vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1398) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2044 -0
  5. vllm/_ipex_ops.py +393 -0
  6. vllm/_version.py +34 -0
  7. vllm/assets/__init__.py +0 -0
  8. vllm/assets/audio.py +45 -0
  9. vllm/assets/base.py +41 -0
  10. vllm/assets/image.py +50 -0
  11. vllm/assets/video.py +145 -0
  12. vllm/attention/__init__.py +15 -0
  13. vllm/attention/backends/__init__.py +0 -0
  14. vllm/attention/backends/abstract.py +204 -0
  15. vllm/attention/backends/utils.py +33 -0
  16. vllm/attention/layer.py +645 -0
  17. vllm/attention/layers/__init__.py +0 -0
  18. vllm/attention/layers/chunked_local_attention.py +93 -0
  19. vllm/attention/layers/cross_attention.py +162 -0
  20. vllm/attention/layers/encoder_only_attention.py +86 -0
  21. vllm/attention/ops/__init__.py +0 -0
  22. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  23. vllm/attention/ops/common.py +345 -0
  24. vllm/attention/ops/flashmla.py +192 -0
  25. vllm/attention/ops/merge_attn_states.py +43 -0
  26. vllm/attention/ops/paged_attn.py +262 -0
  27. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  28. vllm/attention/ops/prefix_prefill.py +928 -0
  29. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  30. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  31. vllm/attention/ops/triton_decode_attention.py +691 -0
  32. vllm/attention/ops/triton_flash_attention.py +984 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
  35. vllm/attention/ops/triton_unified_attention.py +894 -0
  36. vllm/attention/selector.py +245 -0
  37. vllm/attention/utils/__init__.py +0 -0
  38. vllm/attention/utils/fa_utils.py +85 -0
  39. vllm/attention/utils/kv_sharing_utils.py +33 -0
  40. vllm/beam_search.py +87 -0
  41. vllm/benchmarks/__init__.py +0 -0
  42. vllm/benchmarks/datasets.py +2723 -0
  43. vllm/benchmarks/latency.py +170 -0
  44. vllm/benchmarks/lib/__init__.py +3 -0
  45. vllm/benchmarks/lib/endpoint_request_func.py +533 -0
  46. vllm/benchmarks/lib/ready_checker.py +73 -0
  47. vllm/benchmarks/lib/utils.py +80 -0
  48. vllm/benchmarks/serve.py +1358 -0
  49. vllm/benchmarks/throughput.py +696 -0
  50. vllm/collect_env.py +823 -0
  51. vllm/compilation/__init__.py +0 -0
  52. vllm/compilation/activation_quant_fusion.py +189 -0
  53. vllm/compilation/backends.py +650 -0
  54. vllm/compilation/base_static_graph.py +56 -0
  55. vllm/compilation/collective_fusion.py +1188 -0
  56. vllm/compilation/compiler_interface.py +573 -0
  57. vllm/compilation/counter.py +47 -0
  58. vllm/compilation/cuda_graph.py +199 -0
  59. vllm/compilation/cuda_piecewise_backend.py +117 -0
  60. vllm/compilation/decorators.py +400 -0
  61. vllm/compilation/fix_functionalization.py +205 -0
  62. vllm/compilation/fusion.py +383 -0
  63. vllm/compilation/fusion_attn.py +295 -0
  64. vllm/compilation/fx_utils.py +84 -0
  65. vllm/compilation/inductor_pass.py +136 -0
  66. vllm/compilation/monitor.py +57 -0
  67. vllm/compilation/noop_elimination.py +158 -0
  68. vllm/compilation/pass_manager.py +125 -0
  69. vllm/compilation/post_cleanup.py +20 -0
  70. vllm/compilation/sequence_parallelism.py +478 -0
  71. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  72. vllm/compilation/vllm_inductor_pass.py +156 -0
  73. vllm/compilation/wrapper.py +136 -0
  74. vllm/config/__init__.py +814 -0
  75. vllm/config/cache.py +220 -0
  76. vllm/config/compilation.py +673 -0
  77. vllm/config/device.py +74 -0
  78. vllm/config/kv_events.py +50 -0
  79. vllm/config/kv_transfer.py +111 -0
  80. vllm/config/load.py +113 -0
  81. vllm/config/lora.py +132 -0
  82. vllm/config/model.py +1912 -0
  83. vllm/config/multimodal.py +129 -0
  84. vllm/config/observability.py +99 -0
  85. vllm/config/parallel.py +524 -0
  86. vllm/config/pooler.py +97 -0
  87. vllm/config/scheduler.py +287 -0
  88. vllm/config/speculative.py +568 -0
  89. vllm/config/speech_to_text.py +39 -0
  90. vllm/config/structured_outputs.py +64 -0
  91. vllm/config/utils.py +145 -0
  92. vllm/connections.py +186 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +311 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +41 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +440 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +295 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +323 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
  106. vllm/distributed/device_communicators/pynccl.py +340 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +589 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +635 -0
  113. vllm/distributed/device_communicators/symm_mem.py +136 -0
  114. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  115. vllm/distributed/device_communicators/xpu_communicator.py +94 -0
  116. vllm/distributed/eplb/__init__.py +8 -0
  117. vllm/distributed/eplb/eplb_state.py +620 -0
  118. vllm/distributed/eplb/rebalance_algo.py +239 -0
  119. vllm/distributed/eplb/rebalance_execute.py +424 -0
  120. vllm/distributed/kv_events.py +362 -0
  121. vllm/distributed/kv_transfer/README.md +29 -0
  122. vllm/distributed/kv_transfer/__init__.py +13 -0
  123. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  124. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  125. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  126. vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
  132. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
  133. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
  134. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
  135. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
  140. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  141. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  142. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  144. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  145. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  146. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  147. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  148. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  149. vllm/distributed/parallel_state.py +1532 -0
  150. vllm/distributed/tpu_distributed_utils.py +178 -0
  151. vllm/distributed/utils.py +536 -0
  152. vllm/engine/__init__.py +0 -0
  153. vllm/engine/arg_utils.py +1778 -0
  154. vllm/engine/async_llm_engine.py +6 -0
  155. vllm/engine/llm_engine.py +6 -0
  156. vllm/engine/metrics.py +577 -0
  157. vllm/engine/metrics_types.py +84 -0
  158. vllm/engine/protocol.py +333 -0
  159. vllm/entrypoints/__init__.py +0 -0
  160. vllm/entrypoints/api_server.py +178 -0
  161. vllm/entrypoints/chat_utils.py +1705 -0
  162. vllm/entrypoints/cli/__init__.py +12 -0
  163. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  164. vllm/entrypoints/cli/benchmark/base.py +25 -0
  165. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  166. vllm/entrypoints/cli/benchmark/main.py +55 -0
  167. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  168. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  169. vllm/entrypoints/cli/collect_env.py +36 -0
  170. vllm/entrypoints/cli/main.py +60 -0
  171. vllm/entrypoints/cli/openai.py +233 -0
  172. vllm/entrypoints/cli/run_batch.py +67 -0
  173. vllm/entrypoints/cli/serve.py +232 -0
  174. vllm/entrypoints/cli/types.py +29 -0
  175. vllm/entrypoints/constants.py +10 -0
  176. vllm/entrypoints/context.py +481 -0
  177. vllm/entrypoints/harmony_utils.py +436 -0
  178. vllm/entrypoints/launcher.py +164 -0
  179. vllm/entrypoints/llm.py +1629 -0
  180. vllm/entrypoints/logger.py +79 -0
  181. vllm/entrypoints/openai/__init__.py +0 -0
  182. vllm/entrypoints/openai/api_server.py +1953 -0
  183. vllm/entrypoints/openai/cli_args.py +288 -0
  184. vllm/entrypoints/openai/logits_processors.py +90 -0
  185. vllm/entrypoints/openai/protocol.py +2757 -0
  186. vllm/entrypoints/openai/run_batch.py +491 -0
  187. vllm/entrypoints/openai/serving_chat.py +1597 -0
  188. vllm/entrypoints/openai/serving_classification.py +173 -0
  189. vllm/entrypoints/openai/serving_completion.py +692 -0
  190. vllm/entrypoints/openai/serving_embedding.py +631 -0
  191. vllm/entrypoints/openai/serving_engine.py +992 -0
  192. vllm/entrypoints/openai/serving_models.py +288 -0
  193. vllm/entrypoints/openai/serving_pooling.py +276 -0
  194. vllm/entrypoints/openai/serving_responses.py +1709 -0
  195. vllm/entrypoints/openai/serving_score.py +479 -0
  196. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  197. vllm/entrypoints/openai/serving_transcription.py +136 -0
  198. vllm/entrypoints/openai/speech_to_text.py +388 -0
  199. vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
  200. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  201. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  202. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  203. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  204. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  205. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  206. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
  207. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  208. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  209. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  210. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  211. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  212. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  213. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
  214. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  216. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
  217. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  218. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  219. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  220. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
  221. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  222. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  223. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  224. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  225. vllm/entrypoints/renderer.py +395 -0
  226. vllm/entrypoints/score_utils.py +232 -0
  227. vllm/entrypoints/ssl.py +75 -0
  228. vllm/entrypoints/tool.py +139 -0
  229. vllm/entrypoints/tool_server.py +206 -0
  230. vllm/entrypoints/utils.py +233 -0
  231. vllm/env_override.py +23 -0
  232. vllm/envs.py +1590 -0
  233. vllm/executor/__init__.py +0 -0
  234. vllm/executor/executor_base.py +381 -0
  235. vllm/executor/msgspec_utils.py +35 -0
  236. vllm/executor/ray_distributed_executor.py +699 -0
  237. vllm/executor/ray_utils.py +410 -0
  238. vllm/executor/uniproc_executor.py +176 -0
  239. vllm/forward_context.py +402 -0
  240. vllm/inputs/__init__.py +30 -0
  241. vllm/inputs/data.py +356 -0
  242. vllm/inputs/parse.py +151 -0
  243. vllm/inputs/preprocess.py +664 -0
  244. vllm/logger.py +229 -0
  245. vllm/logging_utils/__init__.py +10 -0
  246. vllm/logging_utils/dump_input.py +81 -0
  247. vllm/logging_utils/formatter.py +79 -0
  248. vllm/logging_utils/log_time.py +32 -0
  249. vllm/logits_process.py +119 -0
  250. vllm/logprobs.py +28 -0
  251. vllm/lora/__init__.py +0 -0
  252. vllm/lora/layers/__init__.py +34 -0
  253. vllm/lora/layers/base.py +69 -0
  254. vllm/lora/layers/base_linear.py +185 -0
  255. vllm/lora/layers/column_parallel_linear.py +609 -0
  256. vllm/lora/layers/logits_processor.py +247 -0
  257. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  258. vllm/lora/layers/replicated_linear.py +60 -0
  259. vllm/lora/layers/row_parallel_linear.py +196 -0
  260. vllm/lora/layers/utils.py +65 -0
  261. vllm/lora/layers/vocal_parallel_embedding.py +174 -0
  262. vllm/lora/lora_weights.py +199 -0
  263. vllm/lora/models.py +816 -0
  264. vllm/lora/ops/__init__.py +0 -0
  265. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  266. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  267. vllm/lora/ops/torch_ops/__init__.py +16 -0
  268. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  269. vllm/lora/ops/triton_ops/__init__.py +12 -0
  270. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  271. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  272. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  273. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  274. vllm/lora/ops/triton_ops/utils.py +126 -0
  275. vllm/lora/ops/xla_ops/__init__.py +7 -0
  276. vllm/lora/ops/xla_ops/lora_ops.py +144 -0
  277. vllm/lora/peft_helper.py +127 -0
  278. vllm/lora/punica_wrapper/__init__.py +10 -0
  279. vllm/lora/punica_wrapper/punica_base.py +458 -0
  280. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  281. vllm/lora/punica_wrapper/punica_gpu.py +272 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  284. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  285. vllm/lora/punica_wrapper/utils.py +136 -0
  286. vllm/lora/request.py +97 -0
  287. vllm/lora/resolver.py +85 -0
  288. vllm/lora/utils.py +246 -0
  289. vllm/lora/worker_manager.py +267 -0
  290. vllm/model_executor/__init__.py +12 -0
  291. vllm/model_executor/custom_op.py +194 -0
  292. vllm/model_executor/layers/__init__.py +0 -0
  293. vllm/model_executor/layers/activation.py +575 -0
  294. vllm/model_executor/layers/attention_layer_base.py +23 -0
  295. vllm/model_executor/layers/fla/__init__.py +8 -0
  296. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  297. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  298. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  299. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  300. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  301. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  302. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  303. vllm/model_executor/layers/fla/ops/index.py +39 -0
  304. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  305. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  306. vllm/model_executor/layers/fla/ops/op.py +39 -0
  307. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  308. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  309. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  310. vllm/model_executor/layers/fused_moe/__init__.py +89 -0
  311. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
  312. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
  313. vllm/model_executor/layers/fused_moe/config.py +804 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  545. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
  546. vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
  547. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
  548. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  549. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
  550. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
  551. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
  552. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
  553. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
  554. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
  555. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
  556. vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
  557. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
  558. vllm/model_executor/layers/fused_moe/layer.py +2195 -0
  559. vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
  560. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  561. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  562. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  563. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  564. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
  565. vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
  566. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
  567. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  568. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  569. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
  570. vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
  571. vllm/model_executor/layers/fused_moe/utils.py +274 -0
  572. vllm/model_executor/layers/layernorm.py +395 -0
  573. vllm/model_executor/layers/lightning_attn.py +661 -0
  574. vllm/model_executor/layers/linear.py +1603 -0
  575. vllm/model_executor/layers/logits_processor.py +106 -0
  576. vllm/model_executor/layers/mamba/__init__.py +0 -0
  577. vllm/model_executor/layers/mamba/abstract.py +42 -0
  578. vllm/model_executor/layers/mamba/linear_attn.py +403 -0
  579. vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
  580. vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
  581. vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
  582. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  583. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
  584. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  585. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  586. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
  587. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
  588. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
  589. vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
  590. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
  591. vllm/model_executor/layers/mamba/short_conv.py +253 -0
  592. vllm/model_executor/layers/mla.py +173 -0
  593. vllm/model_executor/layers/pooler.py +719 -0
  594. vllm/model_executor/layers/quantization/__init__.py +157 -0
  595. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  596. vllm/model_executor/layers/quantization/awq.py +228 -0
  597. vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
  598. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  599. vllm/model_executor/layers/quantization/base_config.py +170 -0
  600. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  601. vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
  602. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  603. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
  604. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
  605. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  606. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  607. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  608. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  609. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  610. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
  611. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  612. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  613. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  614. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
  615. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  616. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  625. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  626. vllm/model_executor/layers/quantization/experts_int8.py +223 -0
  627. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  628. vllm/model_executor/layers/quantization/fp8.py +1098 -0
  629. vllm/model_executor/layers/quantization/gguf.py +599 -0
  630. vllm/model_executor/layers/quantization/gptq.py +340 -0
  631. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  632. vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
  633. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  634. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  635. vllm/model_executor/layers/quantization/inc.py +61 -0
  636. vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
  637. vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
  638. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  639. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  640. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  641. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  642. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  643. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  644. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  645. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  646. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  647. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  648. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  649. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  650. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  651. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
  652. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  653. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  654. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  655. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  656. vllm/model_executor/layers/quantization/kv_cache.py +143 -0
  657. vllm/model_executor/layers/quantization/modelopt.py +1596 -0
  658. vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
  659. vllm/model_executor/layers/quantization/mxfp4.py +988 -0
  660. vllm/model_executor/layers/quantization/petit.py +306 -0
  661. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  662. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  663. vllm/model_executor/layers/quantization/quark/quark.py +432 -0
  664. vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
  665. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  666. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  667. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
  668. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  669. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  670. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  671. vllm/model_executor/layers/quantization/rtn.py +466 -0
  672. vllm/model_executor/layers/quantization/schema.py +86 -0
  673. vllm/model_executor/layers/quantization/torchao.py +214 -0
  674. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  675. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  676. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  677. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  889. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
  890. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
  891. vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
  892. vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
  893. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  894. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  895. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  896. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  897. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  898. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  899. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  900. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  901. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
  902. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  903. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  904. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  905. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  906. vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
  907. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  908. vllm/model_executor/layers/resampler.py +270 -0
  909. vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
  910. vllm/model_executor/layers/rotary_embedding/base.py +177 -0
  911. vllm/model_executor/layers/rotary_embedding/common.py +150 -0
  912. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
  913. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  914. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  915. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  916. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  917. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  918. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  919. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  920. vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
  921. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  922. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  923. vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
  924. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  925. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  926. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  927. vllm/model_executor/layers/utils.py +195 -0
  928. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  929. vllm/model_executor/model_loader/__init__.py +138 -0
  930. vllm/model_executor/model_loader/base_loader.py +52 -0
  931. vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
  932. vllm/model_executor/model_loader/default_loader.py +277 -0
  933. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  934. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  935. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  936. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  937. vllm/model_executor/model_loader/tensorizer.py +738 -0
  938. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  939. vllm/model_executor/model_loader/tpu.py +114 -0
  940. vllm/model_executor/model_loader/utils.py +292 -0
  941. vllm/model_executor/model_loader/weight_utils.py +990 -0
  942. vllm/model_executor/models/__init__.py +33 -0
  943. vllm/model_executor/models/adapters.py +542 -0
  944. vllm/model_executor/models/aimv2.py +246 -0
  945. vllm/model_executor/models/apertus.py +579 -0
  946. vllm/model_executor/models/arcee.py +422 -0
  947. vllm/model_executor/models/arctic.py +558 -0
  948. vllm/model_executor/models/aria.py +650 -0
  949. vllm/model_executor/models/aya_vision.py +468 -0
  950. vllm/model_executor/models/baichuan.py +474 -0
  951. vllm/model_executor/models/bailing_moe.py +642 -0
  952. vllm/model_executor/models/bamba.py +514 -0
  953. vllm/model_executor/models/bert.py +665 -0
  954. vllm/model_executor/models/bert_with_rope.py +687 -0
  955. vllm/model_executor/models/blip.py +339 -0
  956. vllm/model_executor/models/blip2.py +712 -0
  957. vllm/model_executor/models/bloom.py +374 -0
  958. vllm/model_executor/models/chameleon.py +1139 -0
  959. vllm/model_executor/models/chatglm.py +476 -0
  960. vllm/model_executor/models/clip.py +407 -0
  961. vllm/model_executor/models/cohere2_vision.py +481 -0
  962. vllm/model_executor/models/commandr.py +465 -0
  963. vllm/model_executor/models/config.py +445 -0
  964. vllm/model_executor/models/dbrx.py +471 -0
  965. vllm/model_executor/models/deepseek.py +497 -0
  966. vllm/model_executor/models/deepseek_eagle.py +240 -0
  967. vllm/model_executor/models/deepseek_mtp.py +289 -0
  968. vllm/model_executor/models/deepseek_v2.py +1444 -0
  969. vllm/model_executor/models/deepseek_vl2.py +658 -0
  970. vllm/model_executor/models/dots1.py +546 -0
  971. vllm/model_executor/models/dots_ocr.py +873 -0
  972. vllm/model_executor/models/ernie45.py +43 -0
  973. vllm/model_executor/models/ernie45_moe.py +607 -0
  974. vllm/model_executor/models/ernie45_vl.py +1527 -0
  975. vllm/model_executor/models/ernie45_vl_moe.py +727 -0
  976. vllm/model_executor/models/ernie_mtp.py +268 -0
  977. vllm/model_executor/models/exaone.py +550 -0
  978. vllm/model_executor/models/exaone4.py +533 -0
  979. vllm/model_executor/models/fairseq2_llama.py +154 -0
  980. vllm/model_executor/models/falcon.py +509 -0
  981. vllm/model_executor/models/falcon_h1.py +674 -0
  982. vllm/model_executor/models/fuyu.py +399 -0
  983. vllm/model_executor/models/gemma.py +425 -0
  984. vllm/model_executor/models/gemma2.py +422 -0
  985. vllm/model_executor/models/gemma3.py +555 -0
  986. vllm/model_executor/models/gemma3_mm.py +721 -0
  987. vllm/model_executor/models/gemma3n.py +1113 -0
  988. vllm/model_executor/models/gemma3n_mm.py +761 -0
  989. vllm/model_executor/models/glm.py +23 -0
  990. vllm/model_executor/models/glm4.py +304 -0
  991. vllm/model_executor/models/glm4_1v.py +1690 -0
  992. vllm/model_executor/models/glm4_moe.py +727 -0
  993. vllm/model_executor/models/glm4_moe_mtp.py +301 -0
  994. vllm/model_executor/models/glm4v.py +654 -0
  995. vllm/model_executor/models/gpt2.py +380 -0
  996. vllm/model_executor/models/gpt_bigcode.py +344 -0
  997. vllm/model_executor/models/gpt_j.py +339 -0
  998. vllm/model_executor/models/gpt_neox.py +330 -0
  999. vllm/model_executor/models/gpt_oss.py +712 -0
  1000. vllm/model_executor/models/granite.py +489 -0
  1001. vllm/model_executor/models/granite_speech.py +794 -0
  1002. vllm/model_executor/models/granitemoe.py +550 -0
  1003. vllm/model_executor/models/granitemoehybrid.py +614 -0
  1004. vllm/model_executor/models/granitemoeshared.py +332 -0
  1005. vllm/model_executor/models/gritlm.py +262 -0
  1006. vllm/model_executor/models/grok1.py +547 -0
  1007. vllm/model_executor/models/h2ovl.py +536 -0
  1008. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1009. vllm/model_executor/models/hyperclovax_vision.py +1192 -0
  1010. vllm/model_executor/models/idefics2_vision_model.py +417 -0
  1011. vllm/model_executor/models/idefics3.py +756 -0
  1012. vllm/model_executor/models/interfaces.py +959 -0
  1013. vllm/model_executor/models/interfaces_base.py +192 -0
  1014. vllm/model_executor/models/intern_vit.py +441 -0
  1015. vllm/model_executor/models/internlm2.py +450 -0
  1016. vllm/model_executor/models/internlm2_ve.py +148 -0
  1017. vllm/model_executor/models/interns1.py +838 -0
  1018. vllm/model_executor/models/interns1_vit.py +418 -0
  1019. vllm/model_executor/models/internvl.py +1423 -0
  1020. vllm/model_executor/models/jais.py +373 -0
  1021. vllm/model_executor/models/jamba.py +591 -0
  1022. vllm/model_executor/models/jina_vl.py +144 -0
  1023. vllm/model_executor/models/keye.py +1680 -0
  1024. vllm/model_executor/models/keye_vl1_5.py +602 -0
  1025. vllm/model_executor/models/kimi_vl.py +618 -0
  1026. vllm/model_executor/models/lfm2.py +548 -0
  1027. vllm/model_executor/models/llama.py +669 -0
  1028. vllm/model_executor/models/llama4.py +746 -0
  1029. vllm/model_executor/models/llama4_eagle.py +239 -0
  1030. vllm/model_executor/models/llama_eagle.py +179 -0
  1031. vllm/model_executor/models/llama_eagle3.py +296 -0
  1032. vllm/model_executor/models/llava.py +870 -0
  1033. vllm/model_executor/models/llava_next.py +571 -0
  1034. vllm/model_executor/models/llava_next_video.py +476 -0
  1035. vllm/model_executor/models/llava_onevision.py +942 -0
  1036. vllm/model_executor/models/longcat_flash.py +715 -0
  1037. vllm/model_executor/models/longcat_flash_mtp.py +352 -0
  1038. vllm/model_executor/models/mamba.py +275 -0
  1039. vllm/model_executor/models/mamba2.py +291 -0
  1040. vllm/model_executor/models/medusa.py +169 -0
  1041. vllm/model_executor/models/midashenglm.py +792 -0
  1042. vllm/model_executor/models/mimo.py +188 -0
  1043. vllm/model_executor/models/mimo_mtp.py +280 -0
  1044. vllm/model_executor/models/minicpm.py +631 -0
  1045. vllm/model_executor/models/minicpm3.py +230 -0
  1046. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1047. vllm/model_executor/models/minicpmo.py +770 -0
  1048. vllm/model_executor/models/minicpmv.py +1784 -0
  1049. vllm/model_executor/models/minimax_text_01.py +986 -0
  1050. vllm/model_executor/models/minimax_vl_01.py +426 -0
  1051. vllm/model_executor/models/mistral3.py +628 -0
  1052. vllm/model_executor/models/mixtral.py +606 -0
  1053. vllm/model_executor/models/mllama4.py +1076 -0
  1054. vllm/model_executor/models/mlp_speculator.py +206 -0
  1055. vllm/model_executor/models/modernbert.py +374 -0
  1056. vllm/model_executor/models/module_mapping.py +72 -0
  1057. vllm/model_executor/models/molmo.py +1567 -0
  1058. vllm/model_executor/models/moonvit.py +673 -0
  1059. vllm/model_executor/models/motif.py +345 -0
  1060. vllm/model_executor/models/mpt.py +329 -0
  1061. vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
  1062. vllm/model_executor/models/nemotron.py +507 -0
  1063. vllm/model_executor/models/nemotron_h.py +565 -0
  1064. vllm/model_executor/models/nemotron_nas.py +481 -0
  1065. vllm/model_executor/models/nemotron_vl.py +652 -0
  1066. vllm/model_executor/models/nvlm_d.py +203 -0
  1067. vllm/model_executor/models/olmo.py +404 -0
  1068. vllm/model_executor/models/olmo2.py +439 -0
  1069. vllm/model_executor/models/olmoe.py +483 -0
  1070. vllm/model_executor/models/opt.py +412 -0
  1071. vllm/model_executor/models/orion.py +348 -0
  1072. vllm/model_executor/models/ovis.py +559 -0
  1073. vllm/model_executor/models/ovis2_5.py +642 -0
  1074. vllm/model_executor/models/paligemma.py +411 -0
  1075. vllm/model_executor/models/persimmon.py +343 -0
  1076. vllm/model_executor/models/phi.py +356 -0
  1077. vllm/model_executor/models/phi3.py +19 -0
  1078. vllm/model_executor/models/phi3v.py +698 -0
  1079. vllm/model_executor/models/phi4_multimodal.py +1475 -0
  1080. vllm/model_executor/models/phi4mm.py +1279 -0
  1081. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1082. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1083. vllm/model_executor/models/phimoe.py +679 -0
  1084. vllm/model_executor/models/pixtral.py +1345 -0
  1085. vllm/model_executor/models/plamo2.py +978 -0
  1086. vllm/model_executor/models/qwen.py +361 -0
  1087. vllm/model_executor/models/qwen2.py +523 -0
  1088. vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
  1089. vllm/model_executor/models/qwen2_5_vl.py +1481 -0
  1090. vllm/model_executor/models/qwen2_audio.py +489 -0
  1091. vllm/model_executor/models/qwen2_moe.py +558 -0
  1092. vllm/model_executor/models/qwen2_rm.py +122 -0
  1093. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1094. vllm/model_executor/models/qwen3.py +341 -0
  1095. vllm/model_executor/models/qwen3_moe.py +692 -0
  1096. vllm/model_executor/models/qwen3_next.py +1266 -0
  1097. vllm/model_executor/models/qwen3_next_mtp.py +281 -0
  1098. vllm/model_executor/models/qwen3_vl.py +1613 -0
  1099. vllm/model_executor/models/qwen3_vl_moe.py +358 -0
  1100. vllm/model_executor/models/qwen_vl.py +795 -0
  1101. vllm/model_executor/models/radio.py +576 -0
  1102. vllm/model_executor/models/registry.py +990 -0
  1103. vllm/model_executor/models/roberta.py +252 -0
  1104. vllm/model_executor/models/rvl.py +103 -0
  1105. vllm/model_executor/models/seed_oss.py +485 -0
  1106. vllm/model_executor/models/siglip.py +540 -0
  1107. vllm/model_executor/models/siglip2navit.py +689 -0
  1108. vllm/model_executor/models/skyworkr1v.py +911 -0
  1109. vllm/model_executor/models/smolvlm.py +44 -0
  1110. vllm/model_executor/models/solar.py +504 -0
  1111. vllm/model_executor/models/stablelm.py +341 -0
  1112. vllm/model_executor/models/starcoder2.py +354 -0
  1113. vllm/model_executor/models/step3_text.py +510 -0
  1114. vllm/model_executor/models/step3_vl.py +1072 -0
  1115. vllm/model_executor/models/swin.py +475 -0
  1116. vllm/model_executor/models/tarsier.py +639 -0
  1117. vllm/model_executor/models/telechat2.py +151 -0
  1118. vllm/model_executor/models/teleflm.py +79 -0
  1119. vllm/model_executor/models/terratorch.py +294 -0
  1120. vllm/model_executor/models/transformers.py +948 -0
  1121. vllm/model_executor/models/ultravox.py +654 -0
  1122. vllm/model_executor/models/utils.py +808 -0
  1123. vllm/model_executor/models/vision.py +404 -0
  1124. vllm/model_executor/models/voxtral.py +786 -0
  1125. vllm/model_executor/models/whisper.py +963 -0
  1126. vllm/model_executor/models/zamba2.py +960 -0
  1127. vllm/model_executor/parameter.py +620 -0
  1128. vllm/model_executor/utils.py +86 -0
  1129. vllm/model_executor/warmup/__init__.py +0 -0
  1130. vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
  1131. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1132. vllm/multimodal/__init__.py +33 -0
  1133. vllm/multimodal/audio.py +116 -0
  1134. vllm/multimodal/base.py +27 -0
  1135. vllm/multimodal/cache.py +697 -0
  1136. vllm/multimodal/evs.py +273 -0
  1137. vllm/multimodal/hasher.py +102 -0
  1138. vllm/multimodal/image.py +130 -0
  1139. vllm/multimodal/inputs.py +987 -0
  1140. vllm/multimodal/parse.py +511 -0
  1141. vllm/multimodal/processing.py +2148 -0
  1142. vllm/multimodal/profiling.py +284 -0
  1143. vllm/multimodal/registry.py +345 -0
  1144. vllm/multimodal/utils.py +503 -0
  1145. vllm/multimodal/video.py +319 -0
  1146. vllm/outputs.py +324 -0
  1147. vllm/platforms/__init__.py +263 -0
  1148. vllm/platforms/cpu.py +340 -0
  1149. vllm/platforms/cuda.py +668 -0
  1150. vllm/platforms/interface.py +620 -0
  1151. vllm/platforms/rocm.py +497 -0
  1152. vllm/platforms/tpu.py +233 -0
  1153. vllm/platforms/xpu.py +243 -0
  1154. vllm/plugins/__init__.py +72 -0
  1155. vllm/plugins/io_processors/__init__.py +68 -0
  1156. vllm/plugins/io_processors/interface.py +67 -0
  1157. vllm/plugins/lora_resolvers/README.md +16 -0
  1158. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1159. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1160. vllm/pooling_params.py +191 -0
  1161. vllm/profiler/__init__.py +0 -0
  1162. vllm/profiler/layerwise_profile.py +375 -0
  1163. vllm/profiler/utils.py +148 -0
  1164. vllm/py.typed +2 -0
  1165. vllm/ray/__init__.py +0 -0
  1166. vllm/ray/lazy_utils.py +22 -0
  1167. vllm/ray/ray_env.py +72 -0
  1168. vllm/reasoning/__init__.py +29 -0
  1169. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1170. vllm/reasoning/basic_parsers.py +156 -0
  1171. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1172. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1173. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1174. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1175. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1176. vllm/reasoning/mistral_reasoning_parser.py +56 -0
  1177. vllm/reasoning/qwen3_reasoning_parser.py +72 -0
  1178. vllm/reasoning/seedoss_reasoning_parser.py +28 -0
  1179. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1180. vllm/sampling_params.py +593 -0
  1181. vllm/scalar_type.py +349 -0
  1182. vllm/scripts.py +15 -0
  1183. vllm/sequence.py +103 -0
  1184. vllm/tasks.py +11 -0
  1185. vllm/test_utils.py +129 -0
  1186. vllm/third_party/__init__.py +0 -0
  1187. vllm/third_party/pynvml.py +6140 -0
  1188. vllm/tracing.py +136 -0
  1189. vllm/transformers_utils/__init__.py +24 -0
  1190. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1191. vllm/transformers_utils/chat_templates/registry.py +70 -0
  1192. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1193. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1194. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1195. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1196. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1197. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1198. vllm/transformers_utils/config.py +1102 -0
  1199. vllm/transformers_utils/config_parser_base.py +20 -0
  1200. vllm/transformers_utils/configs/__init__.py +63 -0
  1201. vllm/transformers_utils/configs/arctic.py +207 -0
  1202. vllm/transformers_utils/configs/chatglm.py +72 -0
  1203. vllm/transformers_utils/configs/deepseek_v3.py +101 -0
  1204. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1205. vllm/transformers_utils/configs/dotsocr.py +69 -0
  1206. vllm/transformers_utils/configs/eagle.py +84 -0
  1207. vllm/transformers_utils/configs/falcon.py +90 -0
  1208. vllm/transformers_utils/configs/jais.py +237 -0
  1209. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1210. vllm/transformers_utils/configs/medusa.py +63 -0
  1211. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1212. vllm/transformers_utils/configs/mistral.py +165 -0
  1213. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1214. vllm/transformers_utils/configs/moonvit.py +33 -0
  1215. vllm/transformers_utils/configs/nemotron.py +205 -0
  1216. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1217. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1218. vllm/transformers_utils/configs/olmo3.py +80 -0
  1219. vllm/transformers_utils/configs/ovis.py +176 -0
  1220. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1221. vllm/transformers_utils/configs/radio.py +91 -0
  1222. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1223. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1224. vllm/transformers_utils/configs/speculators/base.py +111 -0
  1225. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1226. vllm/transformers_utils/configs/ultravox.py +116 -0
  1227. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1228. vllm/transformers_utils/dynamic_module.py +60 -0
  1229. vllm/transformers_utils/processor.py +299 -0
  1230. vllm/transformers_utils/processors/__init__.py +16 -0
  1231. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1232. vllm/transformers_utils/processors/ovis.py +420 -0
  1233. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1234. vllm/transformers_utils/runai_utils.py +104 -0
  1235. vllm/transformers_utils/s3_utils.py +93 -0
  1236. vllm/transformers_utils/tokenizer.py +292 -0
  1237. vllm/transformers_utils/tokenizer_base.py +154 -0
  1238. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1239. vllm/transformers_utils/tokenizers/mistral.py +521 -0
  1240. vllm/transformers_utils/utils.py +108 -0
  1241. vllm/triton_utils/__init__.py +16 -0
  1242. vllm/triton_utils/importing.py +96 -0
  1243. vllm/usage/__init__.py +0 -0
  1244. vllm/usage/usage_lib.py +259 -0
  1245. vllm/utils/__init__.py +3566 -0
  1246. vllm/utils/deep_gemm.py +319 -0
  1247. vllm/utils/flashinfer.py +443 -0
  1248. vllm/utils/jsontree.py +178 -0
  1249. vllm/utils/tensor_schema.py +235 -0
  1250. vllm/v1/__init__.py +0 -0
  1251. vllm/v1/attention/__init__.py +0 -0
  1252. vllm/v1/attention/backends/__init__.py +0 -0
  1253. vllm/v1/attention/backends/cpu_attn.py +919 -0
  1254. vllm/v1/attention/backends/flash_attn.py +795 -0
  1255. vllm/v1/attention/backends/flashinfer.py +1181 -0
  1256. vllm/v1/attention/backends/flex_attention.py +861 -0
  1257. vllm/v1/attention/backends/gdn_attn.py +332 -0
  1258. vllm/v1/attention/backends/linear_attn.py +67 -0
  1259. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1260. vllm/v1/attention/backends/mamba2_attn.py +232 -0
  1261. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1262. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1263. vllm/v1/attention/backends/mla/common.py +1783 -0
  1264. vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
  1265. vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
  1266. vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
  1267. vllm/v1/attention/backends/mla/flashmla.py +203 -0
  1268. vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
  1269. vllm/v1/attention/backends/mla/indexer.py +342 -0
  1270. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1271. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1272. vllm/v1/attention/backends/pallas.py +409 -0
  1273. vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
  1274. vllm/v1/attention/backends/rocm_attn.py +426 -0
  1275. vllm/v1/attention/backends/short_conv_attn.py +94 -0
  1276. vllm/v1/attention/backends/tree_attn.py +451 -0
  1277. vllm/v1/attention/backends/triton_attn.py +361 -0
  1278. vllm/v1/attention/backends/utils.py +990 -0
  1279. vllm/v1/attention/backends/xformers.py +438 -0
  1280. vllm/v1/core/__init__.py +0 -0
  1281. vllm/v1/core/block_pool.py +416 -0
  1282. vllm/v1/core/encoder_cache_manager.py +333 -0
  1283. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1284. vllm/v1/core/kv_cache_manager.py +399 -0
  1285. vllm/v1/core/kv_cache_utils.py +1291 -0
  1286. vllm/v1/core/sched/__init__.py +0 -0
  1287. vllm/v1/core/sched/async_scheduler.py +47 -0
  1288. vllm/v1/core/sched/interface.py +158 -0
  1289. vllm/v1/core/sched/output.py +166 -0
  1290. vllm/v1/core/sched/request_queue.py +224 -0
  1291. vllm/v1/core/sched/scheduler.py +1296 -0
  1292. vllm/v1/core/sched/utils.py +69 -0
  1293. vllm/v1/core/single_type_kv_cache_manager.py +671 -0
  1294. vllm/v1/cudagraph_dispatcher.py +125 -0
  1295. vllm/v1/engine/__init__.py +203 -0
  1296. vllm/v1/engine/async_llm.py +742 -0
  1297. vllm/v1/engine/coordinator.py +357 -0
  1298. vllm/v1/engine/core.py +1235 -0
  1299. vllm/v1/engine/core_client.py +1334 -0
  1300. vllm/v1/engine/detokenizer.py +349 -0
  1301. vllm/v1/engine/exceptions.py +17 -0
  1302. vllm/v1/engine/llm_engine.py +370 -0
  1303. vllm/v1/engine/logprobs.py +201 -0
  1304. vllm/v1/engine/output_processor.py +576 -0
  1305. vllm/v1/engine/parallel_sampling.py +133 -0
  1306. vllm/v1/engine/processor.py +545 -0
  1307. vllm/v1/engine/utils.py +860 -0
  1308. vllm/v1/executor/__init__.py +0 -0
  1309. vllm/v1/executor/abstract.py +137 -0
  1310. vllm/v1/executor/multiproc_executor.py +726 -0
  1311. vllm/v1/executor/ray_distributed_executor.py +108 -0
  1312. vllm/v1/executor/utils.py +23 -0
  1313. vllm/v1/kv_cache_interface.py +375 -0
  1314. vllm/v1/kv_offload/__init__.py +0 -0
  1315. vllm/v1/kv_offload/abstract.py +165 -0
  1316. vllm/v1/kv_offload/backend.py +96 -0
  1317. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1318. vllm/v1/kv_offload/backends/cpu.py +61 -0
  1319. vllm/v1/kv_offload/cpu.py +75 -0
  1320. vllm/v1/kv_offload/factory.py +56 -0
  1321. vllm/v1/kv_offload/lru_manager.py +132 -0
  1322. vllm/v1/kv_offload/mediums.py +39 -0
  1323. vllm/v1/kv_offload/spec.py +61 -0
  1324. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1325. vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
  1326. vllm/v1/kv_offload/worker/worker.py +142 -0
  1327. vllm/v1/metrics/__init__.py +0 -0
  1328. vllm/v1/metrics/loggers.py +741 -0
  1329. vllm/v1/metrics/prometheus.py +82 -0
  1330. vllm/v1/metrics/ray_wrappers.py +152 -0
  1331. vllm/v1/metrics/reader.py +246 -0
  1332. vllm/v1/metrics/stats.py +257 -0
  1333. vllm/v1/outputs.py +161 -0
  1334. vllm/v1/pool/__init__.py +0 -0
  1335. vllm/v1/pool/metadata.py +77 -0
  1336. vllm/v1/request.py +241 -0
  1337. vllm/v1/sample/__init__.py +0 -0
  1338. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1339. vllm/v1/sample/logits_processor/builtin.py +275 -0
  1340. vllm/v1/sample/logits_processor/interface.py +97 -0
  1341. vllm/v1/sample/logits_processor/state.py +161 -0
  1342. vllm/v1/sample/metadata.py +43 -0
  1343. vllm/v1/sample/ops/__init__.py +0 -0
  1344. vllm/v1/sample/ops/bad_words.py +39 -0
  1345. vllm/v1/sample/ops/logprobs.py +26 -0
  1346. vllm/v1/sample/ops/penalties.py +43 -0
  1347. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1348. vllm/v1/sample/rejection_sampler.py +623 -0
  1349. vllm/v1/sample/sampler.py +285 -0
  1350. vllm/v1/sample/tpu/__init__.py +0 -0
  1351. vllm/v1/sample/tpu/metadata.py +124 -0
  1352. vllm/v1/sample/tpu/sampler.py +213 -0
  1353. vllm/v1/serial_utils.py +423 -0
  1354. vllm/v1/spec_decode/__init__.py +0 -0
  1355. vllm/v1/spec_decode/eagle.py +1011 -0
  1356. vllm/v1/spec_decode/medusa.py +66 -0
  1357. vllm/v1/spec_decode/metadata.py +62 -0
  1358. vllm/v1/spec_decode/metrics.py +211 -0
  1359. vllm/v1/spec_decode/ngram_proposer.py +276 -0
  1360. vllm/v1/spec_decode/utils.py +14 -0
  1361. vllm/v1/structured_output/__init__.py +295 -0
  1362. vllm/v1/structured_output/backend_guidance.py +245 -0
  1363. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1364. vllm/v1/structured_output/backend_outlines.py +320 -0
  1365. vllm/v1/structured_output/backend_types.py +134 -0
  1366. vllm/v1/structured_output/backend_xgrammar.py +327 -0
  1367. vllm/v1/structured_output/request.py +86 -0
  1368. vllm/v1/structured_output/utils.py +454 -0
  1369. vllm/v1/utils.py +396 -0
  1370. vllm/v1/worker/__init__.py +0 -0
  1371. vllm/v1/worker/block_table.py +210 -0
  1372. vllm/v1/worker/cpu_model_runner.py +175 -0
  1373. vllm/v1/worker/cpu_worker.py +156 -0
  1374. vllm/v1/worker/gpu_input_batch.py +863 -0
  1375. vllm/v1/worker/gpu_model_runner.py +4160 -0
  1376. vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
  1377. vllm/v1/worker/gpu_worker.py +710 -0
  1378. vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
  1379. vllm/v1/worker/lora_model_runner_mixin.py +183 -0
  1380. vllm/v1/worker/tpu_input_batch.py +587 -0
  1381. vllm/v1/worker/tpu_model_runner.py +1946 -0
  1382. vllm/v1/worker/tpu_worker.py +346 -0
  1383. vllm/v1/worker/ubatch_splitting.py +192 -0
  1384. vllm/v1/worker/ubatch_utils.py +27 -0
  1385. vllm/v1/worker/ubatching.py +224 -0
  1386. vllm/v1/worker/utils.py +344 -0
  1387. vllm/v1/worker/worker_base.py +65 -0
  1388. vllm/v1/worker/xpu_model_runner.py +57 -0
  1389. vllm/v1/worker/xpu_worker.py +179 -0
  1390. vllm/version.py +41 -0
  1391. vllm/vllm_flash_attn/.gitkeep +0 -0
  1392. vllm/worker/__init__.py +0 -0
  1393. vllm/worker/worker_base.py +279 -0
  1394. vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
  1395. vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
  1396. vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
  1397. vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
  1398. vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1946 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import bisect
4
+ import gc
5
+ import time
6
+ from typing import TYPE_CHECKING, Any, Optional, cast
7
+ from unittest.mock import patch
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ # TPU XLA related
13
+ import torch_xla
14
+ import torch_xla.core.xla_model as xm
15
+ import torch_xla.distributed.spmd as xs
16
+ import torch_xla.runtime as xr
17
+
18
+ import vllm.envs as envs
19
+ from vllm.attention import Attention
20
+ from vllm.attention.backends.abstract import AttentionType
21
+ from vllm.attention.layers.chunked_local_attention import ChunkedLocalAttention
22
+ from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispatcher
23
+ from vllm.config import (ParallelConfig, VllmConfig,
24
+ get_layers_from_vllm_config, update_config)
25
+ from vllm.distributed.kv_transfer import (get_kv_transfer_group,
26
+ has_kv_transfer_group)
27
+ from vllm.distributed.kv_transfer.kv_connector.utils import copy_kv_blocks
28
+ from vllm.forward_context import set_forward_context
29
+ from vllm.logger import init_logger
30
+ from vllm.lora.layers import BaseLayerWithLoRA
31
+ from vllm.model_executor.model_loader import get_model_loader
32
+ from vllm.model_executor.model_loader.tpu import TPUModelLoader
33
+ from vllm.model_executor.models.interfaces import (SupportsMultiModal,
34
+ supports_transcription)
35
+ from vllm.model_executor.models.interfaces_base import (
36
+ is_pooling_model, is_text_generation_model)
37
+ from vllm.multimodal import MULTIMODAL_REGISTRY
38
+ from vllm.multimodal.inputs import (BatchedTensorInputs, MultiModalKwargsItem,
39
+ PlaceholderRange)
40
+ from vllm.multimodal.utils import group_mm_kwargs_by_modality
41
+ from vllm.sequence import IntermediateTensors
42
+ from vllm.tasks import GenerationTask, PoolingTask, SupportedTask
43
+ from vllm.utils import (LayerBlockType, cdiv, is_pin_memory_available,
44
+ prev_power_of_2)
45
+ from vllm.v1.attention.backends.pallas import (TPU_STR_DTYPE_TO_TORCH_DTYPE,
46
+ PallasAttentionBackend,
47
+ PallasMetadata,
48
+ get_page_size_bytes)
49
+ from vllm.v1.kv_cache_interface import (AttentionSpec, FullAttentionSpec,
50
+ KVCacheConfig, KVCacheSpec,
51
+ SlidingWindowSpec)
52
+ from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, LogprobsLists,
53
+ LogprobsTensors, ModelRunnerOutput)
54
+ from vllm.v1.sample.tpu.metadata import TPUSupportedSamplingMetadata
55
+ from vllm.v1.sample.tpu.sampler import Sampler as TPUSampler
56
+ from vllm.v1.worker.kv_connector_model_runner_mixin import (
57
+ KVConnectorModelRunnerMixin, KVConnectorOutput)
58
+ from vllm.v1.worker.lora_model_runner_mixin import LoRAModelRunnerMixin
59
+ from vllm.v1.worker.tpu_input_batch import CachedRequestState, InputBatch
60
+
61
+ from .utils import (MultiModalBudget, add_kv_sharing_layers_to_kv_cache_groups,
62
+ bind_kv_cache, sanity_check_mm_encoder_outputs)
63
+
64
+ if TYPE_CHECKING:
65
+ from vllm.v1.core.sched.output import SchedulerOutput
66
+
67
+ logger = init_logger(__name__)
68
+
69
+ INVALID_TOKEN_ID = -1
70
+ # Smallest output size
71
+ MIN_NUM_SEQS = 8
72
+
73
+
74
+ #########################################################
75
+ # Ways to avoid recompilation
76
+ #########################################################
77
+ #
78
+ # The model executor has two primary components:
79
+ # 1. preparing the model and sampler inputs
80
+ # 2. executing the model and sampler.
81
+ # The core idea is to avoid any TPU computation during input preparation. For
82
+ # better compilation tracking and increased flexibility, the model execution and
83
+ # sampler are divided into several distinct components.
84
+ #
85
+ # Below are the detailed steps:
86
+ #
87
+ # Step 1
88
+ # It is recommended to avoid TPU operations when preparing the model and sampler
89
+ # inputs. CPU tensors can be prepared and transferred to the XLA device using
90
+ # cpu_tensor.to(xla_device), which only triggers CPU to TPU transfers and avoids
91
+ # compilation.
92
+ #
93
+ # Step 2
94
+ # The TPU execution should be decomposed into subgraphs (4 at the moment):
95
+ # 1. the main model
96
+ # 2. selecting hidden states for each request
97
+ # 3. sampler
98
+ # 4. encoder.
99
+ # Each subgraph should be decorated in a torch.compile. This is used to make
100
+ # sure that we have the same subgraph topology in both dummy_run and
101
+ # xecute_model. The results from these subgraphs should either be passed to
102
+ # other subgraphs, or transferred from TPU to CPU using xla_tensor.cpu() for
103
+ # subsequent processing on the CPU.
104
+ #
105
+ # Step 3
106
+ # The dummy_run should be comprehensive, ensuring all potential input shapes and
107
+ # branch predictions are included as subgraph inputs to facilitate
108
+ # pre-compilation.
109
+ class TPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
110
+
111
+ def __init__(
112
+ self,
113
+ vllm_config: VllmConfig,
114
+ device: torch.device,
115
+ original_parallel_config: Optional[ParallelConfig] = None,
116
+ ):
117
+ self.vllm_config = vllm_config
118
+ self.model_config = vllm_config.model_config
119
+ self.cache_config = vllm_config.cache_config
120
+ self.lora_config = vllm_config.lora_config
121
+ self.load_config = vllm_config.load_config
122
+ self.parallel_config = vllm_config.parallel_config
123
+ self.original_parallel_config = original_parallel_config
124
+ self.scheduler_config = vllm_config.scheduler_config
125
+ self.speculative_config = vllm_config.speculative_config
126
+ self.observability_config = vllm_config.observability_config
127
+ self.device_config = vllm_config.device_config
128
+
129
+ model_config = self.model_config
130
+ cache_config = self.cache_config
131
+ scheduler_config = self.scheduler_config
132
+ parallel_config = self.parallel_config
133
+ self.device = device
134
+ self.check_recompilation = envs.VLLM_XLA_CHECK_RECOMPILATION
135
+
136
+ # SPMD Related
137
+ self.use_spmd = envs.VLLM_XLA_USE_SPMD
138
+ if self.use_spmd:
139
+ num_devices = xr.global_runtime_device_count()
140
+ mesh_shape = (num_devices, 1)
141
+ device_ids = np.array(range(num_devices))
142
+ self.mesh = xs.Mesh(device_ids, mesh_shape, ('x', 'y'))
143
+
144
+ self.enforce_eager = model_config.enforce_eager
145
+
146
+ self.num_xla_graphs = 0
147
+ self._update_num_xla_graphs("init")
148
+
149
+ self.pin_memory = is_pin_memory_available()
150
+ self.dtype = self.model_config.dtype
151
+ if cache_config.cache_dtype == "auto":
152
+ model_dtype = self.dtype
153
+ if isinstance(model_dtype, str):
154
+ self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
155
+ else:
156
+ self.kv_cache_dtype = model_dtype
157
+ else:
158
+ self.kv_cache_dtype = TPU_STR_DTYPE_TO_TORCH_DTYPE[
159
+ cache_config.cache_dtype]
160
+ self._hidden_states_dtype = self.dtype
161
+
162
+ self.sliding_window = model_config.get_sliding_window()
163
+ self.block_size = cache_config.block_size
164
+ self.max_model_len = model_config.max_model_len
165
+ self.most_model_len = envs.VLLM_TPU_MOST_MODEL_LEN
166
+ self.max_num_blocks_per_req = cdiv(self.max_model_len, self.block_size)
167
+ self.num_blocks_per_most_len_req = cdiv(
168
+ self.most_model_len,
169
+ self.block_size) if self.most_model_len is not None else None
170
+ # InputBatch needs to work with sampling tensors greater than padding
171
+ # to avoid dynamic shapes. Also, avoid suboptimal alignment.
172
+ self.max_num_reqs = max(scheduler_config.max_num_seqs, MIN_NUM_SEQS)
173
+ self.num_tokens_paddings = _get_token_paddings(
174
+ min_token_size=16,
175
+ max_token_size=scheduler_config.max_num_batched_tokens,
176
+ padding_gap=envs.VLLM_TPU_BUCKET_PADDING_GAP)
177
+ # In case `max_num_tokens < max(num_tokens_paddings)` use the actual
178
+ # padded max value to pre-allocate data structures and pre-compile.
179
+ self.max_num_tokens = self.num_tokens_paddings[-1]
180
+
181
+ # Model-related.
182
+ self.num_attn_layers = model_config.get_num_layers_by_block_type(
183
+ parallel_config, LayerBlockType.attention)
184
+ self.num_query_heads = model_config.get_num_attention_heads(
185
+ parallel_config)
186
+ self.num_kv_heads = model_config.get_num_kv_heads(parallel_config)
187
+ self.head_size = model_config.get_head_size()
188
+ self.hidden_size = model_config.get_hidden_size()
189
+ self.vocab_size = model_config.get_vocab_size()
190
+
191
+ if self.lora_config is not None:
192
+ self.vocab_size += self.lora_config.lora_extra_vocab_size
193
+
194
+ # Multi-modal data support
195
+ self.mm_registry = MULTIMODAL_REGISTRY
196
+ self.uses_mrope = model_config.uses_mrope
197
+ self.supports_mm_inputs = self.mm_registry.supports_multimodal_inputs(
198
+ model_config)
199
+ # TODO: Support M-RoPE (e.g, Qwen2-VL)
200
+ assert not self.uses_mrope, "TPU does not support M-RoPE yet."
201
+
202
+ self._num_slices_per_kv_cache_update_block = \
203
+ _get_num_slices_per_kv_cache_update_block(get_page_size_bytes(
204
+ block_size=self.block_size,
205
+ num_kv_heads=self.num_kv_heads,
206
+ head_size=self.head_size,
207
+ kv_cache_dtype=self.kv_cache_dtype,
208
+ ))
209
+
210
+ # Lazy initialization
211
+ self.model: nn.Module # Set after load_model
212
+ self.kv_caches: list[torch.Tensor] = []
213
+ # mm_hash -> encoder_output
214
+ self.encoder_cache: dict[str, torch.Tensor] = {}
215
+
216
+ # Request states.
217
+ self.requests: dict[str, CachedRequestState] = {}
218
+
219
+ # Initialize input batch early to avoid AttributeError in _update_states
220
+ self.input_batch = InputBatch(
221
+ max_num_reqs=self.max_num_reqs,
222
+ max_model_len=self.max_model_len,
223
+ max_num_batched_tokens=self.max_num_tokens,
224
+ device=self.device,
225
+ pin_memory=self.pin_memory,
226
+ vocab_size=self.model_config.get_vocab_size(),
227
+ block_sizes=[self.block_size],
228
+ )
229
+
230
+ # Cached torch/numpy tensor
231
+ # The pytorch tensor and numpy array share the same buffer.
232
+ # Sometimes the numpy op is faster so we create both.
233
+ self.input_ids_cpu = torch.zeros(self.max_num_tokens,
234
+ dtype=torch.int32,
235
+ device="cpu")
236
+
237
+ self.positions_cpu = torch.zeros(self.max_num_tokens,
238
+ dtype=torch.int32,
239
+ device="cpu")
240
+ self.positions_np = self.positions_cpu.numpy()
241
+ self.block_table_cpu = torch.zeros(
242
+ (self.max_num_reqs, self.max_num_blocks_per_req),
243
+ dtype=torch.int32,
244
+ device="cpu")
245
+ # adjust num_reqs to avoid SMEM OOM.
246
+ self.num_reqs_most_model_len = min(
247
+ PallasAttentionBackend.get_max_num_seqs(self.most_model_len,
248
+ self.block_size),
249
+ self.max_num_reqs) if self.most_model_len is not None else None
250
+ self.num_reqs_max_model_len = min(
251
+ PallasAttentionBackend.get_max_num_seqs(self.max_model_len,
252
+ self.block_size),
253
+ self.max_num_reqs)
254
+ self.query_start_loc_cpu = torch.zeros(self.max_num_tokens + 1,
255
+ dtype=torch.int32,
256
+ device="cpu",
257
+ pin_memory=self.pin_memory)
258
+ self.query_start_loc_np = self.query_start_loc_cpu.numpy()
259
+
260
+ self.seq_lens_cpu = torch.zeros(self.max_num_tokens,
261
+ dtype=torch.int32,
262
+ device="cpu",
263
+ pin_memory=self.pin_memory)
264
+ self.seq_lens_np = self.seq_lens_cpu.numpy()
265
+
266
+ # Range tensor with values [0 .. self.max_num_tokens - 1].
267
+ # Used to initialize positions / context_lens / seq_lens
268
+ # Keep in int64 to avoid overflow with long context
269
+ self.arange_np = np.arange(self.max_num_tokens, dtype=np.int64)
270
+ self.num_reqs_paddings = _get_req_paddings(
271
+ min_req_size=MIN_NUM_SEQS, max_req_size=self.max_num_reqs)
272
+
273
+ # Layer pairings for cross-layer KV sharing.
274
+ # If an Attention layer `layer_name` is in the keys of this dict, it
275
+ # means this layer will perform attention using the keys and values
276
+ # from the KV cache of `shared_kv_cache_layers[layer_name]`.
277
+ self.shared_kv_cache_layers: dict[str, str] = {}
278
+
279
+ # tensors for structured decoding
280
+ self.grammar_bitmask_cpu = torch.zeros(
281
+ (self.max_num_reqs, cdiv(self.vocab_size, 32)),
282
+ dtype=torch.int32,
283
+ device="cpu",
284
+ pin_memory=self.pin_memory)
285
+ self.require_structured_out_cpu = torch.zeros(
286
+ (self.max_num_reqs, 1),
287
+ dtype=torch.bool,
288
+ device="cpu",
289
+ pin_memory=self.pin_memory)
290
+ self.structured_decode_arange = torch.arange(
291
+ 0, 32, device="cpu", pin_memory=self.pin_memory)
292
+
293
+ self.mm_budget = (MultiModalBudget(
294
+ self.model_config,
295
+ self.scheduler_config,
296
+ self.mm_registry,
297
+ ) if self.supports_mm_inputs else None)
298
+
299
+ if not self.use_spmd:
300
+ self.sample_from_logits_func = torch.compile(
301
+ self.sample_from_logits,
302
+ backend="openxla",
303
+ fullgraph=True,
304
+ dynamic=False)
305
+ else:
306
+ self.sample_from_logits_func = self.sample_from_logits
307
+
308
+ def _update_num_xla_graphs(self, case_str):
309
+ check_comp = self.check_recompilation and not self.enforce_eager
310
+ if not check_comp:
311
+ return
312
+
313
+ total_cached_graphs = xr.get_num_cached_compilation_graph()
314
+ new_compiled_graphs = total_cached_graphs - self.num_xla_graphs
315
+ if new_compiled_graphs == 0:
316
+ return
317
+
318
+ logger.info("Add new %d compiled XLA graphs due to %s",
319
+ new_compiled_graphs, case_str)
320
+ self.num_xla_graphs += new_compiled_graphs
321
+
322
+ def _verify_num_xla_graphs(self, case_str):
323
+ check_comp = self.check_recompilation and not self.enforce_eager
324
+ if not check_comp:
325
+ return
326
+
327
+ curr_cached_graph = xr.get_num_cached_compilation_graph()
328
+ assert self.num_xla_graphs == curr_cached_graph, (
329
+ "Recompilation after warm up is detected during {}."
330
+ " num_xla_graphs = {} curr_cached_graph = {}".format(
331
+ case_str, self.num_xla_graphs, curr_cached_graph))
332
+
333
+ def _update_states(self, scheduler_output: "SchedulerOutput") -> bool:
334
+ """Update the cached states and the persistent batch with the scheduler
335
+ output.
336
+
337
+ The updated states are used by the `_prepare_inputs` function to create
338
+ the input GPU tensors for the model.
339
+
340
+ Returns:
341
+ True if there is a new/resumed/paused/finished request.
342
+ If False, we can skip copying SamplingMetadata to the GPU.
343
+ """
344
+ # Remove finished requests from the cached states.
345
+ for req_id in scheduler_output.finished_req_ids:
346
+ self.requests.pop(req_id, None)
347
+
348
+ # Remove the finished requests from the persistent batch.
349
+ # NOTE(woosuk): There could be an edge case where finished_req_ids and
350
+ # scheduled_req_ids overlap. This happens when a request is aborted and
351
+ # then resubmitted with the same ID. In this case, we treat them as two
352
+ # distinct requests - clearing the cached states for the first request
353
+ # and handling the second as a new request.
354
+ removed_req_indices: list[int] = []
355
+ for req_id in scheduler_output.finished_req_ids:
356
+ req_index = self.input_batch.remove_request(req_id)
357
+ if req_index is not None:
358
+ removed_req_indices.append(req_index)
359
+
360
+ # Free the cached encoder outputs.
361
+ for mm_hash in scheduler_output.free_encoder_mm_hashes:
362
+ self.encoder_cache.pop(mm_hash, None)
363
+
364
+ # Remove the unscheduled requests from the persistent batch.
365
+ # NOTE(woosuk): The unscheduled requests are either preempted requests
366
+ # or running requests that are not scheduled in this step. We remove
367
+ # them from the persistent batch but keep their cached states since
368
+ # they will be scheduled again sometime in the future.
369
+ scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
370
+ cached_req_ids = self.input_batch.req_id_to_index.keys()
371
+ unscheduled_req_ids = cached_req_ids - scheduled_req_ids
372
+ # NOTE(woosuk): The persistent batch optimization assumes that
373
+ # consecutive batches contain mostly the same requests. If batches
374
+ # have low request overlap (e.g., alternating between two distinct
375
+ # sets of requests), this optimization becomes very inefficient.
376
+ for req_id in unscheduled_req_ids:
377
+ req_index = self.input_batch.remove_request(req_id)
378
+ assert req_index is not None
379
+ removed_req_indices.append(req_index)
380
+
381
+ req_ids_to_add: list[str] = []
382
+ # Add new requests to the cached states.
383
+ for new_req_data in scheduler_output.scheduled_new_reqs:
384
+ assert new_req_data.sampling_params is not None,\
385
+ "Pooling is not supported in TPU yet"
386
+ req_id = new_req_data.req_id
387
+ sampling_params = new_req_data.sampling_params
388
+
389
+ self.requests[req_id] = CachedRequestState(
390
+ req_id=req_id,
391
+ prompt_token_ids=new_req_data.prompt_token_ids,
392
+ prompt_embeds=new_req_data.prompt_embeds,
393
+ mm_features=new_req_data.mm_features,
394
+ sampling_params=sampling_params,
395
+ pooling_params=None,
396
+ generator=None,
397
+ block_ids=new_req_data.block_ids,
398
+ num_computed_tokens=new_req_data.num_computed_tokens,
399
+ output_token_ids=[],
400
+ lora_request=new_req_data.lora_request,
401
+ )
402
+
403
+ req_ids_to_add.append(req_id)
404
+
405
+ # Update the states of the running/resumed requests.
406
+ req_data = scheduler_output.scheduled_cached_reqs
407
+ for i, req_id in enumerate(req_data.req_ids):
408
+ req_state = self.requests[req_id]
409
+ num_computed_tokens = req_data.num_computed_tokens[i]
410
+ new_block_ids = req_data.new_block_ids[i]
411
+ resumed_from_preemption = req_data.resumed_from_preemption[i]
412
+
413
+ # Update the cached states.
414
+ req_state.num_computed_tokens = num_computed_tokens
415
+ if not resumed_from_preemption:
416
+ if new_block_ids is not None:
417
+ # Append the new blocks to the existing block IDs.
418
+ for block_ids, new_ids in zip(req_state.block_ids,
419
+ new_block_ids):
420
+ block_ids.extend(new_ids)
421
+ else:
422
+ assert new_block_ids is not None
423
+ # The request is resumed from preemption.
424
+ # Replace the existing block IDs with the new ones.
425
+ req_state.block_ids = new_block_ids
426
+
427
+ req_index = self.input_batch.req_id_to_index.get(req_id)
428
+ if req_index is None:
429
+ # The request is not in the persistent batch.
430
+ # The request was either preempted and resumed later, or was not
431
+ # scheduled in the previous step and needs to be added again.
432
+ req_ids_to_add.append(req_id)
433
+ continue
434
+
435
+ # Update the persistent batch.
436
+ self.input_batch.num_computed_tokens_cpu[req_index] = (
437
+ num_computed_tokens)
438
+ if new_block_ids is not None:
439
+ self.input_batch.block_table.append_row(
440
+ new_block_ids, req_index)
441
+
442
+ # Add the new or resumed requests to the persistent batch.
443
+ # The smaller empty indices are filled first.
444
+ removed_req_indices = sorted(removed_req_indices, reverse=True)
445
+ for req_id in req_ids_to_add:
446
+ req_state = self.requests[req_id]
447
+ if removed_req_indices:
448
+ # Fill the empty index.
449
+ req_index = removed_req_indices.pop()
450
+ else:
451
+ # Append to the end.
452
+ req_index = None
453
+ self.input_batch.add_request(req_state, req_index)
454
+
455
+ # Condense the batched states if there are empty indices.
456
+ if removed_req_indices:
457
+ self.input_batch.condense(removed_req_indices)
458
+
459
+ return len(unscheduled_req_ids) > 0 or len(req_ids_to_add) > 0
460
+
461
+ def get_model(self) -> nn.Module:
462
+ return self.model
463
+
464
+ def get_supported_generation_tasks(self) -> list[GenerationTask]:
465
+ model = self.get_model()
466
+ supported_tasks = list[GenerationTask]()
467
+
468
+ if is_text_generation_model(model):
469
+ supported_tasks.append("generate")
470
+
471
+ if supports_transcription(model):
472
+ if model.supports_transcription_only:
473
+ return ["transcription"]
474
+
475
+ supported_tasks.append("transcription")
476
+
477
+ return supported_tasks
478
+
479
+ def get_supported_pooling_tasks(self) -> list[PoolingTask]:
480
+ model = self.get_model()
481
+ if not is_pooling_model(model):
482
+ return []
483
+
484
+ return list(model.pooler.get_supported_tasks())
485
+
486
+ def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
487
+ tasks = list[SupportedTask]()
488
+
489
+ if self.model_config.runner_type == "generate":
490
+ tasks.extend(self.get_supported_generation_tasks())
491
+ if self.model_config.runner_type == "pooling":
492
+ tasks.extend(self.get_supported_pooling_tasks())
493
+
494
+ return tuple(tasks)
495
+
496
+ def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
497
+ """
498
+ Generates the KVCacheSpec by parsing the kv cache format from each
499
+ Attention module in the static forward context.
500
+ Returns:
501
+ KVCacheSpec: A dictionary mapping layer names to their KV cache
502
+ format. Layers that do not need KV cache are not included.
503
+ """
504
+
505
+ layers = get_layers_from_vllm_config(self.vllm_config, Attention)
506
+ block_size = self.vllm_config.cache_config.block_size
507
+ kv_cache_spec: dict[str, KVCacheSpec] = {}
508
+ for layer_name, attn_module in layers.items():
509
+ if (kv_tgt_layer :=
510
+ attn_module.kv_sharing_target_layer_name) is not None:
511
+ # The layer doesn't need its own KV cache and will use that of
512
+ # the target layer. We skip creating a KVCacheSpec for it, so
513
+ # that KV cache management logic will act as this layer does
514
+ # not exist, and doesn't allocate KV cache for the layer. This
515
+ # enables the memory saving of cross-layer kv sharing, allowing
516
+ # a given amount of memory to accommodate longer context lengths
517
+ # or enable more requests to be processed simultaneously.
518
+ self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
519
+ continue
520
+
521
+ if attn_module.attn_type == AttentionType.DECODER:
522
+ if isinstance(attn_module, ChunkedLocalAttention):
523
+ logger.warning_once(
524
+ "Using irope in Pallas is not supported yet, it "
525
+ "will fall back to global attention for long context.")
526
+ if attn_module.sliding_window is not None:
527
+ kv_cache_spec[layer_name] = SlidingWindowSpec(
528
+ block_size=block_size,
529
+ num_kv_heads=attn_module.num_kv_heads,
530
+ head_size=attn_module.head_size,
531
+ dtype=self.kv_cache_dtype,
532
+ sliding_window=attn_module.sliding_window,
533
+ )
534
+ else:
535
+ kv_cache_spec[layer_name] = FullAttentionSpec(
536
+ block_size=block_size,
537
+ num_kv_heads=attn_module.num_kv_heads,
538
+ head_size=attn_module.head_size,
539
+ dtype=self.kv_cache_dtype,
540
+ )
541
+ elif attn_module.attn_type in (AttentionType.ENCODER,
542
+ AttentionType.ENCODER_ONLY):
543
+ # encoder-only attention does not need KV cache.
544
+ continue
545
+ elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
546
+ raise NotImplementedError
547
+ else:
548
+ raise ValueError(
549
+ f"Unknown attention type: {attn_module.attn_type}")
550
+
551
+ return kv_cache_spec
552
+
553
+ def _get_slot_mapping_metadata(self, num_reqs,
554
+ num_scheduled_tokens_per_req) -> np.ndarray:
555
+ """
556
+ Computes metadata for mapping slots to blocks in the key-value (KV)
557
+ cache for a batch of requests.
558
+
559
+ This function determines, for each request in the batch, how the
560
+ scheduled tokens are distributed across memory blocks, and generates
561
+ metadata needed to map slices of tokens to their corresponding positions
562
+ in the KV cache.
563
+
564
+ Args:
565
+ num_reqs (int): Number of requests in the current batch.
566
+ num_scheduled_tokens_per_req (int or np.ndarray): Number of tokens
567
+ to be scheduled for each request.
568
+
569
+ Returns:
570
+ np.ndarray: A 2D array of shape (total_block_len, 3), where each row
571
+ contains:
572
+ - kv_cache_start_index (int): The starting index in the KV cache
573
+ for the corresponding slice.
574
+ - new_kv_start_index (int): The starting index in the new KV
575
+ cache for the corresponding slice.
576
+ - slice_len (int): The length of the slice.
577
+ """
578
+ slices_start = self.input_batch.num_computed_tokens_cpu[:num_reqs]
579
+ slices_end = self.input_batch.num_computed_tokens_cpu[:num_reqs] + \
580
+ num_scheduled_tokens_per_req
581
+ local_block_start_idx = slices_start // self.block_size
582
+ local_block_end_idx = (slices_end - 1) // self.block_size
583
+ no_repeat_req_indices = self.arange_np[:num_reqs]
584
+ global_block_start_idx = (
585
+ no_repeat_req_indices * self.max_num_blocks_per_req +
586
+ local_block_start_idx)
587
+ block_lens = local_block_end_idx - local_block_start_idx + 1
588
+ global_block_start_idx = np.repeat(global_block_start_idx, block_lens)
589
+ slice_arange = np.concatenate([self.arange_np[:n] for n in block_lens])
590
+ global_block_indices = global_block_start_idx + slice_arange
591
+ block_table_cpu = self.input_batch.block_table[0].get_cpu_tensor()
592
+ block_numbers = block_table_cpu.flatten()[global_block_indices].numpy()
593
+ total_block_len = np.sum(block_lens)
594
+ slot_mapping_slices = np.repeat(np.array([[0, self.block_size]],
595
+ dtype=np.int32),
596
+ total_block_len,
597
+ axis=0)
598
+ cu_block_lens = np.zeros(len(block_lens) + 1, dtype=np.int32)
599
+ np.cumsum(block_lens, out=cu_block_lens[1:])
600
+ for req_idx in range(num_reqs):
601
+ slot_mapping_slices[cu_block_lens[req_idx]][
602
+ 0] = slices_start[req_idx] % self.block_size
603
+ slot_mapping_slices[
604
+ cu_block_lens[req_idx + 1] -
605
+ 1][1] = (slices_end[req_idx] - 1) % self.block_size + 1
606
+ slice_lens = slot_mapping_slices[:, 1] - slot_mapping_slices[:, 0]
607
+ cu_slices_lens = np.zeros(len(slice_lens) + 1, dtype=np.int32)
608
+ np.cumsum(slice_lens, out=cu_slices_lens[1:])
609
+ kv_cache_start_indices = slot_mapping_slices[:, 0] + \
610
+ (block_numbers * self.block_size)
611
+ new_kv_start_indices = cu_slices_lens[:-1]
612
+ slot_mapping_metadata = np.stack(
613
+ [kv_cache_start_indices, new_kv_start_indices, slice_lens], axis=1)
614
+ return slot_mapping_metadata
615
+
616
+ def _prepare_inputs(self, scheduler_output: "SchedulerOutput",
617
+ start_index: int):
618
+ assert scheduler_output.total_num_scheduled_tokens > 0
619
+ num_reqs = self.input_batch.num_reqs
620
+ assert num_reqs > 0
621
+ assert start_index < num_reqs
622
+
623
+ # Get the number of scheduled tokens for each request.
624
+ use_max_model_len = self.most_model_len is None
625
+ num_scheduled_tokens_per_req = []
626
+ max_num_scheduled_tokens_all_reqs = 0
627
+ end_index = start_index
628
+
629
+ # Use either most_model_len or max_model_len depending on request size.
630
+ for i in range(start_index, num_reqs):
631
+ req_id = self.input_batch.req_ids[i]
632
+ assert req_id is not None
633
+ num_tokens = scheduler_output.num_scheduled_tokens[req_id]
634
+ if not use_max_model_len and num_tokens > self.most_model_len:
635
+ use_max_model_len = True
636
+ num_scheduled_tokens_per_req.append(num_tokens)
637
+ if use_max_model_len:
638
+ if len(num_scheduled_tokens_per_req) > self.num_reqs_max_model_len:
639
+ num_scheduled_tokens_per_req = \
640
+ num_scheduled_tokens_per_req[:self.num_reqs_max_model_len]
641
+ end_index = start_index + self.num_reqs_max_model_len
642
+ else:
643
+ end_index = num_reqs
644
+ else:
645
+ if len(num_scheduled_tokens_per_req
646
+ ) > self.num_reqs_most_model_len:
647
+ num_scheduled_tokens_per_req = \
648
+ num_scheduled_tokens_per_req[:self.num_reqs_most_model_len]
649
+ end_index = start_index + self.num_reqs_most_model_len
650
+ else:
651
+ end_index = num_reqs
652
+ max_num_scheduled_tokens_all_reqs = max(num_scheduled_tokens_per_req)
653
+ num_scheduled_tokens_per_req = np.array(num_scheduled_tokens_per_req,
654
+ dtype=np.int32)
655
+ total_num_scheduled_tokens = sum(num_scheduled_tokens_per_req)
656
+ assert max_num_scheduled_tokens_all_reqs > 0
657
+
658
+ num_reqs = len(num_scheduled_tokens_per_req)
659
+
660
+ # Get request indices.
661
+ # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
662
+ # For each scheduled token, what are the corresponding req index.
663
+ req_indices = np.repeat(self.arange_np[:num_reqs],
664
+ num_scheduled_tokens_per_req)
665
+
666
+ # Get batched arange.
667
+ # E.g., [2, 5, 3] -> [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
668
+ # For each scheduled token, what is its position in corresponding req.
669
+ arange = np.concatenate(
670
+ [self.arange_np[:n] for n in num_scheduled_tokens_per_req])
671
+
672
+ # Get positions.
673
+ positions_np = self.positions_np[:total_num_scheduled_tokens]
674
+ np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
675
+ arange,
676
+ out=positions_np)
677
+
678
+ # Get token indices.
679
+ # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
680
+ # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
681
+ # where M is the max_model_len.
682
+ token_indices = (positions_np +
683
+ req_indices * self.input_batch.token_ids_cpu.shape[1])
684
+
685
+ # NOTE(woosuk): We use torch.index_select instead of np.take here
686
+ # because torch.index_select is much faster than np.take for large
687
+ # tensors.
688
+ torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
689
+ 0,
690
+ torch.from_numpy(token_indices),
691
+ out=self.input_ids_cpu[:total_num_scheduled_tokens])
692
+
693
+ # Prepare the attention metadata.
694
+ self.query_start_loc_np[0] = 0
695
+ np.cumsum(num_scheduled_tokens_per_req,
696
+ out=self.query_start_loc_np[1:num_reqs + 1])
697
+ self.query_start_loc_np[num_reqs + 1:] = 1
698
+
699
+ self.seq_lens_np[:num_reqs] = (
700
+ self.input_batch.num_computed_tokens_cpu[:num_reqs] +
701
+ num_scheduled_tokens_per_req)
702
+
703
+ # Do the padding and copy the tensors to the TPU.
704
+ padded_total_num_scheduled_tokens = _get_padded_token_len(
705
+ self.num_tokens_paddings, total_num_scheduled_tokens)
706
+ # Zero out to avoid spurious values from prev iteration (last cp chunk)
707
+ self.input_ids_cpu[
708
+ total_num_scheduled_tokens:padded_total_num_scheduled_tokens] = 0
709
+ self.input_ids = self.input_ids_cpu[:
710
+ padded_total_num_scheduled_tokens].to(
711
+ self.device)
712
+ self.position_ids = self.positions_cpu[:
713
+ padded_total_num_scheduled_tokens].to(
714
+ self.device)
715
+ if use_max_model_len:
716
+ block_tables = self.block_table_cpu[:self.num_reqs_max_model_len, :
717
+ self.max_num_blocks_per_req]
718
+ block_tables[:num_reqs, :self.max_num_blocks_per_req] = (
719
+ self.input_batch.block_table[0].get_cpu_tensor()[:num_reqs])
720
+ query_start_loc = self.query_start_loc_cpu[:self.
721
+ num_reqs_max_model_len +
722
+ 1].to(self.device)
723
+ seq_lens = self.seq_lens_cpu[:self.num_reqs_max_model_len].to(
724
+ self.device)
725
+ else:
726
+ block_tables = self.block_table_cpu[:self.
727
+ num_reqs_most_model_len, :self.
728
+ num_blocks_per_most_len_req]
729
+ block_tables[:num_reqs, :self.num_blocks_per_most_len_req] = (
730
+ self.input_batch.block_table[0].get_cpu_tensor()
731
+ [:num_reqs, :self.num_blocks_per_most_len_req])
732
+ query_start_loc = self.query_start_loc_cpu[:self.
733
+ num_reqs_most_model_len +
734
+ 1].to(self.device)
735
+ seq_lens = self.seq_lens_cpu[:self.num_reqs_most_model_len].to(
736
+ self.device)
737
+ block_tables = block_tables.to(self.device)
738
+
739
+ # Calculate the slot mapping
740
+ slot_mapping_metadata = self._get_slot_mapping_metadata(
741
+ num_reqs, num_scheduled_tokens_per_req)
742
+ num_kv_update_slices = slot_mapping_metadata.shape[0]
743
+ padded_num_slices = _get_padded_num_kv_cache_update_slices(
744
+ padded_total_num_scheduled_tokens, self.max_num_reqs,
745
+ self.block_size)
746
+ slot_mapping_metadata = np.pad(
747
+ slot_mapping_metadata,
748
+ [[0, padded_num_slices - len(slot_mapping_metadata)], [0, 0]],
749
+ constant_values=0)
750
+ slot_mapping_metadata = np.transpose(slot_mapping_metadata)
751
+ slot_mapping_metadata = torch.tensor(slot_mapping_metadata,
752
+ device=self.device)
753
+
754
+ if self.lora_config is not None:
755
+ # We need to respect padding when activating LoRA adapters
756
+ padded_num_scheduled_tokens_per_req = np.copy(
757
+ num_scheduled_tokens_per_req
758
+ ) # Copying to avoid accidental state corruption bugs
759
+ padded_num_scheduled_tokens_per_req[-1] += \
760
+ padded_total_num_scheduled_tokens - total_num_scheduled_tokens
761
+
762
+ self.set_active_loras(self.input_batch,
763
+ padded_num_scheduled_tokens_per_req)
764
+
765
+ attn_metadata = PallasMetadata(
766
+ slot_mapping=slot_mapping_metadata,
767
+ block_tables=block_tables,
768
+ context_lens=seq_lens,
769
+ query_start_loc=query_start_loc,
770
+ num_seqs=torch.tensor([num_reqs],
771
+ dtype=torch.int32,
772
+ device=self.device),
773
+ num_kv_update_slices=torch.tensor([num_kv_update_slices],
774
+ dtype=torch.int32,
775
+ device=self.device),
776
+ num_slices_per_kv_cache_update_block=self.
777
+ _num_slices_per_kv_cache_update_block,
778
+ )
779
+ # NOTE(woosuk): Due to chunked prefills, there can be at most 1 partial
780
+ # request in the batch. While we should not sample any token from this
781
+ # partial request, we do so for simplicity. We will ignore the sampled
782
+ # token from the partial request.
783
+ # TODO: Support prompt logprobs.
784
+ padded_num_reqs = _get_padded_num_reqs_with_upper_limit(
785
+ num_reqs, self.max_num_reqs)
786
+ # Indices at which we sample (positions of last token in the sequence).
787
+ # Padded to avoid recompiling when `num_reqs` varies.
788
+ logits_indices = self.query_start_loc_cpu[1:padded_num_reqs + 1] - 1
789
+ logits_indices = logits_indices.to(self.device)
790
+
791
+ if self.lora_config is not None:
792
+ # We need to respect padding when activating LoRA adapters
793
+ padded_num_scheduled_tokens_per_req = np.copy(
794
+ num_scheduled_tokens_per_req
795
+ ) # Copying to avoid accidental state corruption bugs
796
+ padded_num_scheduled_tokens_per_req[-1] += \
797
+ padded_total_num_scheduled_tokens - total_num_scheduled_tokens
798
+
799
+ self.set_active_loras(self.input_batch,
800
+ padded_num_scheduled_tokens_per_req)
801
+
802
+ layer_names = get_layers_from_vllm_config(self.vllm_config,
803
+ Attention).keys()
804
+ per_layer_attn_metadata = {
805
+ layer_name: attn_metadata
806
+ for layer_name in layer_names
807
+ }
808
+ return per_layer_attn_metadata, logits_indices, padded_num_reqs,\
809
+ num_reqs, end_index
810
+
811
+ def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
812
+ scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
813
+ if not scheduled_encoder_inputs:
814
+ return
815
+
816
+ # Batch the multi-modal inputs.
817
+ mm_kwargs = list[MultiModalKwargsItem]()
818
+ # List of tuple (mm_hash, pos_info)
819
+ mm_hashes_pos = list[tuple[str, PlaceholderRange]]()
820
+ for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
821
+ req_state = self.requests[req_id]
822
+
823
+ for mm_input_id in encoder_input_ids:
824
+ mm_feature = req_state.mm_features[mm_input_id]
825
+ mm_hash = mm_feature.identifier
826
+ mm_kwargs.append(mm_feature.data)
827
+ mm_hashes_pos.append((mm_hash, mm_feature.mm_position))
828
+
829
+ # Batch mm inputs as much as we can: if a request in the batch has
830
+ # multiple modalities or a different modality than the previous one,
831
+ # we process it separately to preserve item order.
832
+ # FIXME(ywang96): This is a hacky way to deal with multiple modalities
833
+ # in the same batch while still being able to benefit from batching
834
+ # multimodal inputs. The proper solution should be reordering the
835
+ # encoder outputs.
836
+ model = cast(SupportsMultiModal, self.model)
837
+ encoder_outputs = []
838
+ for _, num_items, mm_kwargs_group in group_mm_kwargs_by_modality(
839
+ mm_kwargs,
840
+ device=self.device,
841
+ pin_memory=self.pin_memory,
842
+ merge_by_field_config=model.merge_by_field_config,
843
+ ):
844
+ # Run the encoder.
845
+ # `curr_group_outputs` is either of the following:
846
+ # 1. A tensor of shape (num_items, feature_size, hidden_size)
847
+ # in case feature_size is fixed across all multimodal items.
848
+ # 2. A list or tuple (length: num_items) of tensors, each of shape
849
+ # (feature_size, hidden_size) in case the feature size is dynamic
850
+ # depending on the input multimodal items.
851
+ torch_xla.sync(wait=False)
852
+ curr_group_outputs = model.get_multimodal_embeddings(
853
+ **mm_kwargs_group)
854
+ torch_xla.sync(wait=False)
855
+
856
+ sanity_check_mm_encoder_outputs(
857
+ curr_group_outputs,
858
+ expected_num_items=num_items,
859
+ )
860
+
861
+ if isinstance(curr_group_outputs, torch.Tensor):
862
+ encoder_outputs.append(curr_group_outputs)
863
+ else:
864
+ assert isinstance(curr_group_outputs, (list, tuple))
865
+ for output in curr_group_outputs:
866
+ encoder_outputs.append(output)
867
+
868
+ # Cache the encoder outputs.
869
+ # NOTE (NickLucche) here we diverge from logic in other runners, as we
870
+ # assume to only have whole mm items to process. Hence we avoid the
871
+ # intrinsic dynamism that `scatter_mm_placeholders` introduces.
872
+ for (mm_hash, pos_info), output in zip(mm_hashes_pos, encoder_outputs):
873
+ assert pos_info.is_embed is None, "Expected all positions to be"\
874
+ " contiguous and embeddings."
875
+ self.encoder_cache[mm_hash] = output
876
+
877
+ def _gather_mm_embeddings(
878
+ self,
879
+ scheduler_output: "SchedulerOutput",
880
+ ) -> list[torch.Tensor]:
881
+ mm_embeds: list[torch.Tensor] = []
882
+ for req_id in self.input_batch.req_ids:
883
+ num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
884
+ req_id]
885
+ req_state = self.requests[req_id]
886
+ num_computed_tokens = req_state.num_computed_tokens
887
+ # TODO unroll loop and assume/enforce --disable_chunked_mm_input
888
+ # NOTE (NickLucche) here we diverge from logic in other runners, as
889
+ # we assume to only have whole mm items to process. Hence we avoid
890
+ # the intrinsic dynamism that `gather_mm_placeholders` introduces.
891
+ for mm_feature in req_state.mm_features:
892
+ pos_info = mm_feature.mm_position
893
+ start_pos = pos_info.offset
894
+ num_encoder_tokens = pos_info.length
895
+
896
+ # The encoder output is needed if the two ranges overlap:
897
+ # [num_computed_tokens,
898
+ # num_computed_tokens + num_scheduled_tokens) and
899
+ # [start_pos, start_pos + num_encoder_tokens)
900
+ if start_pos >= num_computed_tokens + num_scheduled_tokens:
901
+ # The encoder output is not needed in this step.
902
+ break
903
+ if start_pos + num_encoder_tokens <= num_computed_tokens:
904
+ # The encoder output is already processed and stored
905
+ # in the decoder's KV cache.
906
+ continue
907
+ mm_hash = mm_feature.identifier
908
+ encoder_output = self.encoder_cache.get(mm_hash, None)
909
+ assert encoder_output is not None,\
910
+ f"Encoder cache miss for {mm_hash}."
911
+ assert pos_info.is_embed is None, "Expected all positions to"\
912
+ " be contiguous and embeddings."
913
+ encoder_output = self.encoder_cache[mm_hash]
914
+ mm_embeds.append(encoder_output)
915
+ return mm_embeds
916
+
917
+ def _get_model_inputs(self, input_ids: torch.Tensor,
918
+ mm_embeds: list[torch.Tensor]):
919
+ if self.supports_mm_inputs:
920
+ # NOTE(woosuk): To unify token ids and soft tokens (vision
921
+ # embeddings), we always use embeddings (rather than token ids)
922
+ # as input to the multimodal model, even when the input is text.
923
+ inputs_embeds = self.model.get_input_embeddings(
924
+ input_ids=input_ids,
925
+ multimodal_embeddings=mm_embeds,
926
+ )
927
+ return None, inputs_embeds
928
+ else:
929
+ # For text-only models, we use token ids as input.
930
+ # While it is possible to use embeddings as input just like the
931
+ # multimodal models, it is not desirable for performance since
932
+ # then the embedding layer is not included in the CUDA graph.
933
+ return input_ids, None
934
+
935
+ @torch.no_grad()
936
+ def execute_model(
937
+ self,
938
+ scheduler_output: "SchedulerOutput",
939
+ intermediate_tensors: Optional[IntermediateTensors] = None,
940
+ ) -> ModelRunnerOutput:
941
+ # Update cached state
942
+ self._update_states(scheduler_output)
943
+ if not scheduler_output.total_num_scheduled_tokens:
944
+ if not has_kv_transfer_group():
945
+ # Return empty ModelRunnerOutput if there's no work to do.
946
+ return EMPTY_MODEL_RUNNER_OUTPUT
947
+
948
+ return self.kv_connector_no_forward(scheduler_output,
949
+ self.vllm_config)
950
+
951
+ if self.supports_mm_inputs:
952
+ # Run the multimodal encoder if any.
953
+ self._execute_mm_encoder(scheduler_output)
954
+ mm_embeds = self._gather_mm_embeddings(scheduler_output)
955
+ else:
956
+ mm_embeds = []
957
+ torch_xla.sync(wait=False)
958
+ # Prepare inputs, the requests might be split into multiple
959
+ # executions, combine the result of each execution.
960
+ start_index = 0
961
+ combined_selected_tokens: list[torch.Tensor] = []
962
+ combined_logprobs: list[LogprobsLists] = []
963
+
964
+ # NOTE: setup current batch's metadata for kv connector.
965
+ # Currently, only verified with NixlConnector
966
+ with set_forward_context(None, self.vllm_config):
967
+ self.maybe_setup_kv_connector(scheduler_output)
968
+
969
+ while start_index < self.input_batch.num_reqs:
970
+ attn_metadata, logits_indices, padded_num_reqs, num_reqs,\
971
+ end_index = self._prepare_inputs(scheduler_output, start_index)
972
+ input_ids, inputs_embeds = self._get_model_inputs(
973
+ self.input_ids, mm_embeds)
974
+ torch_xla.sync(wait=False)
975
+ # Run the decoder
976
+ with set_forward_context(
977
+ attn_metadata,
978
+ self.vllm_config,
979
+ num_tokens=scheduler_output.total_num_scheduled_tokens):
980
+ hidden_states = self.model(
981
+ input_ids=input_ids,
982
+ positions=self.position_ids,
983
+ inputs_embeds=inputs_embeds,
984
+ )
985
+ hidden_states = self.select_hidden_states(hidden_states,
986
+ logits_indices)
987
+ logits = self.compute_logits(hidden_states)
988
+ tpu_sampling_metadata = TPUSupportedSamplingMetadata.\
989
+ from_input_batch(self.input_batch, padded_num_reqs, self.device)
990
+ if scheduler_output.grammar_bitmask is not None:
991
+ require_struct_decoding, grammar_bitmask_padded, arange = \
992
+ self.prepare_structured_decoding_input(logits,
993
+ scheduler_output)
994
+ logits = self.structured_decode(require_struct_decoding,
995
+ grammar_bitmask_padded, logits,
996
+ arange)
997
+ selected_token_ids = self.sample_from_logits_func(
998
+ logits, tpu_sampling_metadata)
999
+ # NOTE (NickLucche) Use the original logits (before any penalties or
1000
+ # temperature scaling) for the top-k logprobs. We can't enforce it
1001
+ # due to recompilations outside torch.compiled code, so just make
1002
+ # sure `sample_from_logits` does not modify the logits in-place.
1003
+ logprobs = self.gather_logprobs(logits, selected_token_ids) \
1004
+ if tpu_sampling_metadata.logprobs else None
1005
+
1006
+ # Remove padding on cpu and keep dynamic op outside of xla graph.
1007
+ selected_token_ids = selected_token_ids.cpu()[:num_reqs]
1008
+
1009
+ combined_selected_tokens.append(selected_token_ids)
1010
+ if tpu_sampling_metadata.logprobs:
1011
+ combined_logprobs.append(logprobs.tolists())
1012
+
1013
+ start_index = end_index
1014
+
1015
+ # NOTE: current kv load and save get h2d/d2h copies involved.
1016
+ # Those copies are blocking. Once they become async., kv_save
1017
+ # should be called right after each single forward pass,
1018
+ # instead of the forwards of the entire input batch.
1019
+ self.maybe_wait_for_kv_save()
1020
+ finished_sending, finished_recving = (
1021
+ self.get_finished_kv_transfers(scheduler_output))
1022
+
1023
+ selected_token_ids = torch.cat(combined_selected_tokens, dim=0)
1024
+ if tpu_sampling_metadata.logprobs:
1025
+
1026
+ def concat_lists(input_lists):
1027
+ result = []
1028
+ for input_list in input_lists:
1029
+ result.extend(input_list)
1030
+ return result
1031
+
1032
+ logprobs_lists = LogprobsLists(logprob_token_ids=concat_lists(
1033
+ [lp.logprob_token_ids for lp in combined_logprobs]),
1034
+ logprobs=concat_lists([
1035
+ lp.logprobs
1036
+ for lp in combined_logprobs
1037
+ ]),
1038
+ sampled_token_ranks=concat_lists([
1039
+ lp.sampled_token_ranks
1040
+ for lp in combined_logprobs
1041
+ ]))
1042
+ else:
1043
+ logprobs_lists = None
1044
+
1045
+ # Update the cache state concurrently. Code above will not block until
1046
+ # we use `selected_token_ids`. Add mark_step if post-processing changes
1047
+ request_seq_lens: list[tuple[int, CachedRequestState, int]] = []
1048
+ discard_sampled_tokens_req_indices = []
1049
+ num_reqs = self.input_batch.num_reqs
1050
+ for i, req_id in zip(range(num_reqs), self.input_batch.req_ids):
1051
+ assert req_id is not None
1052
+ req_state = self.requests[req_id]
1053
+ seq_len = (req_state.num_computed_tokens +
1054
+ scheduler_output.num_scheduled_tokens[req_id])
1055
+ if seq_len >= req_state.num_tokens:
1056
+ request_seq_lens.append((i, req_state, seq_len))
1057
+ else:
1058
+ # Ignore the sampled token from the partial request.
1059
+ # Rewind the generator state as if the token was not sampled.
1060
+ generator = self.input_batch.generators.get(i)
1061
+ if generator is not None:
1062
+ # This relies on cuda-specific torch-internal impl details
1063
+ generator.set_offset(generator.get_offset() - 4)
1064
+
1065
+ # Record the index of the request that should not be sampled,
1066
+ # so that we could clear the sampled tokens before returning.
1067
+ discard_sampled_tokens_req_indices.append(i)
1068
+
1069
+ assert all(
1070
+ req_id is not None for req_id in
1071
+ self.input_batch.req_ids[:num_reqs]), "req_ids contains None"
1072
+ req_ids = cast(list[str], self.input_batch.req_ids[:num_reqs])
1073
+
1074
+ prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}
1075
+ for req_id in self.input_batch.req_ids[:num_reqs]:
1076
+ prompt_logprobs_dict[req_id] = None
1077
+
1078
+ max_gen_len = selected_token_ids.shape[-1]
1079
+ if max_gen_len == 1:
1080
+ valid_sampled_token_ids = selected_token_ids.tolist()
1081
+
1082
+ # Mask out the sampled tokens that should not be sampled.
1083
+ # TODO: Keep in sync with gpu_model_runner.py, in particular
1084
+ # the "else" case here
1085
+ for i in discard_sampled_tokens_req_indices:
1086
+ valid_sampled_token_ids[i].clear()
1087
+
1088
+ # Append sampled tokens
1089
+ for i, req_state, seq_len in request_seq_lens:
1090
+ token_id = valid_sampled_token_ids[i][0]
1091
+ self.input_batch.token_ids_cpu[i, seq_len] = token_id
1092
+ req_state.output_token_ids.append(token_id)
1093
+ self.input_batch.num_tokens[i] += 1
1094
+
1095
+ else:
1096
+ valid_mask = selected_token_ids != INVALID_TOKEN_ID
1097
+ gen_lens = valid_mask.sum(dim=1).tolist()
1098
+ valid_sampled_token_ids = [
1099
+ seq.tolist()
1100
+ for seq in selected_token_ids[valid_mask].split(gen_lens)
1101
+ ]
1102
+ self.input_batch.num_tokens[:num_reqs] += gen_lens
1103
+ for i, req_state, seq_len in request_seq_lens:
1104
+ target_slice = slice(seq_len - gen_lens[i] + 1, seq_len + 1)
1105
+ self.input_batch.token_ids_cpu[
1106
+ i, target_slice] = valid_sampled_token_ids[i]
1107
+ req_state.output_token_ids.extend(valid_sampled_token_ids[i])
1108
+
1109
+ kv_connector_output = None if (
1110
+ finished_sending is None
1111
+ and finished_recving is None) else KVConnectorOutput(
1112
+ finished_sending=finished_sending,
1113
+ finished_recving=finished_recving,
1114
+ )
1115
+
1116
+ model_runner_output = ModelRunnerOutput(
1117
+ req_ids=req_ids,
1118
+ req_id_to_index=self.input_batch.req_id_to_index,
1119
+ sampled_token_ids=valid_sampled_token_ids,
1120
+ logprobs=logprobs_lists,
1121
+ prompt_logprobs_dict=prompt_logprobs_dict,
1122
+ pooler_output=[],
1123
+ kv_connector_output=kv_connector_output,
1124
+ )
1125
+
1126
+ # Check there are no new graphs compiled - all the graphs should be
1127
+ # captured and compiled during warm up.
1128
+ self._verify_num_xla_graphs("execute_model")
1129
+
1130
+ return model_runner_output
1131
+
1132
+ def update_config(self, overrides: dict[str, Any]) -> None:
1133
+ # TODO: TPU config may need extra validation
1134
+ # https://github.com/vllm-project/vllm/pull/20095#discussion_r2201497754
1135
+ allowed_config_names = {"load_config", "model_config"}
1136
+ for config_name, config_overrides in overrides.items():
1137
+ assert config_name in allowed_config_names, \
1138
+ f"Config `{config_name}` not supported. " \
1139
+ f"Allowed configs: {allowed_config_names}"
1140
+ config = getattr(self, config_name)
1141
+ new_config = update_config(config, config_overrides)
1142
+ setattr(self, config_name, new_config)
1143
+
1144
+ def load_model(self) -> None:
1145
+ self.device = self.device_config.device
1146
+
1147
+ # NOTE(woosuk): While the executor assigns the TP ranks to the worker
1148
+ # process, the ranks can be different from the ranks internally assigned
1149
+ # by the xm runtime. Therefore, there is a mismatch in the rank
1150
+ # assignment between the gloo (cpu) runtime and the xm (tpu) runtime.
1151
+ # This is not a problem in linear layers because all-reduce is
1152
+ # rank-agnostic. However, it matters for all-gather as the ranks
1153
+ # determine the order of concatenating the output tensors.
1154
+ # As a workaround, we use the xm's rank assignment only when loading
1155
+ # the embedding weights.
1156
+ xm_tp_rank = xr.global_ordinal()
1157
+ with patch(
1158
+ "vllm.model_executor.layers.vocab_parallel_embedding."
1159
+ "get_tensor_model_parallel_rank",
1160
+ return_value=xm_tp_rank):
1161
+ try:
1162
+ if self.use_spmd:
1163
+ tpu_loader = TPUModelLoader(
1164
+ load_config=self.vllm_config.load_config)
1165
+ model = tpu_loader.load_model(
1166
+ vllm_config=self.vllm_config,
1167
+ model_config=self.vllm_config.model_config,
1168
+ mesh=self.mesh)
1169
+ else:
1170
+ model_loader = get_model_loader(self.load_config)
1171
+ logger.info("Loading model from scratch...")
1172
+ model = model_loader.load_model(
1173
+ vllm_config=self.vllm_config,
1174
+ model_config=self.model_config)
1175
+ except RuntimeError as e:
1176
+ raise RuntimeError(
1177
+ f"Unable to load model, a likely reason is the model is "
1178
+ "too large for the current device's HBM memory. "
1179
+ "Consider switching to a smaller model "
1180
+ "or sharding the weights on more chips. "
1181
+ f"See the detailed error: {e}") from e
1182
+ if self.lora_config is not None:
1183
+ model = self.load_lora_model(model, self.vllm_config, self.device)
1184
+ replace_set_lora(model)
1185
+
1186
+ # Sync all pending XLA execution during model initialization and weight
1187
+ # loading.
1188
+ torch_xla.sync(wait=False)
1189
+ xm.wait_device_ops()
1190
+ if not hasattr(self, "model"):
1191
+ self.model = model
1192
+ self.sampler = TPUSampler()
1193
+
1194
+ def reload_weights(self) -> None:
1195
+ assert getattr(self, "model", None) is not None, \
1196
+ "Cannot reload weights before model is loaded."
1197
+ model_loader = get_model_loader(self.load_config)
1198
+ logger.info("Reloading weights inplace...")
1199
+ model_loader.load_weights(self.model, model_config=self.model_config)
1200
+
1201
+ @torch.no_grad()
1202
+ def _dummy_run(self, num_tokens: int, num_reqs: int,
1203
+ num_blocks: int) -> None:
1204
+ if self.supports_mm_inputs:
1205
+ input_ids = None
1206
+ inputs_embeds = torch.zeros((num_tokens, self.hidden_size),
1207
+ dtype=self.dtype,
1208
+ device=self.device)
1209
+ else:
1210
+ input_ids = torch.zeros((num_tokens),
1211
+ dtype=torch.int32).to(self.device)
1212
+ inputs_embeds = None
1213
+ actual_num_reqs = min(num_tokens, num_reqs)
1214
+ position_ids = torch.zeros(num_tokens,
1215
+ dtype=torch.int32).to(self.device)
1216
+ padded_num_slices = _get_padded_num_kv_cache_update_slices(
1217
+ num_tokens, self.max_num_reqs, self.block_size)
1218
+ num_kv_update_slices = torch.tensor([padded_num_slices],
1219
+ dtype=torch.int32).to(self.device)
1220
+ slot_mapping = torch.zeros((3, padded_num_slices),
1221
+ dtype=torch.int32).to(self.device)
1222
+ block_tables = torch.zeros((num_reqs, num_blocks),
1223
+ dtype=torch.int32).to(self.device)
1224
+ query_lens = [1] * num_reqs
1225
+ query_start_loc = torch.cumsum(torch.tensor([0] + query_lens,
1226
+ dtype=torch.int32),
1227
+ dim=0,
1228
+ dtype=torch.int32).to(self.device)
1229
+ context_lens = torch.ones((num_reqs, ),
1230
+ dtype=torch.int32).to(self.device)
1231
+ num_seqs = torch.tensor([actual_num_reqs],
1232
+ dtype=torch.int32).to(self.device)
1233
+ attn_metadata = PallasMetadata(
1234
+ slot_mapping=slot_mapping,
1235
+ block_tables=block_tables,
1236
+ context_lens=context_lens,
1237
+ query_start_loc=query_start_loc,
1238
+ num_seqs=num_seqs,
1239
+ num_kv_update_slices=num_kv_update_slices,
1240
+ num_slices_per_kv_cache_update_block=self.
1241
+ _num_slices_per_kv_cache_update_block,
1242
+ )
1243
+
1244
+ if self.supports_mm_inputs:
1245
+ torch._dynamo.mark_dynamic(inputs_embeds, 0)
1246
+ else:
1247
+ torch._dynamo.mark_dynamic(input_ids, 0)
1248
+ torch._dynamo.mark_dynamic(position_ids, 0)
1249
+ torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 0)
1250
+ torch._dynamo.mark_dynamic(attn_metadata.block_tables, (0, 1))
1251
+ torch._dynamo.mark_dynamic(attn_metadata.context_lens, 0)
1252
+ torch._dynamo.mark_dynamic(attn_metadata.query_start_loc, 0)
1253
+
1254
+ layer_names = get_layers_from_vllm_config(self.vllm_config,
1255
+ Attention).keys()
1256
+ per_layer_attn_metadata = {
1257
+ layer_name: attn_metadata
1258
+ for layer_name in layer_names
1259
+ }
1260
+
1261
+ with self.maybe_select_dummy_loras(
1262
+ self.lora_config,
1263
+ np.array([num_tokens], dtype=np.int32)), set_forward_context(
1264
+ per_layer_attn_metadata, self.vllm_config, 0):
1265
+ out = self.model(input_ids=input_ids,
1266
+ positions=position_ids,
1267
+ inputs_embeds=inputs_embeds)
1268
+ self._hidden_states_dtype = out.dtype
1269
+
1270
+ def _set_active_loras(self, prompt_lora_mapping, token_lora_mapping,
1271
+ lora_requests) -> None:
1272
+ torch_xla.sync(wait=False) # Captures input updates
1273
+ super()._set_active_loras(prompt_lora_mapping, token_lora_mapping,
1274
+ lora_requests)
1275
+ torch_xla.sync(wait=False) # Captures metadata updates
1276
+
1277
+ def _precompile_mm_encoder(self) -> None:
1278
+ if not self.supports_mm_inputs:
1279
+ return
1280
+
1281
+ # Pre-compile MM encoder for all supported data modalities.
1282
+ hf_config = self.vllm_config.model_config.hf_config
1283
+
1284
+ mm_budget = self.mm_budget
1285
+ assert mm_budget is not None
1286
+
1287
+ max_items_per_seq_by_modality = mm_budget.max_items_per_batch_by_modality # noqa: E501
1288
+
1289
+ for mode, max_items_per_seq in max_items_per_seq_by_modality.items():
1290
+ logger.info(
1291
+ "Compiling Multimodal %s Encoder with different input"
1292
+ " shapes.", mode)
1293
+ start = time.perf_counter()
1294
+ # No padding for MM encoder just yet.
1295
+ for num_items in range(1, max_items_per_seq + 1):
1296
+ logger.info(" -- mode: %s items: %d", mode, num_items)
1297
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
1298
+ mode,
1299
+ num_items,
1300
+ )
1301
+ # Run multimodal encoder.
1302
+ torch_xla.sync(wait=False)
1303
+ mm_embeds = self.model.get_multimodal_embeddings(
1304
+ **batched_dummy_mm_inputs)
1305
+ torch_xla.sync(wait=False)
1306
+ num_patches = mm_embeds[0].shape[0]
1307
+ items_size = num_patches * num_items
1308
+
1309
+ # NOTE (NickLucche) pre-compile `get_input_embeddings` when mm
1310
+ # embeddings are present. We assume `--disable-mm-chunked`,
1311
+ # hence only whole items can be scheduled. This implies we just
1312
+ # need to compile when `num_items` fit the (padded) `input_ids`
1313
+ for num_tokens in self.num_tokens_paddings:
1314
+ if num_tokens >= items_size:
1315
+ # XLA Workaround: if torch.zeros(..device) is used, XLA
1316
+ # compiles a scalar+expansion op, which won't match
1317
+ # the graph generated at runtime. CPU->TPU must be used
1318
+ placeholders_ids = torch.zeros(num_tokens,
1319
+ dtype=torch.int32,
1320
+ device="cpu")
1321
+ # Align placeholders and actual num mm_embeddings.
1322
+ placeholders_ids[:items_size] = \
1323
+ hf_config.image_token_index
1324
+
1325
+ placeholders_ids = placeholders_ids.to(self.device)
1326
+ # Assign outputs or the graph will be cut short.
1327
+ a, b = self._get_model_inputs(placeholders_ids,
1328
+ [mm_embeds])
1329
+ assert a is None
1330
+ torch_xla.sync(wait=False)
1331
+
1332
+ # Pre-compile `get_input_embeddings` when mm_embeddings are not
1333
+ # present. Chunk is only made of text, no mm_placeholders.
1334
+ for num_tokens in self.num_tokens_paddings:
1335
+ placeholders_ids = torch.zeros(num_tokens,
1336
+ dtype=torch.int32,
1337
+ device="cpu")
1338
+ placeholders_ids = placeholders_ids.to(self.device)
1339
+ a, b = self._get_model_inputs(placeholders_ids, [])
1340
+ assert a is None
1341
+ torch_xla.sync(wait=False)
1342
+
1343
+ xm.wait_device_ops()
1344
+ end = time.perf_counter()
1345
+ logger.info(
1346
+ "Multimodal %s Encoder compilation finished in in %.2f "
1347
+ "[secs].", mode, end - start)
1348
+
1349
+ def _precompile_backbone(self) -> None:
1350
+ logger.info("Compiling the model with different input shapes.")
1351
+ start = time.perf_counter()
1352
+ for num_tokens in self.num_tokens_paddings:
1353
+ logger.info(" -- num_tokens: %d", num_tokens)
1354
+ self._dummy_run(num_tokens, self.num_reqs_max_model_len,
1355
+ self.max_num_blocks_per_req)
1356
+ if self.most_model_len is not None:
1357
+ self._dummy_run(num_tokens, self.num_reqs_most_model_len,
1358
+ self.num_blocks_per_most_len_req)
1359
+ xm.wait_device_ops()
1360
+ end = time.perf_counter()
1361
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1362
+ self._update_num_xla_graphs("model backbone")
1363
+
1364
+ def _precompile_select_hidden_states(self) -> None:
1365
+ # Compile hidden state selection function for bucketed
1366
+ # n_tokens x max_num_reqs. Graph is really small so this is fine.
1367
+ logger.info(
1368
+ "Compiling select_hidden_states with different input shapes.")
1369
+ start = time.perf_counter()
1370
+ hsize = self.model_config.get_hidden_size()
1371
+ for num_tokens in self.num_tokens_paddings:
1372
+ dummy_hidden = torch.zeros((num_tokens, hsize),
1373
+ device=self.device,
1374
+ dtype=self._hidden_states_dtype)
1375
+ torch._dynamo.mark_dynamic(dummy_hidden, 0)
1376
+ for num_reqs in self.num_reqs_paddings:
1377
+ indices = torch.zeros(num_reqs,
1378
+ dtype=torch.int32,
1379
+ device=self.device)
1380
+ torch._dynamo.mark_dynamic(indices, 0)
1381
+ self.select_hidden_states(dummy_hidden, indices)
1382
+ logger.info(" -- num_tokens: %d, num_seqs: %d", num_tokens,
1383
+ num_reqs)
1384
+ # Requests can't be more than tokens. But do compile for the
1385
+ # next bigger value in case num_tokens uses bucketed padding.
1386
+ if num_reqs >= min(num_tokens, self.max_num_reqs):
1387
+ break
1388
+ xm.wait_device_ops()
1389
+ end = time.perf_counter()
1390
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1391
+ self._update_num_xla_graphs("select_hidden_states")
1392
+
1393
+ def _precompile_compute_logits(self) -> None:
1394
+ logger.info("Compiling compute_logits with different input shapes.")
1395
+ start = time.perf_counter()
1396
+ hsize = self.model_config.get_hidden_size()
1397
+ for num_reqs in self.num_reqs_paddings:
1398
+ dummy_hidden = torch.zeros((num_reqs, hsize),
1399
+ device=self.device,
1400
+ dtype=self._hidden_states_dtype)
1401
+ torch._dynamo.mark_dynamic(dummy_hidden, 0)
1402
+ self.compute_logits(dummy_hidden)
1403
+ logger.info(" -- num_seqs: %d", num_reqs)
1404
+ xm.wait_device_ops()
1405
+ end = time.perf_counter()
1406
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1407
+ self._update_num_xla_graphs("compute_logits")
1408
+
1409
+ def _precompile_structured_decoding(self) -> None:
1410
+ logger.info(
1411
+ "Compiling structured_decoding with different input shapes.")
1412
+ start = time.perf_counter()
1413
+ for num_reqs in self.num_reqs_paddings:
1414
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1415
+ device=self.device,
1416
+ dtype=self._hidden_states_dtype)
1417
+ dummy_require_struct_decoding = \
1418
+ self.require_structured_out_cpu[:num_reqs].to(self.device)
1419
+ dummy_grammar_bitmask = \
1420
+ self.grammar_bitmask_cpu[:num_reqs].to(self.device)
1421
+ # The first dimension of the above 3 dummy tensors cannot be
1422
+ # mark_dynamic because some operations in structured_decode require
1423
+ # them to be static.
1424
+ arange = self.structured_decode_arange.to(self.device)
1425
+ self.structured_decode(dummy_require_struct_decoding,
1426
+ dummy_grammar_bitmask, dummy_logits, arange)
1427
+ logger.info(" -- num_seqs: %d", num_reqs)
1428
+ xm.wait_device_ops()
1429
+ end = time.perf_counter()
1430
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1431
+ self._update_num_xla_graphs("structured_decoding")
1432
+
1433
+ def _precompile_sample_from_logits(self) -> None:
1434
+ logger.info(
1435
+ "Compiling sample_from_logits with different input shapes.")
1436
+ start = time.perf_counter()
1437
+ for num_reqs in self.num_reqs_paddings:
1438
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1439
+ device=self.device,
1440
+ dtype=self._hidden_states_dtype)
1441
+ # The first dimension of dummy_logits cannot be mark_dynamic
1442
+ # because some operations in the sampler require it to be static.
1443
+ for all_greedy in [False, True]:
1444
+ generate_params_if_all_greedy = not all_greedy
1445
+ sampling_metadata = (
1446
+ TPUSupportedSamplingMetadata.from_input_batch(
1447
+ self.input_batch,
1448
+ num_reqs,
1449
+ self.device,
1450
+ generate_params_if_all_greedy,
1451
+ ))
1452
+ sampling_metadata.all_greedy = all_greedy
1453
+ with self.maybe_select_dummy_loras(
1454
+ self.lora_config, np.array([num_reqs],
1455
+ dtype=np.int32)):
1456
+ self.sample_from_logits_func(dummy_logits,
1457
+ sampling_metadata)
1458
+ logger.info(" -- num_seqs: %d", num_reqs)
1459
+ xm.wait_device_ops()
1460
+ end = time.perf_counter()
1461
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1462
+ self._update_num_xla_graphs("sample_from_logits")
1463
+
1464
+ def _precompile_gather_logprobs(self) -> None:
1465
+ logger.info("Compiling gather_logprobs with different input shapes.")
1466
+ start = time.perf_counter()
1467
+ for num_reqs in self.num_reqs_paddings:
1468
+ dummy_logits = torch.zeros((num_reqs, self.vocab_size),
1469
+ device=self.device,
1470
+ dtype=self._hidden_states_dtype)
1471
+ dummy_tokens = torch.zeros((num_reqs, 1),
1472
+ dtype=torch.int64).to(self.device)
1473
+ with self.maybe_select_dummy_loras(
1474
+ self.lora_config, np.array([num_reqs], dtype=np.int32)):
1475
+ self.gather_logprobs(dummy_logits, dummy_tokens)
1476
+ logger.info(" -- num_seqs: %d", num_reqs)
1477
+ xm.wait_device_ops()
1478
+ end = time.perf_counter()
1479
+ logger.info("Compilation finished in %.2f [secs].", end - start)
1480
+ self._update_num_xla_graphs("gather_logprobs")
1481
+
1482
+ def capture_model(self) -> None:
1483
+ """
1484
+ Precompile all the subgraphs with possible input shapes.
1485
+ """
1486
+ with self.maybe_setup_dummy_loras(self.lora_config):
1487
+ self._precompile_mm_encoder()
1488
+ self._precompile_backbone()
1489
+ self._precompile_select_hidden_states()
1490
+ self._precompile_compute_logits()
1491
+ self._precompile_structured_decoding()
1492
+ self._precompile_sample_from_logits()
1493
+ self._precompile_gather_logprobs()
1494
+
1495
+ def profile_run(
1496
+ self,
1497
+ num_tokens: int,
1498
+ ) -> None:
1499
+ # Profile with multimodal encoder & encoder cache.
1500
+ if self.supports_mm_inputs:
1501
+ if self.model_config.multimodal_config.skip_mm_profiling:
1502
+ logger.info(
1503
+ "Skipping memory profiling for multimodal encoder and "
1504
+ "encoder cache.")
1505
+ else:
1506
+ mm_budget = self.mm_budget
1507
+ assert mm_budget is not None
1508
+
1509
+ # TODO: handle encoder-decoder models once we support them.
1510
+ if (encoder_budget := mm_budget.get_encoder_budget()) > 0:
1511
+ # NOTE: Currently model is profiled with a single non-text
1512
+ # modality with the max possible input tokens even when
1513
+ # it supports multiple.
1514
+ dummy_modality = mm_budget.get_modality_with_max_tokens()
1515
+ max_mm_items_per_batch = mm_budget \
1516
+ .max_items_per_batch_by_modality[dummy_modality]
1517
+
1518
+ logger.info(
1519
+ "Encoder cache will be initialized with a budget of "
1520
+ "%s tokens, and profiled with %s %s items of the "
1521
+ "maximum feature size.",
1522
+ encoder_budget,
1523
+ max_mm_items_per_batch,
1524
+ dummy_modality,
1525
+ )
1526
+
1527
+ # Create dummy batch of multimodal inputs.
1528
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
1529
+ dummy_modality,
1530
+ max_mm_items_per_batch,
1531
+ )
1532
+
1533
+ # Run multimodal encoder.
1534
+ # Isolate encoder graph from post-processing to minimize
1535
+ # impact of recompilation until it's fixed.
1536
+ start = time.perf_counter()
1537
+ torch_xla.sync(wait=False)
1538
+ dummy_encoder_outputs = \
1539
+ self.model.get_multimodal_embeddings(
1540
+ **batched_dummy_mm_inputs)
1541
+ torch_xla.sync(wait=False)
1542
+ xm.wait_device_ops()
1543
+ end = time.perf_counter()
1544
+ logger.info(
1545
+ "Multimodal Encoder profiling finished in %.2f [secs].",
1546
+ end - start)
1547
+
1548
+ sanity_check_mm_encoder_outputs(
1549
+ dummy_encoder_outputs,
1550
+ expected_num_items=max_mm_items_per_batch,
1551
+ )
1552
+
1553
+ # Cache the dummy encoder outputs.
1554
+ self.encoder_cache["tmp"] = dict(
1555
+ enumerate(dummy_encoder_outputs))
1556
+
1557
+ # Trigger compilation for general shape.
1558
+ self._dummy_run(num_tokens, self.num_reqs_max_model_len,
1559
+ self.max_num_blocks_per_req)
1560
+ if self.most_model_len is not None:
1561
+ self._dummy_run(num_tokens, self.num_reqs_most_model_len,
1562
+ self.num_blocks_per_most_len_req)
1563
+
1564
+ torch_xla.sync(wait=False)
1565
+ xm.wait_device_ops()
1566
+ self.encoder_cache.clear()
1567
+ gc.collect()
1568
+
1569
+ def maybe_setup_cross_layer_kv_sharing(
1570
+ self,
1571
+ kv_caches: dict[str, torch.Tensor],
1572
+ kv_cache_config: KVCacheConfig,
1573
+ ) -> None:
1574
+ """
1575
+ Add layers that re-use KV cache to KV cache group of its target layer.
1576
+ Mapping of KV cache tensors happens in `initialize_kv_cache_tensors()`
1577
+ """
1578
+ if not self.shared_kv_cache_layers:
1579
+ # No cross-layer KV sharing, return
1580
+ return
1581
+
1582
+ add_kv_sharing_layers_to_kv_cache_groups(
1583
+ self.shared_kv_cache_layers,
1584
+ kv_cache_config.kv_cache_groups,
1585
+ )
1586
+
1587
+ for layer_name, target_layer_name in self.shared_kv_cache_layers.items(
1588
+ ):
1589
+ logger.debug("%s reuses KV cache of %s", layer_name,
1590
+ target_layer_name)
1591
+ kv_caches[layer_name] = kv_caches[target_layer_name]
1592
+
1593
+ def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
1594
+ """
1595
+ Initialize KV cache based on `kv_cache_config`.
1596
+ Args:
1597
+ kv_cache_config: Configuration for the KV cache, including the KV
1598
+ cache size of each layer
1599
+ """
1600
+ if len(kv_cache_config.kv_cache_groups) > 1:
1601
+ raise NotImplementedError(
1602
+ "Hybrid models with more than one KV cache type are not "
1603
+ "supported yet.")
1604
+
1605
+ if kv_cache_config.kv_cache_groups[
1606
+ 0].kv_cache_spec.block_size != self.block_size:
1607
+ self.input_batch = InputBatch(
1608
+ max_num_reqs=self.max_num_reqs,
1609
+ max_model_len=self.max_model_len,
1610
+ max_num_batched_tokens=self.max_num_tokens,
1611
+ device=self.device,
1612
+ pin_memory=self.pin_memory,
1613
+ vocab_size=self.model_config.get_vocab_size(),
1614
+ block_sizes=[
1615
+ kv_cache_config.kv_cache_groups[0].kv_cache_spec.block_size
1616
+ ],
1617
+ )
1618
+ # Verify dtype compatibility between block_table_cpu and input_batch
1619
+ assert self.block_table_cpu.dtype == self.input_batch.block_table[
1620
+ 0].get_cpu_tensor().dtype
1621
+
1622
+ kv_cache_sizes = {}
1623
+ for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
1624
+ assert len(kv_cache_tensor.shared_by) == 1, (
1625
+ "KV cache tensor shared by multiple layers is not supported in "
1626
+ "TPU.")
1627
+ kv_cache_sizes[kv_cache_tensor.shared_by[0]] = kv_cache_tensor.size
1628
+
1629
+ kv_caches: dict[str, torch.Tensor] = {}
1630
+ for kv_cache_group in kv_cache_config.kv_cache_groups:
1631
+ kv_cache_spec = kv_cache_group.kv_cache_spec
1632
+ for layer_name in kv_cache_group.layer_names:
1633
+ tensor_size = kv_cache_sizes[layer_name]
1634
+ assert tensor_size % kv_cache_spec.page_size_bytes == 0
1635
+ num_blocks = tensor_size // kv_cache_spec.page_size_bytes # noqa
1636
+ if isinstance(kv_cache_spec, AttentionSpec):
1637
+ if self.use_spmd:
1638
+ num_kv_heads = kv_cache_spec.num_kv_heads
1639
+ assert self.original_parallel_config is not None
1640
+ tp_size = \
1641
+ self.original_parallel_config.tensor_parallel_size
1642
+ # TODO: Handle kv cache duplication under SPMD mode.
1643
+ assert num_kv_heads % tp_size == 0, (
1644
+ f"num_kv_heads {num_kv_heads} must be divisible by "
1645
+ f"tp_size {tp_size} under SPMD mode")
1646
+ kv_cache_shape = PallasAttentionBackend.get_kv_cache_shape(
1647
+ num_blocks, kv_cache_spec.block_size,
1648
+ kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
1649
+ dtype = kv_cache_spec.dtype
1650
+
1651
+ tpu_kv_cache = torch.zeros(kv_cache_shape,
1652
+ dtype=dtype).to(self.device)
1653
+
1654
+ kv_caches[layer_name] = tpu_kv_cache
1655
+ else:
1656
+ raise NotImplementedError
1657
+
1658
+ # Set up cross-layer KV cache sharing if needed
1659
+ self.maybe_setup_cross_layer_kv_sharing(kv_caches, kv_cache_config)
1660
+
1661
+ bind_kv_cache(
1662
+ kv_caches,
1663
+ self.vllm_config.compilation_config.static_forward_context,
1664
+ self.kv_caches)
1665
+
1666
+ if self.use_spmd:
1667
+ # Shard KV Cache
1668
+ for cache in self.kv_caches:
1669
+ xs.mark_sharding(cache, self.mesh, (None, 'x', None, None))
1670
+
1671
+ if has_kv_transfer_group():
1672
+ get_kv_transfer_group().register_kv_caches(kv_caches)
1673
+ get_kv_transfer_group().set_host_xfer_buffer_ops(copy_kv_blocks)
1674
+
1675
+ def reset_dynamo_cache(self):
1676
+
1677
+ # NOTE: We check `is_multimodal_model` instead of `supports_mm_inputs`
1678
+ # since the compiled model object of the language backbone of a
1679
+ # multimodal model needs to be extracted via `get_language_model`.
1680
+ if self.model_config.is_multimodal_model:
1681
+ compiled_model = self.model.get_language_model().model
1682
+ else:
1683
+ compiled_model = self.model.model
1684
+ if isinstance(compiled_model, TorchCompileWrapperWithCustomDispatcher):
1685
+ logger.info("Clear dynamo cache and cached dynamo bytecode.")
1686
+ torch._dynamo.eval_frame.remove_from_cache(
1687
+ compiled_model.original_code_object)
1688
+ compiled_model.compiled_codes.clear()
1689
+
1690
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1691
+ def select_hidden_states(self, hidden_states, indices_do_sample):
1692
+ return hidden_states[indices_do_sample]
1693
+
1694
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1695
+ def compute_logits(self,
1696
+ sample_hidden_states: torch.Tensor) -> torch.Tensor:
1697
+ return self.model.compute_logits(sample_hidden_states)
1698
+
1699
+ # TODO: Under SPMD mode, sample_from_logits has correctness issue.
1700
+ # Re-enable the torch.compile once the issue is fixed in torchxla.
1701
+ # @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1702
+ def sample_from_logits(
1703
+ self, logits: torch.Tensor,
1704
+ sampling_metadata: TPUSupportedSamplingMetadata) -> torch.Tensor:
1705
+ """
1706
+ Sample with xla-friendly function. This function is to be traced
1707
+ separately from `forward` for lighter compilation overhead.
1708
+ """
1709
+ if sampling_metadata.all_greedy:
1710
+ out_tokens = torch.argmax(logits, dim=-1, keepdim=True)
1711
+ else:
1712
+ out_tokens = self.sampler(logits,
1713
+ sampling_metadata).sampled_token_ids
1714
+ return out_tokens
1715
+
1716
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1717
+ def gather_logprobs(self, logits: torch.Tensor,
1718
+ sampled_tokens: torch.Tensor) -> LogprobsTensors:
1719
+ """
1720
+ Gather the top_logprobs with corresponding tokens. Use a fixed number
1721
+ of logprobs as an alternative to having multiple pre-compiled graphs.
1722
+ Select the number of logprobs actually demanded by each request on CPU.
1723
+ """
1724
+ logprobs = self.sampler.compute_logprobs(logits)
1725
+ return self.sampler.gather_logprobs(
1726
+ logprobs,
1727
+ self.model_config.max_logprobs,
1728
+ token_ids=sampled_tokens.squeeze(-1))
1729
+
1730
+ @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
1731
+ def structured_decode(self, require_struct_decoding: torch.Tensor,
1732
+ grammar_bitmask: torch.Tensor, logits: torch.Tensor,
1733
+ arange: torch.Tensor) -> torch.Tensor:
1734
+ return torch.where(
1735
+ require_struct_decoding,
1736
+ self.apply_grammar_bitmask(logits, grammar_bitmask, arange),
1737
+ logits)
1738
+
1739
+ def apply_grammar_bitmask(self, logits: torch.Tensor,
1740
+ grammar_bitmask: torch.Tensor,
1741
+ arange: torch.Tensor):
1742
+ assert (logits.shape[0] == grammar_bitmask.shape[0])
1743
+ logits_cloned = logits.clone()
1744
+ for i in range(logits.shape[0]):
1745
+ unpacked_bitmask = (torch.bitwise_right_shift(
1746
+ grammar_bitmask[i][:, None], arange[None, :]) & 1) == 0
1747
+ unpacked_bitmask = unpacked_bitmask.reshape(-1)[:self.vocab_size]
1748
+ logits_cloned[i] = logits_cloned[i].masked_fill(
1749
+ unpacked_bitmask, -float("inf"))
1750
+ return logits_cloned
1751
+
1752
+ def get_multimodal_embeddings(self, *args, **kwargs):
1753
+ return self.model.get_multimodal_embeddings(*args, **kwargs)
1754
+
1755
+ def get_input_embeddings(self, *args, **kwargs):
1756
+ return self.model.get_input_embeddings(*args, **kwargs)
1757
+
1758
+ def prepare_structured_decoding_input(
1759
+ self, logits: torch.Tensor, scheduler_output: "SchedulerOutput"
1760
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1761
+ grammar_bitmask = scheduler_output.grammar_bitmask
1762
+ assert grammar_bitmask is not None
1763
+ num_reqs, _ = logits.shape
1764
+
1765
+ # Reset pre-allocated tensors
1766
+ self.grammar_bitmask_cpu.zero_()
1767
+ self.require_structured_out_cpu.zero_()
1768
+
1769
+ sorted_struct_requests = sorted(
1770
+ scheduler_output.structured_output_request_ids.items(),
1771
+ key=lambda item: item[1])
1772
+ cumulative_mask_idx = 0
1773
+ for req_id, _ in sorted_struct_requests:
1774
+ if req_id not in self.input_batch.req_id_to_index:
1775
+ continue
1776
+ batch_index = self.input_batch.req_id_to_index[req_id]
1777
+ self.grammar_bitmask_cpu[batch_index] = torch.from_numpy(
1778
+ grammar_bitmask[cumulative_mask_idx])
1779
+ # It's not guaranteed that all requests in this batch require
1780
+ # structured output, so create a bool tensor to represent
1781
+ # the requests that need structured output.
1782
+ self.require_structured_out_cpu[batch_index] = True
1783
+ cumulative_mask_idx += 1
1784
+
1785
+ return self.require_structured_out_cpu[:num_reqs].to(logits.device), \
1786
+ self.grammar_bitmask_cpu[:num_reqs].to(logits.device), \
1787
+ self.structured_decode_arange.to(logits.device)
1788
+
1789
+ def _get_mm_dummy_batch(
1790
+ self,
1791
+ modality: str,
1792
+ max_items_per_batch: int,
1793
+ ) -> BatchedTensorInputs:
1794
+ """Dummy data for profiling and precompiling multimodal models."""
1795
+ assert self.mm_budget is not None
1796
+
1797
+ dummy_decoder_data = self.mm_registry.get_decoder_dummy_data(
1798
+ model_config=self.model_config,
1799
+ seq_len=self.max_model_len,
1800
+ mm_counts={modality: 1},
1801
+ cache=self.mm_budget.cache,
1802
+ )
1803
+ dummy_mm_data = dummy_decoder_data.multi_modal_data
1804
+
1805
+ # Result in the maximum GPU consumption of the model
1806
+ dummy_mm_item = dummy_mm_data[modality][0]
1807
+ dummy_mm_items = [dummy_mm_item] * max_items_per_batch
1808
+
1809
+ model = cast(SupportsMultiModal, self.model)
1810
+ return next(grouped_mm_kwargs
1811
+ for _, _, grouped_mm_kwargs in group_mm_kwargs_by_modality(
1812
+ dummy_mm_items,
1813
+ device=self.device,
1814
+ pin_memory=self.pin_memory,
1815
+ merge_by_field_config=model.merge_by_field_config,
1816
+ ))
1817
+
1818
+
1819
+ def _get_req_paddings(min_req_size: int, max_req_size: int) -> list[int]:
1820
+ logger.info("Preparing request paddings:")
1821
+ # assert min_req_size is power of 2
1822
+ assert (min_req_size & (min_req_size - 1) == 0) and min_req_size > 0
1823
+ paddings: list = []
1824
+ num = max(MIN_NUM_SEQS, min_req_size)
1825
+ while num <= max_req_size and (len(paddings) == 0 or paddings[-1] != num):
1826
+ paddings.append(num)
1827
+ logger.info(" %d", num)
1828
+ num = _get_padded_num_reqs_with_upper_limit(num + 1, max_req_size)
1829
+ return paddings
1830
+
1831
+
1832
+ def _get_padded_num_reqs_with_upper_limit(x: int, upper_limit: int) -> int:
1833
+ res = MIN_NUM_SEQS if x <= MIN_NUM_SEQS else 1 << (x - 1).bit_length()
1834
+ return min(res, upper_limit)
1835
+
1836
+
1837
+ def _get_token_paddings(min_token_size: int, max_token_size: int,
1838
+ padding_gap: int) -> list[int]:
1839
+ """Generate a list of padding size, starting from min_token_size,
1840
+ ending with a number that can cover max_token_size
1841
+
1842
+ If padding_gap == 0 then:
1843
+ increase 2X each time (exponential)
1844
+ else:
1845
+ first increase the size to twice,
1846
+ then increase the padding size by padding_gap.
1847
+ """
1848
+ # assert min_token_size is power of 2
1849
+ assert (min_token_size & (min_token_size - 1) == 0) and min_token_size > 0
1850
+ paddings = []
1851
+ num = min_token_size
1852
+
1853
+ if padding_gap == 0:
1854
+ logger.info("Using exponential token paddings:")
1855
+ while True:
1856
+ logger.info(" %d", num)
1857
+ paddings.append(num)
1858
+ if num >= max_token_size:
1859
+ break
1860
+ num *= 2
1861
+ else:
1862
+ logger.info("Using incremental token paddings:")
1863
+ while num <= padding_gap:
1864
+ logger.info(" %d", num)
1865
+ paddings.append(num)
1866
+ num *= 2
1867
+ num //= 2
1868
+ while num < max_token_size:
1869
+ num += padding_gap
1870
+ logger.info(" %d", num)
1871
+ paddings.append(num)
1872
+
1873
+ return paddings
1874
+
1875
+
1876
+ def _get_padded_token_len(paddings: list[int], x: int) -> int:
1877
+ """Return the first element in paddings list greater or equal to x.
1878
+ """
1879
+ index = bisect.bisect_left(paddings, x)
1880
+ assert index < len(paddings)
1881
+ return paddings[index]
1882
+
1883
+
1884
+ def _get_padded_num_kv_cache_update_slices(num_tokens: int, max_num_reqs: int,
1885
+ page_size: int) -> int:
1886
+ """Calculates the padded number of KV cache update slices to avoid
1887
+ recompilation."""
1888
+ # NOTE(chengjiyao): let's say R_i is the token num for i-th request,
1889
+ # so it occupies most 2 + R_i // page_size pages. The total maximum
1890
+ # possible number of pages needed is sum(2 + R_i // page_size), which
1891
+ # is <= 2 * max_num_reqs + sum(R_i) // page_size
1892
+ # = 2 * max_num_reqs + num_tokens // page_size
1893
+ padded_num_slices = 2 * max_num_reqs + num_tokens // page_size
1894
+ padded_num_slices = min(padded_num_slices, num_tokens)
1895
+ return padded_num_slices
1896
+
1897
+
1898
+ def _get_num_slices_per_kv_cache_update_block(page_size_bytes: int) -> int:
1899
+ """Find the optimum number of slices to copy per Pallas program instance.
1900
+
1901
+ Increasing the number of slices copied in one instance of the kernel program
1902
+ will increase HBM bandwidth utilization via more in-flight DMAs.
1903
+
1904
+ However, it will also use more VMEM, and experimentally, we observed
1905
+ performance regression at 128 slices on v6e, likely due to running
1906
+ out of scalar registers. Thus this function will limit the number of
1907
+ slices to 64.
1908
+ """
1909
+ # The default vmem_limit_bytes of a pallas kernel is 32MB. Here we
1910
+ # calculate num_slices_per_block based on 16MB in case any register spills.
1911
+ vmem_limit = 16 * 1024 * 1024
1912
+ num_slices_per_block = vmem_limit // page_size_bytes
1913
+ assert num_slices_per_block > 0, "Number of slices should be positive"
1914
+ num_slices_per_block = prev_power_of_2(num_slices_per_block)
1915
+ if num_slices_per_block > 64:
1916
+ num_slices_per_block = 64
1917
+ return num_slices_per_block
1918
+
1919
+
1920
+ def replace_set_lora(model):
1921
+
1922
+ def _tpu_set_lora(
1923
+ self,
1924
+ index: int,
1925
+ lora_a: torch.Tensor,
1926
+ lora_b: torch.Tensor,
1927
+ embeddings_tensor: Optional[torch.Tensor],
1928
+ bias: Optional[torch.Tensor] = None,
1929
+ ):
1930
+ # TODO: The integer index leads to a recompilation, but converting it
1931
+ # to a tensor doesn't seem to work anymore. This might be fixed with a
1932
+ # later release of torch_xla.
1933
+ self._original_set_lora(index, lora_a, lora_b, embeddings_tensor, bias)
1934
+ torch_xla.sync(wait=False)
1935
+
1936
+ def _tpu_reset_lora(self, index: int):
1937
+ self._original_reset_lora(index)
1938
+ torch_xla.sync(wait=False)
1939
+
1940
+ for _, module in model.named_modules():
1941
+ if isinstance(module, BaseLayerWithLoRA):
1942
+ module._original_set_lora = module.set_lora
1943
+ module._original_reset_lora = module.reset_lora
1944
+ module.set_lora = _tpu_set_lora.__get__(module, module.__class__)
1945
+ module.reset_lora = _tpu_reset_lora.__get__(
1946
+ module, module.__class__)