
91
|
+
}
|
92
|
+
}
|
93
|
+
|
94
|
+
static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
|
95
|
+
float *dst, const int ncols,
|
96
|
+
const int nrows,
|
97
|
+
dpct::queue_ptr stream) {
|
98
|
+
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
99
|
+
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
100
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
101
|
+
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
102
|
+
{
|
103
|
+
dpct::has_capability_or_fail(stream->get_device(),
|
104
|
+
{sycl::aspect::fp16});
|
105
|
+
|
106
|
+
stream->parallel_for(
|
107
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
108
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
109
|
+
dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
|
110
|
+
nrows, item_ct1);
|
111
|
+
});
|
112
|
+
}
|
113
|
+
}
|
114
|
+
|
115
|
+
/*
|
116
|
+
DPCT1110:4: The total declared local variable size in device function
|
117
|
+
dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register
|
118
|
+
pressure. Consult with your hardware vendor to find the total register size
|
119
|
+
available and adjust the code, or use smaller sub-group size to avoid high
|
120
|
+
register pressure.
|
121
|
+
*/
|
122
|
+
static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
|
123
|
+
const float *__restrict__ yy,
|
124
|
+
float *__restrict__ dst,
|
125
|
+
const int ncols, int nrows,
|
126
|
+
const sycl::nd_item<3> &item_ct1) {
|
127
|
+
|
128
|
+
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
129
|
+
|
130
|
+
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
131
|
+
item_ct1.get_local_id(1);
|
132
|
+
if (row > nrows) return;
|
133
|
+
|
134
|
+
const int num_blocks_per_row = ncols / QK_K;
|
135
|
+
const int ib0 = row*num_blocks_per_row;
|
136
|
+
|
137
|
+
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
138
|
+
|
139
|
+
float tmp = 0; // partial sum for thread in warp
|
140
|
+
|
141
|
+
#if QK_K == 256
|
142
|
+
const int tid =
|
143
|
+
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
144
|
+
const int ix =
|
145
|
+
item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
|
146
|
+
|
147
|
+
const int step = 16/K_QUANTS_PER_ITERATION;
|
148
|
+
|
149
|
+
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
150
|
+
const int in = tid - step*im; // 0...15 or 0...7
|
151
|
+
|
152
|
+
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
153
|
+
const int q_offset = 32*im + l0;
|
154
|
+
const int s_offset = 8*im;
|
155
|
+
const int y_offset = 128*im + l0;
|
156
|
+
|
157
|
+
uint32_t aux[4];
|
158
|
+
const uint8_t * d = (const uint8_t *)aux;
|
159
|
+
const uint8_t * m = (const uint8_t *)(aux + 2);
|
160
|
+
|
161
|
+
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
162
|
+
|
163
|
+
const float * y = yy + i * QK_K + y_offset;
|
164
|
+
const uint8_t * q = x[i].qs + q_offset;
|
165
|
+
|
166
|
+
const float dall = x[i].dm[0];
|
167
|
+
const float dmin = x[i].dm[1];
|
168
|
+
|
169
|
+
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
170
|
+
aux[0] = a[0] & 0x0f0f0f0f;
|
171
|
+
aux[1] = a[1] & 0x0f0f0f0f;
|
172
|
+
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
173
|
+
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
174
|
+
|
175
|
+
float sum1 = 0, sum2 = 0;
|
176
|
+
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
177
|
+
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
178
|
+
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
179
|
+
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
180
|
+
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
181
|
+
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
182
|
+
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
183
|
+
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
184
|
+
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
185
|
+
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
186
|
+
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
187
|
+
|
188
|
+
}
|
189
|
+
tmp += dall * sum1 - dmin * sum2;
|
190
|
+
|
191
|
+
}
|
192
|
+
#else
|
193
|
+
const int tid = item_ct1.get_local_id(2) /
|
194
|
+
(2 * K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
195
|
+
const int ix = item_ct1.get_local_id(2) %
|
196
|
+
(2 * K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
197
|
+
const int offset = tid * K_QUANTS_PER_ITERATION;
|
198
|
+
|
199
|
+
uint32_t uaux[2];
|
200
|
+
const uint8_t * d = (const uint8_t *)uaux;
|
201
|
+
|
202
|
+
|
203
|
+
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
204
|
+
|
205
|
+
const float * y = yy + i * QK_K + offset;
|
206
|
+
const uint8_t * q = x[i].qs + offset;
|
207
|
+
const uint32_t * s = (const uint32_t *)x[i].scales;
|
208
|
+
|
209
|
+
uaux[0] = s[0] & 0x0f0f0f0f;
|
210
|
+
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
|
211
|
+
|
212
|
+
const sycl::float2 dall =
|
213
|
+
x[i].dm.convert<float, sycl::rounding_mode::automatic>();
|
214
|
+
|
215
|
+
float sum1 = 0, sum2 = 0;
|
216
|
+
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
217
|
+
const uint8_t ql = q[l];
|
218
|
+
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
|
219
|
+
+ y[l+16] * d[1] * ((ql >> 2) & 3)
|
220
|
+
+ y[l+32] * d[2] * ((ql >> 4) & 3)
|
221
|
+
+ y[l+48] * d[3] * ((ql >> 6) & 3);
|
222
|
+
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
|
223
|
+
}
|
224
|
+
tmp += dall.x() * sum1 - dall.y() * sum2;
|
225
|
+
}
|
226
|
+
|
227
|
+
#endif
|
228
|
+
|
229
|
+
// sum up partial sums and write back result
|
230
|
+
#pragma unroll
|
231
|
+
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
232
|
+
tmp +=
|
233
|
+
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
234
|
+
}
|
235
|
+
|
236
|
+
if (item_ct1.get_local_id(2) == 0) {
|
237
|
+
dst[row] = tmp;
|
238
|
+
}
|
239
|
+
}
|
240
|
+
|
241
|
+
/*
|
242
|
+
DPCT1110:5: The total declared local variable size in device function
|
243
|
+
dequantize_mul_mat_vec_q3_k exceeds 128 bytes and may cause high register
|
244
|
+
pressure. Consult with your hardware vendor to find the total register size
|
245
|
+
available and adjust the code, or use smaller sub-group size to avoid high
|
246
|
+
register pressure.
|
247
|
+
*/
|
248
|
+
static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
|
249
|
+
const float *__restrict__ yy,
|
250
|
+
float *__restrict__ dst,
|
251
|
+
const int ncols, int nrows,
|
252
|
+
const sycl::nd_item<3> &item_ct1) {
|
253
|
+
|
254
|
+
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
255
|
+
item_ct1.get_local_id(1);
|
256
|
+
if (row > nrows) return;
|
257
|
+
|
258
|
+
const int num_blocks_per_row = ncols / QK_K;
|
259
|
+
const int ib0 = row*num_blocks_per_row;
|
260
|
+
|
261
|
+
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
262
|
+
|
263
|
+
float tmp = 0; // partial sum for thread in warp
|
264
|
+
|
265
|
+
#if QK_K == 256
|
266
|
+
|
267
|
+
const uint16_t kmask1 = 0x0303;
|
268
|
+
const uint16_t kmask2 = 0x0f0f;
|
269
|
+
|
270
|
+
const int tid =
|
271
|
+
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
272
|
+
const int ix =
|
273
|
+
item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
|
274
|
+
|
275
|
+
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
276
|
+
const int step = 16/K_QUANTS_PER_ITERATION;
|
277
|
+
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
278
|
+
const int in = tid - step*im; // 0....15 or 0...7
|
279
|
+
|
280
|
+
const uint8_t m = 1 << (4*im);
|
281
|
+
|
282
|
+
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
283
|
+
const int q_offset = 32*im + l0;
|
284
|
+
const int y_offset = 128*im + l0;
|
285
|
+
|
286
|
+
uint16_t utmp[4];
|
287
|
+
const int8_t * s = (const int8_t *)utmp;
|
288
|
+
|
289
|
+
const uint16_t s_shift = 4*im;
|
290
|
+
|
291
|
+
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
292
|
+
|
293
|
+
const float * y = yy + i * QK_K + y_offset;
|
294
|
+
const uint8_t * q = x[i].qs + q_offset;
|
295
|
+
const uint8_t * h = x[i].hmask + l0;
|
296
|
+
|
297
|
+
const uint16_t * a = (const uint16_t *)x[i].scales;
|
298
|
+
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
299
|
+
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
300
|
+
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
301
|
+
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
302
|
+
|
303
|
+
const float d = x[i].d;
|
304
|
+
|
305
|
+
float sum = 0;
|
306
|
+
for (int l = 0; l < n; ++l) {
|
307
|
+
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
308
|
+
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
309
|
+
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
310
|
+
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
311
|
+
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
312
|
+
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
313
|
+
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
314
|
+
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
315
|
+
}
|
316
|
+
tmp += d * sum;
|
317
|
+
|
318
|
+
}
|
319
|
+
#else
|
320
|
+
|
321
|
+
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
|
322
|
+
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
|
323
|
+
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
|
324
|
+
const int in = offset/8; // 0 or 1
|
325
|
+
const int im = offset%8; // 0...7
|
326
|
+
|
327
|
+
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
328
|
+
|
329
|
+
const float * y = yy + i * QK_K + offset;
|
330
|
+
const uint8_t * q = x[i].qs + offset;
|
331
|
+
const uint8_t * s = x[i].scales;
|
332
|
+
|
333
|
+
const float dall = (float)x[i].d;
|
334
|
+
|
335
|
+
float sum = 0;
|
336
|
+
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
337
|
+
const uint8_t hl = x[i].hmask[im+l] >> in;
|
338
|
+
const uint8_t ql = q[l];
|
339
|
+
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
|
340
|
+
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
|
341
|
+
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
|
342
|
+
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
|
343
|
+
}
|
344
|
+
tmp += sum;
|
345
|
+
}
|
346
|
+
#endif
|
347
|
+
|
348
|
+
// sum up partial sums and write back result
|
349
|
+
#pragma unroll
|
350
|
+
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
351
|
+
tmp +=
|
352
|
+
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
353
|
+
}
|
354
|
+
|
355
|
+
if (item_ct1.get_local_id(2) == 0) {
|
356
|
+
dst[row] = tmp;
|
357
|
+
}
|
358
|
+
}
|
359
|
+
|
360
|
+
/*
|
361
|
+
DPCT1110:6: The total declared local variable size in device function
|
362
|
+
dequantize_mul_mat_vec_q4_k exceeds 128 bytes and may cause high register
|
363
|
+
pressure. Consult with your hardware vendor to find the total register size
|
364
|
+
available and adjust the code, or use smaller sub-group size to avoid high
|
365
|
+
register pressure.
|
366
|
+
*/
|
367
|
+
static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
|
368
|
+
const float *__restrict__ yy,
|
369
|
+
float *__restrict__ dst,
|
370
|
+
const int ncols, int nrows,
|
371
|
+
const sycl::nd_item<3> &item_ct1) {
|
372
|
+
|
373
|
+
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
374
|
+
item_ct1.get_local_id(1);
|
375
|
+
if (row > nrows) return;
|
376
|
+
const int num_blocks_per_row = ncols / QK_K;
|
377
|
+
const int ib0 = row*num_blocks_per_row;
|
378
|
+
|
379
|
+
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
380
|
+
|
381
|
+
#if QK_K == 256
|
382
|
+
const uint16_t kmask1 = 0x3f3f;
|
383
|
+
const uint16_t kmask2 = 0x0f0f;
|
384
|
+
const uint16_t kmask3 = 0xc0c0;
|
385
|
+
|
386
|
+
const int tid =
|
387
|
+
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
388
|
+
const int ix =
|
389
|
+
item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
|
390
|
+
|
391
|
+
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
392
|
+
|
393
|
+
const int il = tid/step; // 0...3
|
394
|
+
const int ir = tid - step*il; // 0...7 or 0...3
|
395
|
+
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
396
|
+
|
397
|
+
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
398
|
+
const int in = il%2;
|
399
|
+
|
400
|
+
const int l0 = n*(2*ir + in);
|
401
|
+
const int q_offset = 32*im + l0;
|
402
|
+
const int y_offset = 64*im + l0;
|
403
|
+
|
404
|
+
uint16_t aux[4];
|
405
|
+
const uint8_t * sc = (const uint8_t *)aux;
|
406
|
+
|
407
|
+
#if K_QUANTS_PER_ITERATION == 2
|
408
|
+
uint32_t q32[4];
|
409
|
+
const uint8_t * q4 = (const uint8_t *)q32;
|
410
|
+
#else
|
411
|
+
uint16_t q16[4];
|
412
|
+
const uint8_t * q4 = (const uint8_t *)q16;
|
413
|
+
#endif
|
414
|
+
|
415
|
+
float tmp = 0; // partial sum for thread in warp
|
416
|
+
|
417
|
+
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
418
|
+
|
419
|
+
const float * y1 = yy + i*QK_K + y_offset;
|
420
|
+
const float * y2 = y1 + 128;
|
421
|
+
|
422
|
+
const float dall = x[i].dm[0];
|
423
|
+
const float dmin = x[i].dm[1];
|
424
|
+
|
425
|
+
const uint16_t * a = (const uint16_t *)x[i].scales;
|
426
|
+
aux[0] = a[im+0] & kmask1;
|
427
|
+
aux[1] = a[im+2] & kmask1;
|
428
|
+
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
429
|
+
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
430
|
+
|
431
|
+
#if K_QUANTS_PER_ITERATION == 2
|
432
|
+
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
433
|
+
const uint32_t * q2 = q1 + 16;
|
434
|
+
|
435
|
+
q32[0] = q1[0] & 0x0f0f0f0f;
|
436
|
+
q32[1] = q1[0] & 0xf0f0f0f0;
|
437
|
+
q32[2] = q2[0] & 0x0f0f0f0f;
|
438
|
+
q32[3] = q2[0] & 0xf0f0f0f0;
|
439
|
+
|
440
|
+
sycl::float4 s = {0.f, 0.f, 0.f, 0.f};
|
441
|
+
float smin = 0;
|
442
|
+
for (int l = 0; l < 4; ++l) {
|
443
|
+
s.x() += y1[l] * q4[l + 0]; s.y() += y1[l + 32] * q4[l + 4];
|
444
|
+
s.z() += y2[l] * q4[l + 8]; s.w() += y2[l + 32] * q4[l + 12];
|
445
|
+
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
446
|
+
}
|
447
|
+
tmp += dall * (s.x() * sc[0] + s.y() * sc[1] * 1.f / 16.f +
|
448
|
+
s.z() * sc[4] + s.w() * sc[5] * 1.f / 16.f) -
|
449
|
+
dmin * smin;
|
450
|
+
#else
|
451
|
+
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
452
|
+
const uint16_t * q2 = q1 + 32;
|
453
|
+
|
454
|
+
q16[0] = q1[0] & 0x0f0f;
|
455
|
+
q16[1] = q1[0] & 0xf0f0;
|
456
|
+
q16[2] = q2[0] & 0x0f0f;
|
457
|
+
q16[3] = q2[0] & 0xf0f0;
|
458
|
+
|
459
|
+
float4 s = {0.f, 0.f, 0.f, 0.f};
|
460
|
+
float smin = 0;
|
461
|
+
for (int l = 0; l < 2; ++l) {
|
462
|
+
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
463
|
+
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
464
|
+
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
465
|
+
}
|
466
|
+
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
467
|
+
#endif
|
468
|
+
|
469
|
+
}
|
470
|
+
#else
|
471
|
+
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15
|
472
|
+
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
|
473
|
+
|
474
|
+
const int step = tid * K_QUANTS_PER_ITERATION;
|
475
|
+
|
476
|
+
uint16_t aux16[2];
|
477
|
+
const uint8_t * s = (const uint8_t *)aux16;
|
478
|
+
|
479
|
+
float tmp = 0;
|
480
|
+
|
481
|
+
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
482
|
+
const uint8_t * q = x[i].qs + step;
|
483
|
+
const float * y = yy + i*QK_K + step;
|
484
|
+
const uint16_t * a = (const uint16_t *)x[i].scales;
|
485
|
+
aux16[0] = a[0] & 0x0f0f;
|
486
|
+
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
487
|
+
const float d = (float)x[i].dm[0];
|
488
|
+
const float m = (float)x[i].dm[1];
|
489
|
+
float sum = 0.f;
|
490
|
+
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
491
|
+
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
492
|
+
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
|
493
|
+
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
|
494
|
+
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
|
495
|
+
}
|
496
|
+
tmp += sum;
|
497
|
+
}
|
498
|
+
|
499
|
+
#endif
|
500
|
+
|
501
|
+
// sum up partial sums and write back result
|
502
|
+
#pragma unroll
|
503
|
+
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
504
|
+
tmp +=
|
505
|
+
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
506
|
+
}
|
507
|
+
|
508
|
+
if (tid == 0) {
|
509
|
+
dst[row] = tmp;
|
510
|
+
}
|
511
|
+
}
|
512
|
+
|
513
|
+
/*
|
514
|
+
DPCT1110:7: The total declared local variable size in device function
|
515
|
+
dequantize_mul_mat_vec_q5_k exceeds 128 bytes and may cause high register
|
516
|
+
pressure. Consult with your hardware vendor to find the total register size
|
517
|
+
available and adjust the code, or use smaller sub-group size to avoid high
|
518
|
+
register pressure.
|
519
|
+
*/
|
520
|
+
static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
|
521
|
+
const float *__restrict__ yy,
|
522
|
+
float *__restrict__ dst,
|
523
|
+
const int ncols,
|
524
|
+
const sycl::nd_item<3> &item_ct1) {
|
525
|
+
|
526
|
+
const int row = item_ct1.get_group(2);
|
527
|
+
const int num_blocks_per_row = ncols / QK_K;
|
528
|
+
const int ib0 = row*num_blocks_per_row;
|
529
|
+
|
530
|
+
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
531
|
+
|
532
|
+
float tmp = 0; // partial sum for thread in warp
|
533
|
+
|
534
|
+
#if QK_K == 256
|
535
|
+
const uint16_t kmask1 = 0x3f3f;
|
536
|
+
const uint16_t kmask2 = 0x0f0f;
|
537
|
+
const uint16_t kmask3 = 0xc0c0;
|
538
|
+
|
539
|
+
const int tid = item_ct1.get_local_id(2) / 2; // 0...15
|
540
|
+
const int ix = item_ct1.get_local_id(2) % 2;
|
541
|
+
|
542
|
+
const int il = tid/4; // 0...3
|
543
|
+
const int ir = tid - 4*il;// 0...3
|
544
|
+
const int n = 2;
|
545
|
+
|
546
|
+
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
547
|
+
const int in = il%2;
|
548
|
+
|
549
|
+
const int l0 = n*(2*ir + in);
|
550
|
+
const int q_offset = 32*im + l0;
|
551
|
+
const int y_offset = 64*im + l0;
|
552
|
+
|
553
|
+
const uint8_t hm1 = 1 << (2*im);
|
554
|
+
const uint8_t hm2 = hm1 << 4;
|
555
|
+
|
556
|
+
uint16_t aux[4];
|
557
|
+
const uint8_t * sc = (const uint8_t *)aux;
|
558
|
+
|
559
|
+
uint16_t q16[8];
|
560
|
+
const uint8_t * q4 = (const uint8_t *)q16;
|
561
|
+
|
562
|
+
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
563
|
+
|
564
|
+
const uint8_t * ql1 = x[i].qs + q_offset;
|
565
|
+
const uint8_t * qh = x[i].qh + l0;
|
566
|
+
const float * y1 = yy + i*QK_K + y_offset;
|
567
|
+
const float * y2 = y1 + 128;
|
568
|
+
|
569
|
+
const float dall = x[i].dm[0];
|
570
|
+
const float dmin = x[i].dm[1];
|
571
|
+
|
572
|
+
const uint16_t * a = (const uint16_t *)x[i].scales;
|
573
|
+
aux[0] = a[im+0] & kmask1;
|
574
|
+
aux[1] = a[im+2] & kmask1;
|
575
|
+
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
576
|
+
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
577
|
+
|
578
|
+
sycl::float4 sum = {0.f, 0.f, 0.f, 0.f};
|
579
|
+
float smin = 0;
|
580
|
+
const uint16_t * q1 = (const uint16_t *)ql1;
|
581
|
+
const uint16_t * q2 = q1 + 32;
|
582
|
+
q16[0] = q1[0] & 0x0f0f;
|
583
|
+
q16[1] = q1[8] & 0x0f0f;
|
584
|
+
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
585
|
+
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
586
|
+
q16[4] = q2[0] & 0x0f0f;
|
587
|
+
q16[5] = q2[8] & 0x0f0f;
|
588
|
+
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
589
|
+
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
590
|
+
for (int l = 0; l < n; ++l) {
|
591
|
+
sum.x() +=
|
592
|
+
y1[l + 0] * (q4[l + 0] + (qh[l + 0] & (hm1 << 0) ? 16 : 0)) +
|
593
|
+
y1[l + 16] * (q4[l + 2] + (qh[l + 16] & (hm1 << 0) ? 16 : 0));
|
594
|
+
sum.y() +=
|
595
|
+
y1[l + 32] * (q4[l + 4] + (qh[l + 0] & (hm1 << 1) ? 16 : 0)) +
|
596
|
+
y1[l + 48] * (q4[l + 6] + (qh[l + 16] & (hm1 << 1) ? 16 : 0));
|
597
|
+
sum.z() +=
|
598
|
+
y2[l + 0] * (q4[l + 8] + (qh[l + 0] & (hm2 << 0) ? 16 : 0)) +
|
599
|
+
y2[l + 16] * (q4[l + 10] + (qh[l + 16] & (hm2 << 0) ? 16 : 0));
|
600
|
+
sum.w() +=
|
601
|
+
y2[l + 32] * (q4[l + 12] + (qh[l + 0] & (hm2 << 1) ? 16 : 0)) +
|
602
|
+
y2[l + 48] * (q4[l + 14] + (qh[l + 16] & (hm2 << 1) ? 16 : 0));
|
603
|
+
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
604
|
+
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
605
|
+
}
|
606
|
+
tmp += dall * (sum.x() * sc[0] + sum.y() * sc[1] + sum.z() * sc[4] +
|
607
|
+
sum.w() * sc[5]) -
|
608
|
+
dmin * smin;
|
609
|
+
}
|
610
|
+
|
611
|
+
#else
|
612
|
+
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15
|
613
|
+
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
|
614
|
+
const int step = tid * K_QUANTS_PER_ITERATION;
|
615
|
+
const int im = step/8;
|
616
|
+
const int in = step%8;
|
617
|
+
|
618
|
+
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
619
|
+
const uint8_t * q = x[i].qs + step;
|
620
|
+
const int8_t * s = x[i].scales;
|
621
|
+
const float * y = yy + i*QK_K + step;
|
622
|
+
const float d = x[i].d;
|
623
|
+
float sum = 0.f;
|
624
|
+
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
625
|
+
const uint8_t h = x[i].qh[in+j] >> im;
|
626
|
+
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
|
627
|
+
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
|
628
|
+
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
|
629
|
+
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
|
630
|
+
}
|
631
|
+
tmp += sum;
|
632
|
+
}
|
633
|
+
#endif
|
634
|
+
|
635
|
+
// sum up partial sums and write back result
|
636
|
+
#pragma unroll
|
637
|
+
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
638
|
+
tmp +=
|
639
|
+
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
640
|
+
}
|
641
|
+
|
642
|
+
if (item_ct1.get_local_id(2) == 0) {
|
643
|
+
dst[row] = tmp;
|
644
|
+
}
|
645
|
+
}
|
646
|
+
|
647
|
+
static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows,
|
648
|
+
const sycl::nd_item<3> &item_ct1) {
|
649
|
+
|
650
|
+
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
651
|
+
|
652
|
+
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
653
|
+
item_ct1.get_local_id(1);
|
654
|
+
if (row > nrows) return;
|
655
|
+
|
656
|
+
const int num_blocks_per_row = ncols / QK_K;
|
657
|
+
const int ib0 = row*num_blocks_per_row;
|
658
|
+
|
659
|
+
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
660
|
+
|
661
|
+
#if QK_K == 256
|
662
|
+
|
663
|
+
const int tid =
|
664
|
+
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
665
|
+
const int ix =
|
666
|
+
item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
667
|
+
|
668
|
+
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
669
|
+
|
670
|
+
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
671
|
+
const int in = tid - step*im; // 0...15 or 0...7
|
672
|
+
|
673
|
+
#if K_QUANTS_PER_ITERATION == 1
|
674
|
+
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
675
|
+
const int is = 0;
|
676
|
+
#else
|
677
|
+
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
678
|
+
const int is = in / 4;
|
679
|
+
#endif
|
680
|
+
const int ql_offset = 64*im + l0;
|
681
|
+
const int qh_offset = 32*im + l0;
|
682
|
+
const int s_offset = 8*im + is;
|
683
|
+
const int y_offset = 128*im + l0;
|
684
|
+
|
685
|
+
float tmp = 0; // partial sum for thread in warp
|
686
|
+
|
687
|
+
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
688
|
+
|
689
|
+
const float * y = yy + i * QK_K + y_offset;
|
690
|
+
const uint8_t * ql = x[i].ql + ql_offset;
|
691
|
+
const uint8_t * qh = x[i].qh + qh_offset;
|
692
|
+
const int8_t * s = x[i].scales + s_offset;
|
693
|
+
|
694
|
+
const float d = x[i].d;
|
695
|
+
|
696
|
+
#if K_QUANTS_PER_ITERATION == 1
|
697
|
+
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
698
|
+
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
699
|
+
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
700
|
+
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
701
|
+
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
702
|
+
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
703
|
+
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
704
|
+
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
705
|
+
tmp += sum;
|
706
|
+
#else
|
707
|
+
float sum = 0;
|
708
|
+
for (int l = 0; l < 4; ++l) {
|
709
|
+
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
710
|
+
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
711
|
+
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
712
|
+
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
713
|
+
}
|
714
|
+
tmp += sum;
|
715
|
+
#endif
|
716
|
+
|
717
|
+
}
|
718
|
+
|
719
|
+
#else
|
720
|
+
|
721
|
+
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...7
|
722
|
+
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0...3
|
723
|
+
|
724
|
+
const int step = tid * K_QUANTS_PER_ITERATION;
|
725
|
+
|
726
|
+
float tmp = 0; // partial sum for thread in warp
|
727
|
+
|
728
|
+
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
|
729
|
+
|
730
|
+
const float * y = yy + i * QK_K + step;
|
731
|
+
const uint8_t * ql = x[i].ql + step;
|
732
|
+
const uint8_t * qh = x[i].qh + step;
|
733
|
+
const int8_t * s = x[i].scales;
|
734
|
+
|
735
|
+
const float d = x[i+0].d;
|
736
|
+
|
737
|
+
float sum = 0;
|
738
|
+
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
739
|
+
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
|
740
|
+
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
|
741
|
+
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
|
742
|
+
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
|
743
|
+
}
|
744
|
+
tmp += sum;
|
745
|
+
|
746
|
+
}
|
747
|
+
|
748
|
+
#endif
|
749
|
+
|
750
|
+
// sum up partial sums and write back result
|
751
|
+
#pragma unroll
|
752
|
+
for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
753
|
+
tmp +=
|
754
|
+
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
755
|
+
}
|
756
|
+
|
757
|
+
if (tid == 0) {
|
758
|
+
dst[row] = tmp;
|
759
|
+
}
|
760
|
+
}
|
761
|
+
|
762
|
+
|
763
|
+
static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
|
764
|
+
float *dst, const int ncols,
|
765
|
+
const int nrows,
|
766
|
+
dpct::queue_ptr stream) {
|
767
|
+
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
768
|
+
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
769
|
+
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
770
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
771
|
+
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
772
|
+
{
|
773
|
+
dpct::has_capability_or_fail(stream->get_device(),
|
774
|
+
{sycl::aspect::fp16});
|
775
|
+
|
776
|
+
stream->parallel_for(
|
777
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
778
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
779
|
+
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
|
780
|
+
vx, y, dst, ncols, nrows, item_ct1);
|
781
|
+
});
|
782
|
+
}
|
783
|
+
}
|
784
|
+
|
785
|
+
static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
|
786
|
+
float *dst, const int ncols,
|
787
|
+
const int nrows,
|
788
|
+
dpct::queue_ptr stream) {
|
789
|
+
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
790
|
+
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
791
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
792
|
+
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
793
|
+
{
|
794
|
+
dpct::has_capability_or_fail(stream->get_device(),
|
795
|
+
{sycl::aspect::fp16});
|
796
|
+
|
797
|
+
stream->parallel_for(
|
798
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
799
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
800
|
+
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
|
801
|
+
vx, y, dst, ncols, nrows, item_ct1);
|
802
|
+
});
|
803
|
+
}
|
804
|
+
}
|
805
|
+
|
806
|
+
static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
|
807
|
+
float *dst, const int ncols,
|
808
|
+
const int nrows,
|
809
|
+
dpct::queue_ptr stream) {
|
810
|
+
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
811
|
+
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
812
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
813
|
+
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
814
|
+
{
|
815
|
+
dpct::has_capability_or_fail(stream->get_device(),
|
816
|
+
{sycl::aspect::fp16});
|
817
|
+
|
818
|
+
stream->parallel_for(
|
819
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
820
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
821
|
+
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
|
822
|
+
vx, y, dst, ncols, nrows, item_ct1);
|
823
|
+
});
|
824
|
+
}
|
825
|
+
}
|
826
|
+
|
827
|
+
static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
|
828
|
+
float *dst, const int ncols,
|
829
|
+
const int nrows,
|
830
|
+
dpct::queue_ptr stream) {
|
831
|
+
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
832
|
+
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
833
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
834
|
+
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
835
|
+
{
|
836
|
+
dpct::has_capability_or_fail(stream->get_device(),
|
837
|
+
{sycl::aspect::fp16});
|
838
|
+
|
839
|
+
stream->parallel_for(
|
840
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
841
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
842
|
+
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
|
843
|
+
vx, y, dst, ncols, nrows, item_ct1);
|
844
|
+
});
|
845
|
+
}
|
846
|
+
}
|
847
|
+
|
848
|
+
static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
|
849
|
+
float *dst, const int ncols,
|
850
|
+
const int nrows,
|
851
|
+
dpct::queue_ptr stream) {
|
852
|
+
GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
|
853
|
+
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
854
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
855
|
+
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
856
|
+
{
|
857
|
+
dpct::has_capability_or_fail(stream->get_device(),
|
858
|
+
{sycl::aspect::fp16});
|
859
|
+
|
860
|
+
stream->parallel_for(
|
861
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
862
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
|
863
|
+
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
|
864
|
+
vx, y, dst, ncols, nrows, item_ct1);
|
865
|
+
});
|
866
|
+
}
|
867
|
+
}
|
868
|
+
|
869
|
+
static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
|
870
|
+
float *dst, const int ncols,
|
871
|
+
const int nrows,
|
872
|
+
dpct::queue_ptr stream) {
|
873
|
+
GGML_ASSERT(ncols % QK_K == 0);
|
874
|
+
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
875
|
+
const int block_num_y = (nrows + ny - 1) / ny;
|
876
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
877
|
+
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
|
878
|
+
stream->parallel_for(
|
879
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
880
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
|
881
|
+
dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
|
882
|
+
});
|
883
|
+
}
|
884
|
+
|
885
|
+
static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
|
886
|
+
float *dst, const int ncols,
|
887
|
+
const int nrows,
|
888
|
+
dpct::queue_ptr stream) {
|
889
|
+
GGML_ASSERT(ncols % QK_K == 0);
|
890
|
+
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
891
|
+
const int block_num_y = (nrows + ny - 1) / ny;
|
892
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
893
|
+
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
|
894
|
+
stream->parallel_for(
|
895
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
896
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
|
897
|
+
dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
|
898
|
+
});
|
899
|
+
}
|
900
|
+
|
901
|
+
static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
|
902
|
+
float *dst, const int ncols,
|
903
|
+
const int nrows,
|
904
|
+
dpct::queue_ptr stream) {
|
905
|
+
GGML_ASSERT(ncols % QK_K == 0);
|
906
|
+
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
907
|
+
const int block_num_y = (nrows + ny - 1) / ny;
|
908
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
909
|
+
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
|
910
|
+
stream->parallel_for(
|
911
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
912
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
|
913
|
+
dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
|
914
|
+
});
|
915
|
+
}
|
916
|
+
|
917
|
+
static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
|
918
|
+
float *dst, const int ncols,
|
919
|
+
const int nrows,
|
920
|
+
dpct::queue_ptr stream) {
|
921
|
+
GGML_ASSERT(ncols % QK_K == 0);
|
922
|
+
const sycl::range<3> block_dims(1, 1, QK_WARP_SIZE);
|
923
|
+
stream->parallel_for(
|
924
|
+
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
|
925
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
|
926
|
+
dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
|
927
|
+
});
|
928
|
+
}
|
929
|
+
|
930
|
+
static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
|
931
|
+
float *dst, const int ncols,
|
932
|
+
const int nrows,
|
933
|
+
dpct::queue_ptr stream) {
|
934
|
+
GGML_ASSERT(ncols % QK_K == 0);
|
935
|
+
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
936
|
+
const int block_num_y = (nrows + ny - 1) / ny;
|
937
|
+
const sycl::range<3> block_nums(1, 1, block_num_y);
|
938
|
+
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
|
939
|
+
stream->parallel_for(
|
940
|
+
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
941
|
+
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
|
942
|
+
dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
|
943
|
+
});
|
944
|
+
}
|
945
|
+
|
946
|
+
void ggml_sycl_op_dequantize_mul_mat_vec(
|
947
|
+
ggml_backend_sycl_context & ctx,
|
948
|
+
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
949
|
+
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
950
|
+
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
951
|
+
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
952
|
+
const dpct::queue_ptr &stream) {
|
953
|
+
|
954
|
+
const int64_t ne00 = src0->ne[0];
|
955
|
+
const int64_t row_diff = row_high - row_low;
|
956
|
+
|
957
|
+
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
958
|
+
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
959
|
+
#ifdef GGML_SYCL_F16
|
960
|
+
ggml_sycl_pool_alloc<sycl::half> src1_dfloat_a(ctx.pool());
|
961
|
+
sycl::half *src1_dfloat = nullptr; // dfloat == half
|
962
|
+
|
963
|
+
bool src1_convert_f16 =
|
964
|
+
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
965
|
+
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
966
|
+
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
967
|
+
|
968
|
+
if (src1_convert_f16) {
|
969
|
+
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
970
|
+
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
|
971
|
+
GGML_ASSERT(to_fp16_sycl != nullptr);
|
972
|
+
to_fp16_sycl(src1_ddf_i, src1_dfloat, ne00, stream);
|
973
|
+
}
|
974
|
+
#else
|
975
|
+
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
|
976
|
+
#endif // GGML_SYCL_F16
|
977
|
+
|
978
|
+
switch (src0->type) {
|
979
|
+
case GGML_TYPE_Q4_0:
|
980
|
+
dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
981
|
+
break;
|
982
|
+
case GGML_TYPE_Q4_1:
|
983
|
+
dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
984
|
+
break;
|
985
|
+
case GGML_TYPE_Q5_0:
|
986
|
+
dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
987
|
+
break;
|
988
|
+
case GGML_TYPE_Q5_1:
|
989
|
+
dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
990
|
+
break;
|
991
|
+
case GGML_TYPE_Q8_0:
|
992
|
+
dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
993
|
+
break;
|
994
|
+
case GGML_TYPE_Q2_K:
|
995
|
+
dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
996
|
+
break;
|
997
|
+
case GGML_TYPE_Q3_K:
|
998
|
+
dequantize_mul_mat_vec_q3_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
999
|
+
break;
|
1000
|
+
case GGML_TYPE_Q4_K:
|
1001
|
+
dequantize_mul_mat_vec_q4_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
1002
|
+
break;
|
1003
|
+
case GGML_TYPE_Q5_K:
|
1004
|
+
dequantize_mul_mat_vec_q5_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
1005
|
+
break;
|
1006
|
+
case GGML_TYPE_Q6_K:
|
1007
|
+
dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
1008
|
+
break;
|
1009
|
+
case GGML_TYPE_F16:
|
1010
|
+
convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
1011
|
+
break;
|
1012
|
+
default:
|
1013
|
+
printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type);
|
1014
|
+
GGML_ABORT("fatal error");
|
1015
|
+
break;
|
1016
|
+
}
|
1017
|
+
|
1018
|
+
GGML_UNUSED(src1);
|
1019
|
+
GGML_UNUSED(dst);
|
1020
|
+
GGML_UNUSED(src1_ddq_i);
|
1021
|
+
GGML_UNUSED(src1_ncols);
|
1022
|
+
GGML_UNUSED(src1_padded_row_size);
|
1023
|
+
}
|