vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1398) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2044 -0
  5. vllm/_ipex_ops.py +393 -0
  6. vllm/_version.py +34 -0
  7. vllm/assets/__init__.py +0 -0
  8. vllm/assets/audio.py +45 -0
  9. vllm/assets/base.py +41 -0
  10. vllm/assets/image.py +50 -0
  11. vllm/assets/video.py +145 -0
  12. vllm/attention/__init__.py +15 -0
  13. vllm/attention/backends/__init__.py +0 -0
  14. vllm/attention/backends/abstract.py +204 -0
  15. vllm/attention/backends/utils.py +33 -0
  16. vllm/attention/layer.py +645 -0
  17. vllm/attention/layers/__init__.py +0 -0
  18. vllm/attention/layers/chunked_local_attention.py +93 -0
  19. vllm/attention/layers/cross_attention.py +162 -0
  20. vllm/attention/layers/encoder_only_attention.py +86 -0
  21. vllm/attention/ops/__init__.py +0 -0
  22. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  23. vllm/attention/ops/common.py +345 -0
  24. vllm/attention/ops/flashmla.py +192 -0
  25. vllm/attention/ops/merge_attn_states.py +43 -0
  26. vllm/attention/ops/paged_attn.py +262 -0
  27. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  28. vllm/attention/ops/prefix_prefill.py +928 -0
  29. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  30. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  31. vllm/attention/ops/triton_decode_attention.py +691 -0
  32. vllm/attention/ops/triton_flash_attention.py +984 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
  35. vllm/attention/ops/triton_unified_attention.py +894 -0
  36. vllm/attention/selector.py +245 -0
  37. vllm/attention/utils/__init__.py +0 -0
  38. vllm/attention/utils/fa_utils.py +85 -0
  39. vllm/attention/utils/kv_sharing_utils.py +33 -0
  40. vllm/beam_search.py +87 -0
  41. vllm/benchmarks/__init__.py +0 -0
  42. vllm/benchmarks/datasets.py +2723 -0
  43. vllm/benchmarks/latency.py +170 -0
  44. vllm/benchmarks/lib/__init__.py +3 -0
  45. vllm/benchmarks/lib/endpoint_request_func.py +533 -0
  46. vllm/benchmarks/lib/ready_checker.py +73 -0
  47. vllm/benchmarks/lib/utils.py +80 -0
  48. vllm/benchmarks/serve.py +1358 -0
  49. vllm/benchmarks/throughput.py +696 -0
  50. vllm/collect_env.py +823 -0
  51. vllm/compilation/__init__.py +0 -0
  52. vllm/compilation/activation_quant_fusion.py +189 -0
  53. vllm/compilation/backends.py +650 -0
  54. vllm/compilation/base_static_graph.py +56 -0
  55. vllm/compilation/collective_fusion.py +1188 -0
  56. vllm/compilation/compiler_interface.py +573 -0
  57. vllm/compilation/counter.py +47 -0
  58. vllm/compilation/cuda_graph.py +199 -0
  59. vllm/compilation/cuda_piecewise_backend.py +117 -0
  60. vllm/compilation/decorators.py +400 -0
  61. vllm/compilation/fix_functionalization.py +205 -0
  62. vllm/compilation/fusion.py +383 -0
  63. vllm/compilation/fusion_attn.py +295 -0
  64. vllm/compilation/fx_utils.py +84 -0
  65. vllm/compilation/inductor_pass.py +136 -0
  66. vllm/compilation/monitor.py +57 -0
  67. vllm/compilation/noop_elimination.py +158 -0
  68. vllm/compilation/pass_manager.py +125 -0
  69. vllm/compilation/post_cleanup.py +20 -0
  70. vllm/compilation/sequence_parallelism.py +478 -0
  71. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  72. vllm/compilation/vllm_inductor_pass.py +156 -0
  73. vllm/compilation/wrapper.py +136 -0
  74. vllm/config/__init__.py +814 -0
  75. vllm/config/cache.py +220 -0
  76. vllm/config/compilation.py +673 -0
  77. vllm/config/device.py +74 -0
  78. vllm/config/kv_events.py +50 -0
  79. vllm/config/kv_transfer.py +111 -0
  80. vllm/config/load.py +113 -0
  81. vllm/config/lora.py +132 -0
  82. vllm/config/model.py +1912 -0
  83. vllm/config/multimodal.py +129 -0
  84. vllm/config/observability.py +99 -0
  85. vllm/config/parallel.py +524 -0
  86. vllm/config/pooler.py +97 -0
  87. vllm/config/scheduler.py +287 -0
  88. vllm/config/speculative.py +568 -0
  89. vllm/config/speech_to_text.py +39 -0
  90. vllm/config/structured_outputs.py +64 -0
  91. vllm/config/utils.py +145 -0
  92. vllm/connections.py +186 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +311 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +41 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +440 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +295 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +323 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
  106. vllm/distributed/device_communicators/pynccl.py +340 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +589 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +635 -0
  113. vllm/distributed/device_communicators/symm_mem.py +136 -0
  114. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  115. vllm/distributed/device_communicators/xpu_communicator.py +94 -0
  116. vllm/distributed/eplb/__init__.py +8 -0
  117. vllm/distributed/eplb/eplb_state.py +620 -0
  118. vllm/distributed/eplb/rebalance_algo.py +239 -0
  119. vllm/distributed/eplb/rebalance_execute.py +424 -0
  120. vllm/distributed/kv_events.py +362 -0
  121. vllm/distributed/kv_transfer/README.md +29 -0
  122. vllm/distributed/kv_transfer/__init__.py +13 -0
  123. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  124. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  125. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  126. vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
  132. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
  133. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
  134. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
  135. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
  140. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  141. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  142. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  144. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  145. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  146. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  147. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  148. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  149. vllm/distributed/parallel_state.py +1532 -0
  150. vllm/distributed/tpu_distributed_utils.py +178 -0
  151. vllm/distributed/utils.py +536 -0
  152. vllm/engine/__init__.py +0 -0
  153. vllm/engine/arg_utils.py +1778 -0
  154. vllm/engine/async_llm_engine.py +6 -0
  155. vllm/engine/llm_engine.py +6 -0
  156. vllm/engine/metrics.py +577 -0
  157. vllm/engine/metrics_types.py +84 -0
  158. vllm/engine/protocol.py +333 -0
  159. vllm/entrypoints/__init__.py +0 -0
  160. vllm/entrypoints/api_server.py +178 -0
  161. vllm/entrypoints/chat_utils.py +1705 -0
  162. vllm/entrypoints/cli/__init__.py +12 -0
  163. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  164. vllm/entrypoints/cli/benchmark/base.py +25 -0
  165. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  166. vllm/entrypoints/cli/benchmark/main.py +55 -0
  167. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  168. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  169. vllm/entrypoints/cli/collect_env.py +36 -0
  170. vllm/entrypoints/cli/main.py +60 -0
  171. vllm/entrypoints/cli/openai.py +233 -0
  172. vllm/entrypoints/cli/run_batch.py +67 -0
  173. vllm/entrypoints/cli/serve.py +232 -0
  174. vllm/entrypoints/cli/types.py +29 -0
  175. vllm/entrypoints/constants.py +10 -0
  176. vllm/entrypoints/context.py +481 -0
  177. vllm/entrypoints/harmony_utils.py +436 -0
  178. vllm/entrypoints/launcher.py +164 -0
  179. vllm/entrypoints/llm.py +1629 -0
  180. vllm/entrypoints/logger.py +79 -0
  181. vllm/entrypoints/openai/__init__.py +0 -0
  182. vllm/entrypoints/openai/api_server.py +1953 -0
  183. vllm/entrypoints/openai/cli_args.py +288 -0
  184. vllm/entrypoints/openai/logits_processors.py +90 -0
  185. vllm/entrypoints/openai/protocol.py +2757 -0
  186. vllm/entrypoints/openai/run_batch.py +491 -0
  187. vllm/entrypoints/openai/serving_chat.py +1597 -0
  188. vllm/entrypoints/openai/serving_classification.py +173 -0
  189. vllm/entrypoints/openai/serving_completion.py +692 -0
  190. vllm/entrypoints/openai/serving_embedding.py +631 -0
  191. vllm/entrypoints/openai/serving_engine.py +992 -0
  192. vllm/entrypoints/openai/serving_models.py +288 -0
  193. vllm/entrypoints/openai/serving_pooling.py +276 -0
  194. vllm/entrypoints/openai/serving_responses.py +1709 -0
  195. vllm/entrypoints/openai/serving_score.py +479 -0
  196. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  197. vllm/entrypoints/openai/serving_transcription.py +136 -0
  198. vllm/entrypoints/openai/speech_to_text.py +388 -0
  199. vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
  200. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  201. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  202. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  203. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  204. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  205. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  206. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
  207. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  208. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  209. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  210. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  211. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  212. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  213. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
  214. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  216. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
  217. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  218. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  219. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  220. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
  221. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  222. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  223. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  224. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  225. vllm/entrypoints/renderer.py +395 -0
  226. vllm/entrypoints/score_utils.py +232 -0
  227. vllm/entrypoints/ssl.py +75 -0
  228. vllm/entrypoints/tool.py +139 -0
  229. vllm/entrypoints/tool_server.py +206 -0
  230. vllm/entrypoints/utils.py +233 -0
  231. vllm/env_override.py +23 -0
  232. vllm/envs.py +1590 -0
  233. vllm/executor/__init__.py +0 -0
  234. vllm/executor/executor_base.py +381 -0
  235. vllm/executor/msgspec_utils.py +35 -0
  236. vllm/executor/ray_distributed_executor.py +699 -0
  237. vllm/executor/ray_utils.py +410 -0
  238. vllm/executor/uniproc_executor.py +176 -0
  239. vllm/forward_context.py +402 -0
  240. vllm/inputs/__init__.py +30 -0
  241. vllm/inputs/data.py +356 -0
  242. vllm/inputs/parse.py +151 -0
  243. vllm/inputs/preprocess.py +664 -0
  244. vllm/logger.py +229 -0
  245. vllm/logging_utils/__init__.py +10 -0
  246. vllm/logging_utils/dump_input.py +81 -0
  247. vllm/logging_utils/formatter.py +79 -0
  248. vllm/logging_utils/log_time.py +32 -0
  249. vllm/logits_process.py +119 -0
  250. vllm/logprobs.py +28 -0
  251. vllm/lora/__init__.py +0 -0
  252. vllm/lora/layers/__init__.py +34 -0
  253. vllm/lora/layers/base.py +69 -0
  254. vllm/lora/layers/base_linear.py +185 -0
  255. vllm/lora/layers/column_parallel_linear.py +609 -0
  256. vllm/lora/layers/logits_processor.py +247 -0
  257. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  258. vllm/lora/layers/replicated_linear.py +60 -0
  259. vllm/lora/layers/row_parallel_linear.py +196 -0
  260. vllm/lora/layers/utils.py +65 -0
  261. vllm/lora/layers/vocal_parallel_embedding.py +174 -0
  262. vllm/lora/lora_weights.py +199 -0
  263. vllm/lora/models.py +816 -0
  264. vllm/lora/ops/__init__.py +0 -0
  265. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  266. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  267. vllm/lora/ops/torch_ops/__init__.py +16 -0
  268. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  269. vllm/lora/ops/triton_ops/__init__.py +12 -0
  270. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  271. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  272. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  273. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  274. vllm/lora/ops/triton_ops/utils.py +126 -0
  275. vllm/lora/ops/xla_ops/__init__.py +7 -0
  276. vllm/lora/ops/xla_ops/lora_ops.py +144 -0
  277. vllm/lora/peft_helper.py +127 -0
  278. vllm/lora/punica_wrapper/__init__.py +10 -0
  279. vllm/lora/punica_wrapper/punica_base.py +458 -0
  280. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  281. vllm/lora/punica_wrapper/punica_gpu.py +272 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  284. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  285. vllm/lora/punica_wrapper/utils.py +136 -0
  286. vllm/lora/request.py +97 -0
  287. vllm/lora/resolver.py +85 -0
  288. vllm/lora/utils.py +246 -0
  289. vllm/lora/worker_manager.py +267 -0
  290. vllm/model_executor/__init__.py +12 -0
  291. vllm/model_executor/custom_op.py +194 -0
  292. vllm/model_executor/layers/__init__.py +0 -0
  293. vllm/model_executor/layers/activation.py +575 -0
  294. vllm/model_executor/layers/attention_layer_base.py +23 -0
  295. vllm/model_executor/layers/fla/__init__.py +8 -0
  296. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  297. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  298. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  299. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  300. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  301. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  302. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  303. vllm/model_executor/layers/fla/ops/index.py +39 -0
  304. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  305. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  306. vllm/model_executor/layers/fla/ops/op.py +39 -0
  307. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  308. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  309. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  310. vllm/model_executor/layers/fused_moe/__init__.py +89 -0
  311. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
  312. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
  313. vllm/model_executor/layers/fused_moe/config.py +804 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  545. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
  546. vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
  547. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
  548. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  549. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
  550. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
  551. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
  552. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
  553. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
  554. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
  555. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
  556. vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
  557. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
  558. vllm/model_executor/layers/fused_moe/layer.py +2195 -0
  559. vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
  560. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  561. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  562. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  563. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  564. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
  565. vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
  566. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
  567. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  568. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  569. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
  570. vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
  571. vllm/model_executor/layers/fused_moe/utils.py +274 -0
  572. vllm/model_executor/layers/layernorm.py +395 -0
  573. vllm/model_executor/layers/lightning_attn.py +661 -0
  574. vllm/model_executor/layers/linear.py +1603 -0
  575. vllm/model_executor/layers/logits_processor.py +106 -0
  576. vllm/model_executor/layers/mamba/__init__.py +0 -0
  577. vllm/model_executor/layers/mamba/abstract.py +42 -0
  578. vllm/model_executor/layers/mamba/linear_attn.py +403 -0
  579. vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
  580. vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
  581. vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
  582. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  583. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
  584. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  585. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  586. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
  587. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
  588. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
  589. vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
  590. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
  591. vllm/model_executor/layers/mamba/short_conv.py +253 -0
  592. vllm/model_executor/layers/mla.py +173 -0
  593. vllm/model_executor/layers/pooler.py +719 -0
  594. vllm/model_executor/layers/quantization/__init__.py +157 -0
  595. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  596. vllm/model_executor/layers/quantization/awq.py +228 -0
  597. vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
  598. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  599. vllm/model_executor/layers/quantization/base_config.py +170 -0
  600. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  601. vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
  602. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  603. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
  604. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
  605. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  606. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  607. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  608. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  609. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  610. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
  611. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  612. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  613. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  614. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
  615. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  616. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  625. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  626. vllm/model_executor/layers/quantization/experts_int8.py +223 -0
  627. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  628. vllm/model_executor/layers/quantization/fp8.py +1098 -0
  629. vllm/model_executor/layers/quantization/gguf.py +599 -0
  630. vllm/model_executor/layers/quantization/gptq.py +340 -0
  631. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  632. vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
  633. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  634. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  635. vllm/model_executor/layers/quantization/inc.py +61 -0
  636. vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
  637. vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
  638. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  639. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  640. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  641. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  642. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  643. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  644. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  645. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  646. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  647. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  648. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  649. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  650. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  651. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
  652. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  653. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  654. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  655. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  656. vllm/model_executor/layers/quantization/kv_cache.py +143 -0
  657. vllm/model_executor/layers/quantization/modelopt.py +1596 -0
  658. vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
  659. vllm/model_executor/layers/quantization/mxfp4.py +988 -0
  660. vllm/model_executor/layers/quantization/petit.py +306 -0
  661. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  662. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  663. vllm/model_executor/layers/quantization/quark/quark.py +432 -0
  664. vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
  665. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  666. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  667. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
  668. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  669. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  670. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  671. vllm/model_executor/layers/quantization/rtn.py +466 -0
  672. vllm/model_executor/layers/quantization/schema.py +86 -0
  673. vllm/model_executor/layers/quantization/torchao.py +214 -0
  674. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  675. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  676. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  677. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  889. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
  890. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
  891. vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
  892. vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
  893. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  894. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  895. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  896. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  897. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  898. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  899. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  900. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  901. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
  902. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  903. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  904. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  905. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  906. vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
  907. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  908. vllm/model_executor/layers/resampler.py +270 -0
  909. vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
  910. vllm/model_executor/layers/rotary_embedding/base.py +177 -0
  911. vllm/model_executor/layers/rotary_embedding/common.py +150 -0
  912. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
  913. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  914. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  915. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  916. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  917. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  918. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  919. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  920. vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
  921. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  922. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  923. vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
  924. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  925. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  926. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  927. vllm/model_executor/layers/utils.py +195 -0
  928. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  929. vllm/model_executor/model_loader/__init__.py +138 -0
  930. vllm/model_executor/model_loader/base_loader.py +52 -0
  931. vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
  932. vllm/model_executor/model_loader/default_loader.py +277 -0
  933. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  934. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  935. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  936. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  937. vllm/model_executor/model_loader/tensorizer.py +738 -0
  938. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  939. vllm/model_executor/model_loader/tpu.py +114 -0
  940. vllm/model_executor/model_loader/utils.py +292 -0
  941. vllm/model_executor/model_loader/weight_utils.py +990 -0
  942. vllm/model_executor/models/__init__.py +33 -0
  943. vllm/model_executor/models/adapters.py +542 -0
  944. vllm/model_executor/models/aimv2.py +246 -0
  945. vllm/model_executor/models/apertus.py +579 -0
  946. vllm/model_executor/models/arcee.py +422 -0
  947. vllm/model_executor/models/arctic.py +558 -0
  948. vllm/model_executor/models/aria.py +650 -0
  949. vllm/model_executor/models/aya_vision.py +468 -0
  950. vllm/model_executor/models/baichuan.py +474 -0
  951. vllm/model_executor/models/bailing_moe.py +642 -0
  952. vllm/model_executor/models/bamba.py +514 -0
  953. vllm/model_executor/models/bert.py +665 -0
  954. vllm/model_executor/models/bert_with_rope.py +687 -0
  955. vllm/model_executor/models/blip.py +339 -0
  956. vllm/model_executor/models/blip2.py +712 -0
  957. vllm/model_executor/models/bloom.py +374 -0
  958. vllm/model_executor/models/chameleon.py +1139 -0
  959. vllm/model_executor/models/chatglm.py +476 -0
  960. vllm/model_executor/models/clip.py +407 -0
  961. vllm/model_executor/models/cohere2_vision.py +481 -0
  962. vllm/model_executor/models/commandr.py +465 -0
  963. vllm/model_executor/models/config.py +445 -0
  964. vllm/model_executor/models/dbrx.py +471 -0
  965. vllm/model_executor/models/deepseek.py +497 -0
  966. vllm/model_executor/models/deepseek_eagle.py +240 -0
  967. vllm/model_executor/models/deepseek_mtp.py +289 -0
  968. vllm/model_executor/models/deepseek_v2.py +1444 -0
  969. vllm/model_executor/models/deepseek_vl2.py +658 -0
  970. vllm/model_executor/models/dots1.py +546 -0
  971. vllm/model_executor/models/dots_ocr.py +873 -0
  972. vllm/model_executor/models/ernie45.py +43 -0
  973. vllm/model_executor/models/ernie45_moe.py +607 -0
  974. vllm/model_executor/models/ernie45_vl.py +1527 -0
  975. vllm/model_executor/models/ernie45_vl_moe.py +727 -0
  976. vllm/model_executor/models/ernie_mtp.py +268 -0
  977. vllm/model_executor/models/exaone.py +550 -0
  978. vllm/model_executor/models/exaone4.py +533 -0
  979. vllm/model_executor/models/fairseq2_llama.py +154 -0
  980. vllm/model_executor/models/falcon.py +509 -0
  981. vllm/model_executor/models/falcon_h1.py +674 -0
  982. vllm/model_executor/models/fuyu.py +399 -0
  983. vllm/model_executor/models/gemma.py +425 -0
  984. vllm/model_executor/models/gemma2.py +422 -0
  985. vllm/model_executor/models/gemma3.py +555 -0
  986. vllm/model_executor/models/gemma3_mm.py +721 -0
  987. vllm/model_executor/models/gemma3n.py +1113 -0
  988. vllm/model_executor/models/gemma3n_mm.py +761 -0
  989. vllm/model_executor/models/glm.py +23 -0
  990. vllm/model_executor/models/glm4.py +304 -0
  991. vllm/model_executor/models/glm4_1v.py +1690 -0
  992. vllm/model_executor/models/glm4_moe.py +727 -0
  993. vllm/model_executor/models/glm4_moe_mtp.py +301 -0
  994. vllm/model_executor/models/glm4v.py +654 -0
  995. vllm/model_executor/models/gpt2.py +380 -0
  996. vllm/model_executor/models/gpt_bigcode.py +344 -0
  997. vllm/model_executor/models/gpt_j.py +339 -0
  998. vllm/model_executor/models/gpt_neox.py +330 -0
  999. vllm/model_executor/models/gpt_oss.py +712 -0
  1000. vllm/model_executor/models/granite.py +489 -0
  1001. vllm/model_executor/models/granite_speech.py +794 -0
  1002. vllm/model_executor/models/granitemoe.py +550 -0
  1003. vllm/model_executor/models/granitemoehybrid.py +614 -0
  1004. vllm/model_executor/models/granitemoeshared.py +332 -0
  1005. vllm/model_executor/models/gritlm.py +262 -0
  1006. vllm/model_executor/models/grok1.py +547 -0
  1007. vllm/model_executor/models/h2ovl.py +536 -0
  1008. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1009. vllm/model_executor/models/hyperclovax_vision.py +1192 -0
  1010. vllm/model_executor/models/idefics2_vision_model.py +417 -0
  1011. vllm/model_executor/models/idefics3.py +756 -0
  1012. vllm/model_executor/models/interfaces.py +959 -0
  1013. vllm/model_executor/models/interfaces_base.py +192 -0
  1014. vllm/model_executor/models/intern_vit.py +441 -0
  1015. vllm/model_executor/models/internlm2.py +450 -0
  1016. vllm/model_executor/models/internlm2_ve.py +148 -0
  1017. vllm/model_executor/models/interns1.py +838 -0
  1018. vllm/model_executor/models/interns1_vit.py +418 -0
  1019. vllm/model_executor/models/internvl.py +1423 -0
  1020. vllm/model_executor/models/jais.py +373 -0
  1021. vllm/model_executor/models/jamba.py +591 -0
  1022. vllm/model_executor/models/jina_vl.py +144 -0
  1023. vllm/model_executor/models/keye.py +1680 -0
  1024. vllm/model_executor/models/keye_vl1_5.py +602 -0
  1025. vllm/model_executor/models/kimi_vl.py +618 -0
  1026. vllm/model_executor/models/lfm2.py +548 -0
  1027. vllm/model_executor/models/llama.py +669 -0
  1028. vllm/model_executor/models/llama4.py +746 -0
  1029. vllm/model_executor/models/llama4_eagle.py +239 -0
  1030. vllm/model_executor/models/llama_eagle.py +179 -0
  1031. vllm/model_executor/models/llama_eagle3.py +296 -0
  1032. vllm/model_executor/models/llava.py +870 -0
  1033. vllm/model_executor/models/llava_next.py +571 -0
  1034. vllm/model_executor/models/llava_next_video.py +476 -0
  1035. vllm/model_executor/models/llava_onevision.py +942 -0
  1036. vllm/model_executor/models/longcat_flash.py +715 -0
  1037. vllm/model_executor/models/longcat_flash_mtp.py +352 -0
  1038. vllm/model_executor/models/mamba.py +275 -0
  1039. vllm/model_executor/models/mamba2.py +291 -0
  1040. vllm/model_executor/models/medusa.py +169 -0
  1041. vllm/model_executor/models/midashenglm.py +792 -0
  1042. vllm/model_executor/models/mimo.py +188 -0
  1043. vllm/model_executor/models/mimo_mtp.py +280 -0
  1044. vllm/model_executor/models/minicpm.py +631 -0
  1045. vllm/model_executor/models/minicpm3.py +230 -0
  1046. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1047. vllm/model_executor/models/minicpmo.py +770 -0
  1048. vllm/model_executor/models/minicpmv.py +1784 -0
  1049. vllm/model_executor/models/minimax_text_01.py +986 -0
  1050. vllm/model_executor/models/minimax_vl_01.py +426 -0
  1051. vllm/model_executor/models/mistral3.py +628 -0
  1052. vllm/model_executor/models/mixtral.py +606 -0
  1053. vllm/model_executor/models/mllama4.py +1076 -0
  1054. vllm/model_executor/models/mlp_speculator.py +206 -0
  1055. vllm/model_executor/models/modernbert.py +374 -0
  1056. vllm/model_executor/models/module_mapping.py +72 -0
  1057. vllm/model_executor/models/molmo.py +1567 -0
  1058. vllm/model_executor/models/moonvit.py +673 -0
  1059. vllm/model_executor/models/motif.py +345 -0
  1060. vllm/model_executor/models/mpt.py +329 -0
  1061. vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
  1062. vllm/model_executor/models/nemotron.py +507 -0
  1063. vllm/model_executor/models/nemotron_h.py +565 -0
  1064. vllm/model_executor/models/nemotron_nas.py +481 -0
  1065. vllm/model_executor/models/nemotron_vl.py +652 -0
  1066. vllm/model_executor/models/nvlm_d.py +203 -0
  1067. vllm/model_executor/models/olmo.py +404 -0
  1068. vllm/model_executor/models/olmo2.py +439 -0
  1069. vllm/model_executor/models/olmoe.py +483 -0
  1070. vllm/model_executor/models/opt.py +412 -0
  1071. vllm/model_executor/models/orion.py +348 -0
  1072. vllm/model_executor/models/ovis.py +559 -0
  1073. vllm/model_executor/models/ovis2_5.py +642 -0
  1074. vllm/model_executor/models/paligemma.py +411 -0
  1075. vllm/model_executor/models/persimmon.py +343 -0
  1076. vllm/model_executor/models/phi.py +356 -0
  1077. vllm/model_executor/models/phi3.py +19 -0
  1078. vllm/model_executor/models/phi3v.py +698 -0
  1079. vllm/model_executor/models/phi4_multimodal.py +1475 -0
  1080. vllm/model_executor/models/phi4mm.py +1279 -0
  1081. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1082. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1083. vllm/model_executor/models/phimoe.py +679 -0
  1084. vllm/model_executor/models/pixtral.py +1345 -0
  1085. vllm/model_executor/models/plamo2.py +978 -0
  1086. vllm/model_executor/models/qwen.py +361 -0
  1087. vllm/model_executor/models/qwen2.py +523 -0
  1088. vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
  1089. vllm/model_executor/models/qwen2_5_vl.py +1481 -0
  1090. vllm/model_executor/models/qwen2_audio.py +489 -0
  1091. vllm/model_executor/models/qwen2_moe.py +558 -0
  1092. vllm/model_executor/models/qwen2_rm.py +122 -0
  1093. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1094. vllm/model_executor/models/qwen3.py +341 -0
  1095. vllm/model_executor/models/qwen3_moe.py +692 -0
  1096. vllm/model_executor/models/qwen3_next.py +1266 -0
  1097. vllm/model_executor/models/qwen3_next_mtp.py +281 -0
  1098. vllm/model_executor/models/qwen3_vl.py +1613 -0
  1099. vllm/model_executor/models/qwen3_vl_moe.py +358 -0
  1100. vllm/model_executor/models/qwen_vl.py +795 -0
  1101. vllm/model_executor/models/radio.py +576 -0
  1102. vllm/model_executor/models/registry.py +990 -0
  1103. vllm/model_executor/models/roberta.py +252 -0
  1104. vllm/model_executor/models/rvl.py +103 -0
  1105. vllm/model_executor/models/seed_oss.py +485 -0
  1106. vllm/model_executor/models/siglip.py +540 -0
  1107. vllm/model_executor/models/siglip2navit.py +689 -0
  1108. vllm/model_executor/models/skyworkr1v.py +911 -0
  1109. vllm/model_executor/models/smolvlm.py +44 -0
  1110. vllm/model_executor/models/solar.py +504 -0
  1111. vllm/model_executor/models/stablelm.py +341 -0
  1112. vllm/model_executor/models/starcoder2.py +354 -0
  1113. vllm/model_executor/models/step3_text.py +510 -0
  1114. vllm/model_executor/models/step3_vl.py +1072 -0
  1115. vllm/model_executor/models/swin.py +475 -0
  1116. vllm/model_executor/models/tarsier.py +639 -0
  1117. vllm/model_executor/models/telechat2.py +151 -0
  1118. vllm/model_executor/models/teleflm.py +79 -0
  1119. vllm/model_executor/models/terratorch.py +294 -0
  1120. vllm/model_executor/models/transformers.py +948 -0
  1121. vllm/model_executor/models/ultravox.py +654 -0
  1122. vllm/model_executor/models/utils.py +808 -0
  1123. vllm/model_executor/models/vision.py +404 -0
  1124. vllm/model_executor/models/voxtral.py +786 -0
  1125. vllm/model_executor/models/whisper.py +963 -0
  1126. vllm/model_executor/models/zamba2.py +960 -0
  1127. vllm/model_executor/parameter.py +620 -0
  1128. vllm/model_executor/utils.py +86 -0
  1129. vllm/model_executor/warmup/__init__.py +0 -0
  1130. vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
  1131. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1132. vllm/multimodal/__init__.py +33 -0
  1133. vllm/multimodal/audio.py +116 -0
  1134. vllm/multimodal/base.py +27 -0
  1135. vllm/multimodal/cache.py +697 -0
  1136. vllm/multimodal/evs.py +273 -0
  1137. vllm/multimodal/hasher.py +102 -0
  1138. vllm/multimodal/image.py +130 -0
  1139. vllm/multimodal/inputs.py +987 -0
  1140. vllm/multimodal/parse.py +511 -0
  1141. vllm/multimodal/processing.py +2148 -0
  1142. vllm/multimodal/profiling.py +284 -0
  1143. vllm/multimodal/registry.py +345 -0
  1144. vllm/multimodal/utils.py +503 -0
  1145. vllm/multimodal/video.py +319 -0
  1146. vllm/outputs.py +324 -0
  1147. vllm/platforms/__init__.py +263 -0
  1148. vllm/platforms/cpu.py +340 -0
  1149. vllm/platforms/cuda.py +668 -0
  1150. vllm/platforms/interface.py +620 -0
  1151. vllm/platforms/rocm.py +497 -0
  1152. vllm/platforms/tpu.py +233 -0
  1153. vllm/platforms/xpu.py +243 -0
  1154. vllm/plugins/__init__.py +72 -0
  1155. vllm/plugins/io_processors/__init__.py +68 -0
  1156. vllm/plugins/io_processors/interface.py +67 -0
  1157. vllm/plugins/lora_resolvers/README.md +16 -0
  1158. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1159. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1160. vllm/pooling_params.py +191 -0
  1161. vllm/profiler/__init__.py +0 -0
  1162. vllm/profiler/layerwise_profile.py +375 -0
  1163. vllm/profiler/utils.py +148 -0
  1164. vllm/py.typed +2 -0
  1165. vllm/ray/__init__.py +0 -0
  1166. vllm/ray/lazy_utils.py +22 -0
  1167. vllm/ray/ray_env.py +72 -0
  1168. vllm/reasoning/__init__.py +29 -0
  1169. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1170. vllm/reasoning/basic_parsers.py +156 -0
  1171. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1172. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1173. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1174. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1175. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1176. vllm/reasoning/mistral_reasoning_parser.py +56 -0
  1177. vllm/reasoning/qwen3_reasoning_parser.py +72 -0
  1178. vllm/reasoning/seedoss_reasoning_parser.py +28 -0
  1179. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1180. vllm/sampling_params.py +593 -0
  1181. vllm/scalar_type.py +349 -0
  1182. vllm/scripts.py +15 -0
  1183. vllm/sequence.py +103 -0
  1184. vllm/tasks.py +11 -0
  1185. vllm/test_utils.py +129 -0
  1186. vllm/third_party/__init__.py +0 -0
  1187. vllm/third_party/pynvml.py +6140 -0
  1188. vllm/tracing.py +136 -0
  1189. vllm/transformers_utils/__init__.py +24 -0
  1190. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1191. vllm/transformers_utils/chat_templates/registry.py +70 -0
  1192. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1193. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1194. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1195. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1196. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1197. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1198. vllm/transformers_utils/config.py +1102 -0
  1199. vllm/transformers_utils/config_parser_base.py +20 -0
  1200. vllm/transformers_utils/configs/__init__.py +63 -0
  1201. vllm/transformers_utils/configs/arctic.py +207 -0
  1202. vllm/transformers_utils/configs/chatglm.py +72 -0
  1203. vllm/transformers_utils/configs/deepseek_v3.py +101 -0
  1204. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1205. vllm/transformers_utils/configs/dotsocr.py +69 -0
  1206. vllm/transformers_utils/configs/eagle.py +84 -0
  1207. vllm/transformers_utils/configs/falcon.py +90 -0
  1208. vllm/transformers_utils/configs/jais.py +237 -0
  1209. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1210. vllm/transformers_utils/configs/medusa.py +63 -0
  1211. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1212. vllm/transformers_utils/configs/mistral.py +165 -0
  1213. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1214. vllm/transformers_utils/configs/moonvit.py +33 -0
  1215. vllm/transformers_utils/configs/nemotron.py +205 -0
  1216. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1217. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1218. vllm/transformers_utils/configs/olmo3.py +80 -0
  1219. vllm/transformers_utils/configs/ovis.py +176 -0
  1220. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1221. vllm/transformers_utils/configs/radio.py +91 -0
  1222. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1223. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1224. vllm/transformers_utils/configs/speculators/base.py +111 -0
  1225. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1226. vllm/transformers_utils/configs/ultravox.py +116 -0
  1227. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1228. vllm/transformers_utils/dynamic_module.py +60 -0
  1229. vllm/transformers_utils/processor.py +299 -0
  1230. vllm/transformers_utils/processors/__init__.py +16 -0
  1231. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1232. vllm/transformers_utils/processors/ovis.py +420 -0
  1233. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1234. vllm/transformers_utils/runai_utils.py +104 -0
  1235. vllm/transformers_utils/s3_utils.py +93 -0
  1236. vllm/transformers_utils/tokenizer.py +292 -0
  1237. vllm/transformers_utils/tokenizer_base.py +154 -0
  1238. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1239. vllm/transformers_utils/tokenizers/mistral.py +521 -0
  1240. vllm/transformers_utils/utils.py +108 -0
  1241. vllm/triton_utils/__init__.py +16 -0
  1242. vllm/triton_utils/importing.py +96 -0
  1243. vllm/usage/__init__.py +0 -0
  1244. vllm/usage/usage_lib.py +259 -0
  1245. vllm/utils/__init__.py +3566 -0
  1246. vllm/utils/deep_gemm.py +319 -0
  1247. vllm/utils/flashinfer.py +443 -0
  1248. vllm/utils/jsontree.py +178 -0
  1249. vllm/utils/tensor_schema.py +235 -0
  1250. vllm/v1/__init__.py +0 -0
  1251. vllm/v1/attention/__init__.py +0 -0
  1252. vllm/v1/attention/backends/__init__.py +0 -0
  1253. vllm/v1/attention/backends/cpu_attn.py +919 -0
  1254. vllm/v1/attention/backends/flash_attn.py +795 -0
  1255. vllm/v1/attention/backends/flashinfer.py +1181 -0
  1256. vllm/v1/attention/backends/flex_attention.py +861 -0
  1257. vllm/v1/attention/backends/gdn_attn.py +332 -0
  1258. vllm/v1/attention/backends/linear_attn.py +67 -0
  1259. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1260. vllm/v1/attention/backends/mamba2_attn.py +232 -0
  1261. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1262. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1263. vllm/v1/attention/backends/mla/common.py +1783 -0
  1264. vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
  1265. vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
  1266. vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
  1267. vllm/v1/attention/backends/mla/flashmla.py +203 -0
  1268. vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
  1269. vllm/v1/attention/backends/mla/indexer.py +342 -0
  1270. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1271. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1272. vllm/v1/attention/backends/pallas.py +409 -0
  1273. vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
  1274. vllm/v1/attention/backends/rocm_attn.py +426 -0
  1275. vllm/v1/attention/backends/short_conv_attn.py +94 -0
  1276. vllm/v1/attention/backends/tree_attn.py +451 -0
  1277. vllm/v1/attention/backends/triton_attn.py +361 -0
  1278. vllm/v1/attention/backends/utils.py +990 -0
  1279. vllm/v1/attention/backends/xformers.py +438 -0
  1280. vllm/v1/core/__init__.py +0 -0
  1281. vllm/v1/core/block_pool.py +416 -0
  1282. vllm/v1/core/encoder_cache_manager.py +333 -0
  1283. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1284. vllm/v1/core/kv_cache_manager.py +399 -0
  1285. vllm/v1/core/kv_cache_utils.py +1291 -0
  1286. vllm/v1/core/sched/__init__.py +0 -0
  1287. vllm/v1/core/sched/async_scheduler.py +47 -0
  1288. vllm/v1/core/sched/interface.py +158 -0
  1289. vllm/v1/core/sched/output.py +166 -0
  1290. vllm/v1/core/sched/request_queue.py +224 -0
  1291. vllm/v1/core/sched/scheduler.py +1296 -0
  1292. vllm/v1/core/sched/utils.py +69 -0
  1293. vllm/v1/core/single_type_kv_cache_manager.py +671 -0
  1294. vllm/v1/cudagraph_dispatcher.py +125 -0
  1295. vllm/v1/engine/__init__.py +203 -0
  1296. vllm/v1/engine/async_llm.py +742 -0
  1297. vllm/v1/engine/coordinator.py +357 -0
  1298. vllm/v1/engine/core.py +1235 -0
  1299. vllm/v1/engine/core_client.py +1334 -0
  1300. vllm/v1/engine/detokenizer.py +349 -0
  1301. vllm/v1/engine/exceptions.py +17 -0
  1302. vllm/v1/engine/llm_engine.py +370 -0
  1303. vllm/v1/engine/logprobs.py +201 -0
  1304. vllm/v1/engine/output_processor.py +576 -0
  1305. vllm/v1/engine/parallel_sampling.py +133 -0
  1306. vllm/v1/engine/processor.py +545 -0
  1307. vllm/v1/engine/utils.py +860 -0
  1308. vllm/v1/executor/__init__.py +0 -0
  1309. vllm/v1/executor/abstract.py +137 -0
  1310. vllm/v1/executor/multiproc_executor.py +726 -0
  1311. vllm/v1/executor/ray_distributed_executor.py +108 -0
  1312. vllm/v1/executor/utils.py +23 -0
  1313. vllm/v1/kv_cache_interface.py +375 -0
  1314. vllm/v1/kv_offload/__init__.py +0 -0
  1315. vllm/v1/kv_offload/abstract.py +165 -0
  1316. vllm/v1/kv_offload/backend.py +96 -0
  1317. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1318. vllm/v1/kv_offload/backends/cpu.py +61 -0
  1319. vllm/v1/kv_offload/cpu.py +75 -0
  1320. vllm/v1/kv_offload/factory.py +56 -0
  1321. vllm/v1/kv_offload/lru_manager.py +132 -0
  1322. vllm/v1/kv_offload/mediums.py +39 -0
  1323. vllm/v1/kv_offload/spec.py +61 -0
  1324. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1325. vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
  1326. vllm/v1/kv_offload/worker/worker.py +142 -0
  1327. vllm/v1/metrics/__init__.py +0 -0
  1328. vllm/v1/metrics/loggers.py +741 -0
  1329. vllm/v1/metrics/prometheus.py +82 -0
  1330. vllm/v1/metrics/ray_wrappers.py +152 -0
  1331. vllm/v1/metrics/reader.py +246 -0
  1332. vllm/v1/metrics/stats.py +257 -0
  1333. vllm/v1/outputs.py +161 -0
  1334. vllm/v1/pool/__init__.py +0 -0
  1335. vllm/v1/pool/metadata.py +77 -0
  1336. vllm/v1/request.py +241 -0
  1337. vllm/v1/sample/__init__.py +0 -0
  1338. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1339. vllm/v1/sample/logits_processor/builtin.py +275 -0
  1340. vllm/v1/sample/logits_processor/interface.py +97 -0
  1341. vllm/v1/sample/logits_processor/state.py +161 -0
  1342. vllm/v1/sample/metadata.py +43 -0
  1343. vllm/v1/sample/ops/__init__.py +0 -0
  1344. vllm/v1/sample/ops/bad_words.py +39 -0
  1345. vllm/v1/sample/ops/logprobs.py +26 -0
  1346. vllm/v1/sample/ops/penalties.py +43 -0
  1347. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1348. vllm/v1/sample/rejection_sampler.py +623 -0
  1349. vllm/v1/sample/sampler.py +285 -0
  1350. vllm/v1/sample/tpu/__init__.py +0 -0
  1351. vllm/v1/sample/tpu/metadata.py +124 -0
  1352. vllm/v1/sample/tpu/sampler.py +213 -0
  1353. vllm/v1/serial_utils.py +423 -0
  1354. vllm/v1/spec_decode/__init__.py +0 -0
  1355. vllm/v1/spec_decode/eagle.py +1011 -0
  1356. vllm/v1/spec_decode/medusa.py +66 -0
  1357. vllm/v1/spec_decode/metadata.py +62 -0
  1358. vllm/v1/spec_decode/metrics.py +211 -0
  1359. vllm/v1/spec_decode/ngram_proposer.py +276 -0
  1360. vllm/v1/spec_decode/utils.py +14 -0
  1361. vllm/v1/structured_output/__init__.py +295 -0
  1362. vllm/v1/structured_output/backend_guidance.py +245 -0
  1363. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1364. vllm/v1/structured_output/backend_outlines.py +320 -0
  1365. vllm/v1/structured_output/backend_types.py +134 -0
  1366. vllm/v1/structured_output/backend_xgrammar.py +327 -0
  1367. vllm/v1/structured_output/request.py +86 -0
  1368. vllm/v1/structured_output/utils.py +454 -0
  1369. vllm/v1/utils.py +396 -0
  1370. vllm/v1/worker/__init__.py +0 -0
  1371. vllm/v1/worker/block_table.py +210 -0
  1372. vllm/v1/worker/cpu_model_runner.py +175 -0
  1373. vllm/v1/worker/cpu_worker.py +156 -0
  1374. vllm/v1/worker/gpu_input_batch.py +863 -0
  1375. vllm/v1/worker/gpu_model_runner.py +4160 -0
  1376. vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
  1377. vllm/v1/worker/gpu_worker.py +710 -0
  1378. vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
  1379. vllm/v1/worker/lora_model_runner_mixin.py +183 -0
  1380. vllm/v1/worker/tpu_input_batch.py +587 -0
  1381. vllm/v1/worker/tpu_model_runner.py +1946 -0
  1382. vllm/v1/worker/tpu_worker.py +346 -0
  1383. vllm/v1/worker/ubatch_splitting.py +192 -0
  1384. vllm/v1/worker/ubatch_utils.py +27 -0
  1385. vllm/v1/worker/ubatching.py +224 -0
  1386. vllm/v1/worker/utils.py +344 -0
  1387. vllm/v1/worker/worker_base.py +65 -0
  1388. vllm/v1/worker/xpu_model_runner.py +57 -0
  1389. vllm/v1/worker/xpu_worker.py +179 -0
  1390. vllm/version.py +41 -0
  1391. vllm/vllm_flash_attn/.gitkeep +0 -0
  1392. vllm/worker/__init__.py +0 -0
  1393. vllm/worker/worker_base.py +279 -0
  1394. vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
  1395. vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
  1396. vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
  1397. vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
  1398. vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
vllm/_custom_ops.py ADDED
@@ -0,0 +1,2044 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import contextlib
5
+ from typing import TYPE_CHECKING, Optional, Union
6
+
7
+ import torch
8
+
9
+ import vllm.envs as envs
10
+ from vllm.logger import init_logger
11
+ from vllm.platforms import current_platform
12
+ from vllm.scalar_type import ScalarType
13
+
14
+ logger = init_logger(__name__)
15
+
16
+ if not current_platform.is_tpu() and not current_platform.is_xpu():
17
+ try:
18
+ import vllm._C
19
+ except ImportError as e:
20
+ logger.warning("Failed to import from vllm._C with %r", e)
21
+
22
+ supports_moe_ops = False
23
+ with contextlib.suppress(ImportError):
24
+ import vllm._moe_C # noqa: F401
25
+ supports_moe_ops = True
26
+
27
+ if TYPE_CHECKING:
28
+
29
+ def register_fake(fn):
30
+ return lambda name: fn
31
+ else:
32
+ try:
33
+ from torch.library import register_fake
34
+ except ImportError:
35
+ from torch.library import impl_abstract as register_fake
36
+
37
+
38
+ # page attention ops
39
+ def paged_attention_v1(
40
+ out: torch.Tensor,
41
+ query: torch.Tensor,
42
+ key_cache: torch.Tensor,
43
+ value_cache: torch.Tensor,
44
+ num_kv_heads: int,
45
+ scale: float,
46
+ block_tables: torch.Tensor,
47
+ seq_lens: torch.Tensor,
48
+ block_size: int,
49
+ max_seq_len: int,
50
+ alibi_slopes: Optional[torch.Tensor],
51
+ kv_cache_dtype: str,
52
+ k_scale: torch.Tensor,
53
+ v_scale: torch.Tensor,
54
+ tp_rank: int = 0,
55
+ blocksparse_local_blocks: int = 0,
56
+ blocksparse_vert_stride: int = 0,
57
+ blocksparse_block_size: int = 64,
58
+ blocksparse_head_sliding_step: int = 0,
59
+ ) -> None:
60
+ torch.ops._C.paged_attention_v1(
61
+ out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,
62
+ seq_lens, block_size, max_seq_len, alibi_slopes, kv_cache_dtype,
63
+ k_scale, v_scale, tp_rank, blocksparse_local_blocks,
64
+ blocksparse_vert_stride, blocksparse_block_size,
65
+ blocksparse_head_sliding_step)
66
+
67
+
68
+ def paged_attention_v2(
69
+ out: torch.Tensor,
70
+ exp_sum: torch.Tensor,
71
+ max_logits: torch.Tensor,
72
+ tmp_out: torch.Tensor,
73
+ query: torch.Tensor,
74
+ key_cache: torch.Tensor,
75
+ value_cache: torch.Tensor,
76
+ num_kv_heads: int,
77
+ scale: float,
78
+ block_tables: torch.Tensor,
79
+ seq_lens: torch.Tensor,
80
+ block_size: int,
81
+ max_seq_len: int,
82
+ alibi_slopes: Optional[torch.Tensor],
83
+ kv_cache_dtype: str,
84
+ k_scale: torch.Tensor,
85
+ v_scale: torch.Tensor,
86
+ tp_rank: int = 0,
87
+ blocksparse_local_blocks: int = 0,
88
+ blocksparse_vert_stride: int = 0,
89
+ blocksparse_block_size: int = 64,
90
+ blocksparse_head_sliding_step: int = 0,
91
+ ) -> None:
92
+ torch.ops._C.paged_attention_v2(
93
+ out, exp_sum, max_logits, tmp_out, query, key_cache, value_cache,
94
+ num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len,
95
+ alibi_slopes, kv_cache_dtype, k_scale, v_scale, tp_rank,
96
+ blocksparse_local_blocks, blocksparse_vert_stride,
97
+ blocksparse_block_size, blocksparse_head_sliding_step)
98
+
99
+
100
+ def paged_attention_rocm(
101
+ out: torch.Tensor,
102
+ exp_sum: torch.Tensor,
103
+ max_logits: torch.Tensor,
104
+ tmp_out: torch.Tensor,
105
+ query: torch.Tensor,
106
+ key_cache: torch.Tensor,
107
+ value_cache: torch.Tensor,
108
+ num_kv_heads: int,
109
+ scale: float,
110
+ block_tables: torch.Tensor,
111
+ seq_lens: torch.Tensor,
112
+ query_start_loc: Optional[torch.Tensor],
113
+ block_size: int,
114
+ max_seq_len: int,
115
+ alibi_slopes: Optional[torch.Tensor],
116
+ kv_cache_dtype: str,
117
+ k_scale: torch.Tensor,
118
+ v_scale: torch.Tensor,
119
+ fp8_out_scale: Optional[torch.Tensor] = None,
120
+ mfma_type: str = "fp8" if envs.VLLM_ROCM_FP8_MFMA_PAGE_ATTN else "f16",
121
+ ) -> None:
122
+ torch.ops._rocm_C.paged_attention(out, exp_sum, max_logits, tmp_out, query,
123
+ key_cache, value_cache, num_kv_heads,
124
+ scale, block_tables, seq_lens,
125
+ query_start_loc, block_size, max_seq_len,
126
+ alibi_slopes, kv_cache_dtype, k_scale,
127
+ v_scale, fp8_out_scale, mfma_type)
128
+
129
+
130
+ def mla_decode_kvcache_cpu(
131
+ out: torch.Tensor,
132
+ query: torch.Tensor,
133
+ kv_cache: torch.Tensor,
134
+ scale: float,
135
+ block_tables: torch.Tensor,
136
+ seq_lens: torch.Tensor,
137
+ ) -> None:
138
+ torch.ops._C_cpu.mla_decode_kvcache(out, query, kv_cache, scale,
139
+ block_tables, seq_lens)
140
+
141
+
142
+ # merge attn states ops
143
+ def merge_attn_states(output: torch.Tensor,
144
+ prefix_output: torch.Tensor,
145
+ prefix_lse: torch.Tensor,
146
+ suffix_output: torch.Tensor,
147
+ suffix_lse: torch.Tensor,
148
+ output_lse: Optional[torch.Tensor] = None) -> None:
149
+ torch.ops._C.merge_attn_states(output, output_lse, prefix_output,
150
+ prefix_lse, suffix_output, suffix_lse)
151
+
152
+
153
+ def convert_vertical_slash_indexes(
154
+ q_seqlens: torch.Tensor, # [BATCH, ]
155
+ kv_seqlens: torch.Tensor, # [BATCH, ]
156
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
157
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
158
+ context_size: int,
159
+ block_size_M: int,
160
+ block_size_N: int,
161
+ causal: bool = True,
162
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
163
+ batch_size = slash_indexes.size(0)
164
+ num_heads = slash_indexes.size(1)
165
+ nnz_slash = slash_indexes.size(2)
166
+ nnz_vertical = vertical_indexes.size(2)
167
+ num_rows = (context_size + block_size_M - 1) // block_size_M
168
+
169
+ block_count = torch.zeros(batch_size,
170
+ num_heads,
171
+ num_rows,
172
+ dtype=q_seqlens.dtype,
173
+ device=q_seqlens.device)
174
+ block_offset = torch.zeros(batch_size,
175
+ num_heads,
176
+ num_rows,
177
+ nnz_slash,
178
+ dtype=q_seqlens.dtype,
179
+ device=q_seqlens.device)
180
+ column_count = torch.zeros(batch_size,
181
+ num_heads,
182
+ num_rows,
183
+ dtype=q_seqlens.dtype,
184
+ device=q_seqlens.device)
185
+ column_index = torch.zeros(batch_size,
186
+ num_heads,
187
+ num_rows,
188
+ nnz_vertical,
189
+ dtype=q_seqlens.dtype,
190
+ device=q_seqlens.device)
191
+
192
+ torch.ops._C.convert_vertical_slash_indexes(
193
+ block_count, block_offset, column_count, column_index, q_seqlens,
194
+ kv_seqlens, vertical_indexes, slash_indexes, context_size,
195
+ block_size_M, block_size_N, causal)
196
+ return block_count, block_offset, column_count, column_index
197
+
198
+
199
+ def convert_vertical_slash_indexes_mergehead(
200
+ q_seqlens: torch.Tensor, # [BATCH, ]
201
+ kv_seqlens: torch.Tensor, # [BATCH, ]
202
+ vertical_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
203
+ slash_indexes: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
204
+ # [N_HEADS] : different head use different number of indices
205
+ vertical_indices_count: torch.Tensor,
206
+ slash_indices_count: torch.Tensor,
207
+ context_size: int,
208
+ block_size_M: int,
209
+ block_size_N: int,
210
+ causal: bool = True,
211
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
212
+ batch_size = slash_indexes.size(0)
213
+ num_heads = slash_indexes.size(1)
214
+ nnz_slash = slash_indexes.size(2)
215
+ nnz_vertical = vertical_indexes.size(2)
216
+ num_rows = (context_size + block_size_M - 1) // block_size_M
217
+
218
+ block_count = torch.empty(batch_size,
219
+ num_heads,
220
+ num_rows,
221
+ dtype=q_seqlens.dtype,
222
+ device=q_seqlens.device)
223
+ block_offset = torch.empty(batch_size,
224
+ num_heads,
225
+ num_rows,
226
+ nnz_slash,
227
+ dtype=q_seqlens.dtype,
228
+ device=q_seqlens.device)
229
+ column_count = torch.empty(batch_size,
230
+ num_heads,
231
+ num_rows,
232
+ dtype=q_seqlens.dtype,
233
+ device=q_seqlens.device)
234
+ column_index = torch.empty(batch_size,
235
+ num_heads,
236
+ num_rows,
237
+ nnz_vertical,
238
+ dtype=q_seqlens.dtype,
239
+ device=q_seqlens.device)
240
+
241
+ torch.ops._C.convert_vertical_slash_indexes_mergehead(
242
+ block_count, block_offset, column_count, column_index, q_seqlens,
243
+ kv_seqlens, vertical_indexes, slash_indexes, vertical_indices_count,
244
+ slash_indices_count, context_size, block_size_M, block_size_N, causal)
245
+ return block_count, block_offset, column_count, column_index
246
+
247
+
248
+ # pos encoding ops
249
+ def rotary_embedding(
250
+ positions: torch.Tensor,
251
+ query: torch.Tensor,
252
+ key: Optional[torch.Tensor],
253
+ head_size: int,
254
+ cos_sin_cache: torch.Tensor,
255
+ is_neox: bool,
256
+ ) -> None:
257
+ torch.ops._C.rotary_embedding(positions, query, key, head_size,
258
+ cos_sin_cache, is_neox)
259
+
260
+
261
+ # layer norm ops
262
+ def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
263
+ epsilon: float) -> None:
264
+ # TODO: Remove this contiguous call when the kernel is updated to support non-contiguous input
265
+ input_contiguous = input.contiguous()
266
+ torch.ops._C.rms_norm(out, input_contiguous, weight, epsilon)
267
+
268
+
269
+ def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
270
+ weight: torch.Tensor, epsilon: float) -> None:
271
+ torch.ops._C.fused_add_rms_norm(input, residual, weight, epsilon)
272
+
273
+
274
+ def poly_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
275
+ bias: torch.Tensor, epsilon: float) -> None:
276
+ # TODO: Remove this contiguous call when the kernel is updated to support non-contiguous input
277
+ input_contiguous = input.contiguous()
278
+ torch.ops._C.poly_norm(out, input_contiguous, weight, bias, epsilon)
279
+
280
+
281
+ def apply_repetition_penalties_torch(
282
+ logits: torch.Tensor, prompt_mask: torch.Tensor,
283
+ output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None:
284
+ repetition_penalties = repetition_penalties.unsqueeze(dim=1).repeat(
285
+ 1, logits.size(1))
286
+ # If token appears in prompt or output, apply, otherwise use 1.0 for no-op.
287
+ penalties = torch.where(prompt_mask | output_mask, repetition_penalties,
288
+ 1.0)
289
+ # If logits are positive, divide by penalty, otherwise multiply by penalty.
290
+ scaling = torch.where(logits > 0, 1.0 / penalties, penalties)
291
+ logits *= scaling
292
+
293
+
294
+ def apply_repetition_penalties_cuda(
295
+ logits: torch.Tensor, prompt_mask: torch.Tensor,
296
+ output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None:
297
+ torch.ops._C.apply_repetition_penalties_(logits, prompt_mask, output_mask,
298
+ repetition_penalties)
299
+
300
+
301
+ def apply_repetition_penalties(logits: torch.Tensor, prompt_mask: torch.Tensor,
302
+ output_mask: torch.Tensor,
303
+ repetition_penalties: torch.Tensor) -> None:
304
+ """Apply repetition penalties to logits in-place.
305
+
306
+ Args:
307
+ logits: The logits tensor of shape [num_seqs, vocab_size].
308
+ prompt_mask: A boolean tensor indicating which tokens appear in the prompt.
309
+ output_mask: A boolean tensor indicating which tokens appear in the output.
310
+ repetition_penalties: The repetition penalties of shape (num_seqs, ).
311
+ """
312
+ if logits.is_cuda and logits.is_contiguous():
313
+ apply_repetition_penalties_cuda(logits, prompt_mask, output_mask,
314
+ repetition_penalties)
315
+ else:
316
+ apply_repetition_penalties_torch(logits, prompt_mask, output_mask,
317
+ repetition_penalties)
318
+
319
+
320
+ # fused quant layer norm ops
321
+ def rms_norm_dynamic_per_token_quant(
322
+ input: torch.Tensor,
323
+ weight: torch.Tensor,
324
+ epsilon: float,
325
+ quant_dtype: torch.dtype,
326
+ scale_ub: Optional[torch.Tensor] = None,
327
+ residual: Optional[torch.Tensor] = None
328
+ ) -> tuple[torch.Tensor, torch.Tensor]:
329
+ output = torch.empty_like(input, dtype=quant_dtype)
330
+ scales = torch.empty((input.numel() // input.shape[-1], 1),
331
+ device=input.device,
332
+ dtype=torch.float32)
333
+
334
+ torch.ops._C.rms_norm_dynamic_per_token_quant(output, input, weight,
335
+ scales, epsilon, scale_ub,
336
+ residual)
337
+ return output, scales
338
+
339
+
340
+ # quantization ops
341
+ # awq
342
+ def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
343
+ zeros: torch.Tensor, split_k_iters: int, thx: int,
344
+ thy: int) -> torch.Tensor:
345
+ if envs.VLLM_USE_TRITON_AWQ:
346
+ from vllm.model_executor.layers.quantization.awq_triton import (
347
+ awq_dequantize_triton)
348
+ return awq_dequantize_triton(qweight, scales, zeros)
349
+ return torch.ops._C.awq_dequantize(qweight, scales, zeros, split_k_iters,
350
+ thx, thy)
351
+
352
+
353
+ def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
354
+ scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
355
+ if envs.VLLM_USE_TRITON_AWQ:
356
+ from vllm.model_executor.layers.quantization.awq_triton import (
357
+ awq_gemm_triton)
358
+ return awq_gemm_triton(input, qweight, qzeros, scales, split_k_iters)
359
+ return torch.ops._C.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
360
+
361
+
362
+ # gptq
363
+ def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
364
+ b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
365
+ b_g_idx: torch.Tensor, use_exllama: bool,
366
+ bit: int) -> torch.Tensor:
367
+ return torch.ops._C.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
368
+ b_g_idx, use_exllama, bit)
369
+
370
+
371
+ if hasattr(torch.ops._C, "gptq_gemm"):
372
+
373
+ @register_fake("_C::gptq_gemm")
374
+ def _gptq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
375
+ b_gptq_qzeros: torch.Tensor,
376
+ b_gptq_scales: torch.Tensor, b_g_idx: torch.Tensor,
377
+ use_exllama: bool, bit: int) -> torch.Tensor:
378
+ return torch.empty((a.size(0), b_q_weight.size(1)),
379
+ dtype=a.dtype,
380
+ device=a.device)
381
+
382
+
383
+ def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
384
+ bit: int) -> None:
385
+ torch.ops._C.gptq_shuffle(q_weight, q_perm, bit)
386
+
387
+
388
+ # marlin_24
389
+ def gptq_marlin_24_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
390
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
391
+ workspace: torch.Tensor, b_q_type: ScalarType,
392
+ size_m: int, size_n: int, size_k: int) -> torch.Tensor:
393
+ return torch.ops._C.gptq_marlin_24_gemm(a, b_q_weight, b_meta, b_scales,
394
+ workspace, b_q_type.id, size_m,
395
+ size_n, size_k)
396
+
397
+
398
+ if hasattr(torch.ops._C, "gptq_marlin_24_gemm"):
399
+
400
+ @register_fake("_C::gptq_marlin_24_gemm")
401
+ def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
402
+ b_meta: torch.Tensor, b_scales: torch.Tensor,
403
+ workspace: torch.Tensor,
404
+ b_q_type: ScalarType, size_m: torch.SymInt,
405
+ size_n: torch.SymInt,
406
+ size_k: torch.SymInt) -> torch.Tensor:
407
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
408
+
409
+ @register_fake("_C::gptq_marlin_gemm")
410
+ def _gptq_marlin_gemm_fake(a: torch.Tensor,
411
+ c: Optional[torch.Tensor],
412
+ b_q_weight: torch.Tensor,
413
+ b_bias: Optional[torch.Tensor],
414
+ b_scales: torch.Tensor,
415
+ global_scale: Optional[torch.Tensor],
416
+ b_zeros: Optional[torch.Tensor],
417
+ g_idx: Optional[torch.Tensor],
418
+ perm: Optional[torch.Tensor],
419
+ workspace: torch.Tensor,
420
+ b_q_type_id: int,
421
+ size_m: torch.SymInt,
422
+ size_n: torch.SymInt,
423
+ size_k: torch.SymInt,
424
+ is_k_full: bool = True,
425
+ use_atomic_add: bool = False,
426
+ use_fp32_reduce: bool = False,
427
+ is_zp_float: bool = False) -> torch.Tensor:
428
+ return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)
429
+
430
+ @register_fake("_C::awq_dequantize")
431
+ def _awq_dequantize_fake(qweight: torch.Tensor, scales: torch.Tensor,
432
+ zeros: torch.Tensor, split_k_iters: torch.SymInt,
433
+ thx: int, thy: int) -> torch.Tensor:
434
+ in_c = qweight.size(0)
435
+ qout_c = qweight.size(1)
436
+ out_c = qout_c * 8
437
+ return torch.empty((in_c, out_c),
438
+ dtype=scales.dtype,
439
+ device=scales.device)
440
+
441
+ @register_fake("_C::awq_gemm")
442
+ def _awq_gemm_fake(input: torch.Tensor, qweight: torch.Tensor,
443
+ qzeros: torch.Tensor, scales: torch.Tensor,
444
+ split_k_iters: torch.SymInt) -> torch.Tensor:
445
+ num_in_feats = input.size(0)
446
+ return torch.empty((split_k_iters, num_in_feats, qweight.size(1) * 8),
447
+ dtype=input.dtype,
448
+ device=input.device).sum(0)
449
+
450
+ @register_fake("_C::machete_mm")
451
+ def machete_mm_fake(
452
+ a: torch.Tensor,
453
+ # b_q Should be the tensor returned by machete_prepack_B
454
+ b_q: torch.Tensor,
455
+ b_type: ScalarType,
456
+ out_type: Optional[torch.dtype] = None,
457
+ b_group_scales: Optional[torch.Tensor] = None,
458
+ b_group_zeros: Optional[torch.Tensor] = None,
459
+ b_group_size: Optional[int] = None,
460
+ b_channel_scales: Optional[torch.Tensor] = None,
461
+ a_token_scales: Optional[torch.Tensor] = None,
462
+ schedule: Optional[str] = None,
463
+ ) -> torch.Tensor:
464
+ m = a.size(0)
465
+ n = b_q.size(1)
466
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
467
+
468
+ @register_fake("_C::machete_prepack_B")
469
+ def machete_prepack_B_fake(
470
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
471
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
472
+ return torch.empty_like(b_q_weight,
473
+ memory_format=torch.contiguous_format)
474
+
475
+ @register_fake("_C::cutlass_w4a8_mm")
476
+ def cutlass_w4a8_mm_fake(
477
+ a: torch.Tensor,
478
+ # b_q Should be the tensor returned by cutlass_encode_and_reorder_int4b
479
+ b_q: torch.Tensor,
480
+ b_group_scales: torch.Tensor,
481
+ b_group_size: int,
482
+ b_channel_scales: torch.Tensor,
483
+ a_token_scales: torch.Tensor,
484
+ out_type: Optional[torch.dtype] = None,
485
+ maybe_schedule: Optional[str] = None) -> torch.Tensor:
486
+ m = a.size(0)
487
+ n = b_q.size(1)
488
+ out_dtype = out_type if out_type is not None else torch.bfloat16
489
+ return torch.empty((m, n), device=a.device, dtype=out_dtype)
490
+
491
+ @register_fake("_C::cutlass_pack_scale_fp8")
492
+ def cutlass_pack_scale_fp8_fake(scales: torch.Tensor) -> torch.Tensor:
493
+ return torch.empty_like(scales, memory_format=torch.contiguous_format)
494
+
495
+ @register_fake("_C::cutlass_encode_and_reorder_int4b")
496
+ def cutlass_encode_and_reorder_int4b_fake(b: torch.Tensor) -> torch.Tensor:
497
+ return torch.empty_like(b, memory_format=torch.contiguous_format)
498
+
499
+
500
+ if hasattr(torch.ops._C, "allspark_w8a16_gemm"):
501
+
502
+ @register_fake("_C::allspark_w8a16_gemm")
503
+ def _allspark_w8a16_gemm_fake(a: torch.Tensor, b_qweight: torch.Tensor,
504
+ b_scales: torch.Tensor,
505
+ b_qzeros: Optional[torch.Tensor],
506
+ n: torch.SymInt, group_size: torch.SymInt,
507
+ sm_count: torch.SymInt,
508
+ sm_version: torch.SymInt,
509
+ CUBLAS_M_THRESHOLD: torch.SymInt,
510
+ has_zp: bool,
511
+ n32k16_reorder: bool) -> torch.Tensor:
512
+ m = a.size(0)
513
+ return torch.empty((m, n), device=a.device, dtype=a.dtype)
514
+
515
+
516
+ if hasattr(torch.ops._C, "ggml_dequantize"):
517
+
518
+ @register_fake("_C::ggml_dequantize")
519
+ def _ggml_dequantize_fake(
520
+ W: torch.Tensor,
521
+ quant_type: int,
522
+ m: torch.SymInt,
523
+ n: torch.SymInt,
524
+ dtype: Optional[torch.dtype] = None) -> torch.Tensor:
525
+ return torch.empty((m, n), dtype=torch.float16, device=W.device)
526
+
527
+ @register_fake("_C::ggml_mul_mat_vec_a8")
528
+ def _ggml_mul_mat_vec_a8_fake(
529
+ W: torch.Tensor,
530
+ X: torch.Tensor,
531
+ quant_type: int,
532
+ row: torch.SymInt,
533
+ ) -> torch.Tensor:
534
+ return torch.empty((X.shape[0], row), dtype=X.dtype, device=W.device)
535
+
536
+ @register_fake("_C::ggml_mul_mat_a8")
537
+ def _ggml_mul_mat_a8_fake(
538
+ W: torch.Tensor,
539
+ X: torch.Tensor,
540
+ quant_type: int,
541
+ row: torch.SymInt,
542
+ ) -> torch.Tensor:
543
+ batch = X.size(0)
544
+ return torch.empty((batch, row), dtype=X.dtype, device=W.device)
545
+
546
+ @register_fake("_C::ggml_moe_a8")
547
+ def _ggml_moe_a8_fake(
548
+ X: torch.Tensor,
549
+ W: torch.Tensor,
550
+ sorted_token_ids: torch.Tensor,
551
+ expert_ids: torch.Tensor,
552
+ num_tokens_post_padded: torch.Tensor,
553
+ quant_type: int,
554
+ row: torch.SymInt,
555
+ top_k: torch.SymInt,
556
+ tokens: torch.SymInt,
557
+ ) -> torch.Tensor:
558
+ tokens = X.size(0)
559
+ return torch.empty((tokens * top_k, row),
560
+ dtype=torch.float16,
561
+ device=W.device)
562
+
563
+
564
+ if hasattr(torch.ops._C, "ggml_moe_a8_vec"):
565
+
566
+ @register_fake("_C::ggml_moe_a8_vec")
567
+ def _ggml_moe_a8_vec_fake(
568
+ X: torch.Tensor,
569
+ W: torch.Tensor,
570
+ topk_ids: torch.Tensor,
571
+ top_k: int,
572
+ quant_type: int,
573
+ row: torch.SymInt,
574
+ tokens: torch.SymInt,
575
+ ) -> torch.Tensor:
576
+ tokens = X.size(0)
577
+ return torch.empty((tokens * top_k, row),
578
+ dtype=X.dtype,
579
+ device=W.device)
580
+
581
+
582
+ # cutlass
583
+ def cutlass_scaled_mm_supports_fp4(cuda_device_capability: int) -> bool:
584
+ return torch.ops._C.cutlass_scaled_mm_supports_fp4(cuda_device_capability)
585
+
586
+
587
+ def cutlass_blockwise_scaled_grouped_mm(
588
+ output: torch.Tensor,
589
+ a: torch.Tensor,
590
+ b: torch.Tensor,
591
+ scales_a: torch.Tensor,
592
+ scales_b: torch.Tensor,
593
+ problem_sizes: torch.Tensor,
594
+ expert_offsets: torch.Tensor,
595
+ ):
596
+ torch.ops._C.cutlass_blockwise_scaled_grouped_mm(output, a, b, scales_a,
597
+ scales_b, problem_sizes,
598
+ expert_offsets)
599
+
600
+
601
+ def cutlass_scaled_fp4_mm(a: torch.Tensor, b: torch.Tensor,
602
+ block_scale_a: torch.Tensor,
603
+ block_scale_b: torch.Tensor, alpha: torch.Tensor,
604
+ out_dtype: torch.dtype) -> torch.Tensor:
605
+ assert a.ndim == 2 and b.ndim == 2
606
+ m, n = a.shape[0], b.shape[0]
607
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
608
+ torch.ops._C.cutlass_scaled_fp4_mm(out, a, b, block_scale_a, block_scale_b,
609
+ alpha)
610
+ return out
611
+
612
+
613
+ def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
614
+ return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
615
+
616
+
617
+ def cutlass_scaled_mm_supports_block_fp8(cuda_device_capability: int) -> bool:
618
+ return torch.ops._C.cutlass_scaled_mm_supports_block_fp8(
619
+ cuda_device_capability)
620
+
621
+
622
+ def cutlass_scaled_mm(a: torch.Tensor,
623
+ b: torch.Tensor,
624
+ scale_a: torch.Tensor,
625
+ scale_b: torch.Tensor,
626
+ out_dtype: torch.dtype,
627
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
628
+ """
629
+ `cutlass_scaled_mm` implements a fused version of
630
+ `output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
631
+ where scale_a * a and scale_b * b are implemented using numpy-style
632
+ broadcasting.
633
+
634
+ In order to support blockwise scaling like found in DeepSeek V3 we also
635
+ support extended "group" broadcast rules. We extend the numpy-style
636
+ broadcasting rules with the following rule:
637
+ "if the extent of a dimension in the source shape is between 1 and
638
+ corresponding extent in the target shape we repeat each element along
639
+ that dimension src_shape[dim] // target_shape[dim] times consecutively"
640
+ example if we have:
641
+ a = [[1, 2], and target_shape = (2, 4)
642
+ [3, 4]]
643
+ then we would expand a to:
644
+ a = [[1, 1, 2, 2],
645
+ [3, 3, 4, 4]]
646
+ currently we only support the case:
647
+ scale_a.shape * [1, 128] == a.shape
648
+ scale_b.shape * [128, 128] == b.shape
649
+ """
650
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
651
+ assert bias is None or bias.numel(
652
+ ) == b.shape[1] and bias.dtype == out_dtype
653
+
654
+ # Massage the input to be 2D
655
+ target_shape = (*a.shape[:-1], b.shape[1])
656
+ a = a.view(-1, a.shape[-1])
657
+
658
+ cutlass_compatible_b = (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
659
+ if current_platform.is_rocm() or not cutlass_compatible_b:
660
+ from vllm.model_executor.layers.quantization.compressed_tensors.triton_scaled_mm import ( # noqa
661
+ triton_scaled_mm)
662
+ out = triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
663
+ else:
664
+ out = torch.empty((a.shape[0], b.shape[1]),
665
+ dtype=out_dtype,
666
+ device=a.device)
667
+ torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
668
+
669
+ return out.view(*target_shape)
670
+
671
+
672
+ def cutlass_scaled_mm_azp(a: torch.Tensor,
673
+ b: torch.Tensor,
674
+ scale_a: torch.Tensor,
675
+ scale_b: torch.Tensor,
676
+ out_dtype: torch.dtype,
677
+ azp_adj: torch.Tensor,
678
+ azp: Optional[torch.Tensor] = None,
679
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
680
+ """
681
+ :param azp_adj: In the per-tensor case, this should include the azp.
682
+ Always per-channel.
683
+ :param azp: Only set in the per-token case. Per-token if set.
684
+ """
685
+ assert (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
686
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
687
+ assert bias is None or bias.numel(
688
+ ) == b.shape[1] and bias.dtype == out_dtype
689
+
690
+ # Massage the input to be 2D
691
+ target_shape = (*a.shape[:-1], b.shape[1])
692
+ a = a.view(-1, a.shape[-1])
693
+ assert azp is None or azp.numel() == a.shape[0]
694
+
695
+ out = torch.empty((a.shape[0], b.shape[1]),
696
+ dtype=out_dtype,
697
+ device=a.device)
698
+ torch.ops._C.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj,
699
+ azp, bias)
700
+ return out.view(*target_shape)
701
+
702
+
703
+ def cutlass_sparse_scaled_mm_supported(cuda_device_capability: int) -> bool:
704
+ return torch.ops._C.cutlass_sparse_scaled_mm_supported(
705
+ cuda_device_capability)
706
+
707
+
708
+ def cutlass_group_gemm_supported(cuda_device_capability: int) -> bool:
709
+ return torch.ops._C.cutlass_group_gemm_supported(cuda_device_capability)
710
+
711
+
712
+ def cutlass_sparse_compress(a: torch.Tensor) \
713
+ -> tuple[torch.Tensor, torch.Tensor]:
714
+ """
715
+ Compresses a sparse matrix for use with Cutlass sparse operations.
716
+
717
+ This function takes a dense tensor and compresses it into two components:
718
+ non-zero elements and metadata. The compressed representation is compatible
719
+ with Cutlass sparse kernels.
720
+
721
+ Args:
722
+ a (torch.Tensor):
723
+ The input tensor to be compressed. Must have one of the following data types:
724
+ - `torch.int8`
725
+ - `torch.float8_e4m3fn`
726
+ - `torch.bfloat16`
727
+ - `torch.float16`
728
+
729
+ Returns:
730
+ tuple[torch.Tensor, torch.Tensor]:
731
+ A tuple containing:
732
+ - `a_nzs` (torch.Tensor): A tensor containing non-zero elements of `a`.
733
+ - `a_meta` (torch.Tensor): A tensor containing metadata for the sparse representation.
734
+
735
+ Raises:
736
+ ValueError: If the compression operation fails.
737
+
738
+ Notes:
739
+ - The `a_meta` tensor has a data type of `torch.uint8`.
740
+ - Each metadata element encodes the sparsity of 4 non-zero elements (i.e., `elemsPerMetaElem = 4`).
741
+ - The shape of `a_nzs` is `(m, k // 2)`, where `m` and `k` are the dimensions of the input tensor.
742
+ - The shape of `a_meta` is `(m, k // 2 // elemsPerMetaElem)`.
743
+ """
744
+ assert (a.dtype in [
745
+ torch.int8, torch.float8_e4m3fn, torch.bfloat16, torch.float16
746
+ ])
747
+ assert (a.is_contiguous())
748
+
749
+ # a_meta.dtype: torch.uint8 so elemsPerMetaElem = 8b / 2b_per_nz = 4
750
+ elemsPerMetaElem = 4
751
+ assert (a.shape[1] % (2 * elemsPerMetaElem) == 0)
752
+
753
+ return torch.ops._C.cutlass_sparse_compress(a)
754
+
755
+
756
+ def cutlass_scaled_sparse_mm(
757
+ a: torch.Tensor,
758
+ bt_nzs: torch.Tensor,
759
+ bt_meta: torch.Tensor,
760
+ scale_a: torch.Tensor,
761
+ scale_b: torch.Tensor,
762
+ out_dtype: torch.dtype,
763
+ bias: Optional[torch.Tensor] = None) -> torch.Tensor:
764
+ """
765
+ Performs a scaled sparse matrix multiplication using Cutlass.
766
+
767
+ Steps:
768
+ 1. Create a dense matrix `a` of shape (m, k) on the CUDA device:
769
+ `a = torch.randn((m, k), device='cuda')`.
770
+
771
+ 2. Create a dense matrix `b` of shape (k, n) on the CUDA device:
772
+ `b = torch.randn((k, n), device='cuda')`.
773
+
774
+ 3. Prune matrix `b` to 2:4 sparsity along the specified dimension:
775
+ `b = prune_to_2_4(b, dim=0)`.
776
+
777
+ 4. Compress the transposed sparse matrix `b.t()`:
778
+ `bt_nzs, bt_meta = cutlass_sparse_compress(b.t())`.
779
+
780
+ 5. Perform sparse matrix multiplication using the compressed matrix,
781
+ applying scaling factors for `a` and `b`, and the output data type:
782
+ `out = cutlass_scaled_sparse_mm(a, bt_nzs, bt_meta, scale_a, scale_b, out_dtype)`.
783
+
784
+ Returns:
785
+ - The result of the scaled sparse matrix multiplication.
786
+ """
787
+ assert (bt_nzs.shape[0] % 16 == 0 and bt_nzs.shape[1] % 16 == 0)
788
+ assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
789
+ assert bias is None or bias.shape[0] == bt_nzs.shape[0] \
790
+ and bias.dtype == out_dtype
791
+
792
+ m = a.shape[0]
793
+ n = bt_nzs.shape[0]
794
+ out = torch.empty((m, n), dtype=out_dtype, device=a.device)
795
+
796
+ torch.ops._C.cutlass_scaled_sparse_mm(out, a, bt_nzs, bt_meta, scale_a,
797
+ scale_b, bias)
798
+
799
+ return out
800
+
801
+
802
+ def get_cutlass_moe_mm_data(topk_ids: torch.Tensor,
803
+ expert_offsets: torch.Tensor,
804
+ problem_sizes1: torch.Tensor,
805
+ problem_sizes2: torch.Tensor,
806
+ input_permutation: torch.Tensor,
807
+ output_permutation: torch.Tensor,
808
+ num_experts: int,
809
+ n: int,
810
+ k: int,
811
+ blockscale_offsets: Optional[torch.Tensor] = None):
812
+ """
813
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
814
+ used in CUTLASS-based fused MoE.
815
+
816
+ The function takes in topk_ids (token-expert mapping) and uses it to
817
+ compute:
818
+ - expert_offsets: Indices that mark at which token index each expert begins
819
+ its computation after the input is sorted with
820
+ input_permutation. The number of tokens computed with
821
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
822
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
823
+ multiplication in two grouped MMs used in
824
+ the fused MoE operation.
825
+ - input_permutation: Permutation that must be used to shuffle the input
826
+ before executing the MMs.
827
+ - output_permutation: Permutation that must be used to shuffle the output
828
+ after executing the MMs.
829
+ - blockscale_offsets: Optional argument passed for fp4 moe. Indices that
830
+ mark at which block scale index each expert begins
831
+ its computation. The number of block scale rows
832
+ computed with expert E is blockscale_offsets[E + 1] -
833
+ blockscale_offsets[E]
834
+ """
835
+ return torch.ops._C.get_cutlass_moe_mm_data(topk_ids, expert_offsets,
836
+ problem_sizes1, problem_sizes2,
837
+ input_permutation,
838
+ output_permutation,
839
+ num_experts, n, k,
840
+ blockscale_offsets)
841
+
842
+
843
+ def get_cutlass_moe_mm_problem_sizes(
844
+ topk_ids: torch.Tensor,
845
+ problem_sizes1: torch.Tensor,
846
+ problem_sizes2: torch.Tensor,
847
+ num_experts: int,
848
+ n: int,
849
+ k: int,
850
+ blockscale_offsets: Optional[torch.Tensor] = None):
851
+ """
852
+ Compute only the per-expert problem sizes needed by the two grouped matrix
853
+ multiplications used in CUTLASS-based fused MoE.
854
+
855
+ The function takes in topk_ids (token→expert mapping) and computes:
856
+ - problem_sizes1, problem_sizes2: M×N×K sizes of each expert's
857
+ multiplication for the two grouped MMs
858
+ used in the fused MoE operation.
859
+ """
860
+ return torch.ops._C.get_cutlass_moe_mm_problem_sizes(
861
+ topk_ids, problem_sizes1, problem_sizes2, num_experts, n, k,
862
+ blockscale_offsets)
863
+
864
+
865
+ def shuffle_rows(input_tensor: torch.Tensor, dst2src_map: torch.Tensor):
866
+ """
867
+ Shuffle and expand the input tensor according to the dst2src_map and store the result in output_tensor.
868
+ This is used in MoE to permute the input tensor before performing grouped matrix multiplications.
869
+ """
870
+ num_tokens_permuted = dst2src_map.shape[0]
871
+ output_tensor = torch.empty((num_tokens_permuted, input_tensor.shape[1]),
872
+ device=input_tensor.device,
873
+ dtype=input_tensor.dtype)
874
+ torch.ops._moe_C.shuffle_rows(input_tensor, dst2src_map, output_tensor)
875
+ return output_tensor
876
+
877
+
878
+ def get_cutlass_pplx_moe_mm_data(expert_offsets: torch.Tensor,
879
+ problem_sizes1: torch.Tensor,
880
+ problem_sizes2: torch.Tensor,
881
+ expert_num_tokens: torch.Tensor,
882
+ num_local_experts: int, padded_m: int, n: int,
883
+ k: int):
884
+ """
885
+ Prepare data necessary to perform CUTLASS grouped matrix multiplications
886
+ used in CUTLASS-based fused MoE.
887
+
888
+ The function takes in expert_num_tokens (token count per expert) and
889
+ non_zero_expert_idxs (consecutive indices of experts with non-zero token
890
+ counts) and uses them to compute:
891
+ - expert_offsets: Indices that mark at which token index each expert begins
892
+ its computation.
893
+ - problem_sizes1, problem_sizes2: MxNxK sizes of each expert's
894
+ multiplication in two grouped MMs used in
895
+ the fused MoE operation.
896
+ """
897
+ return torch.ops._C.get_cutlass_pplx_moe_mm_data(
898
+ expert_offsets, problem_sizes1, problem_sizes2, expert_num_tokens,
899
+ num_local_experts, padded_m, n, k)
900
+
901
+
902
+ def cutlass_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
903
+ b_tensors: torch.Tensor, a_scales: torch.Tensor,
904
+ b_scales: torch.Tensor, expert_offsets: torch.Tensor,
905
+ problem_sizes: torch.Tensor, a_strides: torch.Tensor,
906
+ b_strides: torch.Tensor, c_strides: torch.Tensor,
907
+ per_act_token: bool, per_out_ch: bool):
908
+ """
909
+ A single grouped matrix multiplication used in CUTLASS-based fused MoE.
910
+ The function executes fp8-quantized OUT = AB matrix multiplication.
911
+
912
+ - expert_offsets: Indices that mark at which token index each expert begins
913
+ its computation. The number of tokens computed with
914
+ expert E is expert_offsets[E + 1] - expert_offsets[E]
915
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
916
+ MMs used in the fused MoE operation.
917
+ - a/b/c_strides: The data strides passed to grouped matrix multiplication.
918
+ """
919
+ return torch.ops._C.cutlass_moe_mm(out_tensors, a_tensors, b_tensors,
920
+ a_scales, b_scales, expert_offsets,
921
+ problem_sizes, a_strides, b_strides,
922
+ c_strides, per_act_token, per_out_ch)
923
+
924
+
925
+ def cutlass_fp4_moe_mm(out_tensors: torch.Tensor, a_tensors: torch.Tensor,
926
+ b_tensors: torch.Tensor, a_scales: torch.Tensor,
927
+ b_scales: torch.Tensor, alphas: torch.Tensor,
928
+ problem_sizes: torch.Tensor,
929
+ expert_offsets: torch.Tensor, sf_offsets: torch.Tensor):
930
+ """
931
+ An FP4 Blockscaled Group Gemm that takes in a_tensors, b_tensors and runs
932
+ the gemms for each combination based on the specified problem sizes.
933
+
934
+ This is used as the MoE gemm during NVFP4 Quantized FusedMoE forward.
935
+ - a/b_tensors: the NVFP4 a_ptrs and b_ptrs tensors which are quantized
936
+ input and expert weights.
937
+ - a_/b_scales: The blockscales in FP8-E4M3 precision
938
+ - expert_offsets/sf_offsets: Indices that mark at which token index
939
+ each expert begins its computation. The number of tokens
940
+ computed with expert E is expert_offsets[E + 1] -
941
+ expert_offsets[E] And the sf_size per expert is
942
+ sf_offset[E+1] - sf_offset[E]
943
+ - problem_sizes: MxNxK sizes of each expert's multiplication in two grouped
944
+ MMs used in the fused MoE operation.
945
+ """
946
+ return torch.ops._C.cutlass_fp4_group_mm(out_tensors, a_tensors, b_tensors,
947
+ a_scales, b_scales, alphas,
948
+ problem_sizes, expert_offsets,
949
+ sf_offsets)
950
+
951
+
952
+ # gptq_marlin
953
+ def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
954
+ size_k: int, size_n: int,
955
+ num_bits: int) -> torch.Tensor:
956
+ return torch.ops._C.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
957
+ num_bits)
958
+
959
+
960
+ # gptq_marlin
961
+ def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int,
962
+ num_bits: int) -> torch.Tensor:
963
+ return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)
964
+
965
+
966
+ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
967
+ size_k: int, size_n: int,
968
+ num_bits: int) -> torch.Tensor:
969
+ num_experts = b_q_weight.shape[0]
970
+ assert size_k % 16 == 0
971
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
972
+ device=b_q_weight.device,
973
+ dtype=b_q_weight.dtype)
974
+ for e in range(num_experts):
975
+ output[e] = torch.ops._C.gptq_marlin_repack(b_q_weight[e], perm[e],
976
+ size_k, size_n, num_bits)
977
+ return output
978
+
979
+
980
+ def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
981
+ size_k: int, size_n: int,
982
+ num_bits: int) -> torch.Tensor:
983
+ num_experts = b_q_weight.shape[0]
984
+ assert size_k % 16 == 0
985
+ output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)),
986
+ device=b_q_weight.device,
987
+ dtype=b_q_weight.dtype)
988
+ for e in range(num_experts):
989
+ output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k,
990
+ size_n, num_bits)
991
+ return output
992
+
993
+
994
+ def gptq_marlin_gemm(a: torch.Tensor,
995
+ c: Optional[torch.Tensor],
996
+ b_q_weight: torch.Tensor,
997
+ b_bias: Optional[torch.Tensor],
998
+ b_scales: torch.Tensor,
999
+ global_scale: Optional[torch.Tensor],
1000
+ b_zeros: Optional[torch.Tensor],
1001
+ g_idx: Optional[torch.Tensor],
1002
+ perm: Optional[torch.Tensor],
1003
+ workspace: torch.Tensor,
1004
+ b_q_type: ScalarType,
1005
+ size_m: int,
1006
+ size_n: int,
1007
+ size_k: int,
1008
+ is_k_full: bool = True,
1009
+ use_atomic_add: bool = False,
1010
+ use_fp32_reduce: bool = False,
1011
+ is_zp_float: bool = False) -> torch.Tensor:
1012
+ return torch.ops._C.gptq_marlin_gemm(a, c, b_q_weight, b_bias, b_scales,
1013
+ global_scale, b_zeros, g_idx, perm,
1014
+ workspace, b_q_type.id, size_m,
1015
+ size_n, size_k, is_k_full,
1016
+ use_atomic_add, use_fp32_reduce,
1017
+ is_zp_float)
1018
+
1019
+
1020
+ # machete
1021
+ def machete_supported_schedules(
1022
+ a_type: torch.dtype,
1023
+ b_type: ScalarType,
1024
+ group_scales_type: Optional[torch.dtype],
1025
+ group_zeros_type: Optional[torch.dtype] = None,
1026
+ channel_scales_type: Optional[torch.dtype] = None,
1027
+ token_scales_type: Optional[torch.dtype] = None,
1028
+ out_type: Optional[torch.dtype] = None) -> list[str]:
1029
+ return torch.ops._C.machete_supported_schedules(
1030
+ a_type, b_type.id, group_scales_type, group_zeros_type,
1031
+ channel_scales_type, token_scales_type, out_type)
1032
+
1033
+
1034
+ def machete_mm(
1035
+ a: torch.Tensor,
1036
+ # b_q Should be the tensor returned by machete_prepack_B
1037
+ b_q: torch.Tensor,
1038
+ b_type: ScalarType,
1039
+ out_type: Optional[torch.dtype] = None,
1040
+ b_group_scales: Optional[torch.Tensor] = None,
1041
+ b_group_zeros: Optional[torch.Tensor] = None,
1042
+ b_group_size: Optional[int] = None,
1043
+ b_channel_scales: Optional[torch.Tensor] = None,
1044
+ a_token_scales: Optional[torch.Tensor] = None,
1045
+ schedule: Optional[str] = None) -> torch.Tensor:
1046
+ return torch.ops._C.machete_mm(a, b_q, b_type.id, out_type, b_group_scales,
1047
+ b_group_zeros, b_group_size,
1048
+ b_channel_scales, a_token_scales, schedule)
1049
+
1050
+
1051
+ def machete_prepack_B(
1052
+ b_q_weight: torch.Tensor, a_type: torch.dtype, b_type: ScalarType,
1053
+ group_scales_type: Optional[torch.dtype]) -> torch.Tensor:
1054
+ return torch.ops._C.machete_prepack_B(b_q_weight, a_type, b_type.id,
1055
+ group_scales_type)
1056
+
1057
+
1058
+ # CUTLASS W4A8
1059
+ def cutlass_w4a8_mm(
1060
+ a: torch.Tensor,
1061
+ # b_q Should be the tensor returned by cutlass_encode_and_reorder_int4b
1062
+ b_q: torch.Tensor,
1063
+ b_group_scales: torch.Tensor,
1064
+ b_group_size: int,
1065
+ b_channel_scales: torch.Tensor,
1066
+ a_token_scales: torch.Tensor,
1067
+ out_type: Optional[torch.dtype] = None,
1068
+ maybe_schedule: Optional[str] = None) -> torch.Tensor:
1069
+ return torch.ops._C.cutlass_w4a8_mm(a, b_q, b_group_scales, b_group_size,
1070
+ b_channel_scales, a_token_scales,
1071
+ out_type, maybe_schedule)
1072
+
1073
+
1074
+ def cutlass_pack_scale_fp8(scales: torch.Tensor) -> torch.Tensor:
1075
+ return torch.ops._C.cutlass_pack_scale_fp8(scales)
1076
+
1077
+
1078
+ def cutlass_encode_and_reorder_int4b(b: torch.Tensor) -> torch.Tensor:
1079
+ return torch.ops._C.cutlass_encode_and_reorder_int4b(b)
1080
+
1081
+
1082
+ if hasattr(torch.ops._C, "permute_cols"):
1083
+
1084
+ @register_fake("_C::permute_cols")
1085
+ def _permute_cols_fake(a: torch.Tensor,
1086
+ perm: torch.Tensor) -> torch.Tensor:
1087
+ return torch.empty_like(a)
1088
+
1089
+
1090
+ def permute_cols(a: torch.Tensor, perm: torch.Tensor) -> torch.Tensor:
1091
+ return torch.ops._C.permute_cols(a, perm)
1092
+
1093
+
1094
+ # fp4
1095
+ def scaled_fp4_quant(
1096
+ input: torch.Tensor,
1097
+ input_global_scale: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
1098
+ """
1099
+ Quantize input tensor to FP4 and return quantized tensor and scale.
1100
+
1101
+ This function quantizes the last dimension of the given tensor `input`. For
1102
+ every 16 consecutive elements, a single dynamically computed scaling factor
1103
+ is shared. This scaling factor is quantized using the `input_global_scale`
1104
+ and is stored in a swizzled layout (see
1105
+ https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
1106
+
1107
+ Args:
1108
+ input: The input tensor to be quantized to FP4
1109
+ input_global_scale: A scalar scaling factor for the entire tensor.
1110
+
1111
+ Returns:
1112
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
1113
+ two values are packed into a uint8 and float8_e4m3 scaling factors
1114
+ in the sizzled layout.
1115
+ """
1116
+ assert not current_platform.is_rocm()
1117
+ assert input.ndim >= 1, (
1118
+ f'input.ndim needs to be >= 1, but got {input.ndim}.')
1119
+ other_dims = 1 if input.ndim == 1 else -1
1120
+ input = input.reshape(other_dims, input.shape[-1])
1121
+ m, n = input.shape
1122
+ block_size = 16
1123
+ device = input.device
1124
+
1125
+ assert n % block_size == 0, (
1126
+ f'last dim has to be multiple of 16, but got {n}.')
1127
+ assert input.dtype in (torch.float16, torch.bfloat16), (
1128
+ f'input.dtype needs to be fp16 or bf16 but got {input.dtype}.')
1129
+
1130
+ # Two fp4 values will be packed into an uint8.
1131
+ output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
1132
+
1133
+ # We use the rounded values to store the swizzled values. Due to the
1134
+ # requirement of the Tensor Core, the minimum tile is 128x4 for the scales.
1135
+ # So, we first pad the scales to multiples of 128 and 4. Then, the scales
1136
+ # (in float8_e4m3fn) are packed into an int32 for every 4 values. More:
1137
+ # https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x
1138
+ round_up = lambda x, y: (x + y - 1) // y * y
1139
+ rounded_m = round_up(m, 128)
1140
+ scale_n = n // block_size
1141
+ rounded_n = round_up(scale_n, 4)
1142
+ output_scale = torch.empty((rounded_m, rounded_n // 4),
1143
+ device=device,
1144
+ dtype=torch.int32)
1145
+
1146
+ torch.ops._C.scaled_fp4_quant(output, input, output_scale,
1147
+ input_global_scale)
1148
+ output_scale = output_scale.view(torch.float8_e4m3fn)
1149
+ return output, output_scale
1150
+
1151
+
1152
+ def scaled_fp4_experts_quant(
1153
+ input_tensor: torch.Tensor,
1154
+ input_global_scale: torch.Tensor,
1155
+ expert_offsets: torch.Tensor,
1156
+ blockscale_offsets: torch.Tensor,
1157
+ topk: int,
1158
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1159
+ """
1160
+ Quantize input tensor to FP4 and return quantized tensor and scale, for
1161
+ packed MoE Inputs.
1162
+ Args:
1163
+ input_tensor: The input tensor to be quantized to FP4
1164
+ input_global_scale: A scalar scaling factor for the entire tensor.
1165
+ expert_offsets: The expert offsets tensor
1166
+ blockscale_offsets: The blockscale offsets tensor
1167
+ Outputs:
1168
+ output: The quantized tensor in FP4
1169
+ output_scales: The blockscale tensor in FP8-E4M3
1170
+ """
1171
+ assert not current_platform.is_rocm()
1172
+ assert input_tensor.ndim == 2, (
1173
+ f'input.ndim needs to be == 2, but got {input_tensor.ndim}.')
1174
+
1175
+ # Control the maximum number of tokens per expert supported by the
1176
+ # NVFP4 MoE Expert Quantization. This is used to prevent the kernel
1177
+ # from running out of memory. This value can also be increased to support
1178
+ # larger models.
1179
+ MAX_TOKENS_PER_EXPERT = envs.VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE
1180
+ m_numtopk, k = input_tensor.shape
1181
+
1182
+ assert (m_numtopk <= MAX_TOKENS_PER_EXPERT * topk), (
1183
+ f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
1184
+ f"{MAX_TOKENS_PER_EXPERT})"
1185
+ f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
1186
+ f" VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE to set this value.")
1187
+ scales_k = k // 16
1188
+ padded_k = (scales_k + (4 - 1)) // 4
1189
+
1190
+ # output is uint8 and packed fp4 values
1191
+ output = torch.empty(m_numtopk,
1192
+ k // 2,
1193
+ device=input_tensor.device,
1194
+ dtype=torch.uint8)
1195
+ output_scales = torch.empty(MAX_TOKENS_PER_EXPERT * topk,
1196
+ padded_k,
1197
+ dtype=torch.int32,
1198
+ device=input_tensor.device)
1199
+ torch.ops._C.scaled_fp4_experts_quant(output, output_scales, input_tensor,
1200
+ input_global_scale, expert_offsets,
1201
+ blockscale_offsets)
1202
+ output_scales = output_scales.view(torch.float8_e4m3fn)
1203
+ return output, output_scales
1204
+
1205
+
1206
+ # fp8
1207
+ def scaled_fp8_quant(
1208
+ input: torch.Tensor,
1209
+ scale: Optional[torch.Tensor] = None,
1210
+ num_token_padding: Optional[int] = None,
1211
+ scale_ub: Optional[torch.Tensor] = None,
1212
+ use_per_token_if_dynamic: bool = False,
1213
+ output: Optional[torch.Tensor] = None,
1214
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1215
+ """
1216
+ Quantize input tensor to FP8 and return quantized tensor and scale.
1217
+
1218
+ This function supports both static and dynamic quantization: If you
1219
+ provide the scale, it will use static scaling and if you omit it,
1220
+ the scale will be determined dynamically. The function also allows
1221
+ optional padding of the output tensors for downstream kernels that
1222
+ will benefit from padding.
1223
+
1224
+ Args:
1225
+ input: The input tensor to be quantized to FP8
1226
+ scale: Optional scaling factor for the FP8 quantization
1227
+ scale_ub: Optional upper bound for scaling factor in dynamic
1228
+ per token case
1229
+ num_token_padding: If specified, pad the first dimension
1230
+ of the output to at least this value.
1231
+ use_per_token_if_dynamic: Whether to do per_tensor or per_token
1232
+ in the dynamic quantization case.
1233
+
1234
+ Returns:
1235
+ tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and
1236
+ scaling factor.
1237
+ """
1238
+ # This code assumes batch_dim and num_tokens are flattened
1239
+ assert (input.ndim == 2)
1240
+ shape: Union[tuple[int, int], torch.Size] = input.shape
1241
+ # For ROCm on MI300, the output fp8 dtype is torch.float_e3m3fnuz
1242
+ out_dtype: torch.dtype = current_platform.fp8_dtype()
1243
+ if num_token_padding:
1244
+ shape = (max(num_token_padding, input.shape[0]), shape[1])
1245
+ if output is None:
1246
+ output = torch.empty(shape, device=input.device, dtype=out_dtype)
1247
+ else:
1248
+ assert num_token_padding is None, \
1249
+ "padding not supported if output passed in"
1250
+ assert output.dtype == out_dtype
1251
+
1252
+ if scale is None:
1253
+ if use_per_token_if_dynamic:
1254
+ scale = torch.empty((shape[0], 1),
1255
+ device=input.device,
1256
+ dtype=torch.float32)
1257
+ torch.ops._C.dynamic_per_token_scaled_fp8_quant(
1258
+ output, input, scale, scale_ub)
1259
+ else:
1260
+ scale = torch.empty(1, device=input.device, dtype=torch.float32)
1261
+ torch.ops._C.dynamic_scaled_fp8_quant(output, input, scale)
1262
+ else:
1263
+ assert scale.numel() == 1, f"{scale.shape}"
1264
+ torch.ops._C.static_scaled_fp8_quant(output, input, scale)
1265
+
1266
+ return output, scale
1267
+
1268
+
1269
+ # gptq allspark
1270
+ def allspark_repack_weight(
1271
+ qweight: torch.Tensor,
1272
+ scale: torch.Tensor,
1273
+ zero_point: Optional[torch.Tensor] = None,
1274
+ has_zp: bool = False
1275
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
1276
+ """
1277
+ Rearrange qweight, scale, and zero_point(if asymmetric) to n32k16 format
1278
+ for Ampere W8A16 Fused Gemm kernel
1279
+
1280
+ Args:
1281
+ qweight: uint8 weight tensor, original k x n format.
1282
+ scale: fp16/bf16 weight scale tensor, 1 x n format.
1283
+ zero_point: fp16/bf16 weight zero_point tensor, 1 x n format.
1284
+ Must be provided for asymmetric quantization.
1285
+ has_zp: if use symmetric quantization, has_zp = False.
1286
+ if use asymmetric quantization, has_zp = True.
1287
+
1288
+ Returns:
1289
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] :
1290
+ rearranged weight, scale, and optionally zero_point.
1291
+ """
1292
+ K = qweight.shape[0]
1293
+ N = qweight.shape[1]
1294
+ N_32align = (N + 32 - 1) // 32 * 32
1295
+
1296
+ qweight_reorder = torch.empty((N_32align, K),
1297
+ device=qweight.device,
1298
+ dtype=qweight.dtype)
1299
+ scale_reorder = torch.empty((1, N_32align),
1300
+ device=scale.device,
1301
+ dtype=scale.dtype)
1302
+ zero_point_reorder = None
1303
+ if has_zp:
1304
+ assert zero_point is not None, (
1305
+ "zero_point must be provided for asymmetric quantization.")
1306
+ zero_point_reorder = torch.empty((1, N_32align),
1307
+ device=zero_point.device,
1308
+ dtype=zero_point.dtype)
1309
+
1310
+ torch.ops._C.rearrange_kn_weight_as_n32k16_order(
1311
+ qweight, scale, zero_point, has_zp, qweight_reorder, scale_reorder,
1312
+ zero_point_reorder, K, N, N_32align)
1313
+
1314
+ return qweight_reorder, scale_reorder, zero_point_reorder
1315
+
1316
+
1317
+ def allspark_w8a16_gemm(a: torch.Tensor, b_qweight: torch.Tensor,
1318
+ b_scales: torch.Tensor,
1319
+ b_qzeros: Optional[torch.Tensor], n: int,
1320
+ group_size: int, sm_count: int, sm_version: int,
1321
+ CUBLAS_M_THRESHOLD: int, has_zp: bool,
1322
+ n32k16_reorder: bool) -> torch.Tensor:
1323
+
1324
+ return torch.ops._C.allspark_w8a16_gemm(a, b_qweight, b_scales, b_qzeros,
1325
+ n, group_size, sm_count,
1326
+ sm_version, CUBLAS_M_THRESHOLD,
1327
+ has_zp, n32k16_reorder)
1328
+
1329
+
1330
+ # int8
1331
+ def scaled_int8_quant(
1332
+ input: torch.Tensor,
1333
+ scale: Optional[torch.Tensor] = None,
1334
+ azp: Optional[torch.Tensor] = None,
1335
+ symmetric: bool = True
1336
+ ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
1337
+ """
1338
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1339
+
1340
+ Args:
1341
+ input: The input tensor to be quantized to int8.
1342
+ scale: Optional scaling factor for the int8 quantization.
1343
+ When not provided, we invoke dynamic-per-token quantization.
1344
+ azp: Optional zero-point for the int8 quantization.
1345
+ Must be provided for asymmetric quantization if `scale` is provided.
1346
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1347
+
1348
+ Returns:
1349
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1350
+ """
1351
+ output = torch.empty_like(input, dtype=torch.int8)
1352
+ if scale is not None:
1353
+ # static-per-tensor quantization.
1354
+ assert symmetric == (
1355
+ azp
1356
+ is None), "azp must only be provided for asymmetric quantization."
1357
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1358
+ return output, scale, azp
1359
+
1360
+ # dynamic-per-token quantization.
1361
+ input_scales = torch.empty((input.numel() // input.shape[-1], 1),
1362
+ device=input.device,
1363
+ dtype=torch.float32)
1364
+ input_azp = None if symmetric else torch.empty_like(input_scales,
1365
+ dtype=torch.int32)
1366
+ torch.ops._C.dynamic_scaled_int8_quant(output, input.contiguous(),
1367
+ input_scales, input_azp)
1368
+ return output, input_scales, input_azp
1369
+
1370
+
1371
+ # gguf
1372
+ def ggml_dequantize(W: torch.Tensor, quant_type: int, m: int, n: int,
1373
+ dtype: Optional[torch.dtype]) -> torch.Tensor:
1374
+ return torch.ops._C.ggml_dequantize(W, quant_type, m, n, dtype)
1375
+
1376
+
1377
+ def ggml_mul_mat_vec_a8(
1378
+ W: torch.Tensor,
1379
+ X: torch.Tensor,
1380
+ quant_type: int,
1381
+ row: int,
1382
+ ) -> torch.Tensor:
1383
+ return torch.ops._C.ggml_mul_mat_vec_a8(W, X, quant_type, row)
1384
+
1385
+
1386
+ def ggml_mul_mat_a8(
1387
+ W: torch.Tensor,
1388
+ X: torch.Tensor,
1389
+ quant_type: int,
1390
+ row: int,
1391
+ ) -> torch.Tensor:
1392
+ return torch.ops._C.ggml_mul_mat_a8(W, X, quant_type, row)
1393
+
1394
+
1395
+ def ggml_moe_a8(
1396
+ X: torch.Tensor,
1397
+ W: torch.Tensor,
1398
+ sorted_token_ids: torch.Tensor,
1399
+ expert_ids: torch.Tensor,
1400
+ num_tokens_post_padded: torch.Tensor,
1401
+ quant_type: int,
1402
+ row: int,
1403
+ top_k: int,
1404
+ tokens: int,
1405
+ ) -> torch.Tensor:
1406
+ return torch.ops._C.ggml_moe_a8(X, W, sorted_token_ids, expert_ids,
1407
+ num_tokens_post_padded, quant_type, row,
1408
+ top_k, tokens)
1409
+
1410
+
1411
+ def ggml_moe_a8_vec(
1412
+ X: torch.Tensor,
1413
+ W: torch.Tensor,
1414
+ topk_ids: torch.Tensor,
1415
+ top_k: int,
1416
+ quant_type: int,
1417
+ row: torch.SymInt,
1418
+ tokens: torch.SymInt,
1419
+ ) -> torch.Tensor:
1420
+ return torch.ops._C.ggml_moe_a8_vec(X, W, topk_ids, top_k, quant_type, row,
1421
+ tokens)
1422
+
1423
+
1424
+ def ggml_moe_get_block_size(quant_type: int) -> int:
1425
+ return torch.ops._C.ggml_moe_get_block_size(quant_type)
1426
+
1427
+
1428
+ # mamba
1429
+ def selective_scan_fwd(u: torch.Tensor, delta: torch.Tensor, A: torch.Tensor,
1430
+ B: torch.Tensor, C: torch.Tensor,
1431
+ D_: Optional[torch.Tensor], z_: Optional[torch.Tensor],
1432
+ delta_bias_: Optional[torch.Tensor],
1433
+ delta_softplus: bool,
1434
+ query_start_loc: Optional[torch.Tensor],
1435
+ cache_indices: Optional[torch.Tensor],
1436
+ has_initial_state: Optional[torch.Tensor],
1437
+ ssm_states: torch.Tensor, pad_slot_id: int):
1438
+ torch.ops._C.selective_scan_fwd(u, delta, A, B, C, D_, z_, delta_bias_,
1439
+ delta_softplus, query_start_loc,
1440
+ cache_indices, has_initial_state,
1441
+ ssm_states, pad_slot_id)
1442
+
1443
+
1444
+ # ROCm skinny gemms
1445
+ def LLMM1(a: torch.Tensor, b: torch.Tensor,
1446
+ rows_per_block: int) -> torch.Tensor:
1447
+ return torch.ops._rocm_C.LLMM1(a, b, rows_per_block)
1448
+
1449
+
1450
+ def wvSplitK(a: torch.Tensor,
1451
+ b: torch.Tensor,
1452
+ cu_count: int,
1453
+ bias: torch.Tensor = None) -> torch.Tensor:
1454
+ return torch.ops._rocm_C.wvSplitK(a, b, bias, cu_count)
1455
+
1456
+
1457
+ def wvSplitKQ(a: torch.Tensor,
1458
+ b: torch.Tensor,
1459
+ out_dtype: torch.dtype,
1460
+ scale_a: torch.Tensor,
1461
+ scale_b: torch.Tensor,
1462
+ cu_count: int,
1463
+ bias: torch.Tensor = None) -> torch.Tensor:
1464
+ out = torch.empty((b.shape[0], a.shape[0]),
1465
+ dtype=out_dtype,
1466
+ device=b.device)
1467
+ torch.ops._rocm_C.wvSplitKQ(a, b, bias, out, scale_a, scale_b, cu_count)
1468
+ return out
1469
+
1470
+
1471
+ # moe
1472
+ def moe_sum(input: torch.Tensor, output: torch.Tensor):
1473
+ torch.ops._moe_C.moe_sum(input, output)
1474
+
1475
+
1476
+ def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
1477
+ block_size: int, sorted_token_ids: torch.Tensor,
1478
+ experts_ids: torch.Tensor,
1479
+ num_tokens_post_pad: torch.Tensor) -> None:
1480
+ torch.ops._moe_C.moe_align_block_size(topk_ids, num_experts, block_size,
1481
+ sorted_token_ids, experts_ids,
1482
+ num_tokens_post_pad)
1483
+
1484
+
1485
+ def moe_wna16_gemm(input: torch.Tensor, output: torch.Tensor,
1486
+ b_qweight: torch.Tensor, b_scales: torch.Tensor,
1487
+ b_qzeros: Optional[torch.Tensor],
1488
+ topk_weights: Optional[torch.Tensor],
1489
+ sorted_token_ids: torch.Tensor, experts_ids: torch.Tensor,
1490
+ num_tokens_post_pad: torch.Tensor, top_k: int,
1491
+ BLOCK_SIZE_M: int, BLOCK_SIZE_N: int, BLOCK_SIZE_K: int,
1492
+ bit: int) -> torch.Tensor:
1493
+ if not current_platform.is_cuda():
1494
+ raise NotImplementedError(
1495
+ "The optimized moe_wna16_gemm kernel is only "
1496
+ "available on CUDA platforms")
1497
+ torch.ops._moe_C.moe_wna16_gemm(input, output, b_qweight, b_scales,
1498
+ b_qzeros, topk_weights, sorted_token_ids,
1499
+ experts_ids, num_tokens_post_pad, top_k,
1500
+ BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K,
1501
+ bit)
1502
+
1503
+
1504
+ def topk_softmax(topk_weights: torch.Tensor, topk_ids: torch.Tensor,
1505
+ token_expert_indices: torch.Tensor,
1506
+ gating_output: torch.Tensor) -> None:
1507
+ torch.ops._moe_C.topk_softmax(topk_weights, topk_ids, token_expert_indices,
1508
+ gating_output)
1509
+
1510
+
1511
+ def grouped_topk(scores: torch.Tensor, scores_with_bias: torch.Tensor,
1512
+ num_expert_group: int, topk_group: int, topk: int,
1513
+ renormalize: bool, routed_scaling_factor: float):
1514
+ if not current_platform.is_cuda():
1515
+ raise NotImplementedError("The fused grouped_topk kernel is only "
1516
+ "available on CUDA platforms")
1517
+ return torch.ops._moe_C.grouped_topk(scores, scores_with_bias,
1518
+ num_expert_group, topk_group, topk,
1519
+ renormalize, routed_scaling_factor)
1520
+
1521
+
1522
+ def moe_wna16_marlin_gemm(input: torch.Tensor, output: Optional[torch.Tensor],
1523
+ b_qweight: torch.Tensor,
1524
+ b_bias: Optional[torch.Tensor],
1525
+ b_scales: torch.Tensor,
1526
+ global_scale: Optional[torch.Tensor],
1527
+ b_qzeros: Optional[torch.Tensor],
1528
+ g_idx: Optional[torch.Tensor],
1529
+ perm: Optional[torch.Tensor],
1530
+ workspace: torch.Tensor,
1531
+ sorted_token_ids: torch.Tensor,
1532
+ expert_ids: torch.Tensor,
1533
+ num_tokens_past_padded: torch.Tensor,
1534
+ topk_weights: torch.Tensor, moe_block_size: int,
1535
+ top_k: int, mul_topk_weights: bool, is_ep: bool,
1536
+ b_q_type: ScalarType, size_m: int, size_n: int,
1537
+ size_k: int, is_k_full: bool, use_atomic_add: bool,
1538
+ use_fp32_reduce: bool,
1539
+ is_zp_float: bool) -> torch.Tensor:
1540
+ return torch.ops._moe_C.moe_wna16_marlin_gemm(
1541
+ input, output, b_qweight, b_bias, b_scales, global_scale, b_qzeros,
1542
+ g_idx, perm, workspace, sorted_token_ids, expert_ids,
1543
+ num_tokens_past_padded, topk_weights, moe_block_size, top_k,
1544
+ mul_topk_weights, is_ep, b_q_type.id, size_m, size_n, size_k,
1545
+ is_k_full, use_atomic_add, use_fp32_reduce, is_zp_float)
1546
+
1547
+
1548
+ if supports_moe_ops and hasattr(torch.ops._moe_C, "marlin_gemm_moe"):
1549
+
1550
+ @register_fake("_moe_C::marlin_gemm_moe")
1551
+ def marlin_gemm_moe_fake(a: torch.Tensor, b_q_weights: torch.Tensor,
1552
+ sorted_ids: torch.Tensor,
1553
+ topk_weights: torch.Tensor,
1554
+ topk_ids: torch.Tensor, b_scales: torch.Tensor,
1555
+ b_zero_points: torch.Tensor, g_idx: torch.Tensor,
1556
+ perm: torch.Tensor, workspace: torch.Tensor,
1557
+ b_q_type: ScalarType, size_m: torch.SymInt,
1558
+ size_n: torch.SymInt, size_k: torch.SymInt,
1559
+ is_k_full: bool, num_experts: int, topk: int,
1560
+ moe_block_size: int, replicate_input: bool,
1561
+ apply_weights: bool) -> torch.Tensor:
1562
+ return torch.empty((size_m, topk, size_n),
1563
+ dtype=a.dtype,
1564
+ device=a.device)
1565
+
1566
+ @register_fake("_moe_C::moe_wna16_marlin_gemm")
1567
+ def moe_wna16_marlin_gemm_fake(input: torch.Tensor,
1568
+ output: Optional[torch.Tensor],
1569
+ b_qweight: torch.Tensor,
1570
+ b_scales: torch.Tensor,
1571
+ b_qzeros: Optional[torch.Tensor],
1572
+ g_idx: Optional[torch.Tensor],
1573
+ perm: Optional[torch.Tensor],
1574
+ workspace: torch.Tensor,
1575
+ sorted_token_ids: torch.Tensor,
1576
+ expert_ids: torch.Tensor,
1577
+ num_tokens_past_padded: torch.Tensor,
1578
+ topk_weights: torch.Tensor,
1579
+ moe_block_size: int, top_k: int,
1580
+ mul_topk_weights: bool, is_ep: bool,
1581
+ b_q_type: ScalarType, size_m: int,
1582
+ size_n: int, size_k: int, is_k_full: bool,
1583
+ use_atomic_add: bool, use_fp32_reduce: bool,
1584
+ is_zp_float: bool) -> torch.Tensor:
1585
+ return torch.empty((size_m * top_k, size_n),
1586
+ dtype=input.dtype,
1587
+ device=input.device)
1588
+
1589
+
1590
+ def reshape_and_cache(
1591
+ key: torch.Tensor,
1592
+ value: torch.Tensor,
1593
+ key_cache: torch.Tensor,
1594
+ value_cache: torch.Tensor,
1595
+ slot_mapping: torch.Tensor,
1596
+ kv_cache_dtype: str,
1597
+ k_scale: torch.Tensor,
1598
+ v_scale: torch.Tensor,
1599
+ ) -> None:
1600
+ torch.ops._C_cache_ops.reshape_and_cache(key, value, key_cache,
1601
+ value_cache, slot_mapping,
1602
+ kv_cache_dtype, k_scale, v_scale)
1603
+
1604
+
1605
+ def reshape_and_cache_flash(
1606
+ key: torch.Tensor,
1607
+ value: torch.Tensor,
1608
+ key_cache: torch.Tensor,
1609
+ value_cache: torch.Tensor,
1610
+ slot_mapping: torch.Tensor,
1611
+ kv_cache_dtype: str,
1612
+ k_scale: torch.Tensor,
1613
+ v_scale: torch.Tensor,
1614
+ ) -> None:
1615
+ torch.ops._C_cache_ops.reshape_and_cache_flash(key, value, key_cache,
1616
+ value_cache, slot_mapping,
1617
+ kv_cache_dtype, k_scale,
1618
+ v_scale)
1619
+
1620
+
1621
+ def concat_and_cache_mla(
1622
+ kv_c: torch.Tensor,
1623
+ k_pe: torch.Tensor,
1624
+ kv_cache: torch.Tensor,
1625
+ slot_mapping: torch.Tensor,
1626
+ kv_cache_dtype: str,
1627
+ scale: torch.Tensor,
1628
+ ) -> None:
1629
+ torch.ops._C_cache_ops.concat_and_cache_mla(kv_c, k_pe, kv_cache,
1630
+ slot_mapping, kv_cache_dtype,
1631
+ scale)
1632
+
1633
+
1634
+ def copy_blocks(key_caches: list[torch.Tensor],
1635
+ value_caches: list[torch.Tensor],
1636
+ block_mapping: torch.Tensor) -> None:
1637
+ torch.ops._C_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
1638
+
1639
+
1640
+ def copy_blocks_mla(kv_caches: list[torch.Tensor],
1641
+ block_mapping: torch.Tensor) -> None:
1642
+ torch.ops._C_cache_ops.copy_blocks_mla(kv_caches, block_mapping)
1643
+
1644
+
1645
+ def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
1646
+ block_mapping: torch.Tensor) -> None:
1647
+ torch.ops._C_cache_ops.swap_blocks(src, dst, block_mapping)
1648
+
1649
+
1650
+ def convert_fp8(output: torch.Tensor,
1651
+ input: torch.Tensor,
1652
+ scale: float = 1.0,
1653
+ kv_dtype: str = "fp8") -> None:
1654
+ torch.ops._C_cache_ops.convert_fp8(output, input, scale, kv_dtype)
1655
+
1656
+
1657
+ def gather_and_maybe_dequant_cache(
1658
+ src_cache: torch.Tensor,
1659
+ dst: torch.Tensor,
1660
+ block_table: torch.Tensor,
1661
+ cu_seq_lens: torch.Tensor,
1662
+ batch_size: int,
1663
+ kv_cache_dtype: str,
1664
+ scale: torch.Tensor,
1665
+ seq_starts: Optional[torch.Tensor] = None) -> None:
1666
+ torch.ops._C_cache_ops.gather_and_maybe_dequant_cache(
1667
+ src_cache, dst, block_table, cu_seq_lens, batch_size, kv_cache_dtype,
1668
+ scale, seq_starts)
1669
+
1670
+
1671
+ def cp_gather_cache(src_cache: torch.Tensor,
1672
+ dst: torch.Tensor,
1673
+ block_table: torch.Tensor,
1674
+ cu_seq_lens: torch.Tensor,
1675
+ batch_size: int,
1676
+ seq_starts: Optional[torch.Tensor] = None) -> None:
1677
+ torch.ops._C_cache_ops.cp_gather_cache(src_cache, dst, block_table,
1678
+ cu_seq_lens, batch_size, seq_starts)
1679
+
1680
+
1681
+ def indexer_k_quant_and_cache(k: torch.Tensor, kv_cache: torch.Tensor,
1682
+ slot_mapping: torch.Tensor,
1683
+ quant_block_size: int,
1684
+ kv_cache_dtype: str) -> None:
1685
+ torch.ops._C_cache_ops.indexer_k_quant_and_cache(k, kv_cache, slot_mapping,
1686
+ quant_block_size,
1687
+ kv_cache_dtype)
1688
+
1689
+
1690
+ def get_device_attribute(attribute: int, device: int) -> int:
1691
+ return torch.ops._C_cuda_utils.get_device_attribute(attribute, device)
1692
+
1693
+
1694
+ def get_max_shared_memory_per_block_device_attribute(device: int) -> int:
1695
+ # ruff: noqa: E501
1696
+ return torch.ops._C_cuda_utils.get_max_shared_memory_per_block_device_attribute(
1697
+ device)
1698
+
1699
+
1700
+ # custom ar
1701
+ def init_custom_ar(ipc_tensors: list[torch.Tensor], rank_data: torch.Tensor,
1702
+ rank: int, fully_connected: bool) -> int:
1703
+ return torch.ops._C_custom_ar.init_custom_ar(ipc_tensors, rank_data, rank,
1704
+ fully_connected)
1705
+
1706
+
1707
+ def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int,
1708
+ reg_buffer_sz_bytes: int) -> None:
1709
+ torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer,
1710
+ reg_buffer_sz_bytes)
1711
+
1712
+
1713
+ def dispose(fa: int) -> None:
1714
+ torch.ops._C_custom_ar.dispose(fa)
1715
+
1716
+
1717
+ def meta_size() -> int:
1718
+ return torch.ops._C_custom_ar.meta_size()
1719
+
1720
+
1721
+ def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
1722
+ return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
1723
+
1724
+
1725
+ def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
1726
+ return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
1727
+
1728
+
1729
+ def register_graph_buffers(fa: int, handles: list[list[int]],
1730
+ offsets: list[list[int]]) -> None:
1731
+ torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
1732
+
1733
+
1734
+ def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
1735
+ return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
1736
+
1737
+
1738
+ def open_mem_handle(mem_handle: torch.Tensor):
1739
+ return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
1740
+
1741
+
1742
+ def free_shared_buffer(ptr: int) -> None:
1743
+ torch.ops._C_custom_ar.free_shared_buffer(ptr)
1744
+
1745
+
1746
+ # quick all reduce
1747
+ def init_custom_qr(rank: int,
1748
+ world_size: int,
1749
+ qr_max_size: Optional[int] = None) -> int:
1750
+ return torch.ops._C_custom_ar.init_custom_qr(rank, world_size, qr_max_size)
1751
+
1752
+
1753
+ def qr_destroy(fa: int) -> None:
1754
+ torch.ops._C_custom_ar.qr_destroy(fa)
1755
+
1756
+
1757
+ def qr_all_reduce(fa: int,
1758
+ inp: torch.Tensor,
1759
+ out: torch.Tensor,
1760
+ quant_level: int,
1761
+ cast_bf2half: bool = False) -> None:
1762
+ torch.ops._C_custom_ar.qr_all_reduce(fa, inp, out, quant_level,
1763
+ cast_bf2half)
1764
+
1765
+
1766
+ def qr_get_handle(fa: int) -> torch.Tensor:
1767
+ return torch.ops._C_custom_ar.qr_get_handle(fa)
1768
+
1769
+
1770
+ def qr_open_handles(fa: int, handles: list[torch.Tensor]) -> None:
1771
+ return torch.ops._C_custom_ar.qr_open_handles(fa, handles)
1772
+
1773
+
1774
+ def qr_max_size() -> int:
1775
+ return torch.ops._C_custom_ar.qr_max_size()
1776
+
1777
+
1778
+ def get_flash_mla_metadata(
1779
+ cache_seqlens: torch.Tensor,
1780
+ num_heads_per_head_k: int,
1781
+ num_heads_k: int,
1782
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1783
+ """
1784
+ Arguments:
1785
+ cache_seqlens: (batch_size), dtype torch.int32.
1786
+ num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
1787
+ num_heads_k: num_heads_k.
1788
+
1789
+ Return:
1790
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
1791
+ num_splits: (batch_size + 1), dtype torch.int32.
1792
+ """
1793
+ return torch.ops._C.get_flash_mla_metadata(cache_seqlens,
1794
+ num_heads_per_head_k,
1795
+ num_heads_k)
1796
+
1797
+
1798
+ def flash_mla_with_kvcache(
1799
+ q: torch.Tensor,
1800
+ k_cache: torch.Tensor,
1801
+ block_table: torch.Tensor,
1802
+ cache_seqlens: torch.Tensor,
1803
+ head_dim_v: int,
1804
+ tile_scheduler_metadata: torch.Tensor,
1805
+ num_splits: torch.Tensor,
1806
+ softmax_scale: Optional[float] = None,
1807
+ causal: bool = False,
1808
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1809
+ """
1810
+ Arguments:
1811
+ q: (batch_size, seq_len_q, num_heads_q, head_dim).
1812
+ k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
1813
+ block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
1814
+ cache_seqlens: (batch_size), torch.int32.
1815
+ head_dim_v: Head_dim of v.
1816
+ tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
1817
+ num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
1818
+ softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
1819
+ causal: bool. Whether to apply causal attention mask.
1820
+
1821
+ Return:
1822
+ out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
1823
+ softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
1824
+ """
1825
+ if softmax_scale is None:
1826
+ softmax_scale = q.shape[-1]**(-0.5)
1827
+ out, softmax_lse = torch.ops._C.flash_mla_fwd_kvcache(
1828
+ q,
1829
+ k_cache,
1830
+ None,
1831
+ head_dim_v,
1832
+ cache_seqlens,
1833
+ block_table,
1834
+ softmax_scale,
1835
+ causal,
1836
+ tile_scheduler_metadata,
1837
+ num_splits,
1838
+ )
1839
+ return out, softmax_lse
1840
+
1841
+
1842
+ def sm100_cutlass_mla_decode(out: torch.Tensor, lse: torch.Tensor,
1843
+ q_nope: torch.Tensor, q_pe: torch.Tensor,
1844
+ kv_c_and_k_pe_cache: torch.Tensor,
1845
+ seq_lens: torch.Tensor, page_table: torch.Tensor,
1846
+ workspace: torch.Tensor, scale: float,
1847
+ num_kv_splits: int) -> torch.Tensor:
1848
+ torch.ops._C.sm100_cutlass_mla_decode(out, lse, q_nope, q_pe,
1849
+ kv_c_and_k_pe_cache, seq_lens,
1850
+ page_table, workspace, scale,
1851
+ num_kv_splits)
1852
+ return out
1853
+
1854
+
1855
+ def sm100_cutlass_mla_get_workspace_size(max_seq_len: int, num_batches: int,
1856
+ sm_count: int,
1857
+ num_kv_splits: int) -> int:
1858
+ return torch.ops._C.sm100_cutlass_mla_get_workspace_size(
1859
+ max_seq_len, num_batches, sm_count, num_kv_splits)
1860
+
1861
+
1862
+ if hasattr(torch.ops._C, "weight_packed_linear"):
1863
+
1864
+ @register_fake("_C::weight_packed_linear")
1865
+ def weight_packed_linear_fake(mat1: torch.Tensor, mat2: torch.Tensor,
1866
+ bias: Optional[torch.Tensor],
1867
+ is_vnni: bool) -> torch.Tensor:
1868
+ return torch.empty((mat1.size(0), mat2.size(0)),
1869
+ dtype=mat1.dtype,
1870
+ device=mat2.device)
1871
+
1872
+
1873
+ if hasattr(torch.ops._C, "fused_experts_cpu"):
1874
+
1875
+ @register_fake("_C::fused_experts_cpu")
1876
+ def fused_experts_cpu_fake(
1877
+ hidden_states: torch.Tensor,
1878
+ w1: torch.Tensor,
1879
+ w2: torch.Tensor,
1880
+ topk_weights: torch.Tensor,
1881
+ topk_ids: torch.Tensor,
1882
+ inplace: bool,
1883
+ use_int8_w8a8: bool,
1884
+ use_fp8_w8a16: bool,
1885
+ w1_scale: Optional[torch.Tensor],
1886
+ w2_scale: Optional[torch.Tensor],
1887
+ block_size: Optional[list[int]],
1888
+ a1_scale: Optional[torch.Tensor],
1889
+ a2_scale: Optional[torch.Tensor],
1890
+ is_vnni: bool,
1891
+ ) -> torch.Tensor:
1892
+ return torch.empty_like(hidden_states)
1893
+
1894
+
1895
+ if hasattr(torch.ops._C, "int8_scaled_mm_with_quant"):
1896
+
1897
+ @register_fake("_C::int8_scaled_mm_with_quant")
1898
+ def int8_scaled_mm_with_quant_fake(
1899
+ mat1: torch.Tensor,
1900
+ mat2: torch.Tensor,
1901
+ scales2: torch.Tensor,
1902
+ bias: Optional[torch.Tensor],
1903
+ out_dtype: torch.dtype,
1904
+ is_vnni: bool,
1905
+ ) -> torch.Tensor:
1906
+ M = mat1.size(0)
1907
+ N = mat2.size(0)
1908
+ return torch.empty((M, N), dtype=out_dtype)
1909
+
1910
+
1911
+ class CPUDNNLGEMMHandler:
1912
+
1913
+ def __init__(self) -> None:
1914
+ self.handler: Optional[int] = None
1915
+ self.n = -1
1916
+ self.k = -1
1917
+
1918
+ def __del__(self):
1919
+ if self.handler is not None:
1920
+ torch.ops._C.release_dnnl_matmul_handler(self.handler)
1921
+
1922
+
1923
+ if hasattr(torch.ops._C, "create_onednn_mm_handler"):
1924
+ _supports_onednn = True
1925
+ else:
1926
+ _supports_onednn = False
1927
+
1928
+
1929
+ def create_onednn_mm(
1930
+ weight: torch.Tensor, # [K, N]
1931
+ primitive_cache_size: int = 128,
1932
+ ) -> CPUDNNLGEMMHandler:
1933
+ handler = CPUDNNLGEMMHandler()
1934
+ handler.k, handler.n = weight.size()
1935
+ handler.handler = torch.ops._C.create_onednn_mm_handler(
1936
+ weight, primitive_cache_size)
1937
+ return handler
1938
+
1939
+
1940
+ def onednn_mm(
1941
+ dnnl_handler: CPUDNNLGEMMHandler,
1942
+ x: torch.Tensor,
1943
+ bias: Optional[torch.Tensor],
1944
+ ) -> torch.Tensor:
1945
+ output = torch.empty((*x.shape[0:-1], dnnl_handler.n), dtype=x.dtype)
1946
+ torch.ops._C.onednn_mm(output, x.reshape(-1, dnnl_handler.k), bias,
1947
+ dnnl_handler.handler)
1948
+
1949
+ return output
1950
+
1951
+
1952
+ def create_onednn_scaled_mm(
1953
+ weight: torch.Tensor, # [K, N]
1954
+ weight_scales: torch.Tensor,
1955
+ output_type: torch.dtype,
1956
+ dynamic_quant: bool,
1957
+ use_azp: bool,
1958
+ primitive_cache_size: int = 128,
1959
+ ) -> CPUDNNLGEMMHandler:
1960
+ handler = CPUDNNLGEMMHandler()
1961
+ handler.k, handler.n = weight.size()
1962
+ handler.handler = torch.ops._C.create_onednn_scaled_mm_handler(
1963
+ weight, weight_scales, output_type, dynamic_quant, use_azp,
1964
+ primitive_cache_size)
1965
+ return handler
1966
+
1967
+
1968
+ def onednn_scaled_int8_quant(input: torch.Tensor,
1969
+ scale: Optional[torch.Tensor] = None,
1970
+ azp: Optional[torch.Tensor] = None,
1971
+ symmetric: bool = True):
1972
+ """
1973
+ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp.
1974
+
1975
+ Args:
1976
+ input: The input tensor to be quantized to int8.
1977
+ scale: Optional scaling factor for the int8 quantization.
1978
+ When not provided, we invoke dynamic-per-token quantization.
1979
+ azp: Optional zero-point for the int8 quantization.
1980
+ Must be provided for asymmetric quantization if `scale` is provided.
1981
+ symmetric: Whether to use symmetric quantization (scale only, azp ignored).
1982
+
1983
+ Returns:
1984
+ tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp.
1985
+ """
1986
+ output = torch.empty_like(input, dtype=torch.int8)
1987
+ token_num = input.numel() // input.shape[-1]
1988
+ input = input.view((token_num, input.shape[-1]))
1989
+ if scale is not None:
1990
+ # static-per-tensor quantization.
1991
+ assert symmetric == (
1992
+ azp
1993
+ is None), "azp must only be provided for asymmetric quantization."
1994
+ torch.ops._C.static_scaled_int8_quant(output, input, scale, azp)
1995
+ return output, scale, azp
1996
+
1997
+ # dynamic-per-token quantization.
1998
+ input_scales = torch.empty((token_num, 1),
1999
+ device=input.device,
2000
+ dtype=torch.float32)
2001
+ input_azp = None if symmetric else torch.empty_like(input_scales,
2002
+ dtype=torch.int32)
2003
+ torch.ops._C.dynamic_scaled_int8_quant(output, input, input_scales,
2004
+ input_azp)
2005
+ return output, input_scales, input_azp
2006
+
2007
+
2008
+ def onednn_scaled_mm(
2009
+ dnnl_handler: CPUDNNLGEMMHandler,
2010
+ x: torch.Tensor,
2011
+ output: torch.Tensor,
2012
+ input_scale: Optional[torch.Tensor],
2013
+ input_zp: Optional[torch.Tensor],
2014
+ input_zp_adj: Optional[torch.Tensor],
2015
+ bias: Optional[torch.Tensor],
2016
+ ) -> torch.Tensor:
2017
+ torch.ops._C.onednn_scaled_mm(output, x, input_scale, input_zp,
2018
+ input_zp_adj, bias, dnnl_handler.handler)
2019
+
2020
+ return output
2021
+
2022
+
2023
+ def hadacore_transform(x: torch.Tensor, inplace: bool = True) -> torch.Tensor:
2024
+ """
2025
+ Perform Hadamard transforms using [Hadacore](https://arxiv.org/abs/2412.08832)
2026
+ kernels. Note that these kernels exploit the recursive properties of
2027
+ Sylvester Hadamards, and therefore do not require transform weight data
2028
+
2029
+ Note that sylvester hadamard transforms are also symmetric, which means that
2030
+ this function is also applies the (transpose <=> inverse) transform.
2031
+
2032
+ :param x: value to be transformed inplace
2033
+ :param inplace: modify value in place
2034
+ :return: value after transformation
2035
+ """
2036
+ return torch.ops._C.hadacore_transform(x, inplace)
2037
+
2038
+
2039
+ if hasattr(torch.ops._C, "hadacore_transform"):
2040
+
2041
+ @register_fake("_C::hadacore_transform")
2042
+ def _hadacore_transform_fake(x: torch.Tensor,
2043
+ inplace: bool) -> torch.Tensor:
2044
+ return torch.empty_like(x) if not inplace else x