vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1398) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2044 -0
  5. vllm/_ipex_ops.py +393 -0
  6. vllm/_version.py +34 -0
  7. vllm/assets/__init__.py +0 -0
  8. vllm/assets/audio.py +45 -0
  9. vllm/assets/base.py +41 -0
  10. vllm/assets/image.py +50 -0
  11. vllm/assets/video.py +145 -0
  12. vllm/attention/__init__.py +15 -0
  13. vllm/attention/backends/__init__.py +0 -0
  14. vllm/attention/backends/abstract.py +204 -0
  15. vllm/attention/backends/utils.py +33 -0
  16. vllm/attention/layer.py +645 -0
  17. vllm/attention/layers/__init__.py +0 -0
  18. vllm/attention/layers/chunked_local_attention.py +93 -0
  19. vllm/attention/layers/cross_attention.py +162 -0
  20. vllm/attention/layers/encoder_only_attention.py +86 -0
  21. vllm/attention/ops/__init__.py +0 -0
  22. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  23. vllm/attention/ops/common.py +345 -0
  24. vllm/attention/ops/flashmla.py +192 -0
  25. vllm/attention/ops/merge_attn_states.py +43 -0
  26. vllm/attention/ops/paged_attn.py +262 -0
  27. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  28. vllm/attention/ops/prefix_prefill.py +928 -0
  29. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  30. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  31. vllm/attention/ops/triton_decode_attention.py +691 -0
  32. vllm/attention/ops/triton_flash_attention.py +984 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
  35. vllm/attention/ops/triton_unified_attention.py +894 -0
  36. vllm/attention/selector.py +245 -0
  37. vllm/attention/utils/__init__.py +0 -0
  38. vllm/attention/utils/fa_utils.py +85 -0
  39. vllm/attention/utils/kv_sharing_utils.py +33 -0
  40. vllm/beam_search.py +87 -0
  41. vllm/benchmarks/__init__.py +0 -0
  42. vllm/benchmarks/datasets.py +2723 -0
  43. vllm/benchmarks/latency.py +170 -0
  44. vllm/benchmarks/lib/__init__.py +3 -0
  45. vllm/benchmarks/lib/endpoint_request_func.py +533 -0
  46. vllm/benchmarks/lib/ready_checker.py +73 -0
  47. vllm/benchmarks/lib/utils.py +80 -0
  48. vllm/benchmarks/serve.py +1358 -0
  49. vllm/benchmarks/throughput.py +696 -0
  50. vllm/collect_env.py +823 -0
  51. vllm/compilation/__init__.py +0 -0
  52. vllm/compilation/activation_quant_fusion.py +189 -0
  53. vllm/compilation/backends.py +650 -0
  54. vllm/compilation/base_static_graph.py +56 -0
  55. vllm/compilation/collective_fusion.py +1188 -0
  56. vllm/compilation/compiler_interface.py +573 -0
  57. vllm/compilation/counter.py +47 -0
  58. vllm/compilation/cuda_graph.py +199 -0
  59. vllm/compilation/cuda_piecewise_backend.py +117 -0
  60. vllm/compilation/decorators.py +400 -0
  61. vllm/compilation/fix_functionalization.py +205 -0
  62. vllm/compilation/fusion.py +383 -0
  63. vllm/compilation/fusion_attn.py +295 -0
  64. vllm/compilation/fx_utils.py +84 -0
  65. vllm/compilation/inductor_pass.py +136 -0
  66. vllm/compilation/monitor.py +57 -0
  67. vllm/compilation/noop_elimination.py +158 -0
  68. vllm/compilation/pass_manager.py +125 -0
  69. vllm/compilation/post_cleanup.py +20 -0
  70. vllm/compilation/sequence_parallelism.py +478 -0
  71. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  72. vllm/compilation/vllm_inductor_pass.py +156 -0
  73. vllm/compilation/wrapper.py +136 -0
  74. vllm/config/__init__.py +814 -0
  75. vllm/config/cache.py +220 -0
  76. vllm/config/compilation.py +673 -0
  77. vllm/config/device.py +74 -0
  78. vllm/config/kv_events.py +50 -0
  79. vllm/config/kv_transfer.py +111 -0
  80. vllm/config/load.py +113 -0
  81. vllm/config/lora.py +132 -0
  82. vllm/config/model.py +1912 -0
  83. vllm/config/multimodal.py +129 -0
  84. vllm/config/observability.py +99 -0
  85. vllm/config/parallel.py +524 -0
  86. vllm/config/pooler.py +97 -0
  87. vllm/config/scheduler.py +287 -0
  88. vllm/config/speculative.py +568 -0
  89. vllm/config/speech_to_text.py +39 -0
  90. vllm/config/structured_outputs.py +64 -0
  91. vllm/config/utils.py +145 -0
  92. vllm/connections.py +186 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +311 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +41 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +440 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +295 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +323 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
  106. vllm/distributed/device_communicators/pynccl.py +340 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +589 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +635 -0
  113. vllm/distributed/device_communicators/symm_mem.py +136 -0
  114. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  115. vllm/distributed/device_communicators/xpu_communicator.py +94 -0
  116. vllm/distributed/eplb/__init__.py +8 -0
  117. vllm/distributed/eplb/eplb_state.py +620 -0
  118. vllm/distributed/eplb/rebalance_algo.py +239 -0
  119. vllm/distributed/eplb/rebalance_execute.py +424 -0
  120. vllm/distributed/kv_events.py +362 -0
  121. vllm/distributed/kv_transfer/README.md +29 -0
  122. vllm/distributed/kv_transfer/__init__.py +13 -0
  123. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  124. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  125. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  126. vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
  132. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
  133. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
  134. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
  135. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
  140. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  141. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  142. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  144. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  145. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  146. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  147. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  148. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  149. vllm/distributed/parallel_state.py +1532 -0
  150. vllm/distributed/tpu_distributed_utils.py +178 -0
  151. vllm/distributed/utils.py +536 -0
  152. vllm/engine/__init__.py +0 -0
  153. vllm/engine/arg_utils.py +1778 -0
  154. vllm/engine/async_llm_engine.py +6 -0
  155. vllm/engine/llm_engine.py +6 -0
  156. vllm/engine/metrics.py +577 -0
  157. vllm/engine/metrics_types.py +84 -0
  158. vllm/engine/protocol.py +333 -0
  159. vllm/entrypoints/__init__.py +0 -0
  160. vllm/entrypoints/api_server.py +178 -0
  161. vllm/entrypoints/chat_utils.py +1705 -0
  162. vllm/entrypoints/cli/__init__.py +12 -0
  163. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  164. vllm/entrypoints/cli/benchmark/base.py +25 -0
  165. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  166. vllm/entrypoints/cli/benchmark/main.py +55 -0
  167. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  168. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  169. vllm/entrypoints/cli/collect_env.py +36 -0
  170. vllm/entrypoints/cli/main.py +60 -0
  171. vllm/entrypoints/cli/openai.py +233 -0
  172. vllm/entrypoints/cli/run_batch.py +67 -0
  173. vllm/entrypoints/cli/serve.py +232 -0
  174. vllm/entrypoints/cli/types.py +29 -0
  175. vllm/entrypoints/constants.py +10 -0
  176. vllm/entrypoints/context.py +481 -0
  177. vllm/entrypoints/harmony_utils.py +436 -0
  178. vllm/entrypoints/launcher.py +164 -0
  179. vllm/entrypoints/llm.py +1629 -0
  180. vllm/entrypoints/logger.py +79 -0
  181. vllm/entrypoints/openai/__init__.py +0 -0
  182. vllm/entrypoints/openai/api_server.py +1953 -0
  183. vllm/entrypoints/openai/cli_args.py +288 -0
  184. vllm/entrypoints/openai/logits_processors.py +90 -0
  185. vllm/entrypoints/openai/protocol.py +2757 -0
  186. vllm/entrypoints/openai/run_batch.py +491 -0
  187. vllm/entrypoints/openai/serving_chat.py +1597 -0
  188. vllm/entrypoints/openai/serving_classification.py +173 -0
  189. vllm/entrypoints/openai/serving_completion.py +692 -0
  190. vllm/entrypoints/openai/serving_embedding.py +631 -0
  191. vllm/entrypoints/openai/serving_engine.py +992 -0
  192. vllm/entrypoints/openai/serving_models.py +288 -0
  193. vllm/entrypoints/openai/serving_pooling.py +276 -0
  194. vllm/entrypoints/openai/serving_responses.py +1709 -0
  195. vllm/entrypoints/openai/serving_score.py +479 -0
  196. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  197. vllm/entrypoints/openai/serving_transcription.py +136 -0
  198. vllm/entrypoints/openai/speech_to_text.py +388 -0
  199. vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
  200. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  201. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  202. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  203. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  204. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  205. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  206. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
  207. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  208. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  209. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  210. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  211. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  212. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  213. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
  214. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  216. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
  217. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  218. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  219. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  220. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
  221. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  222. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  223. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  224. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  225. vllm/entrypoints/renderer.py +395 -0
  226. vllm/entrypoints/score_utils.py +232 -0
  227. vllm/entrypoints/ssl.py +75 -0
  228. vllm/entrypoints/tool.py +139 -0
  229. vllm/entrypoints/tool_server.py +206 -0
  230. vllm/entrypoints/utils.py +233 -0
  231. vllm/env_override.py +23 -0
  232. vllm/envs.py +1590 -0
  233. vllm/executor/__init__.py +0 -0
  234. vllm/executor/executor_base.py +381 -0
  235. vllm/executor/msgspec_utils.py +35 -0
  236. vllm/executor/ray_distributed_executor.py +699 -0
  237. vllm/executor/ray_utils.py +410 -0
  238. vllm/executor/uniproc_executor.py +176 -0
  239. vllm/forward_context.py +402 -0
  240. vllm/inputs/__init__.py +30 -0
  241. vllm/inputs/data.py +356 -0
  242. vllm/inputs/parse.py +151 -0
  243. vllm/inputs/preprocess.py +664 -0
  244. vllm/logger.py +229 -0
  245. vllm/logging_utils/__init__.py +10 -0
  246. vllm/logging_utils/dump_input.py +81 -0
  247. vllm/logging_utils/formatter.py +79 -0
  248. vllm/logging_utils/log_time.py +32 -0
  249. vllm/logits_process.py +119 -0
  250. vllm/logprobs.py +28 -0
  251. vllm/lora/__init__.py +0 -0
  252. vllm/lora/layers/__init__.py +34 -0
  253. vllm/lora/layers/base.py +69 -0
  254. vllm/lora/layers/base_linear.py +185 -0
  255. vllm/lora/layers/column_parallel_linear.py +609 -0
  256. vllm/lora/layers/logits_processor.py +247 -0
  257. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  258. vllm/lora/layers/replicated_linear.py +60 -0
  259. vllm/lora/layers/row_parallel_linear.py +196 -0
  260. vllm/lora/layers/utils.py +65 -0
  261. vllm/lora/layers/vocal_parallel_embedding.py +174 -0
  262. vllm/lora/lora_weights.py +199 -0
  263. vllm/lora/models.py +816 -0
  264. vllm/lora/ops/__init__.py +0 -0
  265. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  266. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  267. vllm/lora/ops/torch_ops/__init__.py +16 -0
  268. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  269. vllm/lora/ops/triton_ops/__init__.py +12 -0
  270. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  271. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  272. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  273. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  274. vllm/lora/ops/triton_ops/utils.py +126 -0
  275. vllm/lora/ops/xla_ops/__init__.py +7 -0
  276. vllm/lora/ops/xla_ops/lora_ops.py +144 -0
  277. vllm/lora/peft_helper.py +127 -0
  278. vllm/lora/punica_wrapper/__init__.py +10 -0
  279. vllm/lora/punica_wrapper/punica_base.py +458 -0
  280. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  281. vllm/lora/punica_wrapper/punica_gpu.py +272 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  284. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  285. vllm/lora/punica_wrapper/utils.py +136 -0
  286. vllm/lora/request.py +97 -0
  287. vllm/lora/resolver.py +85 -0
  288. vllm/lora/utils.py +246 -0
  289. vllm/lora/worker_manager.py +267 -0
  290. vllm/model_executor/__init__.py +12 -0
  291. vllm/model_executor/custom_op.py +194 -0
  292. vllm/model_executor/layers/__init__.py +0 -0
  293. vllm/model_executor/layers/activation.py +575 -0
  294. vllm/model_executor/layers/attention_layer_base.py +23 -0
  295. vllm/model_executor/layers/fla/__init__.py +8 -0
  296. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  297. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  298. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  299. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  300. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  301. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  302. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  303. vllm/model_executor/layers/fla/ops/index.py +39 -0
  304. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  305. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  306. vllm/model_executor/layers/fla/ops/op.py +39 -0
  307. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  308. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  309. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  310. vllm/model_executor/layers/fused_moe/__init__.py +89 -0
  311. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
  312. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
  313. vllm/model_executor/layers/fused_moe/config.py +804 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  545. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
  546. vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
  547. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
  548. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  549. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
  550. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
  551. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
  552. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
  553. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
  554. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
  555. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
  556. vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
  557. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
  558. vllm/model_executor/layers/fused_moe/layer.py +2195 -0
  559. vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
  560. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  561. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  562. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  563. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  564. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
  565. vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
  566. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
  567. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  568. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  569. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
  570. vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
  571. vllm/model_executor/layers/fused_moe/utils.py +274 -0
  572. vllm/model_executor/layers/layernorm.py +395 -0
  573. vllm/model_executor/layers/lightning_attn.py +661 -0
  574. vllm/model_executor/layers/linear.py +1603 -0
  575. vllm/model_executor/layers/logits_processor.py +106 -0
  576. vllm/model_executor/layers/mamba/__init__.py +0 -0
  577. vllm/model_executor/layers/mamba/abstract.py +42 -0
  578. vllm/model_executor/layers/mamba/linear_attn.py +403 -0
  579. vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
  580. vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
  581. vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
  582. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  583. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
  584. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  585. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  586. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
  587. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
  588. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
  589. vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
  590. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
  591. vllm/model_executor/layers/mamba/short_conv.py +253 -0
  592. vllm/model_executor/layers/mla.py +173 -0
  593. vllm/model_executor/layers/pooler.py +719 -0
  594. vllm/model_executor/layers/quantization/__init__.py +157 -0
  595. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  596. vllm/model_executor/layers/quantization/awq.py +228 -0
  597. vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
  598. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  599. vllm/model_executor/layers/quantization/base_config.py +170 -0
  600. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  601. vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
  602. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  603. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
  604. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
  605. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  606. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  607. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  608. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  609. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  610. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
  611. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  612. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  613. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  614. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
  615. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  616. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  625. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  626. vllm/model_executor/layers/quantization/experts_int8.py +223 -0
  627. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  628. vllm/model_executor/layers/quantization/fp8.py +1098 -0
  629. vllm/model_executor/layers/quantization/gguf.py +599 -0
  630. vllm/model_executor/layers/quantization/gptq.py +340 -0
  631. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  632. vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
  633. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  634. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  635. vllm/model_executor/layers/quantization/inc.py +61 -0
  636. vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
  637. vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
  638. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  639. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  640. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  641. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  642. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  643. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  644. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  645. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  646. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  647. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  648. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  649. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  650. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  651. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
  652. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  653. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  654. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  655. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  656. vllm/model_executor/layers/quantization/kv_cache.py +143 -0
  657. vllm/model_executor/layers/quantization/modelopt.py +1596 -0
  658. vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
  659. vllm/model_executor/layers/quantization/mxfp4.py +988 -0
  660. vllm/model_executor/layers/quantization/petit.py +306 -0
  661. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  662. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  663. vllm/model_executor/layers/quantization/quark/quark.py +432 -0
  664. vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
  665. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  666. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  667. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
  668. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  669. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  670. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  671. vllm/model_executor/layers/quantization/rtn.py +466 -0
  672. vllm/model_executor/layers/quantization/schema.py +86 -0
  673. vllm/model_executor/layers/quantization/torchao.py +214 -0
  674. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  675. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  676. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  677. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  889. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
  890. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
  891. vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
  892. vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
  893. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  894. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  895. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  896. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  897. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  898. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  899. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  900. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  901. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
  902. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  903. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  904. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  905. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  906. vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
  907. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  908. vllm/model_executor/layers/resampler.py +270 -0
  909. vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
  910. vllm/model_executor/layers/rotary_embedding/base.py +177 -0
  911. vllm/model_executor/layers/rotary_embedding/common.py +150 -0
  912. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
  913. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  914. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  915. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  916. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  917. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  918. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  919. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  920. vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
  921. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  922. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  923. vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
  924. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  925. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  926. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  927. vllm/model_executor/layers/utils.py +195 -0
  928. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  929. vllm/model_executor/model_loader/__init__.py +138 -0
  930. vllm/model_executor/model_loader/base_loader.py +52 -0
  931. vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
  932. vllm/model_executor/model_loader/default_loader.py +277 -0
  933. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  934. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  935. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  936. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  937. vllm/model_executor/model_loader/tensorizer.py +738 -0
  938. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  939. vllm/model_executor/model_loader/tpu.py +114 -0
  940. vllm/model_executor/model_loader/utils.py +292 -0
  941. vllm/model_executor/model_loader/weight_utils.py +990 -0
  942. vllm/model_executor/models/__init__.py +33 -0
  943. vllm/model_executor/models/adapters.py +542 -0
  944. vllm/model_executor/models/aimv2.py +246 -0
  945. vllm/model_executor/models/apertus.py +579 -0
  946. vllm/model_executor/models/arcee.py +422 -0
  947. vllm/model_executor/models/arctic.py +558 -0
  948. vllm/model_executor/models/aria.py +650 -0
  949. vllm/model_executor/models/aya_vision.py +468 -0
  950. vllm/model_executor/models/baichuan.py +474 -0
  951. vllm/model_executor/models/bailing_moe.py +642 -0
  952. vllm/model_executor/models/bamba.py +514 -0
  953. vllm/model_executor/models/bert.py +665 -0
  954. vllm/model_executor/models/bert_with_rope.py +687 -0
  955. vllm/model_executor/models/blip.py +339 -0
  956. vllm/model_executor/models/blip2.py +712 -0
  957. vllm/model_executor/models/bloom.py +374 -0
  958. vllm/model_executor/models/chameleon.py +1139 -0
  959. vllm/model_executor/models/chatglm.py +476 -0
  960. vllm/model_executor/models/clip.py +407 -0
  961. vllm/model_executor/models/cohere2_vision.py +481 -0
  962. vllm/model_executor/models/commandr.py +465 -0
  963. vllm/model_executor/models/config.py +445 -0
  964. vllm/model_executor/models/dbrx.py +471 -0
  965. vllm/model_executor/models/deepseek.py +497 -0
  966. vllm/model_executor/models/deepseek_eagle.py +240 -0
  967. vllm/model_executor/models/deepseek_mtp.py +289 -0
  968. vllm/model_executor/models/deepseek_v2.py +1444 -0
  969. vllm/model_executor/models/deepseek_vl2.py +658 -0
  970. vllm/model_executor/models/dots1.py +546 -0
  971. vllm/model_executor/models/dots_ocr.py +873 -0
  972. vllm/model_executor/models/ernie45.py +43 -0
  973. vllm/model_executor/models/ernie45_moe.py +607 -0
  974. vllm/model_executor/models/ernie45_vl.py +1527 -0
  975. vllm/model_executor/models/ernie45_vl_moe.py +727 -0
  976. vllm/model_executor/models/ernie_mtp.py +268 -0
  977. vllm/model_executor/models/exaone.py +550 -0
  978. vllm/model_executor/models/exaone4.py +533 -0
  979. vllm/model_executor/models/fairseq2_llama.py +154 -0
  980. vllm/model_executor/models/falcon.py +509 -0
  981. vllm/model_executor/models/falcon_h1.py +674 -0
  982. vllm/model_executor/models/fuyu.py +399 -0
  983. vllm/model_executor/models/gemma.py +425 -0
  984. vllm/model_executor/models/gemma2.py +422 -0
  985. vllm/model_executor/models/gemma3.py +555 -0
  986. vllm/model_executor/models/gemma3_mm.py +721 -0
  987. vllm/model_executor/models/gemma3n.py +1113 -0
  988. vllm/model_executor/models/gemma3n_mm.py +761 -0
  989. vllm/model_executor/models/glm.py +23 -0
  990. vllm/model_executor/models/glm4.py +304 -0
  991. vllm/model_executor/models/glm4_1v.py +1690 -0
  992. vllm/model_executor/models/glm4_moe.py +727 -0
  993. vllm/model_executor/models/glm4_moe_mtp.py +301 -0
  994. vllm/model_executor/models/glm4v.py +654 -0
  995. vllm/model_executor/models/gpt2.py +380 -0
  996. vllm/model_executor/models/gpt_bigcode.py +344 -0
  997. vllm/model_executor/models/gpt_j.py +339 -0
  998. vllm/model_executor/models/gpt_neox.py +330 -0
  999. vllm/model_executor/models/gpt_oss.py +712 -0
  1000. vllm/model_executor/models/granite.py +489 -0
  1001. vllm/model_executor/models/granite_speech.py +794 -0
  1002. vllm/model_executor/models/granitemoe.py +550 -0
  1003. vllm/model_executor/models/granitemoehybrid.py +614 -0
  1004. vllm/model_executor/models/granitemoeshared.py +332 -0
  1005. vllm/model_executor/models/gritlm.py +262 -0
  1006. vllm/model_executor/models/grok1.py +547 -0
  1007. vllm/model_executor/models/h2ovl.py +536 -0
  1008. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1009. vllm/model_executor/models/hyperclovax_vision.py +1192 -0
  1010. vllm/model_executor/models/idefics2_vision_model.py +417 -0
  1011. vllm/model_executor/models/idefics3.py +756 -0
  1012. vllm/model_executor/models/interfaces.py +959 -0
  1013. vllm/model_executor/models/interfaces_base.py +192 -0
  1014. vllm/model_executor/models/intern_vit.py +441 -0
  1015. vllm/model_executor/models/internlm2.py +450 -0
  1016. vllm/model_executor/models/internlm2_ve.py +148 -0
  1017. vllm/model_executor/models/interns1.py +838 -0
  1018. vllm/model_executor/models/interns1_vit.py +418 -0
  1019. vllm/model_executor/models/internvl.py +1423 -0
  1020. vllm/model_executor/models/jais.py +373 -0
  1021. vllm/model_executor/models/jamba.py +591 -0
  1022. vllm/model_executor/models/jina_vl.py +144 -0
  1023. vllm/model_executor/models/keye.py +1680 -0
  1024. vllm/model_executor/models/keye_vl1_5.py +602 -0
  1025. vllm/model_executor/models/kimi_vl.py +618 -0
  1026. vllm/model_executor/models/lfm2.py +548 -0
  1027. vllm/model_executor/models/llama.py +669 -0
  1028. vllm/model_executor/models/llama4.py +746 -0
  1029. vllm/model_executor/models/llama4_eagle.py +239 -0
  1030. vllm/model_executor/models/llama_eagle.py +179 -0
  1031. vllm/model_executor/models/llama_eagle3.py +296 -0
  1032. vllm/model_executor/models/llava.py +870 -0
  1033. vllm/model_executor/models/llava_next.py +571 -0
  1034. vllm/model_executor/models/llava_next_video.py +476 -0
  1035. vllm/model_executor/models/llava_onevision.py +942 -0
  1036. vllm/model_executor/models/longcat_flash.py +715 -0
  1037. vllm/model_executor/models/longcat_flash_mtp.py +352 -0
  1038. vllm/model_executor/models/mamba.py +275 -0
  1039. vllm/model_executor/models/mamba2.py +291 -0
  1040. vllm/model_executor/models/medusa.py +169 -0
  1041. vllm/model_executor/models/midashenglm.py +792 -0
  1042. vllm/model_executor/models/mimo.py +188 -0
  1043. vllm/model_executor/models/mimo_mtp.py +280 -0
  1044. vllm/model_executor/models/minicpm.py +631 -0
  1045. vllm/model_executor/models/minicpm3.py +230 -0
  1046. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1047. vllm/model_executor/models/minicpmo.py +770 -0
  1048. vllm/model_executor/models/minicpmv.py +1784 -0
  1049. vllm/model_executor/models/minimax_text_01.py +986 -0
  1050. vllm/model_executor/models/minimax_vl_01.py +426 -0
  1051. vllm/model_executor/models/mistral3.py +628 -0
  1052. vllm/model_executor/models/mixtral.py +606 -0
  1053. vllm/model_executor/models/mllama4.py +1076 -0
  1054. vllm/model_executor/models/mlp_speculator.py +206 -0
  1055. vllm/model_executor/models/modernbert.py +374 -0
  1056. vllm/model_executor/models/module_mapping.py +72 -0
  1057. vllm/model_executor/models/molmo.py +1567 -0
  1058. vllm/model_executor/models/moonvit.py +673 -0
  1059. vllm/model_executor/models/motif.py +345 -0
  1060. vllm/model_executor/models/mpt.py +329 -0
  1061. vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
  1062. vllm/model_executor/models/nemotron.py +507 -0
  1063. vllm/model_executor/models/nemotron_h.py +565 -0
  1064. vllm/model_executor/models/nemotron_nas.py +481 -0
  1065. vllm/model_executor/models/nemotron_vl.py +652 -0
  1066. vllm/model_executor/models/nvlm_d.py +203 -0
  1067. vllm/model_executor/models/olmo.py +404 -0
  1068. vllm/model_executor/models/olmo2.py +439 -0
  1069. vllm/model_executor/models/olmoe.py +483 -0
  1070. vllm/model_executor/models/opt.py +412 -0
  1071. vllm/model_executor/models/orion.py +348 -0
  1072. vllm/model_executor/models/ovis.py +559 -0
  1073. vllm/model_executor/models/ovis2_5.py +642 -0
  1074. vllm/model_executor/models/paligemma.py +411 -0
  1075. vllm/model_executor/models/persimmon.py +343 -0
  1076. vllm/model_executor/models/phi.py +356 -0
  1077. vllm/model_executor/models/phi3.py +19 -0
  1078. vllm/model_executor/models/phi3v.py +698 -0
  1079. vllm/model_executor/models/phi4_multimodal.py +1475 -0
  1080. vllm/model_executor/models/phi4mm.py +1279 -0
  1081. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1082. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1083. vllm/model_executor/models/phimoe.py +679 -0
  1084. vllm/model_executor/models/pixtral.py +1345 -0
  1085. vllm/model_executor/models/plamo2.py +978 -0
  1086. vllm/model_executor/models/qwen.py +361 -0
  1087. vllm/model_executor/models/qwen2.py +523 -0
  1088. vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
  1089. vllm/model_executor/models/qwen2_5_vl.py +1481 -0
  1090. vllm/model_executor/models/qwen2_audio.py +489 -0
  1091. vllm/model_executor/models/qwen2_moe.py +558 -0
  1092. vllm/model_executor/models/qwen2_rm.py +122 -0
  1093. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1094. vllm/model_executor/models/qwen3.py +341 -0
  1095. vllm/model_executor/models/qwen3_moe.py +692 -0
  1096. vllm/model_executor/models/qwen3_next.py +1266 -0
  1097. vllm/model_executor/models/qwen3_next_mtp.py +281 -0
  1098. vllm/model_executor/models/qwen3_vl.py +1613 -0
  1099. vllm/model_executor/models/qwen3_vl_moe.py +358 -0
  1100. vllm/model_executor/models/qwen_vl.py +795 -0
  1101. vllm/model_executor/models/radio.py +576 -0
  1102. vllm/model_executor/models/registry.py +990 -0
  1103. vllm/model_executor/models/roberta.py +252 -0
  1104. vllm/model_executor/models/rvl.py +103 -0
  1105. vllm/model_executor/models/seed_oss.py +485 -0
  1106. vllm/model_executor/models/siglip.py +540 -0
  1107. vllm/model_executor/models/siglip2navit.py +689 -0
  1108. vllm/model_executor/models/skyworkr1v.py +911 -0
  1109. vllm/model_executor/models/smolvlm.py +44 -0
  1110. vllm/model_executor/models/solar.py +504 -0
  1111. vllm/model_executor/models/stablelm.py +341 -0
  1112. vllm/model_executor/models/starcoder2.py +354 -0
  1113. vllm/model_executor/models/step3_text.py +510 -0
  1114. vllm/model_executor/models/step3_vl.py +1072 -0
  1115. vllm/model_executor/models/swin.py +475 -0
  1116. vllm/model_executor/models/tarsier.py +639 -0
  1117. vllm/model_executor/models/telechat2.py +151 -0
  1118. vllm/model_executor/models/teleflm.py +79 -0
  1119. vllm/model_executor/models/terratorch.py +294 -0
  1120. vllm/model_executor/models/transformers.py +948 -0
  1121. vllm/model_executor/models/ultravox.py +654 -0
  1122. vllm/model_executor/models/utils.py +808 -0
  1123. vllm/model_executor/models/vision.py +404 -0
  1124. vllm/model_executor/models/voxtral.py +786 -0
  1125. vllm/model_executor/models/whisper.py +963 -0
  1126. vllm/model_executor/models/zamba2.py +960 -0
  1127. vllm/model_executor/parameter.py +620 -0
  1128. vllm/model_executor/utils.py +86 -0
  1129. vllm/model_executor/warmup/__init__.py +0 -0
  1130. vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
  1131. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1132. vllm/multimodal/__init__.py +33 -0
  1133. vllm/multimodal/audio.py +116 -0
  1134. vllm/multimodal/base.py +27 -0
  1135. vllm/multimodal/cache.py +697 -0
  1136. vllm/multimodal/evs.py +273 -0
  1137. vllm/multimodal/hasher.py +102 -0
  1138. vllm/multimodal/image.py +130 -0
  1139. vllm/multimodal/inputs.py +987 -0
  1140. vllm/multimodal/parse.py +511 -0
  1141. vllm/multimodal/processing.py +2148 -0
  1142. vllm/multimodal/profiling.py +284 -0
  1143. vllm/multimodal/registry.py +345 -0
  1144. vllm/multimodal/utils.py +503 -0
  1145. vllm/multimodal/video.py +319 -0
  1146. vllm/outputs.py +324 -0
  1147. vllm/platforms/__init__.py +263 -0
  1148. vllm/platforms/cpu.py +340 -0
  1149. vllm/platforms/cuda.py +668 -0
  1150. vllm/platforms/interface.py +620 -0
  1151. vllm/platforms/rocm.py +497 -0
  1152. vllm/platforms/tpu.py +233 -0
  1153. vllm/platforms/xpu.py +243 -0
  1154. vllm/plugins/__init__.py +72 -0
  1155. vllm/plugins/io_processors/__init__.py +68 -0
  1156. vllm/plugins/io_processors/interface.py +67 -0
  1157. vllm/plugins/lora_resolvers/README.md +16 -0
  1158. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1159. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1160. vllm/pooling_params.py +191 -0
  1161. vllm/profiler/__init__.py +0 -0
  1162. vllm/profiler/layerwise_profile.py +375 -0
  1163. vllm/profiler/utils.py +148 -0
  1164. vllm/py.typed +2 -0
  1165. vllm/ray/__init__.py +0 -0
  1166. vllm/ray/lazy_utils.py +22 -0
  1167. vllm/ray/ray_env.py +72 -0
  1168. vllm/reasoning/__init__.py +29 -0
  1169. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1170. vllm/reasoning/basic_parsers.py +156 -0
  1171. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1172. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1173. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1174. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1175. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1176. vllm/reasoning/mistral_reasoning_parser.py +56 -0
  1177. vllm/reasoning/qwen3_reasoning_parser.py +72 -0
  1178. vllm/reasoning/seedoss_reasoning_parser.py +28 -0
  1179. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1180. vllm/sampling_params.py +593 -0
  1181. vllm/scalar_type.py +349 -0
  1182. vllm/scripts.py +15 -0
  1183. vllm/sequence.py +103 -0
  1184. vllm/tasks.py +11 -0
  1185. vllm/test_utils.py +129 -0
  1186. vllm/third_party/__init__.py +0 -0
  1187. vllm/third_party/pynvml.py +6140 -0
  1188. vllm/tracing.py +136 -0
  1189. vllm/transformers_utils/__init__.py +24 -0
  1190. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1191. vllm/transformers_utils/chat_templates/registry.py +70 -0
  1192. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1193. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1194. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1195. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1196. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1197. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1198. vllm/transformers_utils/config.py +1102 -0
  1199. vllm/transformers_utils/config_parser_base.py +20 -0
  1200. vllm/transformers_utils/configs/__init__.py +63 -0
  1201. vllm/transformers_utils/configs/arctic.py +207 -0
  1202. vllm/transformers_utils/configs/chatglm.py +72 -0
  1203. vllm/transformers_utils/configs/deepseek_v3.py +101 -0
  1204. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1205. vllm/transformers_utils/configs/dotsocr.py +69 -0
  1206. vllm/transformers_utils/configs/eagle.py +84 -0
  1207. vllm/transformers_utils/configs/falcon.py +90 -0
  1208. vllm/transformers_utils/configs/jais.py +237 -0
  1209. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1210. vllm/transformers_utils/configs/medusa.py +63 -0
  1211. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1212. vllm/transformers_utils/configs/mistral.py +165 -0
  1213. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1214. vllm/transformers_utils/configs/moonvit.py +33 -0
  1215. vllm/transformers_utils/configs/nemotron.py +205 -0
  1216. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1217. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1218. vllm/transformers_utils/configs/olmo3.py +80 -0
  1219. vllm/transformers_utils/configs/ovis.py +176 -0
  1220. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1221. vllm/transformers_utils/configs/radio.py +91 -0
  1222. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1223. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1224. vllm/transformers_utils/configs/speculators/base.py +111 -0
  1225. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1226. vllm/transformers_utils/configs/ultravox.py +116 -0
  1227. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1228. vllm/transformers_utils/dynamic_module.py +60 -0
  1229. vllm/transformers_utils/processor.py +299 -0
  1230. vllm/transformers_utils/processors/__init__.py +16 -0
  1231. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1232. vllm/transformers_utils/processors/ovis.py +420 -0
  1233. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1234. vllm/transformers_utils/runai_utils.py +104 -0
  1235. vllm/transformers_utils/s3_utils.py +93 -0
  1236. vllm/transformers_utils/tokenizer.py +292 -0
  1237. vllm/transformers_utils/tokenizer_base.py +154 -0
  1238. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1239. vllm/transformers_utils/tokenizers/mistral.py +521 -0
  1240. vllm/transformers_utils/utils.py +108 -0
  1241. vllm/triton_utils/__init__.py +16 -0
  1242. vllm/triton_utils/importing.py +96 -0
  1243. vllm/usage/__init__.py +0 -0
  1244. vllm/usage/usage_lib.py +259 -0
  1245. vllm/utils/__init__.py +3566 -0
  1246. vllm/utils/deep_gemm.py +319 -0
  1247. vllm/utils/flashinfer.py +443 -0
  1248. vllm/utils/jsontree.py +178 -0
  1249. vllm/utils/tensor_schema.py +235 -0
  1250. vllm/v1/__init__.py +0 -0
  1251. vllm/v1/attention/__init__.py +0 -0
  1252. vllm/v1/attention/backends/__init__.py +0 -0
  1253. vllm/v1/attention/backends/cpu_attn.py +919 -0
  1254. vllm/v1/attention/backends/flash_attn.py +795 -0
  1255. vllm/v1/attention/backends/flashinfer.py +1181 -0
  1256. vllm/v1/attention/backends/flex_attention.py +861 -0
  1257. vllm/v1/attention/backends/gdn_attn.py +332 -0
  1258. vllm/v1/attention/backends/linear_attn.py +67 -0
  1259. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1260. vllm/v1/attention/backends/mamba2_attn.py +232 -0
  1261. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1262. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1263. vllm/v1/attention/backends/mla/common.py +1783 -0
  1264. vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
  1265. vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
  1266. vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
  1267. vllm/v1/attention/backends/mla/flashmla.py +203 -0
  1268. vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
  1269. vllm/v1/attention/backends/mla/indexer.py +342 -0
  1270. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1271. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1272. vllm/v1/attention/backends/pallas.py +409 -0
  1273. vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
  1274. vllm/v1/attention/backends/rocm_attn.py +426 -0
  1275. vllm/v1/attention/backends/short_conv_attn.py +94 -0
  1276. vllm/v1/attention/backends/tree_attn.py +451 -0
  1277. vllm/v1/attention/backends/triton_attn.py +361 -0
  1278. vllm/v1/attention/backends/utils.py +990 -0
  1279. vllm/v1/attention/backends/xformers.py +438 -0
  1280. vllm/v1/core/__init__.py +0 -0
  1281. vllm/v1/core/block_pool.py +416 -0
  1282. vllm/v1/core/encoder_cache_manager.py +333 -0
  1283. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1284. vllm/v1/core/kv_cache_manager.py +399 -0
  1285. vllm/v1/core/kv_cache_utils.py +1291 -0
  1286. vllm/v1/core/sched/__init__.py +0 -0
  1287. vllm/v1/core/sched/async_scheduler.py +47 -0
  1288. vllm/v1/core/sched/interface.py +158 -0
  1289. vllm/v1/core/sched/output.py +166 -0
  1290. vllm/v1/core/sched/request_queue.py +224 -0
  1291. vllm/v1/core/sched/scheduler.py +1296 -0
  1292. vllm/v1/core/sched/utils.py +69 -0
  1293. vllm/v1/core/single_type_kv_cache_manager.py +671 -0
  1294. vllm/v1/cudagraph_dispatcher.py +125 -0
  1295. vllm/v1/engine/__init__.py +203 -0
  1296. vllm/v1/engine/async_llm.py +742 -0
  1297. vllm/v1/engine/coordinator.py +357 -0
  1298. vllm/v1/engine/core.py +1235 -0
  1299. vllm/v1/engine/core_client.py +1334 -0
  1300. vllm/v1/engine/detokenizer.py +349 -0
  1301. vllm/v1/engine/exceptions.py +17 -0
  1302. vllm/v1/engine/llm_engine.py +370 -0
  1303. vllm/v1/engine/logprobs.py +201 -0
  1304. vllm/v1/engine/output_processor.py +576 -0
  1305. vllm/v1/engine/parallel_sampling.py +133 -0
  1306. vllm/v1/engine/processor.py +545 -0
  1307. vllm/v1/engine/utils.py +860 -0
  1308. vllm/v1/executor/__init__.py +0 -0
  1309. vllm/v1/executor/abstract.py +137 -0
  1310. vllm/v1/executor/multiproc_executor.py +726 -0
  1311. vllm/v1/executor/ray_distributed_executor.py +108 -0
  1312. vllm/v1/executor/utils.py +23 -0
  1313. vllm/v1/kv_cache_interface.py +375 -0
  1314. vllm/v1/kv_offload/__init__.py +0 -0
  1315. vllm/v1/kv_offload/abstract.py +165 -0
  1316. vllm/v1/kv_offload/backend.py +96 -0
  1317. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1318. vllm/v1/kv_offload/backends/cpu.py +61 -0
  1319. vllm/v1/kv_offload/cpu.py +75 -0
  1320. vllm/v1/kv_offload/factory.py +56 -0
  1321. vllm/v1/kv_offload/lru_manager.py +132 -0
  1322. vllm/v1/kv_offload/mediums.py +39 -0
  1323. vllm/v1/kv_offload/spec.py +61 -0
  1324. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1325. vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
  1326. vllm/v1/kv_offload/worker/worker.py +142 -0
  1327. vllm/v1/metrics/__init__.py +0 -0
  1328. vllm/v1/metrics/loggers.py +741 -0
  1329. vllm/v1/metrics/prometheus.py +82 -0
  1330. vllm/v1/metrics/ray_wrappers.py +152 -0
  1331. vllm/v1/metrics/reader.py +246 -0
  1332. vllm/v1/metrics/stats.py +257 -0
  1333. vllm/v1/outputs.py +161 -0
  1334. vllm/v1/pool/__init__.py +0 -0
  1335. vllm/v1/pool/metadata.py +77 -0
  1336. vllm/v1/request.py +241 -0
  1337. vllm/v1/sample/__init__.py +0 -0
  1338. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1339. vllm/v1/sample/logits_processor/builtin.py +275 -0
  1340. vllm/v1/sample/logits_processor/interface.py +97 -0
  1341. vllm/v1/sample/logits_processor/state.py +161 -0
  1342. vllm/v1/sample/metadata.py +43 -0
  1343. vllm/v1/sample/ops/__init__.py +0 -0
  1344. vllm/v1/sample/ops/bad_words.py +39 -0
  1345. vllm/v1/sample/ops/logprobs.py +26 -0
  1346. vllm/v1/sample/ops/penalties.py +43 -0
  1347. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1348. vllm/v1/sample/rejection_sampler.py +623 -0
  1349. vllm/v1/sample/sampler.py +285 -0
  1350. vllm/v1/sample/tpu/__init__.py +0 -0
  1351. vllm/v1/sample/tpu/metadata.py +124 -0
  1352. vllm/v1/sample/tpu/sampler.py +213 -0
  1353. vllm/v1/serial_utils.py +423 -0
  1354. vllm/v1/spec_decode/__init__.py +0 -0
  1355. vllm/v1/spec_decode/eagle.py +1011 -0
  1356. vllm/v1/spec_decode/medusa.py +66 -0
  1357. vllm/v1/spec_decode/metadata.py +62 -0
  1358. vllm/v1/spec_decode/metrics.py +211 -0
  1359. vllm/v1/spec_decode/ngram_proposer.py +276 -0
  1360. vllm/v1/spec_decode/utils.py +14 -0
  1361. vllm/v1/structured_output/__init__.py +295 -0
  1362. vllm/v1/structured_output/backend_guidance.py +245 -0
  1363. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1364. vllm/v1/structured_output/backend_outlines.py +320 -0
  1365. vllm/v1/structured_output/backend_types.py +134 -0
  1366. vllm/v1/structured_output/backend_xgrammar.py +327 -0
  1367. vllm/v1/structured_output/request.py +86 -0
  1368. vllm/v1/structured_output/utils.py +454 -0
  1369. vllm/v1/utils.py +396 -0
  1370. vllm/v1/worker/__init__.py +0 -0
  1371. vllm/v1/worker/block_table.py +210 -0
  1372. vllm/v1/worker/cpu_model_runner.py +175 -0
  1373. vllm/v1/worker/cpu_worker.py +156 -0
  1374. vllm/v1/worker/gpu_input_batch.py +863 -0
  1375. vllm/v1/worker/gpu_model_runner.py +4160 -0
  1376. vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
  1377. vllm/v1/worker/gpu_worker.py +710 -0
  1378. vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
  1379. vllm/v1/worker/lora_model_runner_mixin.py +183 -0
  1380. vllm/v1/worker/tpu_input_batch.py +587 -0
  1381. vllm/v1/worker/tpu_model_runner.py +1946 -0
  1382. vllm/v1/worker/tpu_worker.py +346 -0
  1383. vllm/v1/worker/ubatch_splitting.py +192 -0
  1384. vllm/v1/worker/ubatch_utils.py +27 -0
  1385. vllm/v1/worker/ubatching.py +224 -0
  1386. vllm/v1/worker/utils.py +344 -0
  1387. vllm/v1/worker/worker_base.py +65 -0
  1388. vllm/v1/worker/xpu_model_runner.py +57 -0
  1389. vllm/v1/worker/xpu_worker.py +179 -0
  1390. vllm/version.py +41 -0
  1391. vllm/vllm_flash_attn/.gitkeep +0 -0
  1392. vllm/worker/__init__.py +0 -0
  1393. vllm/worker/worker_base.py +279 -0
  1394. vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
  1395. vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
  1396. vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
  1397. vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
  1398. vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2074 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import enum
5
+ from enum import Enum
6
+ from typing import Callable, Optional, Union
7
+
8
+ import torch
9
+ from compressed_tensors import CompressionFormat
10
+ from compressed_tensors.quantization import (ActivationOrdering,
11
+ QuantizationStrategy)
12
+
13
+ import vllm.envs as envs
14
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
15
+ from vllm import _custom_ops as ops
16
+ from vllm.distributed import get_tensor_model_parallel_world_size
17
+ from vllm.logger import init_logger
18
+ from vllm.model_executor.layers.fused_moe import (
19
+ FusedMoE, FusedMoEActivationFormat, FusedMoEConfig, FusedMoEMethodBase,
20
+ FusedMoEPermuteExpertsUnpermute, FusedMoeWeightScaleSupported)
21
+ from vllm.model_executor.layers.fused_moe.config import (
22
+ FusedMoEQuantConfig, fp8_w8a8_moe_quant_config,
23
+ int4_w4a16_moe_quant_config, int8_w8a8_moe_quant_config,
24
+ int8_w8a16_moe_quant_config, nvfp4_moe_quant_config)
25
+ from vllm.model_executor.layers.fused_moe.cpu_fused_moe import select_experts
26
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import (
27
+ is_valid_flashinfer_cutlass_fused_moe)
28
+ from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import ( # noqa
29
+ WNA16_SUPPORTED_BITS, WNA16_SUPPORTED_TYPES_MAP)
30
+ from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
31
+ find_matched_target)
32
+ from vllm.model_executor.layers.quantization.utils import replace_parameter
33
+ from vllm.model_executor.layers.quantization.utils.flashinfer_fp4_moe import (
34
+ build_flashinfer_fp4_cutlass_moe_prepare_finalize, reorder_w1w3_to_w3w1,
35
+ select_nvfp4_gemm_impl)
36
+ from vllm.model_executor.layers.quantization.utils.fp8_utils import (
37
+ expert_weight_is_col_major, requant_weight_ue8m0_inplace)
38
+ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
39
+ check_moe_marlin_supports_layer, marlin_make_workspace_new,
40
+ marlin_moe_permute_scales)
41
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
42
+ prepare_moe_fp4_layer_for_marlin)
43
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
44
+ prepare_moe_fp8_layer_for_marlin)
45
+ from vllm.model_executor.layers.quantization.utils.quant_utils import (
46
+ swizzle_blockscale)
47
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
48
+ all_close_1d, normalize_e4m3fn_to_e4m3fnuz, per_tensor_dequantize)
49
+ from vllm.model_executor.utils import set_weight_attrs
50
+ from vllm.platforms import CpuArchEnum, current_platform
51
+ from vllm.scalar_type import scalar_types
52
+ from vllm.utils.deep_gemm import (get_col_major_tma_aligned_tensor,
53
+ is_deep_gemm_e8m0_used)
54
+
55
+ logger = init_logger(__name__)
56
+
57
+
58
+ class GPTQMarlinState(Enum):
59
+ REPACK = enum.auto()
60
+ READY = enum.auto()
61
+
62
+
63
+ __all__ = [
64
+ "CompressedTensorsMoEMethod", "CompressedTensorsW8A8Fp8MoEMethod",
65
+ "CompressedTensorsW8A8Int8MoEMethod",
66
+ "CompressedTensorsWNA16MarlinMoEMethod", "CompressedTensorsWNA16MoEMethod",
67
+ "CompressedTensorsW4A4MoeMethod", "CompressedTensorsW4A8Int8MoEMethod"
68
+ ]
69
+
70
+
71
+ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
72
+
73
+ def __init_(self, moe: FusedMoEConfig):
74
+ super().__init__(moe)
75
+
76
+ @staticmethod
77
+ def get_moe_method(
78
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
79
+ layer: torch.nn.Module
80
+ ) -> "CompressedTensorsMoEMethod":
81
+ # TODO: @dsikka: refactor this to use schemes as other kernels
82
+ # are supported + check if the layer is being ignored.
83
+ # Check if a using "Linear" to select schemes
84
+ if "Linear" in quant_config.target_scheme_map:
85
+ matched_target = "Linear"
86
+ else:
87
+ # May have instead defined the linear layers in the fused model
88
+
89
+ fused_layers = [
90
+ "re:.*down_proj.*", "re:.*gate_proj.*", "re:.*up_proj.*"
91
+ ]
92
+ current_scheme = None
93
+ for fused_layer in fused_layers:
94
+ # Check if one of the fused layers are defined in quant_config
95
+ matched_target = find_matched_target(
96
+ layer_name=fused_layer,
97
+ module=layer,
98
+ targets=quant_config.target_scheme_map.keys(),
99
+ fused_mapping=quant_config.packed_modules_mapping)
100
+
101
+ # Only valid if down_proj, gate_proj, and up_proj
102
+ # are mapped to the same quant scheme in the quant_config
103
+ if current_scheme is None:
104
+ current_scheme = quant_config.target_scheme_map.get(
105
+ matched_target)
106
+ else:
107
+ assert current_scheme == quant_config.target_scheme_map.get(
108
+ matched_target)
109
+
110
+ weight_quant = quant_config.target_scheme_map[matched_target].get(
111
+ "weights")
112
+ input_quant = quant_config.target_scheme_map[matched_target].get(
113
+ "input_activations")
114
+
115
+ if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
116
+ # group_size=None means channelwise
117
+ group_size = weight_quant.group_size or -1
118
+ # Prefer to use the MarlinMoE kernel when it is supported.
119
+ if not check_moe_marlin_supports_layer(layer, group_size):
120
+ if (weight_quant.strategy in QuantizationStrategy.GROUP and
121
+ weight_quant.actorder in (ActivationOrdering.GROUP,
122
+ ActivationOrdering.DYNAMIC)):
123
+ raise ValueError(
124
+ "WNA16MoE is not supported with actorder=group/dynamic."
125
+ )
126
+ logger.info_once("Using CompressedTensorsWNA16MoEMethod")
127
+ return CompressedTensorsWNA16MoEMethod(quant_config,
128
+ layer.moe_config)
129
+ else:
130
+ logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
131
+ return CompressedTensorsWNA16MarlinMoEMethod(
132
+ quant_config, layer.moe_config)
133
+ elif quant_config._is_fp4a4_nvfp4(weight_quant, input_quant):
134
+ return CompressedTensorsW4A4MoeMethod(layer.moe_config)
135
+ elif (quant_config._is_fp8_w8a8_sm90(weight_quant, input_quant)
136
+ or quant_config._is_fp8_w8a8_sm100(weight_quant, input_quant)
137
+ or quant_config._is_fp8_w8a8(weight_quant, input_quant)):
138
+ return CompressedTensorsW8A8Fp8MoEMethod(quant_config,
139
+ layer.moe_config)
140
+ elif quant_config._is_dynamic_token_w8a8(weight_quant, input_quant):
141
+ return CompressedTensorsW8A8Int8MoEMethod(quant_config,
142
+ layer.moe_config)
143
+ elif quant_config._is_dynamic_token_w4a8_int(weight_quant,
144
+ input_quant):
145
+ return CompressedTensorsW4A8Int8MoEMethod(quant_config,
146
+ layer.moe_config)
147
+ else:
148
+ raise RuntimeError(
149
+ f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}")
150
+
151
+
152
+ class CompressedTensorsW4A4MoeMethod(CompressedTensorsMoEMethod):
153
+
154
+ def __init__(self, moe: FusedMoEConfig):
155
+ from vllm.model_executor.layers.quantization.utils.nvfp4_moe_support import ( # noqa: E501
156
+ detect_nvfp4_moe_support)
157
+ super().__init__(moe)
158
+ _nvfp4 = detect_nvfp4_moe_support(self.__class__.__name__)
159
+ self.cutlass_nvfp4_supported = _nvfp4.cutlass_supported
160
+ self.allow_flashinfer = _nvfp4.allow_flashinfer
161
+ self.use_marlin = _nvfp4.use_marlin
162
+ self.group_size = 16
163
+
164
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
165
+ hidden_size: int, intermediate_size_per_partition: int,
166
+ params_dtype: torch.dtype, **extra_weight_attrs):
167
+
168
+ layer.num_experts = num_experts
169
+ layer.params_dtype = params_dtype
170
+
171
+ w13_weight = torch.nn.Parameter(
172
+ torch.empty(
173
+ num_experts,
174
+ 2 * intermediate_size_per_partition,
175
+ # 2 fp4 items are packed in the input dimension
176
+ hidden_size // 2,
177
+ requires_grad=False,
178
+ dtype=torch.uint8),
179
+ requires_grad=False)
180
+ layer.register_parameter("w13_weight_packed", w13_weight)
181
+ set_weight_attrs(w13_weight, extra_weight_attrs)
182
+
183
+ w2_weight = torch.nn.Parameter(
184
+ torch.empty(
185
+ num_experts,
186
+ hidden_size,
187
+ # 2 fp4 items are packed in the input dimension
188
+ intermediate_size_per_partition // 2,
189
+ dtype=torch.uint8),
190
+ requires_grad=False)
191
+ layer.register_parameter("w2_weight_packed", w2_weight)
192
+ set_weight_attrs(w2_weight, extra_weight_attrs)
193
+
194
+ # Weight Scales
195
+ w13_weight_scale = torch.nn.Parameter(
196
+ torch.empty(
197
+ num_experts,
198
+ 2 * intermediate_size_per_partition,
199
+ # 2 fp4 items are packed in the input dimension
200
+ hidden_size // self.group_size,
201
+ dtype=torch.float8_e4m3fn),
202
+ requires_grad=False)
203
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
204
+ extra_weight_attrs.update(
205
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value})
206
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
207
+
208
+ w2_weight_scale = torch.nn.Parameter(
209
+ torch.empty(
210
+ num_experts,
211
+ hidden_size,
212
+ # 2 fp4 items are packed in the input dimension
213
+ intermediate_size_per_partition // self.group_size,
214
+ dtype=torch.float8_e4m3fn),
215
+ requires_grad=False)
216
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
217
+ extra_weight_attrs.update(
218
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value})
219
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
220
+
221
+ # Weight Global Scales
222
+ w13_weight_scale_2 = torch.nn.Parameter(torch.empty(
223
+ num_experts, 2, dtype=torch.float32),
224
+ requires_grad=False)
225
+ layer.register_parameter("w13_weight_global_scale", w13_weight_scale_2)
226
+ extra_weight_attrs.update(
227
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
228
+ set_weight_attrs(w13_weight_scale_2, extra_weight_attrs)
229
+
230
+ w2_weight_scale_2 = torch.nn.Parameter(torch.empty(
231
+ num_experts, dtype=torch.float32),
232
+ requires_grad=False)
233
+ layer.register_parameter("w2_weight_global_scale", w2_weight_scale_2)
234
+ extra_weight_attrs.update(
235
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
236
+ set_weight_attrs(w2_weight_scale_2, extra_weight_attrs)
237
+
238
+ # Input Global Scales
239
+ w13_input_scale = torch.nn.Parameter(torch.empty(num_experts,
240
+ 2,
241
+ dtype=torch.float32),
242
+ requires_grad=False)
243
+ layer.register_parameter("w13_input_global_scale", w13_input_scale)
244
+ extra_weight_attrs.update(
245
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
246
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
247
+
248
+ w2_input_scale = torch.nn.Parameter(torch.empty(num_experts,
249
+ dtype=torch.float32),
250
+ requires_grad=False)
251
+ layer.register_parameter("w2_input_global_scale", w2_input_scale)
252
+ extra_weight_attrs.update(
253
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
254
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
255
+
256
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
257
+
258
+ # From packed to weight
259
+ layer.w13_weight = torch.nn.Parameter(layer.w13_weight_packed.data,
260
+ requires_grad=False)
261
+
262
+ layer.w2_weight = torch.nn.Parameter(layer.w2_weight_packed.data,
263
+ requires_grad=False)
264
+
265
+ # reorder GEMM1 weights and block scales for FlashInfer CUTLASS kernel.
266
+ if self.allow_flashinfer:
267
+ w, s = reorder_w1w3_to_w3w1(layer.w13_weight.data,
268
+ layer.w13_weight_scale.data,
269
+ dim=-2)
270
+ layer.w13_weight = torch.nn.Parameter(w, requires_grad=False)
271
+ layer.w13_weight_scale = torch.nn.Parameter(s, requires_grad=False)
272
+
273
+ if not torch.allclose(layer.w13_weight_global_scale[:, 0],
274
+ layer.w13_weight_global_scale[:, 1]):
275
+ logger.warning_once(
276
+ "w1_weight_global_scale must match w3_weight_global_scale. "
277
+ "Accuracy may be affected.")
278
+
279
+ # Take inverse of global scale saved to disk
280
+ layer.w13_weight_scale_2 = torch.nn.Parameter(
281
+ 1 / layer.w13_weight_global_scale[:, 0], requires_grad=False)
282
+
283
+ layer.w2_weight_scale_2 = torch.nn.Parameter(
284
+ 1 / layer.w2_weight_global_scale.data, requires_grad=False)
285
+
286
+ if self.use_marlin:
287
+ prepare_moe_fp4_layer_for_marlin(layer)
288
+ return
289
+
290
+ # swizzle weight scales
291
+ layer.w13_weight_scale = torch.nn.Parameter(swizzle_blockscale(
292
+ layer.w13_weight_scale),
293
+ requires_grad=False)
294
+
295
+ layer.w2_weight_scale = torch.nn.Parameter(swizzle_blockscale(
296
+ layer.w2_weight_scale),
297
+ requires_grad=False)
298
+
299
+ # w13
300
+ w13_input_global_scale = layer.w13_input_global_scale.max(
301
+ dim=1).values.to(torch.float32)
302
+
303
+ layer.g1_alphas = torch.nn.Parameter(
304
+ ((1 / w13_input_global_scale) * layer.w13_weight_scale_2),
305
+ requires_grad=False)
306
+
307
+ layer.w13_input_scale_quant = torch.nn.Parameter(
308
+ (w13_input_global_scale), requires_grad=False)
309
+
310
+ # w2
311
+ layer.g2_alphas = torch.nn.Parameter(
312
+ ((1 / layer.w2_input_global_scale) * layer.w2_weight_scale_2).to(
313
+ torch.float32),
314
+ requires_grad=False)
315
+
316
+ layer.w2_input_scale_quant = torch.nn.Parameter(
317
+ (layer.w2_input_global_scale), requires_grad=False)
318
+
319
+ def maybe_make_prepare_finalize(
320
+ self) -> Optional[mk.FusedMoEPrepareAndFinalize]:
321
+ if self.use_marlin:
322
+ return None
323
+ elif not self.allow_flashinfer:
324
+ return super().maybe_make_prepare_finalize()
325
+
326
+ prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(
327
+ self.moe)
328
+ logger.debug_once("%s", prepare_finalize.__class__.__name__)
329
+ return prepare_finalize
330
+
331
+ def select_gemm_impl(
332
+ self,
333
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
334
+ layer: torch.nn.Module,
335
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
336
+ assert self.moe_quant_config is not None
337
+ """Return the appropriate GEMM experts implementation."""
338
+ experts = select_nvfp4_gemm_impl(
339
+ self.moe,
340
+ self.moe_quant_config,
341
+ allow_flashinfer=self.allow_flashinfer,
342
+ )
343
+ logger.debug_once("Using %s", experts.__class__.__name__)
344
+ return experts
345
+
346
+ def get_fused_moe_quant_config(
347
+ self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
348
+ if self.use_marlin:
349
+ return None
350
+
351
+ return nvfp4_moe_quant_config(
352
+ g1_alphas=layer.g1_alphas,
353
+ g2_alphas=layer.g2_alphas,
354
+ a1_gscale=layer.w13_input_scale_quant,
355
+ a2_gscale=layer.w2_input_scale_quant,
356
+ w1_scale=layer.w13_weight_scale,
357
+ w2_scale=layer.w2_weight_scale,
358
+ )
359
+
360
+ def apply(
361
+ self,
362
+ layer: torch.nn.Module,
363
+ x: torch.Tensor,
364
+ router_logits: torch.Tensor,
365
+ top_k: int,
366
+ renormalize: bool,
367
+ use_grouped_topk: bool = False,
368
+ topk_group: Optional[int] = None,
369
+ num_expert_group: Optional[int] = None,
370
+ global_num_experts: int = -1,
371
+ expert_map: Optional[torch.Tensor] = None,
372
+ custom_routing_function: Optional[Callable] = None,
373
+ scoring_func: str = "softmax",
374
+ routed_scaling_factor: float = 1.0,
375
+ e_score_correction_bias: Optional[torch.Tensor] = None,
376
+ apply_router_weight_on_input: bool = False,
377
+ activation: str = "silu",
378
+ enable_eplb: bool = False,
379
+ expert_load_view: Optional[torch.Tensor] = None,
380
+ logical_to_physical_map: Optional[torch.Tensor] = None,
381
+ logical_replica_count: Optional[torch.Tensor] = None,
382
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
383
+ if enable_eplb:
384
+ raise NotImplementedError("EPLB not supported for "
385
+ "`CompressedTensorsW4A4MoeMethod` yet.")
386
+ assert activation == "silu", "Only SiLU activation is supported."
387
+
388
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
389
+ hidden_states=x,
390
+ router_logits=router_logits,
391
+ use_grouped_topk=use_grouped_topk,
392
+ top_k=top_k,
393
+ renormalize=renormalize,
394
+ topk_group=topk_group,
395
+ num_expert_group=num_expert_group,
396
+ custom_routing_function=custom_routing_function,
397
+ scoring_func=scoring_func,
398
+ routed_scaling_factor=routed_scaling_factor,
399
+ e_score_correction_bias=e_score_correction_bias,
400
+ indices_type=self.topk_indices_dtype,
401
+ )
402
+
403
+ #
404
+ # Note: the order here is important. self.fused_experts can override
405
+ # flashinfer cutlass, cutlass fp4 or fused_experts but not marlin.
406
+ #
407
+ if self.use_marlin:
408
+ assert self.fused_experts is None
409
+ return torch.ops.vllm.fused_marlin_moe(
410
+ x,
411
+ layer.w13_weight,
412
+ layer.w2_weight,
413
+ None,
414
+ None,
415
+ layer.w13_weight_scale,
416
+ layer.w2_weight_scale,
417
+ router_logits,
418
+ topk_weights,
419
+ topk_ids,
420
+ global_scale1=layer.w13_weight_scale_2,
421
+ global_scale2=layer.w2_weight_scale_2,
422
+ quant_type_id=scalar_types.float4_e2m1f.id,
423
+ apply_router_weight_on_input=apply_router_weight_on_input,
424
+ global_num_experts=global_num_experts,
425
+ expert_map=expert_map,
426
+ workspace=layer.workspace)
427
+
428
+ elif self.fused_experts is not None:
429
+ assert is_valid_flashinfer_cutlass_fused_moe(
430
+ x, layer.w13_weight, layer.w2_weight), (
431
+ "Flashinfer CUTLASS Fused MoE not applicable!")
432
+
433
+ return self.fused_experts(
434
+ hidden_states=x,
435
+ w1=layer.w13_weight,
436
+ w2=layer.w2_weight,
437
+ topk_weights=topk_weights,
438
+ topk_ids=topk_ids,
439
+ inplace=False, # TODO(shuw): fix later, now output is high prec
440
+ activation=activation,
441
+ global_num_experts=global_num_experts,
442
+ expert_map=expert_map,
443
+ apply_router_weight_on_input=apply_router_weight_on_input,
444
+ )
445
+
446
+ # FlashInfer fused experts path
447
+ elif self.allow_flashinfer:
448
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( # noqa: E501
449
+ flashinfer_cutlass_moe_fp4)
450
+
451
+ assert is_valid_flashinfer_cutlass_fused_moe(
452
+ x, layer.w13_weight, layer.w2_weight), (
453
+ "Flashinfer CUTLASS Fused MoE not applicable!")
454
+
455
+ assert self.moe_quant_config is not None
456
+
457
+ return flashinfer_cutlass_moe_fp4(
458
+ hidden_states=x,
459
+ w1=layer.w13_weight,
460
+ w2=layer.w2_weight,
461
+ topk_weights=topk_weights,
462
+ topk_ids=topk_ids,
463
+ quant_config=self.moe_quant_config,
464
+ inplace=False, # TODO(shuw): fix later, now output is high prec
465
+ activation=activation,
466
+ global_num_experts=global_num_experts,
467
+ expert_map=expert_map,
468
+ apply_router_weight_on_input=apply_router_weight_on_input,
469
+ )
470
+ else:
471
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
472
+ cutlass_moe_fp4)
473
+
474
+ assert expert_map is None, ("Expert Parallelism / expert_map "
475
+ "is currently not supported for "
476
+ "CompressedTensorsW4A4MoeMethod.")
477
+ assert self.moe_quant_config is not None
478
+
479
+ # Cutlass moe takes in activations in BF16/Half precision
480
+ # and fp4 quantized weights loaded from the checkpoint
481
+ return cutlass_moe_fp4(
482
+ a=x,
483
+ w1_fp4=layer.w13_weight,
484
+ w2_fp4=layer.w2_weight,
485
+ topk_weights=topk_weights,
486
+ topk_ids=topk_ids,
487
+ quant_config=self.moe_quant_config,
488
+ apply_router_weight_on_input=apply_router_weight_on_input,
489
+ # TODO(bnell): derive these from arguments
490
+ m=x.shape[0],
491
+ n=layer.w2_weight.shape[2] * 2,
492
+ k=x.shape[1],
493
+ e=layer.w13_weight.shape[0],
494
+ ).to(x.dtype)
495
+
496
+
497
+ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
498
+
499
+ def __init__(
500
+ self,
501
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
502
+ moe: FusedMoEConfig,
503
+ ):
504
+ super().__init__(moe)
505
+ self.quant_config = quant_config
506
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
507
+ "weights")
508
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
509
+ "input_activations")
510
+
511
+ per_tensor = (self.weight_quant.strategy == QuantizationStrategy.TENSOR
512
+ and self.input_quant.strategy
513
+ == QuantizationStrategy.TENSOR)
514
+ per_channel = (
515
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
516
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
517
+ if not (per_tensor or per_channel):
518
+ assert self.weight_quant.strategy == QuantizationStrategy.BLOCK
519
+ self.weight_block_size = self.weight_quant.block_structure
520
+ assert self.weight_quant.dynamic is not None
521
+ else:
522
+ self.weight_block_size = None
523
+ self.block_quant = self.weight_block_size is not None
524
+
525
+ self.static_input_scales = not self.input_quant.dynamic
526
+ if self.static_input_scales and per_channel:
527
+ raise ValueError(
528
+ "For FP8 Fused MoE layer, we require either per tensor or "
529
+ "channelwise, dynamic per token quantization.")
530
+
531
+ # For GPUs that lack FP8 hardware support, we can leverage the Marlin
532
+ # kernel for fast weight-only FP8 quantization
533
+ self.use_marlin = (not current_platform.has_device_capability(89)
534
+ or envs.VLLM_TEST_FORCE_FP8_MARLIN
535
+ and not self.block_quant)
536
+ # Disable marlin for rocm
537
+ if current_platform.is_rocm():
538
+ self.use_marlin = False
539
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
540
+ is_rocm_aiter_moe_enabled)
541
+
542
+ self.rocm_aiter_moe_enabled = is_rocm_aiter_moe_enabled()
543
+
544
+ # cutlass path
545
+ self.is_fp8_w8a8_sm100 = quant_config._is_fp8_w8a8_sm100(
546
+ self.weight_quant, self.input_quant)
547
+ self.use_cutlass = not self.block_quant and (
548
+ quant_config._is_fp8_w8a8_sm90(self.weight_quant, self.input_quant)
549
+ or self.is_fp8_w8a8_sm100)
550
+ self.disable_expert_map = False
551
+
552
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
553
+ hidden_size: int, intermediate_size_per_partition: int,
554
+ params_dtype: torch.dtype, **extra_weight_attrs):
555
+
556
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
557
+ layer.hidden_size = hidden_size
558
+ layer.num_experts = num_experts
559
+ layer.orig_dtype = params_dtype
560
+ layer.weight_block_size = None
561
+
562
+ params_dtype = torch.float8_e4m3fn
563
+
564
+ if self.block_quant:
565
+ assert self.weight_block_size is not None
566
+ layer.weight_block_size = self.weight_block_size
567
+ tp_size = get_tensor_model_parallel_world_size()
568
+ block_n, block_k = (
569
+ self.weight_block_size[0],
570
+ self.weight_block_size[1],
571
+ )
572
+ # NOTE: To ensure proper alignment of the block-wise quantization
573
+ # scales, the output_size of the weights for both the gate and up
574
+ # layers must be divisible by block_n.
575
+ # Required by column parallel or enabling merged weights
576
+ if intermediate_size_per_partition % block_n != 0:
577
+ raise ValueError(
578
+ f"The output_size of gate's and up's weight = "
579
+ f"{intermediate_size_per_partition} is not divisible by "
580
+ f"weight quantization block_n = {block_n}.")
581
+ if (tp_size > 1
582
+ and intermediate_size_per_partition % block_k != 0):
583
+ # Required by row parallel
584
+ raise ValueError(
585
+ f"The input_size of down's weight = "
586
+ f"{intermediate_size_per_partition} is not divisible by "
587
+ f"weight quantization block_k = {block_k}.")
588
+
589
+ # WEIGHTS
590
+ w13_weight = torch.nn.Parameter(torch.empty(
591
+ num_experts,
592
+ 2 * intermediate_size_per_partition,
593
+ hidden_size,
594
+ dtype=params_dtype),
595
+ requires_grad=False)
596
+ layer.register_parameter("w13_weight", w13_weight)
597
+ set_weight_attrs(w13_weight, extra_weight_attrs)
598
+
599
+ w2_weight = torch.nn.Parameter(torch.empty(
600
+ num_experts,
601
+ hidden_size,
602
+ intermediate_size_per_partition,
603
+ dtype=params_dtype),
604
+ requires_grad=False)
605
+ layer.register_parameter("w2_weight", w2_weight)
606
+ set_weight_attrs(w2_weight, extra_weight_attrs)
607
+
608
+ # WEIGHT_SCALES
609
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
610
+ # Allocate 2 scales for w1 and w3 respectively.
611
+ # They are combined to a single scale after weight loading.
612
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
613
+ num_experts, 2, dtype=torch.float32),
614
+ requires_grad=False)
615
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
616
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
617
+ num_experts, dtype=torch.float32),
618
+ requires_grad=False)
619
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
620
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
621
+ extra_weight_attrs.update(
622
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
623
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
624
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
625
+
626
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
627
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
628
+ num_experts,
629
+ 2 * intermediate_size_per_partition,
630
+ 1,
631
+ dtype=torch.float32),
632
+ requires_grad=False)
633
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
634
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
635
+ num_experts, hidden_size, 1, dtype=torch.float32),
636
+ requires_grad=False)
637
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
638
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
639
+ extra_weight_attrs.update(
640
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
641
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
642
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
643
+
644
+ elif self.weight_quant.strategy == QuantizationStrategy.BLOCK:
645
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
646
+ num_experts,
647
+ 2 *
648
+ ((intermediate_size_per_partition + block_n - 1) // block_n),
649
+ (hidden_size + block_k - 1) // block_k,
650
+ dtype=torch.float32),
651
+ requires_grad=False)
652
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
653
+ w2_weight_scale = torch.nn.Parameter(torch.ones(
654
+ num_experts, (hidden_size + block_n - 1) // block_n,
655
+ (intermediate_size_per_partition + block_k - 1) // block_k,
656
+ dtype=torch.float32),
657
+ requires_grad=False)
658
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
659
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
660
+ extra_weight_attrs.update(
661
+ {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value})
662
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
663
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
664
+
665
+ # INPUT_SCALES
666
+ if self.static_input_scales:
667
+ w13_input_scale = torch.nn.Parameter(torch.ones(
668
+ num_experts, dtype=torch.float32),
669
+ requires_grad=False)
670
+ layer.register_parameter("w13_input_scale", w13_input_scale)
671
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
672
+
673
+ w2_input_scale = torch.nn.Parameter(torch.ones(
674
+ num_experts, dtype=torch.float32),
675
+ requires_grad=False)
676
+ layer.register_parameter("w2_input_scale", w2_input_scale)
677
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
678
+ else:
679
+ layer.w13_input_scale = None
680
+ layer.w2_input_scale = None
681
+
682
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
683
+ # Fp8 moe kernels require a single activation scale.
684
+ # We take the max of all the scales in case they differ.
685
+ if self.static_input_scales:
686
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
687
+ if (layer.w13_input_scale is None or layer.w2_input_scale is None):
688
+ raise ValueError(
689
+ "QuantConfig has static quantization, but found "
690
+ "activation scales are None.")
691
+ if (not all_close_1d(layer.w13_input_scale)
692
+ or not all_close_1d(layer.w2_input_scale)):
693
+ logger.warning_once(
694
+ "Found input_scales that are not equal for "
695
+ "fp8 MoE layer. Using the maximum across experts "
696
+ "for each layer.")
697
+ layer.w13_input_scale = torch.nn.Parameter(
698
+ layer.w13_input_scale.max(), requires_grad=False)
699
+ layer.w2_input_scale = torch.nn.Parameter(
700
+ layer.w2_input_scale.max(), requires_grad=False)
701
+
702
+ if current_platform.is_fp8_fnuz():
703
+ # Normalize the weights and scales
704
+ w13_weight, w13_weight_scale, w13_input_scale = \
705
+ normalize_e4m3fn_to_e4m3fnuz(
706
+ layer.w13_weight, layer.w13_weight_scale,
707
+ layer.w13_input_scale)
708
+ w2_weight, w2_weight_scale, w2_input_scale = \
709
+ normalize_e4m3fn_to_e4m3fnuz(
710
+ layer.w2_weight, layer.w2_weight_scale,
711
+ layer.w2_input_scale)
712
+ # Reset the parameter
713
+ layer.w13_weight = torch.nn.Parameter(w13_weight,
714
+ requires_grad=False)
715
+ layer.w13_weight_scale = torch.nn.Parameter(w13_weight_scale,
716
+ requires_grad=False)
717
+ if w13_input_scale is not None:
718
+ layer.w13_input_scale = torch.nn.Parameter(w13_input_scale,
719
+ requires_grad=False)
720
+ layer.w2_weight = torch.nn.Parameter(w2_weight,
721
+ requires_grad=False)
722
+ layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale,
723
+ requires_grad=False)
724
+ if w2_input_scale is not None:
725
+ layer.w2_input_scale = torch.nn.Parameter(w2_input_scale,
726
+ requires_grad=False)
727
+
728
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
729
+ # for w13 per expert. Use max then dequant and requant each expert.
730
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
731
+ assert layer.w13_weight_scale is not None
732
+ shard_size = layer.intermediate_size_per_partition
733
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
734
+ for expert_id in range(layer.local_num_experts):
735
+ start = 0
736
+ for shard_id in range(2):
737
+ dq_weight = per_tensor_dequantize(
738
+ layer.w13_weight[expert_id][start:start +
739
+ shard_size, :],
740
+ layer.w13_weight_scale[expert_id][shard_id])
741
+ layer.w13_weight[expert_id][
742
+ start:start + shard_size, :], _ = ops.scaled_fp8_quant(
743
+ dq_weight, max_w13_scales[expert_id])
744
+ start += shard_size
745
+ layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
746
+ requires_grad=False)
747
+
748
+ # Property to determine if AITER is used
749
+ if self.rocm_aiter_moe_enabled:
750
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
751
+ rocm_aiter_fused_experts, shuffle_weights)
752
+
753
+ # reshaping weights is required for aiter moe kernel.
754
+ shuffled_w13, shuffled_w2 = shuffle_weights(
755
+ layer.w13_weight.data, layer.w2_weight.data)
756
+
757
+ layer.w13_weight = torch.nn.Parameter(shuffled_w13,
758
+ requires_grad=False)
759
+ layer.w2_weight = torch.nn.Parameter(shuffled_w2,
760
+ requires_grad=False)
761
+
762
+ elif self.use_marlin:
763
+ prepare_moe_fp8_layer_for_marlin(layer, False)
764
+ # Activations not quantized for marlin.
765
+ del layer.w13_input_scale
766
+ del layer.w2_input_scale
767
+
768
+ if self.use_cutlass:
769
+ assert self.weight_quant.strategy != QuantizationStrategy.BLOCK
770
+ device = layer.w13_weight.device
771
+ # ab_strides1 and c_strides2 are the same
772
+ self.ab_strides1_c_strides2 = torch.full(
773
+ (layer.local_num_experts, ),
774
+ layer.hidden_size,
775
+ device=device,
776
+ dtype=torch.int64)
777
+ self.ab_strides2 = torch.full(
778
+ (layer.local_num_experts, ),
779
+ layer.intermediate_size_per_partition,
780
+ device=device,
781
+ dtype=torch.int64)
782
+ self.c_strides1 = torch.full(
783
+ (layer.local_num_experts, ),
784
+ 2 * layer.intermediate_size_per_partition,
785
+ device=device,
786
+ dtype=torch.int64)
787
+
788
+ if is_deep_gemm_e8m0_used() and self.block_quant:
789
+ assert layer.weight_block_size is not None
790
+ # Re-quantise the expert weights so their scales are UE8M0.
791
+ block_sz = tuple(layer.weight_block_size)
792
+ requant_weight_ue8m0_inplace(
793
+ layer.w13_weight.data,
794
+ layer.w13_weight_scale.data,
795
+ block_sz,
796
+ )
797
+ requant_weight_ue8m0_inplace(
798
+ layer.w2_weight.data,
799
+ layer.w2_weight_scale.data,
800
+ block_sz,
801
+ )
802
+
803
+ # Ensure column-major TMA alignment expected by DeepGEMM.
804
+ if expert_weight_is_col_major(layer.w13_weight_scale):
805
+ layer.w13_weight_scale = get_col_major_tma_aligned_tensor(
806
+ layer.w13_weight_scale)
807
+ if expert_weight_is_col_major(layer.w2_weight_scale):
808
+ layer.w2_weight_scale = get_col_major_tma_aligned_tensor(
809
+ layer.w2_weight_scale)
810
+
811
+ def maybe_make_prepare_finalize(
812
+ self) -> Optional[mk.FusedMoEPrepareAndFinalize]:
813
+ if self.use_marlin or self.rocm_aiter_moe_enabled:
814
+ return None
815
+ else:
816
+ return super().maybe_make_prepare_finalize()
817
+
818
+ def select_gemm_impl(
819
+ self,
820
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
821
+ layer: torch.nn.Module,
822
+ ) -> FusedMoEPermuteExpertsUnpermute:
823
+ # cutlass path
824
+ assert self.moe_quant_config is not None
825
+ if self.use_cutlass:
826
+ from vllm.model_executor.layers.fused_moe import (
827
+ CutlassBatchedExpertsFp8, CutlassExpertsFp8)
828
+
829
+ experts: FusedMoEPermuteExpertsUnpermute
830
+
831
+ num_dispatchers = prepare_finalize.num_dispatchers()
832
+
833
+ if (prepare_finalize.activation_format ==
834
+ FusedMoEActivationFormat.BatchedExperts):
835
+ logger.debug("CutlassBatchedExpertsFp8(%s)",
836
+ self.__class__.__name__)
837
+ experts = CutlassBatchedExpertsFp8(
838
+ self.moe.num_local_experts,
839
+ num_dispatchers,
840
+ self.moe.in_dtype,
841
+ ab_strides1=self.ab_strides1_c_strides2,
842
+ ab_strides2=self.ab_strides2,
843
+ c_strides1=self.c_strides1,
844
+ c_strides2=self.ab_strides1_c_strides2,
845
+ quant_config=self.moe_quant_config,
846
+ )
847
+ else:
848
+ logger.debug("CutlassExpertsFp8(%s)", self.__class__.__name__)
849
+ experts = CutlassExpertsFp8(
850
+ self.moe.in_dtype,
851
+ ab_strides1=self.ab_strides1_c_strides2,
852
+ ab_strides2=self.ab_strides2,
853
+ c_strides1=self.c_strides1,
854
+ c_strides2=self.ab_strides1_c_strides2,
855
+ quant_config=self.moe_quant_config,
856
+ )
857
+
858
+ self.disable_expert_map = (num_dispatchers > 1
859
+ or not experts.supports_expert_map())
860
+
861
+ return experts
862
+
863
+ # triton path
864
+ from vllm.model_executor.layers.fused_moe.batched_triton_or_deep_gemm_moe import ( # noqa: E501
865
+ BatchedTritonOrDeepGemmExperts)
866
+ from vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe import (
867
+ TritonOrDeepGemmExperts)
868
+
869
+ assert not self.rocm_aiter_moe_enabled and not self.use_marlin
870
+
871
+ if (prepare_finalize.activation_format ==
872
+ FusedMoEActivationFormat.BatchedExperts):
873
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank(
874
+ )
875
+ assert max_num_tokens_per_rank is not None
876
+
877
+ logger.debug("BatchedTritonExperts(%s)", self.__class__.__name__)
878
+ return BatchedTritonOrDeepGemmExperts(
879
+ max_num_tokens=max_num_tokens_per_rank,
880
+ num_dispatchers=prepare_finalize.num_dispatchers(),
881
+ quant_config=self.moe_quant_config,
882
+ )
883
+ else:
884
+ logger.debug("TritonOrDeepGemmExperts(%s)",
885
+ self.__class__.__name__)
886
+ return TritonOrDeepGemmExperts(self.moe_quant_config,
887
+ allow_deep_gemm=True)
888
+
889
+ def get_fused_moe_quant_config(
890
+ self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
891
+ if self.use_marlin:
892
+ return None
893
+
894
+ per_act_token = (
895
+ self.input_quant.strategy == QuantizationStrategy.TOKEN)
896
+ per_channel_quant = (
897
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL)
898
+
899
+ return fp8_w8a8_moe_quant_config(
900
+ w1_scale=layer.w13_weight_scale,
901
+ w2_scale=layer.w2_weight_scale,
902
+ a1_scale=layer.w13_input_scale,
903
+ a2_scale=layer.w2_input_scale,
904
+ per_act_token_quant=per_act_token,
905
+ per_out_ch_quant=per_channel_quant,
906
+ block_shape=layer.weight_block_size,
907
+ )
908
+
909
+ def apply(
910
+ self,
911
+ layer: torch.nn.Module,
912
+ x: torch.Tensor,
913
+ router_logits: torch.Tensor,
914
+ top_k: int,
915
+ renormalize: bool,
916
+ use_grouped_topk: bool = False,
917
+ topk_group: Optional[int] = None,
918
+ num_expert_group: Optional[int] = None,
919
+ global_num_experts: int = -1,
920
+ expert_map: Optional[torch.Tensor] = None,
921
+ custom_routing_function: Optional[Callable] = None,
922
+ scoring_func: str = "softmax",
923
+ routed_scaling_factor: float = 1.0,
924
+ e_score_correction_bias: Optional[torch.Tensor] = None,
925
+ apply_router_weight_on_input: bool = False,
926
+ activation: str = "silu",
927
+ enable_eplb: bool = False,
928
+ expert_load_view: Optional[torch.Tensor] = None,
929
+ logical_to_physical_map: Optional[torch.Tensor] = None,
930
+ logical_replica_count: Optional[torch.Tensor] = None,
931
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
932
+ if enable_eplb:
933
+ raise NotImplementedError(
934
+ "EPLB not supported for "
935
+ "`CompressedTensorsW8A8Fp8MoEMethod` yet.")
936
+
937
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
938
+ hidden_states=x,
939
+ router_logits=router_logits,
940
+ use_grouped_topk=use_grouped_topk,
941
+ top_k=top_k,
942
+ renormalize=renormalize,
943
+ topk_group=topk_group,
944
+ num_expert_group=num_expert_group,
945
+ custom_routing_function=custom_routing_function,
946
+ scoring_func=scoring_func,
947
+ routed_scaling_factor=routed_scaling_factor,
948
+ e_score_correction_bias=e_score_correction_bias,
949
+ indices_type=self.topk_indices_dtype,
950
+ )
951
+
952
+ per_act_token = (
953
+ self.input_quant.strategy == QuantizationStrategy.TOKEN)
954
+ per_channel_quant = (
955
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL)
956
+
957
+ #
958
+ # Note: the order here is important. self.fused_experts can override
959
+ # cutlass fp8 or fused_experts but not marlin or rocm.
960
+ #
961
+ if self.use_marlin:
962
+ assert activation == "silu", (
963
+ f"{activation} not supported for Marlin MoE.")
964
+ assert self.fused_experts is None
965
+ return torch.ops.vllm.fused_marlin_moe(
966
+ x,
967
+ layer.w13_weight,
968
+ layer.w2_weight,
969
+ None,
970
+ None,
971
+ layer.w13_weight_scale,
972
+ layer.w2_weight_scale,
973
+ router_logits,
974
+ topk_weights,
975
+ topk_ids,
976
+ quant_type_id=scalar_types.float8_e4m3fn.id,
977
+ apply_router_weight_on_input=apply_router_weight_on_input,
978
+ global_num_experts=global_num_experts,
979
+ expert_map=expert_map,
980
+ workspace=layer.workspace)
981
+
982
+ elif self.rocm_aiter_moe_enabled:
983
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
984
+ rocm_aiter_fused_experts)
985
+ assert per_act_token == per_channel_quant
986
+ assert self.moe_quant_config is not None
987
+ assert self.fused_experts is None
988
+ return rocm_aiter_fused_experts(
989
+ hidden_states=x,
990
+ w1=layer.w13_weight,
991
+ w2=layer.w2_weight,
992
+ topk_weights=topk_weights,
993
+ topk_ids=topk_ids,
994
+ activation=activation,
995
+ apply_router_weight_on_input=apply_router_weight_on_input,
996
+ expert_map=expert_map,
997
+ quant_config=self.moe_quant_config,
998
+ )
999
+
1000
+ elif self.fused_experts is not None:
1001
+ return self.fused_experts(
1002
+ x,
1003
+ layer.w13_weight,
1004
+ layer.w2_weight,
1005
+ topk_weights,
1006
+ topk_ids,
1007
+ activation=activation,
1008
+ global_num_experts=global_num_experts,
1009
+ expert_map=None if self.disable_expert_map else expert_map,
1010
+ )
1011
+
1012
+ # cutlass path
1013
+ elif self.use_cutlass:
1014
+ assert self.moe_quant_config is not None
1015
+
1016
+ # small-batch fallback on SM100
1017
+ if self.is_fp8_w8a8_sm100 and topk_ids.shape[0] <= 8:
1018
+ from vllm.model_executor.layers.fused_moe import fused_experts
1019
+ assert per_act_token == per_channel_quant
1020
+ return fused_experts(
1021
+ hidden_states=x,
1022
+ w1=layer.w13_weight,
1023
+ w2=layer.w2_weight,
1024
+ topk_weights=topk_weights,
1025
+ topk_ids=topk_ids,
1026
+ inplace=True,
1027
+ activation=activation,
1028
+ apply_router_weight_on_input=apply_router_weight_on_input,
1029
+ global_num_experts=global_num_experts,
1030
+ expert_map=None if self.disable_expert_map else expert_map,
1031
+ quant_config=self.moe_quant_config,
1032
+ )
1033
+ else:
1034
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
1035
+ cutlass_moe_fp8)
1036
+ assert per_act_token == per_channel_quant
1037
+ assert self.moe_quant_config is not None
1038
+ return cutlass_moe_fp8(
1039
+ x,
1040
+ layer.w13_weight,
1041
+ layer.w2_weight,
1042
+ topk_weights,
1043
+ topk_ids,
1044
+ quant_config=self.moe_quant_config,
1045
+ activation=activation,
1046
+ global_num_experts=global_num_experts,
1047
+ expert_map=None if self.disable_expert_map else expert_map,
1048
+ ab_strides1=self.ab_strides1_c_strides2,
1049
+ ab_strides2=self.ab_strides2,
1050
+ c_strides1=self.c_strides1,
1051
+ c_strides2=self.ab_strides1_c_strides2,
1052
+ )
1053
+
1054
+ else:
1055
+ from vllm.model_executor.layers.fused_moe import fused_experts
1056
+ assert per_act_token == per_channel_quant
1057
+ assert self.moe_quant_config is not None
1058
+ return fused_experts(
1059
+ hidden_states=x,
1060
+ w1=layer.w13_weight,
1061
+ w2=layer.w2_weight,
1062
+ topk_weights=topk_weights,
1063
+ topk_ids=topk_ids,
1064
+ inplace=True,
1065
+ activation=activation,
1066
+ apply_router_weight_on_input=apply_router_weight_on_input,
1067
+ global_num_experts=global_num_experts,
1068
+ expert_map=expert_map,
1069
+ quant_config=self.moe_quant_config,
1070
+ )
1071
+
1072
+
1073
+ class CompressedTensorsW8A8Int8MoEMethod(CompressedTensorsMoEMethod):
1074
+
1075
+ def __init__(
1076
+ self,
1077
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1078
+ moe: FusedMoEConfig,
1079
+ ):
1080
+ super().__init__(moe)
1081
+ self.quant_config = quant_config
1082
+ self.weight_quant = self.quant_config.target_scheme_map["Linear"].get(
1083
+ "weights")
1084
+ self.input_quant = self.quant_config.target_scheme_map["Linear"].get(
1085
+ "input_activations")
1086
+
1087
+ per_channel = (
1088
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1089
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN)
1090
+ if not per_channel:
1091
+ raise ValueError(
1092
+ "For INT8 Fused MoE layers, we require channelwise, "
1093
+ "dynamic per token quantization. Found "
1094
+ f"{self.weight_quant}, {self.input_quant}")
1095
+
1096
+ self.static_input_scales = not self.input_quant.dynamic
1097
+ if self.static_input_scales:
1098
+ raise ValueError(
1099
+ "For INT8 Fused MoE layers, we require channelwise, "
1100
+ "dynamic per token quantization. Found static input scales.")
1101
+
1102
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1103
+ hidden_size: int, intermediate_size_per_partition: int,
1104
+ params_dtype: torch.dtype, **extra_weight_attrs):
1105
+
1106
+ params_dtype = torch.int8
1107
+
1108
+ # WEIGHTS
1109
+ w13_weight = torch.nn.Parameter(torch.empty(
1110
+ num_experts,
1111
+ 2 * intermediate_size_per_partition,
1112
+ hidden_size,
1113
+ dtype=params_dtype),
1114
+ requires_grad=False)
1115
+ layer.register_parameter("w13_weight", w13_weight)
1116
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1117
+
1118
+ w2_weight = torch.nn.Parameter(torch.empty(
1119
+ num_experts,
1120
+ hidden_size,
1121
+ intermediate_size_per_partition,
1122
+ dtype=params_dtype),
1123
+ requires_grad=False)
1124
+ layer.register_parameter("w2_weight", w2_weight)
1125
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1126
+
1127
+ # WEIGHT_SCALES
1128
+ assert self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1129
+ w13_weight_scale = torch.nn.Parameter(torch.ones(
1130
+ num_experts,
1131
+ 2 * intermediate_size_per_partition,
1132
+ 1,
1133
+ dtype=torch.float32),
1134
+ requires_grad=False)
1135
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
1136
+ w2_weight_scale = torch.nn.Parameter(torch.ones(num_experts,
1137
+ hidden_size,
1138
+ 1,
1139
+ dtype=torch.float32),
1140
+ requires_grad=False)
1141
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
1142
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
1143
+ extra_weight_attrs.update(
1144
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
1145
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
1146
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
1147
+
1148
+ # INPUT_SCALES
1149
+ assert not self.static_input_scales
1150
+ layer.w13_input_scale = None
1151
+ layer.w2_input_scale = None
1152
+
1153
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1154
+ pass
1155
+
1156
+ def get_fused_moe_quant_config(
1157
+ self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
1158
+ return int8_w8a8_moe_quant_config(
1159
+ w1_scale=layer.w13_weight_scale,
1160
+ w2_scale=layer.w2_weight_scale,
1161
+ a1_scale=layer.w13_input_scale,
1162
+ a2_scale=layer.w2_input_scale,
1163
+ per_act_token_quant=True,
1164
+ )
1165
+
1166
+ def apply(
1167
+ self,
1168
+ layer: torch.nn.Module,
1169
+ x: torch.Tensor,
1170
+ router_logits: torch.Tensor,
1171
+ top_k: int,
1172
+ renormalize: bool,
1173
+ use_grouped_topk: bool = False,
1174
+ topk_group: Optional[int] = None,
1175
+ num_expert_group: Optional[int] = None,
1176
+ global_num_experts: int = -1,
1177
+ expert_map: Optional[torch.Tensor] = None,
1178
+ custom_routing_function: Optional[Callable] = None,
1179
+ scoring_func: str = "softmax",
1180
+ routed_scaling_factor: float = 1.0,
1181
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1182
+ apply_router_weight_on_input: bool = False,
1183
+ activation: str = "silu",
1184
+ enable_eplb: bool = False,
1185
+ expert_load_view: Optional[torch.Tensor] = None,
1186
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1187
+ logical_replica_count: Optional[torch.Tensor] = None,
1188
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
1189
+ assert self.fused_experts is None
1190
+
1191
+ if enable_eplb:
1192
+ raise NotImplementedError(
1193
+ "EPLB not supported for "
1194
+ "`CompressedTensorsW8A8Int8MoEMethod` yet.")
1195
+
1196
+ from vllm.model_executor.layers.fused_moe import fused_experts
1197
+
1198
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
1199
+ hidden_states=x,
1200
+ router_logits=router_logits,
1201
+ use_grouped_topk=use_grouped_topk,
1202
+ top_k=top_k,
1203
+ renormalize=renormalize,
1204
+ topk_group=topk_group,
1205
+ num_expert_group=num_expert_group,
1206
+ custom_routing_function=custom_routing_function,
1207
+ scoring_func=scoring_func,
1208
+ routed_scaling_factor=routed_scaling_factor,
1209
+ e_score_correction_bias=e_score_correction_bias,
1210
+ indices_type=self.topk_indices_dtype)
1211
+
1212
+ return fused_experts(
1213
+ hidden_states=x,
1214
+ w1=layer.w13_weight,
1215
+ w2=layer.w2_weight,
1216
+ topk_weights=topk_weights,
1217
+ topk_ids=topk_ids,
1218
+ inplace=True,
1219
+ activation=activation,
1220
+ apply_router_weight_on_input=apply_router_weight_on_input,
1221
+ global_num_experts=global_num_experts,
1222
+ expert_map=expert_map,
1223
+ quant_config=self.moe_quant_config,
1224
+ )
1225
+
1226
+
1227
+ class CompressedTensorsWNA16MarlinMoEMethod(CompressedTensorsMoEMethod):
1228
+
1229
+ def __init__(
1230
+ self,
1231
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1232
+ moe: FusedMoEConfig,
1233
+ ):
1234
+ super().__init__(moe)
1235
+ self.quant_config = quant_config
1236
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1237
+ # are supported + check if the layer is being ignored.
1238
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1239
+ self.num_bits = config.num_bits
1240
+ self.packed_factor = 32 // config.num_bits
1241
+ self.strategy = config.strategy
1242
+ self.group_size = config.group_size
1243
+ self.actorder = config.actorder
1244
+ assert config.symmetric, (
1245
+ "Only symmetric quantization is supported for MoE")
1246
+
1247
+ if not (self.quant_config.quant_format
1248
+ == CompressionFormat.pack_quantized.value
1249
+ and self.num_bits in WNA16_SUPPORTED_BITS):
1250
+ raise ValueError("For Fused MoE layers, only ",
1251
+ f"{CompressionFormat.pack_quantized.value} ",
1252
+ "is supported for the following bits: ",
1253
+ f"{WNA16_SUPPORTED_BITS}")
1254
+ self.quant_type = WNA16_SUPPORTED_TYPES_MAP[self.num_bits]
1255
+
1256
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1257
+ hidden_size: int, intermediate_size_per_partition: int,
1258
+ params_dtype: torch.dtype, **extra_weight_attrs):
1259
+
1260
+ intermediate_size_full = extra_weight_attrs.pop(
1261
+ "intermediate_size_full")
1262
+
1263
+ # Will transpose the loaded weight along the
1264
+ # intermediate and hidden dim sizes. Will
1265
+ # shard for TP along the transposed dims
1266
+ extra_weight_attrs.update({
1267
+ "is_transposed": True,
1268
+ "quant_method": self.strategy
1269
+ })
1270
+ w13_weight = torch.nn.Parameter(torch.empty(
1271
+ num_experts,
1272
+ hidden_size // self.packed_factor,
1273
+ 2 * intermediate_size_per_partition,
1274
+ dtype=torch.int32),
1275
+ requires_grad=False)
1276
+ layer.register_parameter("w13_weight_packed", w13_weight)
1277
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1278
+
1279
+ w2_weight = torch.nn.Parameter(torch.empty(
1280
+ num_experts,
1281
+ intermediate_size_per_partition // self.packed_factor,
1282
+ hidden_size,
1283
+ dtype=torch.int32),
1284
+ requires_grad=False)
1285
+ layer.register_parameter("w2_weight_packed", w2_weight)
1286
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1287
+
1288
+ # In the case where we have actorder/g_idx,
1289
+ # we do not partition the w2 scales
1290
+ load_full_w2 = self.actorder and self.group_size != -1
1291
+ w2_scales_size = (intermediate_size_full
1292
+ if load_full_w2 else intermediate_size_per_partition)
1293
+
1294
+ self.is_k_full = (not self.actorder) or (
1295
+ intermediate_size_per_partition == intermediate_size_full)
1296
+
1297
+ if self.strategy == "channel":
1298
+ num_groups_w2 = num_groups_w13 = 1
1299
+ self.group_size = -1
1300
+ else:
1301
+ num_groups_w2 = w2_scales_size // self.group_size
1302
+ num_groups_w13 = hidden_size // self.group_size
1303
+
1304
+ w13_scale = torch.nn.Parameter(torch.ones(
1305
+ num_experts,
1306
+ num_groups_w13,
1307
+ 2 * intermediate_size_per_partition,
1308
+ dtype=params_dtype),
1309
+ requires_grad=False)
1310
+ layer.register_parameter("w13_weight_scale", w13_scale)
1311
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1312
+
1313
+ w2_scale = torch.nn.Parameter(torch.ones(num_experts,
1314
+ num_groups_w2,
1315
+ hidden_size,
1316
+ dtype=params_dtype),
1317
+ requires_grad=False)
1318
+ layer.register_parameter("w2_weight_scale", w2_scale)
1319
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1320
+ set_weight_attrs(w2_scale, {"load_full_w2": load_full_w2})
1321
+
1322
+ w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1323
+ requires_grad=False)
1324
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1325
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1326
+ w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1327
+ requires_grad=False)
1328
+
1329
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1330
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1331
+
1332
+ w13_g_idx = torch.nn.Parameter(
1333
+ torch.empty(
1334
+ num_experts,
1335
+ hidden_size,
1336
+ dtype=torch.int32,
1337
+ ),
1338
+ requires_grad=False,
1339
+ )
1340
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1341
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1342
+
1343
+ w2_g_idx = torch.nn.Parameter(
1344
+ torch.empty(
1345
+ num_experts,
1346
+ intermediate_size_per_partition,
1347
+ dtype=torch.int32,
1348
+ ),
1349
+ requires_grad=False,
1350
+ )
1351
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1352
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1353
+
1354
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1355
+ torch.empty(
1356
+ num_experts,
1357
+ hidden_size,
1358
+ dtype=torch.int32,
1359
+ ),
1360
+ requires_grad=False,
1361
+ )
1362
+ layer.register_parameter("w13_g_idx_sort_indices",
1363
+ w13_g_idx_sort_indices)
1364
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1365
+
1366
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1367
+ torch.empty(
1368
+ num_experts,
1369
+ intermediate_size_per_partition,
1370
+ dtype=torch.int32,
1371
+ ),
1372
+ requires_grad=False,
1373
+ )
1374
+ layer.register_parameter("w2_g_idx_sort_indices",
1375
+ w2_g_idx_sort_indices)
1376
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1377
+
1378
+ layer.a13_scale = None
1379
+ layer.a2_scale = None
1380
+ layer.marlin_state = GPTQMarlinState.REPACK
1381
+
1382
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1383
+ num_experts = layer.w13_weight_g_idx.shape[0]
1384
+ device = layer.w13_weight_g_idx.device
1385
+
1386
+ # when running models with grouped act order,
1387
+ # resort to g_idx values provided in checkpoint
1388
+ if self.actorder == "group":
1389
+ w13_g_idx_sort_indices = torch.empty_like(layer.w13_weight_g_idx)
1390
+ w2_g_idx_sort_indices = torch.empty_like(layer.w2_weight_g_idx)
1391
+ w13_sorted_g_idx = torch.empty_like(layer.w13_weight_g_idx)
1392
+ w2_sorted_g_idx = torch.empty_like(layer.w2_weight_g_idx)
1393
+
1394
+ for e in range(num_experts):
1395
+ w13_g_idx_sort_indices[e] = torch.argsort(
1396
+ layer.w13_weight_g_idx[e]).to(torch.int32)
1397
+ w2_g_idx_sort_indices[e] = torch.argsort(
1398
+ layer.w2_weight_g_idx[e]).to(torch.int32)
1399
+ w13_sorted_g_idx[e] = layer.w13_weight_g_idx[e][
1400
+ w13_g_idx_sort_indices[e]]
1401
+ w2_sorted_g_idx[e] = layer.w2_weight_g_idx[e][
1402
+ w2_g_idx_sort_indices[e]]
1403
+
1404
+ replace_parameter(layer, "w13_weight_g_idx", w13_sorted_g_idx)
1405
+ replace_parameter(layer, "w2_weight_g_idx", w2_sorted_g_idx)
1406
+ replace_parameter(layer, "w13_g_idx_sort_indices",
1407
+ w13_g_idx_sort_indices)
1408
+ replace_parameter(layer, "w2_g_idx_sort_indices",
1409
+ w2_g_idx_sort_indices)
1410
+
1411
+ else:
1412
+ layer.w13_weight_g_idx = torch.nn.Parameter(
1413
+ torch.empty((num_experts, 0), dtype=torch.int32,
1414
+ device=device),
1415
+ requires_grad=False,
1416
+ )
1417
+ layer.w2_weight_g_idx = torch.nn.Parameter(
1418
+ torch.empty((num_experts, 0), dtype=torch.int32,
1419
+ device=device),
1420
+ requires_grad=False,
1421
+ )
1422
+ layer.w13_g_idx_sort_indices = torch.nn.Parameter(
1423
+ torch.empty((num_experts, 0), dtype=torch.int32,
1424
+ device=device),
1425
+ requires_grad=False,
1426
+ )
1427
+ layer.w2_g_idx_sort_indices = torch.nn.Parameter(
1428
+ torch.empty((num_experts, 0), dtype=torch.int32,
1429
+ device=device),
1430
+ requires_grad=False,
1431
+ )
1432
+
1433
+ marlin_w13_qweight = ops.gptq_marlin_moe_repack(
1434
+ layer.w13_weight_packed,
1435
+ layer.w13_g_idx_sort_indices,
1436
+ layer.w13_weight_packed.shape[1] * self.packed_factor,
1437
+ layer.w13_weight_packed.shape[2],
1438
+ self.num_bits,
1439
+ )
1440
+ replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
1441
+ marlin_w2_qweight = ops.gptq_marlin_moe_repack(
1442
+ layer.w2_weight_packed,
1443
+ layer.w2_g_idx_sort_indices,
1444
+ layer.w2_weight_packed.shape[1] * self.packed_factor,
1445
+ layer.w2_weight_packed.shape[2],
1446
+ self.num_bits,
1447
+ )
1448
+ replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
1449
+ # Repack scales
1450
+ marlin_w13_scales = marlin_moe_permute_scales(
1451
+ s=layer.w13_weight_scale,
1452
+ size_k=layer.w13_weight_packed.shape[2],
1453
+ size_n=layer.w13_weight_scale.shape[2],
1454
+ group_size=self.group_size,
1455
+ )
1456
+ replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
1457
+ marlin_w2_scales = marlin_moe_permute_scales(
1458
+ s=layer.w2_weight_scale,
1459
+ size_k=layer.w2_weight_scale.shape[1] *
1460
+ (self.group_size if self.group_size != -1 else self.packed_factor),
1461
+ size_n=layer.w2_weight_scale.shape[2],
1462
+ group_size=self.group_size,
1463
+ )
1464
+ replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
1465
+
1466
+ layer.workspace = marlin_make_workspace_new(device, 4)
1467
+
1468
+ def get_fused_moe_quant_config(
1469
+ self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
1470
+ return None
1471
+
1472
+ def apply(
1473
+ self,
1474
+ layer: torch.nn.Module,
1475
+ x: torch.Tensor,
1476
+ router_logits: torch.Tensor,
1477
+ top_k: int,
1478
+ renormalize: bool,
1479
+ use_grouped_topk: bool = False,
1480
+ topk_group: Optional[int] = None,
1481
+ num_expert_group: Optional[int] = None,
1482
+ global_num_experts: int = -1,
1483
+ expert_map: Optional[torch.Tensor] = None,
1484
+ custom_routing_function: Optional[Callable] = None,
1485
+ scoring_func: str = "softmax",
1486
+ routed_scaling_factor: float = 1.0,
1487
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1488
+ apply_router_weight_on_input: bool = False,
1489
+ activation: str = "silu",
1490
+ enable_eplb: bool = False,
1491
+ expert_load_view: Optional[torch.Tensor] = None,
1492
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1493
+ logical_replica_count: Optional[torch.Tensor] = None,
1494
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
1495
+ assert self.fused_experts is None
1496
+
1497
+ if enable_eplb:
1498
+ raise NotImplementedError(
1499
+ "EPLB not supported for "
1500
+ "`CompressedTensorsWNA16MarlinMoEMethod` yet.")
1501
+
1502
+ assert activation == "silu", (
1503
+ f"{activation} not supported for Marlin MoE.")
1504
+
1505
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
1506
+ hidden_states=x,
1507
+ router_logits=router_logits,
1508
+ use_grouped_topk=use_grouped_topk,
1509
+ top_k=top_k,
1510
+ renormalize=renormalize,
1511
+ topk_group=topk_group,
1512
+ num_expert_group=num_expert_group,
1513
+ custom_routing_function=custom_routing_function,
1514
+ scoring_func=scoring_func,
1515
+ routed_scaling_factor=routed_scaling_factor,
1516
+ e_score_correction_bias=e_score_correction_bias,
1517
+ indices_type=self.topk_indices_dtype)
1518
+
1519
+ return torch.ops.vllm.fused_marlin_moe(
1520
+ x,
1521
+ layer.w13_weight_packed,
1522
+ layer.w2_weight_packed,
1523
+ None,
1524
+ None,
1525
+ layer.w13_weight_scale,
1526
+ layer.w2_weight_scale,
1527
+ router_logits,
1528
+ topk_weights,
1529
+ topk_ids,
1530
+ quant_type_id=self.quant_type.id,
1531
+ apply_router_weight_on_input=apply_router_weight_on_input,
1532
+ global_num_experts=global_num_experts,
1533
+ expert_map=expert_map,
1534
+ g_idx1=layer.w13_weight_g_idx,
1535
+ g_idx2=layer.w2_weight_g_idx,
1536
+ sort_indices1=layer.w13_g_idx_sort_indices,
1537
+ sort_indices2=layer.w2_g_idx_sort_indices,
1538
+ workspace=layer.workspace,
1539
+ is_k_full=self.is_k_full)
1540
+
1541
+
1542
+ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
1543
+
1544
+ def __init__(
1545
+ self,
1546
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1547
+ moe: FusedMoEConfig,
1548
+ ):
1549
+ super().__init__(moe)
1550
+ self.quant_config = quant_config
1551
+ # TODO: @dsikka: refactor this to use schemes as other kernels
1552
+ # are supported + check if the layer is being ignored.
1553
+ config = self.quant_config.target_scheme_map["Linear"].get("weights")
1554
+ self.num_bits = config.num_bits
1555
+ self.packed_factor = 32 // config.num_bits
1556
+ self.strategy = config.strategy
1557
+ # channelwise is not supported by this kernel
1558
+ assert config.strategy == "group"
1559
+ self.group_size = config.group_size
1560
+ # grouped actorder isn't supported by this kernel
1561
+ assert config.actorder != "group"
1562
+ assert config.symmetric, (
1563
+ "Only symmetric quantization is supported for MoE")
1564
+
1565
+ if not (self.quant_config.quant_format
1566
+ == CompressionFormat.pack_quantized.value
1567
+ and self.num_bits in WNA16_SUPPORTED_BITS):
1568
+ raise ValueError("For Fused MoE layers, only ",
1569
+ f"{CompressionFormat.pack_quantized.value} ",
1570
+ "is supported for the following bits: ",
1571
+ f"{WNA16_SUPPORTED_BITS}")
1572
+
1573
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1574
+ hidden_size: int, intermediate_size_per_partition: int,
1575
+ params_dtype: torch.dtype, **extra_weight_attrs):
1576
+
1577
+ # Will transpose the loaded weight along the
1578
+ # intermediate and hidden dim sizes. Will
1579
+ # shard for TP along the transposed dims
1580
+ extra_weight_attrs.update({
1581
+ "is_transposed": True,
1582
+ "quant_method": self.strategy
1583
+ })
1584
+ w13_weight = torch.nn.Parameter(torch.empty(
1585
+ num_experts,
1586
+ hidden_size // self.packed_factor,
1587
+ 2 * intermediate_size_per_partition,
1588
+ dtype=torch.int32),
1589
+ requires_grad=False)
1590
+ layer.register_parameter("w13_weight_packed", w13_weight)
1591
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1592
+
1593
+ w2_weight = torch.nn.Parameter(torch.empty(
1594
+ num_experts,
1595
+ intermediate_size_per_partition // self.packed_factor,
1596
+ hidden_size,
1597
+ dtype=torch.int32),
1598
+ requires_grad=False)
1599
+ layer.register_parameter("w2_weight_packed", w2_weight)
1600
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1601
+
1602
+ w2_scales_size = intermediate_size_per_partition
1603
+
1604
+ if self.strategy == "channel":
1605
+ num_groups_w2 = num_groups_w13 = 1
1606
+ self.group_size = -1
1607
+ else:
1608
+ num_groups_w2 = w2_scales_size // self.group_size
1609
+ num_groups_w13 = hidden_size // self.group_size
1610
+
1611
+ w13_scale = torch.nn.Parameter(torch.ones(
1612
+ num_experts,
1613
+ num_groups_w13,
1614
+ 2 * intermediate_size_per_partition,
1615
+ dtype=params_dtype),
1616
+ requires_grad=False)
1617
+ layer.register_parameter("w13_weight_scale", w13_scale)
1618
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1619
+
1620
+ w2_scale = torch.nn.Parameter(torch.ones(num_experts,
1621
+ num_groups_w2,
1622
+ hidden_size,
1623
+ dtype=params_dtype),
1624
+ requires_grad=False)
1625
+ layer.register_parameter("w2_weight_scale", w2_scale)
1626
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1627
+ set_weight_attrs(w2_scale, {"load_full_w2": False})
1628
+
1629
+ w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1630
+ requires_grad=False)
1631
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1632
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1633
+ w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2),
1634
+ requires_grad=False)
1635
+
1636
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1637
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1638
+
1639
+ w13_g_idx = torch.nn.Parameter(
1640
+ torch.empty(
1641
+ num_experts,
1642
+ hidden_size,
1643
+ dtype=torch.int32,
1644
+ ),
1645
+ requires_grad=False,
1646
+ )
1647
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1648
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1649
+
1650
+ w2_g_idx = torch.nn.Parameter(
1651
+ torch.empty(
1652
+ num_experts,
1653
+ intermediate_size_per_partition,
1654
+ dtype=torch.int32,
1655
+ ),
1656
+ requires_grad=False,
1657
+ )
1658
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1659
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1660
+
1661
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1662
+ torch.empty(
1663
+ num_experts,
1664
+ hidden_size,
1665
+ dtype=torch.int32,
1666
+ ),
1667
+ requires_grad=False,
1668
+ )
1669
+ layer.register_parameter("w13_g_idx_sort_indices",
1670
+ w13_g_idx_sort_indices)
1671
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1672
+
1673
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1674
+ torch.empty(
1675
+ num_experts,
1676
+ intermediate_size_per_partition,
1677
+ dtype=torch.int32,
1678
+ ),
1679
+ requires_grad=False,
1680
+ )
1681
+ layer.register_parameter("w2_g_idx_sort_indices",
1682
+ w2_g_idx_sort_indices)
1683
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1684
+
1685
+ layer.a13_scale = None
1686
+ layer.a2_scale = None
1687
+
1688
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1689
+ # Reconfigure packed weights and scales to match moe_wna16 format
1690
+ layer.w13_weight_packed = torch.nn.Parameter(
1691
+ layer.w13_weight_packed.transpose(1, 2).contiguous().view(
1692
+ torch.uint8),
1693
+ requires_grad=False)
1694
+ layer.w2_weight_packed = torch.nn.Parameter(
1695
+ layer.w2_weight_packed.transpose(1,
1696
+ 2).contiguous().view(torch.uint8),
1697
+ requires_grad=False)
1698
+ layer.w13_weight_scale = torch.nn.Parameter(
1699
+ layer.w13_weight_scale.transpose(1, 2).contiguous(),
1700
+ requires_grad=False)
1701
+ layer.w2_weight_scale = torch.nn.Parameter(
1702
+ layer.w2_weight_scale.transpose(1, 2).contiguous(),
1703
+ requires_grad=False)
1704
+
1705
+ def get_fused_moe_quant_config(
1706
+ self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
1707
+ assert self.num_bits == 4 or self.num_bits == 8
1708
+ config_builder = (int4_w4a16_moe_quant_config if self.num_bits == 4
1709
+ else int8_w8a16_moe_quant_config)
1710
+
1711
+ return config_builder(
1712
+ w1_scale=layer.w13_weight_scale,
1713
+ w2_scale=layer.w2_weight_scale,
1714
+ w1_zp=None,
1715
+ w2_zp=None,
1716
+ block_shape=[0, self.group_size],
1717
+ )
1718
+
1719
+ def apply(
1720
+ self,
1721
+ layer: torch.nn.Module,
1722
+ x: torch.Tensor,
1723
+ router_logits: torch.Tensor,
1724
+ top_k: int,
1725
+ renormalize: bool,
1726
+ use_grouped_topk: bool = False,
1727
+ topk_group: Optional[int] = None,
1728
+ num_expert_group: Optional[int] = None,
1729
+ global_num_experts: int = -1,
1730
+ expert_map: Optional[torch.Tensor] = None,
1731
+ custom_routing_function: Optional[Callable] = None,
1732
+ scoring_func: str = "softmax",
1733
+ routed_scaling_factor: float = 1.0,
1734
+ e_score_correction_bias: Optional[torch.Tensor] = None,
1735
+ apply_router_weight_on_input: bool = False,
1736
+ activation: str = "silu",
1737
+ enable_eplb: bool = False,
1738
+ expert_load_view: Optional[torch.Tensor] = None,
1739
+ logical_to_physical_map: Optional[torch.Tensor] = None,
1740
+ logical_replica_count: Optional[torch.Tensor] = None,
1741
+ ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
1742
+ assert self.fused_experts is None
1743
+
1744
+ if enable_eplb:
1745
+ raise NotImplementedError("EPLB not supported for "
1746
+ "`CompressedTensorsWNA16MoEMethod` yet.")
1747
+
1748
+ from vllm.model_executor.layers.fused_moe import fused_experts
1749
+
1750
+ topk_weights, topk_ids, _ = FusedMoE.select_experts(
1751
+ hidden_states=x,
1752
+ router_logits=router_logits,
1753
+ use_grouped_topk=use_grouped_topk,
1754
+ top_k=top_k,
1755
+ renormalize=renormalize,
1756
+ topk_group=topk_group,
1757
+ num_expert_group=num_expert_group,
1758
+ custom_routing_function=custom_routing_function,
1759
+ scoring_func=scoring_func,
1760
+ routed_scaling_factor=routed_scaling_factor,
1761
+ e_score_correction_bias=e_score_correction_bias,
1762
+ indices_type=self.topk_indices_dtype)
1763
+
1764
+ return fused_experts(
1765
+ x,
1766
+ layer.w13_weight_packed,
1767
+ layer.w2_weight_packed,
1768
+ topk_weights=topk_weights,
1769
+ topk_ids=topk_ids,
1770
+ inplace=True,
1771
+ activation=activation,
1772
+ apply_router_weight_on_input=apply_router_weight_on_input,
1773
+ global_num_experts=global_num_experts,
1774
+ expert_map=expert_map,
1775
+ quant_config=self.moe_quant_config,
1776
+ )
1777
+
1778
+
1779
+ class CompressedTensorsW4A8Int8MoEMethod(CompressedTensorsMoEMethod):
1780
+ """
1781
+ CPU-only MoE method using dynamic 4-bit matmul kernels on Arm Platform
1782
+ - Weights: int4 (stored as int8 values in [-8,7], packed to uint8 nibbles)
1783
+ - Scales: Fp32 for Channelwise , bf16 for groupwise quantization
1784
+ - Bias: Same data type as original weights
1785
+ - Activations: FP32/Bf16 dynamic per-token (A8 Int),
1786
+ quantized inside the kernel
1787
+ """
1788
+
1789
+ def __init__(
1790
+ self,
1791
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
1792
+ moe: FusedMoEConfig):
1793
+ super().__init__(moe)
1794
+ self.has_bias = self.moe.has_bias
1795
+ self.quant_config = quant_config
1796
+
1797
+ # Validate scheme: weights=W4 (channel or group),
1798
+ # activations=dynamic TOKEN (A8)
1799
+ wq = self.quant_config.target_scheme_map["Linear"].get("weights")
1800
+ aq = self.quant_config.target_scheme_map["Linear"].get(
1801
+ "input_activations")
1802
+
1803
+ # Must be dynamic per-token activations
1804
+ if aq.strategy != QuantizationStrategy.TOKEN or not aq.dynamic:
1805
+ raise ValueError(
1806
+ "W4A8-int MoE needs dynamic per-token activation quantization."
1807
+ )
1808
+
1809
+ # Weight can be channel-wise (group_size=None) or group-wise
1810
+ self.group_size = wq.group_size if (wq.group_size is not None) else -1
1811
+ if wq.num_bits != 4:
1812
+ raise ValueError(
1813
+ "This method only supports 4-bit weights (num_bits=4).")
1814
+
1815
+ # CPU only
1816
+ if not current_platform.is_cpu():
1817
+ raise ValueError("CompressedTensorsW4A8Int8MoEMethod is CPU-only.")
1818
+
1819
+ # Arm: check _dyn ops availability
1820
+ if current_platform.get_cpu_architecture() == CpuArchEnum.ARM:
1821
+ try:
1822
+ _ = torch.ops.aten._dyn_quant_matmul_4bit
1823
+ _ = torch.ops.aten._dyn_quant_pack_4bit_weight
1824
+ except AttributeError as err:
1825
+ raise RuntimeError(
1826
+ f"""PyTorch {torch.__version__} lacks _dyn_quant_* 4bit ops;
1827
+ install a newer build.""") from err
1828
+ self.static_input_scales = False # always dynamic per token
1829
+
1830
+ # ---- parameter creation ----
1831
+ def create_weights(self, layer: torch.nn.Module, num_experts: int,
1832
+ hidden_size: int, intermediate_size_per_partition: int,
1833
+ params_dtype: torch.dtype, **extra_weight_attrs):
1834
+
1835
+ # Shapes per local rank (TP/EP):
1836
+ # w13: [E, 2*I_local, H] int8 (int4 values in [-8,7])
1837
+ # w2 : [E, H, I_local] int8
1838
+ # Scales:
1839
+ # channel-wise: group_size=-1 -> per-output-row, single scale per row
1840
+ # group-wise : group_size=g ->
1841
+ # per-output-row, (in_features/g) scales
1842
+
1843
+ E = num_experts
1844
+ H = hidden_size
1845
+ IN = intermediate_size_per_partition
1846
+ g = self.group_size
1847
+
1848
+ # Per-row scale columns
1849
+ def _n_scale_cols(in_features: int) -> int:
1850
+ return 1 if g == -1 else (in_features // g)
1851
+
1852
+ # Register unpacked int4-as-int8 weights the loader will fill.
1853
+ w13 = torch.nn.Parameter(torch.empty(E, 2 * IN, H, dtype=torch.int8),
1854
+ requires_grad=False)
1855
+ set_weight_attrs(w13, extra_weight_attrs)
1856
+ layer.register_parameter("w13_weight", w13)
1857
+
1858
+ w2 = torch.nn.Parameter(torch.empty(E, H, IN, dtype=torch.int8),
1859
+ requires_grad=False)
1860
+ set_weight_attrs(w2, extra_weight_attrs)
1861
+ layer.register_parameter("w2_weight", w2)
1862
+
1863
+ # Register scales
1864
+ # KleidiAI groupwise kernels accepts float32 scales
1865
+ # KleidiAI groupwise kernels accepts bfloat16 scales
1866
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
1867
+
1868
+ w13_s = torch.nn.Parameter(torch.ones(E,
1869
+ 2 * IN,
1870
+ _n_scale_cols(H),
1871
+ dtype=scale_dtype),
1872
+ requires_grad=False)
1873
+ set_weight_attrs(
1874
+ w13_s, {
1875
+ "quant_method": "channel" if g == -1 else "group",
1876
+ **extra_weight_attrs
1877
+ })
1878
+ layer.register_parameter("w13_weight_scale", w13_s)
1879
+
1880
+ w2_s = torch.nn.Parameter(torch.ones(E,
1881
+ H,
1882
+ _n_scale_cols(IN),
1883
+ dtype=scale_dtype),
1884
+ requires_grad=False)
1885
+ set_weight_attrs(
1886
+ w2_s, {
1887
+ "quant_method": "channel" if g == -1 else "group",
1888
+ **extra_weight_attrs
1889
+ })
1890
+ layer.register_parameter("w2_weight_scale", w2_s)
1891
+
1892
+ if self.has_bias:
1893
+ w13_bias = torch.nn.Parameter(torch.zeros(E,
1894
+ 2 * IN,
1895
+ dtype=params_dtype),
1896
+ requires_grad=False)
1897
+ layer.register_parameter("w13_bias", w13_bias)
1898
+ set_weight_attrs(w13_bias, extra_weight_attrs)
1899
+
1900
+ w2_bias = torch.nn.Parameter(torch.zeros(num_experts,
1901
+ hidden_size,
1902
+ dtype=params_dtype),
1903
+ requires_grad=False)
1904
+ layer.register_parameter("w2_bias", w2_bias)
1905
+ set_weight_attrs(w2_bias, extra_weight_attrs)
1906
+
1907
+ # Placeholders for packed weights (will be replaced after packing)
1908
+ layer.register_parameter(
1909
+ "w13_weight_packed",
1910
+ torch.nn.Parameter(torch.empty(0), requires_grad=False))
1911
+ set_weight_attrs(layer.w13_weight_packed, extra_weight_attrs)
1912
+
1913
+ layer.register_parameter(
1914
+ "w2_weight_packed",
1915
+ torch.nn.Parameter(torch.empty(0), requires_grad=False))
1916
+ set_weight_attrs(layer.w2_weight_packed, extra_weight_attrs)
1917
+
1918
+ # dims for 4 bit fused matmuls
1919
+ layer.w13_in_features = H
1920
+ layer.w13_out_features = 2 * IN
1921
+ layer.w2_in_features = IN
1922
+ layer.w2_out_features = H
1923
+ layer.group_size = g
1924
+
1925
+ # post-load packing to dyn-4bit KleidiAI kernel's format
1926
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1927
+ E = layer.w13_weight.shape[0]
1928
+ H = layer.w13_in_features
1929
+ I2 = layer.w13_out_features
1930
+ IN = layer.w2_in_features
1931
+ g = layer.group_size
1932
+
1933
+ def _pack_matrix(int4_as_int8_2d: torch.Tensor,
1934
+ scales_2d: torch.Tensor,
1935
+ bias_1d: Optional[torch.Tensor], in_features: int,
1936
+ out_features: int) -> torch.Tensor:
1937
+ # int4 values are stored as int8 in [-8,7].
1938
+ # Shift to unsigned nibble and pack pairs along input-dim.
1939
+ tmp = int4_as_int8_2d.add(8) # [out, in]
1940
+ uint8_nibbles = ((tmp[:, 1::2] << 4) | tmp[:, ::2]).to(
1941
+ torch.uint8) # [out, in//2]
1942
+
1943
+ # KleidiAI groupwise kernels accepts float32 scales
1944
+ # KleidiAI groupwise kernels accepts bfloat16 scales
1945
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
1946
+ scales = scales_2d.to(scale_dtype)
1947
+ bias = None if bias_1d is None else bias_1d.to(torch.float32)
1948
+ return torch.ops.aten._dyn_quant_pack_4bit_weight(
1949
+ uint8_nibbles, scales, bias, g if g != -1 else in_features,
1950
+ in_features, out_features)
1951
+
1952
+ # Pack per expert
1953
+ w13_packed_list = []
1954
+ w2_packed_list = []
1955
+
1956
+ has_w13_bias = hasattr(layer,
1957
+ "w13_bias") and layer.w13_bias is not None
1958
+ has_w2_bias = hasattr(layer, "w2_bias") and layer.w2_bias is not None
1959
+
1960
+ for e in range(E):
1961
+ w13_packed_list.append(
1962
+ _pack_matrix(
1963
+ layer.w13_weight[e], # [2I, H]
1964
+ layer.w13_weight_scale[e], # [2I, H/g or 1]
1965
+ layer.w13_bias[e] if has_w13_bias else None, # [2I]
1966
+ H,
1967
+ I2))
1968
+ w2_packed_list.append(
1969
+ _pack_matrix(
1970
+ # w2 shape is [H, IN]; we need [out, in] == [H, IN].
1971
+ layer.w2_weight[e], # [H, IN]
1972
+ layer.w2_weight_scale[e], # [H, IN/g or 1]
1973
+ layer.w2_bias[e] if has_w2_bias else None, # [H]
1974
+ IN,
1975
+ layer.w2_out_features # in_features=IN, out_features=H
1976
+ ))
1977
+
1978
+ # each packed tensor has identical shape per expert; stack on dim 0
1979
+ w13_packed = torch.stack(w13_packed_list, dim=0)
1980
+ w2_packed = torch.stack(w2_packed_list, dim=0)
1981
+
1982
+ replace_parameter(layer, "w13_weight_packed",
1983
+ torch.nn.Parameter(w13_packed, requires_grad=False))
1984
+ replace_parameter(layer, "w2_weight_packed",
1985
+ torch.nn.Parameter(w2_packed, requires_grad=False))
1986
+
1987
+ # free raw tensors/scales/bias now that they're packed into the payload.
1988
+ replace_parameter(
1989
+ layer, "w13_weight",
1990
+ torch.nn.Parameter(torch.empty(0), requires_grad=False))
1991
+ replace_parameter(
1992
+ layer, "w2_weight",
1993
+ torch.nn.Parameter(torch.empty(0), requires_grad=False))
1994
+ replace_parameter(
1995
+ layer, "w13_weight_scale",
1996
+ torch.nn.Parameter(torch.empty(0), requires_grad=False))
1997
+ replace_parameter(
1998
+ layer, "w2_weight_scale",
1999
+ torch.nn.Parameter(torch.empty(0), requires_grad=False))
2000
+ if has_w13_bias:
2001
+ replace_parameter(
2002
+ layer, "w13_bias",
2003
+ torch.nn.Parameter(torch.empty(0), requires_grad=False))
2004
+ if has_w2_bias:
2005
+ replace_parameter(
2006
+ layer, "w2_bias",
2007
+ torch.nn.Parameter(torch.empty(0), requires_grad=False))
2008
+
2009
+ def get_fused_moe_quant_config(
2010
+ self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
2011
+ # CPU dynamic 4-bit MoE path does not use modular kernels or
2012
+ # fused_experts; quant config is not needed.
2013
+ return None
2014
+
2015
+ def apply(
2016
+ self,
2017
+ layer: torch.nn.Module,
2018
+ x: torch.Tensor,
2019
+ router_logits: torch.Tensor,
2020
+ top_k: int,
2021
+ renormalize: bool,
2022
+ use_grouped_topk: bool = False,
2023
+ topk_group: Optional[int] = None,
2024
+ num_expert_group: Optional[int] = None,
2025
+ global_num_experts: int = -1,
2026
+ expert_map: Optional[torch.Tensor] = None,
2027
+ custom_routing_function: Optional[Callable] = None,
2028
+ scoring_func: str = "softmax",
2029
+ routed_scaling_factor: float = 1.0,
2030
+ e_score_correction_bias: Optional[torch.Tensor] = None,
2031
+ apply_router_weight_on_input: bool = False,
2032
+ activation: str = "silu",
2033
+ enable_eplb: bool = False,
2034
+ expert_load_view: Optional[torch.Tensor] = None,
2035
+ logical_to_physical_map: Optional[torch.Tensor] = None,
2036
+ logical_replica_count: Optional[torch.Tensor] = None,
2037
+ ) -> torch.Tensor:
2038
+ assert not enable_eplb, "EPLB not supported for W4A8-int MoE yet."
2039
+ assert activation in (
2040
+ "silu", "swigluoai",
2041
+ "swiglu"), "Only SiLU/SwiGLUGU/SwiGLUUG are supported."
2042
+ assert expert_map is None, """expert_map/EP not implemented
2043
+ for CPU dyn-4bit MoE."""
2044
+
2045
+ def _act_kind(s: str) -> int:
2046
+ # 0 = SwiGLU_Gu (SiLU(g)*u), 1 = SwiGLU_Ug (SiLU(u)*g), 2 = SiLU
2047
+ if s == "swiglu":
2048
+ return 0
2049
+ if s == "swigluoai":
2050
+ return 1
2051
+ if s == "silu":
2052
+ return 2
2053
+ raise ValueError(f"Unknown activation '{s}'")
2054
+
2055
+ # Apply topk softmax on router output
2056
+ topk_weights, topk_ids = select_experts(
2057
+ hidden_states=x,
2058
+ router_logits=router_logits,
2059
+ use_grouped_topk=use_grouped_topk,
2060
+ top_k=top_k,
2061
+ renormalize=renormalize,
2062
+ topk_group=topk_group,
2063
+ num_expert_group=num_expert_group,
2064
+ custom_routing_function=custom_routing_function,
2065
+ scoring_func=scoring_func,
2066
+ routed_scaling_factor=routed_scaling_factor,
2067
+ e_score_correction_bias=e_score_correction_bias,
2068
+ )
2069
+
2070
+ return torch.ops._C.dynamic_4bit_int_moe(
2071
+ x, topk_ids.to(torch.long), topk_weights, layer.w13_weight_packed,
2072
+ layer.w2_weight_packed, layer.w2_out_features,
2073
+ layer.w2_in_features, layer.w13_out_features, layer.group_size,
2074
+ apply_router_weight_on_input, int(_act_kind(activation)))