vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1398) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2044 -0
  5. vllm/_ipex_ops.py +393 -0
  6. vllm/_version.py +34 -0
  7. vllm/assets/__init__.py +0 -0
  8. vllm/assets/audio.py +45 -0
  9. vllm/assets/base.py +41 -0
  10. vllm/assets/image.py +50 -0
  11. vllm/assets/video.py +145 -0
  12. vllm/attention/__init__.py +15 -0
  13. vllm/attention/backends/__init__.py +0 -0
  14. vllm/attention/backends/abstract.py +204 -0
  15. vllm/attention/backends/utils.py +33 -0
  16. vllm/attention/layer.py +645 -0
  17. vllm/attention/layers/__init__.py +0 -0
  18. vllm/attention/layers/chunked_local_attention.py +93 -0
  19. vllm/attention/layers/cross_attention.py +162 -0
  20. vllm/attention/layers/encoder_only_attention.py +86 -0
  21. vllm/attention/ops/__init__.py +0 -0
  22. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  23. vllm/attention/ops/common.py +345 -0
  24. vllm/attention/ops/flashmla.py +192 -0
  25. vllm/attention/ops/merge_attn_states.py +43 -0
  26. vllm/attention/ops/paged_attn.py +262 -0
  27. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  28. vllm/attention/ops/prefix_prefill.py +928 -0
  29. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  30. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  31. vllm/attention/ops/triton_decode_attention.py +691 -0
  32. vllm/attention/ops/triton_flash_attention.py +984 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
  35. vllm/attention/ops/triton_unified_attention.py +894 -0
  36. vllm/attention/selector.py +245 -0
  37. vllm/attention/utils/__init__.py +0 -0
  38. vllm/attention/utils/fa_utils.py +85 -0
  39. vllm/attention/utils/kv_sharing_utils.py +33 -0
  40. vllm/beam_search.py +87 -0
  41. vllm/benchmarks/__init__.py +0 -0
  42. vllm/benchmarks/datasets.py +2723 -0
  43. vllm/benchmarks/latency.py +170 -0
  44. vllm/benchmarks/lib/__init__.py +3 -0
  45. vllm/benchmarks/lib/endpoint_request_func.py +533 -0
  46. vllm/benchmarks/lib/ready_checker.py +73 -0
  47. vllm/benchmarks/lib/utils.py +80 -0
  48. vllm/benchmarks/serve.py +1358 -0
  49. vllm/benchmarks/throughput.py +696 -0
  50. vllm/collect_env.py +823 -0
  51. vllm/compilation/__init__.py +0 -0
  52. vllm/compilation/activation_quant_fusion.py +189 -0
  53. vllm/compilation/backends.py +650 -0
  54. vllm/compilation/base_static_graph.py +56 -0
  55. vllm/compilation/collective_fusion.py +1188 -0
  56. vllm/compilation/compiler_interface.py +573 -0
  57. vllm/compilation/counter.py +47 -0
  58. vllm/compilation/cuda_graph.py +199 -0
  59. vllm/compilation/cuda_piecewise_backend.py +117 -0
  60. vllm/compilation/decorators.py +400 -0
  61. vllm/compilation/fix_functionalization.py +205 -0
  62. vllm/compilation/fusion.py +383 -0
  63. vllm/compilation/fusion_attn.py +295 -0
  64. vllm/compilation/fx_utils.py +84 -0
  65. vllm/compilation/inductor_pass.py +136 -0
  66. vllm/compilation/monitor.py +57 -0
  67. vllm/compilation/noop_elimination.py +158 -0
  68. vllm/compilation/pass_manager.py +125 -0
  69. vllm/compilation/post_cleanup.py +20 -0
  70. vllm/compilation/sequence_parallelism.py +478 -0
  71. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  72. vllm/compilation/vllm_inductor_pass.py +156 -0
  73. vllm/compilation/wrapper.py +136 -0
  74. vllm/config/__init__.py +814 -0
  75. vllm/config/cache.py +220 -0
  76. vllm/config/compilation.py +673 -0
  77. vllm/config/device.py +74 -0
  78. vllm/config/kv_events.py +50 -0
  79. vllm/config/kv_transfer.py +111 -0
  80. vllm/config/load.py +113 -0
  81. vllm/config/lora.py +132 -0
  82. vllm/config/model.py +1912 -0
  83. vllm/config/multimodal.py +129 -0
  84. vllm/config/observability.py +99 -0
  85. vllm/config/parallel.py +524 -0
  86. vllm/config/pooler.py +97 -0
  87. vllm/config/scheduler.py +287 -0
  88. vllm/config/speculative.py +568 -0
  89. vllm/config/speech_to_text.py +39 -0
  90. vllm/config/structured_outputs.py +64 -0
  91. vllm/config/utils.py +145 -0
  92. vllm/connections.py +186 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +311 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +41 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +440 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +295 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +323 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
  106. vllm/distributed/device_communicators/pynccl.py +340 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +589 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +635 -0
  113. vllm/distributed/device_communicators/symm_mem.py +136 -0
  114. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  115. vllm/distributed/device_communicators/xpu_communicator.py +94 -0
  116. vllm/distributed/eplb/__init__.py +8 -0
  117. vllm/distributed/eplb/eplb_state.py +620 -0
  118. vllm/distributed/eplb/rebalance_algo.py +239 -0
  119. vllm/distributed/eplb/rebalance_execute.py +424 -0
  120. vllm/distributed/kv_events.py +362 -0
  121. vllm/distributed/kv_transfer/README.md +29 -0
  122. vllm/distributed/kv_transfer/__init__.py +13 -0
  123. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  124. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  125. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  126. vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
  132. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
  133. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
  134. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
  135. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
  140. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  141. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  142. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  144. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  145. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  146. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  147. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  148. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  149. vllm/distributed/parallel_state.py +1532 -0
  150. vllm/distributed/tpu_distributed_utils.py +178 -0
  151. vllm/distributed/utils.py +536 -0
  152. vllm/engine/__init__.py +0 -0
  153. vllm/engine/arg_utils.py +1778 -0
  154. vllm/engine/async_llm_engine.py +6 -0
  155. vllm/engine/llm_engine.py +6 -0
  156. vllm/engine/metrics.py +577 -0
  157. vllm/engine/metrics_types.py +84 -0
  158. vllm/engine/protocol.py +333 -0
  159. vllm/entrypoints/__init__.py +0 -0
  160. vllm/entrypoints/api_server.py +178 -0
  161. vllm/entrypoints/chat_utils.py +1705 -0
  162. vllm/entrypoints/cli/__init__.py +12 -0
  163. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  164. vllm/entrypoints/cli/benchmark/base.py +25 -0
  165. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  166. vllm/entrypoints/cli/benchmark/main.py +55 -0
  167. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  168. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  169. vllm/entrypoints/cli/collect_env.py +36 -0
  170. vllm/entrypoints/cli/main.py +60 -0
  171. vllm/entrypoints/cli/openai.py +233 -0
  172. vllm/entrypoints/cli/run_batch.py +67 -0
  173. vllm/entrypoints/cli/serve.py +232 -0
  174. vllm/entrypoints/cli/types.py +29 -0
  175. vllm/entrypoints/constants.py +10 -0
  176. vllm/entrypoints/context.py +481 -0
  177. vllm/entrypoints/harmony_utils.py +436 -0
  178. vllm/entrypoints/launcher.py +164 -0
  179. vllm/entrypoints/llm.py +1629 -0
  180. vllm/entrypoints/logger.py +79 -0
  181. vllm/entrypoints/openai/__init__.py +0 -0
  182. vllm/entrypoints/openai/api_server.py +1953 -0
  183. vllm/entrypoints/openai/cli_args.py +288 -0
  184. vllm/entrypoints/openai/logits_processors.py +90 -0
  185. vllm/entrypoints/openai/protocol.py +2757 -0
  186. vllm/entrypoints/openai/run_batch.py +491 -0
  187. vllm/entrypoints/openai/serving_chat.py +1597 -0
  188. vllm/entrypoints/openai/serving_classification.py +173 -0
  189. vllm/entrypoints/openai/serving_completion.py +692 -0
  190. vllm/entrypoints/openai/serving_embedding.py +631 -0
  191. vllm/entrypoints/openai/serving_engine.py +992 -0
  192. vllm/entrypoints/openai/serving_models.py +288 -0
  193. vllm/entrypoints/openai/serving_pooling.py +276 -0
  194. vllm/entrypoints/openai/serving_responses.py +1709 -0
  195. vllm/entrypoints/openai/serving_score.py +479 -0
  196. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  197. vllm/entrypoints/openai/serving_transcription.py +136 -0
  198. vllm/entrypoints/openai/speech_to_text.py +388 -0
  199. vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
  200. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  201. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  202. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  203. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  204. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  205. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  206. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
  207. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  208. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  209. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  210. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  211. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  212. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  213. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
  214. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  216. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
  217. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  218. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  219. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  220. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
  221. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  222. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  223. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  224. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  225. vllm/entrypoints/renderer.py +395 -0
  226. vllm/entrypoints/score_utils.py +232 -0
  227. vllm/entrypoints/ssl.py +75 -0
  228. vllm/entrypoints/tool.py +139 -0
  229. vllm/entrypoints/tool_server.py +206 -0
  230. vllm/entrypoints/utils.py +233 -0
  231. vllm/env_override.py +23 -0
  232. vllm/envs.py +1590 -0
  233. vllm/executor/__init__.py +0 -0
  234. vllm/executor/executor_base.py +381 -0
  235. vllm/executor/msgspec_utils.py +35 -0
  236. vllm/executor/ray_distributed_executor.py +699 -0
  237. vllm/executor/ray_utils.py +410 -0
  238. vllm/executor/uniproc_executor.py +176 -0
  239. vllm/forward_context.py +402 -0
  240. vllm/inputs/__init__.py +30 -0
  241. vllm/inputs/data.py +356 -0
  242. vllm/inputs/parse.py +151 -0
  243. vllm/inputs/preprocess.py +664 -0
  244. vllm/logger.py +229 -0
  245. vllm/logging_utils/__init__.py +10 -0
  246. vllm/logging_utils/dump_input.py +81 -0
  247. vllm/logging_utils/formatter.py +79 -0
  248. vllm/logging_utils/log_time.py +32 -0
  249. vllm/logits_process.py +119 -0
  250. vllm/logprobs.py +28 -0
  251. vllm/lora/__init__.py +0 -0
  252. vllm/lora/layers/__init__.py +34 -0
  253. vllm/lora/layers/base.py +69 -0
  254. vllm/lora/layers/base_linear.py +185 -0
  255. vllm/lora/layers/column_parallel_linear.py +609 -0
  256. vllm/lora/layers/logits_processor.py +247 -0
  257. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  258. vllm/lora/layers/replicated_linear.py +60 -0
  259. vllm/lora/layers/row_parallel_linear.py +196 -0
  260. vllm/lora/layers/utils.py +65 -0
  261. vllm/lora/layers/vocal_parallel_embedding.py +174 -0
  262. vllm/lora/lora_weights.py +199 -0
  263. vllm/lora/models.py +816 -0
  264. vllm/lora/ops/__init__.py +0 -0
  265. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  266. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  267. vllm/lora/ops/torch_ops/__init__.py +16 -0
  268. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  269. vllm/lora/ops/triton_ops/__init__.py +12 -0
  270. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  271. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  272. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  273. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  274. vllm/lora/ops/triton_ops/utils.py +126 -0
  275. vllm/lora/ops/xla_ops/__init__.py +7 -0
  276. vllm/lora/ops/xla_ops/lora_ops.py +144 -0
  277. vllm/lora/peft_helper.py +127 -0
  278. vllm/lora/punica_wrapper/__init__.py +10 -0
  279. vllm/lora/punica_wrapper/punica_base.py +458 -0
  280. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  281. vllm/lora/punica_wrapper/punica_gpu.py +272 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  284. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  285. vllm/lora/punica_wrapper/utils.py +136 -0
  286. vllm/lora/request.py +97 -0
  287. vllm/lora/resolver.py +85 -0
  288. vllm/lora/utils.py +246 -0
  289. vllm/lora/worker_manager.py +267 -0
  290. vllm/model_executor/__init__.py +12 -0
  291. vllm/model_executor/custom_op.py +194 -0
  292. vllm/model_executor/layers/__init__.py +0 -0
  293. vllm/model_executor/layers/activation.py +575 -0
  294. vllm/model_executor/layers/attention_layer_base.py +23 -0
  295. vllm/model_executor/layers/fla/__init__.py +8 -0
  296. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  297. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  298. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  299. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  300. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  301. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  302. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  303. vllm/model_executor/layers/fla/ops/index.py +39 -0
  304. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  305. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  306. vllm/model_executor/layers/fla/ops/op.py +39 -0
  307. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  308. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  309. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  310. vllm/model_executor/layers/fused_moe/__init__.py +89 -0
  311. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
  312. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
  313. vllm/model_executor/layers/fused_moe/config.py +804 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  545. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
  546. vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
  547. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
  548. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  549. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
  550. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
  551. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
  552. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
  553. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
  554. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
  555. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
  556. vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
  557. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
  558. vllm/model_executor/layers/fused_moe/layer.py +2195 -0
  559. vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
  560. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  561. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  562. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  563. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  564. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
  565. vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
  566. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
  567. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  568. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  569. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
  570. vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
  571. vllm/model_executor/layers/fused_moe/utils.py +274 -0
  572. vllm/model_executor/layers/layernorm.py +395 -0
  573. vllm/model_executor/layers/lightning_attn.py +661 -0
  574. vllm/model_executor/layers/linear.py +1603 -0
  575. vllm/model_executor/layers/logits_processor.py +106 -0
  576. vllm/model_executor/layers/mamba/__init__.py +0 -0
  577. vllm/model_executor/layers/mamba/abstract.py +42 -0
  578. vllm/model_executor/layers/mamba/linear_attn.py +403 -0
  579. vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
  580. vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
  581. vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
  582. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  583. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
  584. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  585. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  586. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
  587. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
  588. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
  589. vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
  590. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
  591. vllm/model_executor/layers/mamba/short_conv.py +253 -0
  592. vllm/model_executor/layers/mla.py +173 -0
  593. vllm/model_executor/layers/pooler.py +719 -0
  594. vllm/model_executor/layers/quantization/__init__.py +157 -0
  595. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  596. vllm/model_executor/layers/quantization/awq.py +228 -0
  597. vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
  598. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  599. vllm/model_executor/layers/quantization/base_config.py +170 -0
  600. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  601. vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
  602. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  603. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
  604. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
  605. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  606. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  607. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  608. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  609. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  610. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
  611. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  612. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  613. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  614. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
  615. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  616. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  625. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  626. vllm/model_executor/layers/quantization/experts_int8.py +223 -0
  627. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  628. vllm/model_executor/layers/quantization/fp8.py +1098 -0
  629. vllm/model_executor/layers/quantization/gguf.py +599 -0
  630. vllm/model_executor/layers/quantization/gptq.py +340 -0
  631. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  632. vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
  633. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  634. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  635. vllm/model_executor/layers/quantization/inc.py +61 -0
  636. vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
  637. vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
  638. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  639. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  640. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  641. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  642. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  643. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  644. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  645. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  646. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  647. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  648. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  649. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  650. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  651. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
  652. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  653. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  654. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  655. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  656. vllm/model_executor/layers/quantization/kv_cache.py +143 -0
  657. vllm/model_executor/layers/quantization/modelopt.py +1596 -0
  658. vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
  659. vllm/model_executor/layers/quantization/mxfp4.py +988 -0
  660. vllm/model_executor/layers/quantization/petit.py +306 -0
  661. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  662. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  663. vllm/model_executor/layers/quantization/quark/quark.py +432 -0
  664. vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
  665. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  666. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  667. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
  668. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  669. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  670. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  671. vllm/model_executor/layers/quantization/rtn.py +466 -0
  672. vllm/model_executor/layers/quantization/schema.py +86 -0
  673. vllm/model_executor/layers/quantization/torchao.py +214 -0
  674. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  675. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  676. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  677. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  889. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
  890. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
  891. vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
  892. vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
  893. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  894. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  895. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  896. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  897. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  898. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  899. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  900. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  901. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
  902. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  903. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  904. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  905. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  906. vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
  907. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  908. vllm/model_executor/layers/resampler.py +270 -0
  909. vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
  910. vllm/model_executor/layers/rotary_embedding/base.py +177 -0
  911. vllm/model_executor/layers/rotary_embedding/common.py +150 -0
  912. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
  913. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  914. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  915. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  916. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  917. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  918. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  919. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  920. vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
  921. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  922. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  923. vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
  924. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  925. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  926. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  927. vllm/model_executor/layers/utils.py +195 -0
  928. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  929. vllm/model_executor/model_loader/__init__.py +138 -0
  930. vllm/model_executor/model_loader/base_loader.py +52 -0
  931. vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
  932. vllm/model_executor/model_loader/default_loader.py +277 -0
  933. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  934. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  935. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  936. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  937. vllm/model_executor/model_loader/tensorizer.py +738 -0
  938. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  939. vllm/model_executor/model_loader/tpu.py +114 -0
  940. vllm/model_executor/model_loader/utils.py +292 -0
  941. vllm/model_executor/model_loader/weight_utils.py +990 -0
  942. vllm/model_executor/models/__init__.py +33 -0
  943. vllm/model_executor/models/adapters.py +542 -0
  944. vllm/model_executor/models/aimv2.py +246 -0
  945. vllm/model_executor/models/apertus.py +579 -0
  946. vllm/model_executor/models/arcee.py +422 -0
  947. vllm/model_executor/models/arctic.py +558 -0
  948. vllm/model_executor/models/aria.py +650 -0
  949. vllm/model_executor/models/aya_vision.py +468 -0
  950. vllm/model_executor/models/baichuan.py +474 -0
  951. vllm/model_executor/models/bailing_moe.py +642 -0
  952. vllm/model_executor/models/bamba.py +514 -0
  953. vllm/model_executor/models/bert.py +665 -0
  954. vllm/model_executor/models/bert_with_rope.py +687 -0
  955. vllm/model_executor/models/blip.py +339 -0
  956. vllm/model_executor/models/blip2.py +712 -0
  957. vllm/model_executor/models/bloom.py +374 -0
  958. vllm/model_executor/models/chameleon.py +1139 -0
  959. vllm/model_executor/models/chatglm.py +476 -0
  960. vllm/model_executor/models/clip.py +407 -0
  961. vllm/model_executor/models/cohere2_vision.py +481 -0
  962. vllm/model_executor/models/commandr.py +465 -0
  963. vllm/model_executor/models/config.py +445 -0
  964. vllm/model_executor/models/dbrx.py +471 -0
  965. vllm/model_executor/models/deepseek.py +497 -0
  966. vllm/model_executor/models/deepseek_eagle.py +240 -0
  967. vllm/model_executor/models/deepseek_mtp.py +289 -0
  968. vllm/model_executor/models/deepseek_v2.py +1444 -0
  969. vllm/model_executor/models/deepseek_vl2.py +658 -0
  970. vllm/model_executor/models/dots1.py +546 -0
  971. vllm/model_executor/models/dots_ocr.py +873 -0
  972. vllm/model_executor/models/ernie45.py +43 -0
  973. vllm/model_executor/models/ernie45_moe.py +607 -0
  974. vllm/model_executor/models/ernie45_vl.py +1527 -0
  975. vllm/model_executor/models/ernie45_vl_moe.py +727 -0
  976. vllm/model_executor/models/ernie_mtp.py +268 -0
  977. vllm/model_executor/models/exaone.py +550 -0
  978. vllm/model_executor/models/exaone4.py +533 -0
  979. vllm/model_executor/models/fairseq2_llama.py +154 -0
  980. vllm/model_executor/models/falcon.py +509 -0
  981. vllm/model_executor/models/falcon_h1.py +674 -0
  982. vllm/model_executor/models/fuyu.py +399 -0
  983. vllm/model_executor/models/gemma.py +425 -0
  984. vllm/model_executor/models/gemma2.py +422 -0
  985. vllm/model_executor/models/gemma3.py +555 -0
  986. vllm/model_executor/models/gemma3_mm.py +721 -0
  987. vllm/model_executor/models/gemma3n.py +1113 -0
  988. vllm/model_executor/models/gemma3n_mm.py +761 -0
  989. vllm/model_executor/models/glm.py +23 -0
  990. vllm/model_executor/models/glm4.py +304 -0
  991. vllm/model_executor/models/glm4_1v.py +1690 -0
  992. vllm/model_executor/models/glm4_moe.py +727 -0
  993. vllm/model_executor/models/glm4_moe_mtp.py +301 -0
  994. vllm/model_executor/models/glm4v.py +654 -0
  995. vllm/model_executor/models/gpt2.py +380 -0
  996. vllm/model_executor/models/gpt_bigcode.py +344 -0
  997. vllm/model_executor/models/gpt_j.py +339 -0
  998. vllm/model_executor/models/gpt_neox.py +330 -0
  999. vllm/model_executor/models/gpt_oss.py +712 -0
  1000. vllm/model_executor/models/granite.py +489 -0
  1001. vllm/model_executor/models/granite_speech.py +794 -0
  1002. vllm/model_executor/models/granitemoe.py +550 -0
  1003. vllm/model_executor/models/granitemoehybrid.py +614 -0
  1004. vllm/model_executor/models/granitemoeshared.py +332 -0
  1005. vllm/model_executor/models/gritlm.py +262 -0
  1006. vllm/model_executor/models/grok1.py +547 -0
  1007. vllm/model_executor/models/h2ovl.py +536 -0
  1008. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1009. vllm/model_executor/models/hyperclovax_vision.py +1192 -0
  1010. vllm/model_executor/models/idefics2_vision_model.py +417 -0
  1011. vllm/model_executor/models/idefics3.py +756 -0
  1012. vllm/model_executor/models/interfaces.py +959 -0
  1013. vllm/model_executor/models/interfaces_base.py +192 -0
  1014. vllm/model_executor/models/intern_vit.py +441 -0
  1015. vllm/model_executor/models/internlm2.py +450 -0
  1016. vllm/model_executor/models/internlm2_ve.py +148 -0
  1017. vllm/model_executor/models/interns1.py +838 -0
  1018. vllm/model_executor/models/interns1_vit.py +418 -0
  1019. vllm/model_executor/models/internvl.py +1423 -0
  1020. vllm/model_executor/models/jais.py +373 -0
  1021. vllm/model_executor/models/jamba.py +591 -0
  1022. vllm/model_executor/models/jina_vl.py +144 -0
  1023. vllm/model_executor/models/keye.py +1680 -0
  1024. vllm/model_executor/models/keye_vl1_5.py +602 -0
  1025. vllm/model_executor/models/kimi_vl.py +618 -0
  1026. vllm/model_executor/models/lfm2.py +548 -0
  1027. vllm/model_executor/models/llama.py +669 -0
  1028. vllm/model_executor/models/llama4.py +746 -0
  1029. vllm/model_executor/models/llama4_eagle.py +239 -0
  1030. vllm/model_executor/models/llama_eagle.py +179 -0
  1031. vllm/model_executor/models/llama_eagle3.py +296 -0
  1032. vllm/model_executor/models/llava.py +870 -0
  1033. vllm/model_executor/models/llava_next.py +571 -0
  1034. vllm/model_executor/models/llava_next_video.py +476 -0
  1035. vllm/model_executor/models/llava_onevision.py +942 -0
  1036. vllm/model_executor/models/longcat_flash.py +715 -0
  1037. vllm/model_executor/models/longcat_flash_mtp.py +352 -0
  1038. vllm/model_executor/models/mamba.py +275 -0
  1039. vllm/model_executor/models/mamba2.py +291 -0
  1040. vllm/model_executor/models/medusa.py +169 -0
  1041. vllm/model_executor/models/midashenglm.py +792 -0
  1042. vllm/model_executor/models/mimo.py +188 -0
  1043. vllm/model_executor/models/mimo_mtp.py +280 -0
  1044. vllm/model_executor/models/minicpm.py +631 -0
  1045. vllm/model_executor/models/minicpm3.py +230 -0
  1046. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1047. vllm/model_executor/models/minicpmo.py +770 -0
  1048. vllm/model_executor/models/minicpmv.py +1784 -0
  1049. vllm/model_executor/models/minimax_text_01.py +986 -0
  1050. vllm/model_executor/models/minimax_vl_01.py +426 -0
  1051. vllm/model_executor/models/mistral3.py +628 -0
  1052. vllm/model_executor/models/mixtral.py +606 -0
  1053. vllm/model_executor/models/mllama4.py +1076 -0
  1054. vllm/model_executor/models/mlp_speculator.py +206 -0
  1055. vllm/model_executor/models/modernbert.py +374 -0
  1056. vllm/model_executor/models/module_mapping.py +72 -0
  1057. vllm/model_executor/models/molmo.py +1567 -0
  1058. vllm/model_executor/models/moonvit.py +673 -0
  1059. vllm/model_executor/models/motif.py +345 -0
  1060. vllm/model_executor/models/mpt.py +329 -0
  1061. vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
  1062. vllm/model_executor/models/nemotron.py +507 -0
  1063. vllm/model_executor/models/nemotron_h.py +565 -0
  1064. vllm/model_executor/models/nemotron_nas.py +481 -0
  1065. vllm/model_executor/models/nemotron_vl.py +652 -0
  1066. vllm/model_executor/models/nvlm_d.py +203 -0
  1067. vllm/model_executor/models/olmo.py +404 -0
  1068. vllm/model_executor/models/olmo2.py +439 -0
  1069. vllm/model_executor/models/olmoe.py +483 -0
  1070. vllm/model_executor/models/opt.py +412 -0
  1071. vllm/model_executor/models/orion.py +348 -0
  1072. vllm/model_executor/models/ovis.py +559 -0
  1073. vllm/model_executor/models/ovis2_5.py +642 -0
  1074. vllm/model_executor/models/paligemma.py +411 -0
  1075. vllm/model_executor/models/persimmon.py +343 -0
  1076. vllm/model_executor/models/phi.py +356 -0
  1077. vllm/model_executor/models/phi3.py +19 -0
  1078. vllm/model_executor/models/phi3v.py +698 -0
  1079. vllm/model_executor/models/phi4_multimodal.py +1475 -0
  1080. vllm/model_executor/models/phi4mm.py +1279 -0
  1081. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1082. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1083. vllm/model_executor/models/phimoe.py +679 -0
  1084. vllm/model_executor/models/pixtral.py +1345 -0
  1085. vllm/model_executor/models/plamo2.py +978 -0
  1086. vllm/model_executor/models/qwen.py +361 -0
  1087. vllm/model_executor/models/qwen2.py +523 -0
  1088. vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
  1089. vllm/model_executor/models/qwen2_5_vl.py +1481 -0
  1090. vllm/model_executor/models/qwen2_audio.py +489 -0
  1091. vllm/model_executor/models/qwen2_moe.py +558 -0
  1092. vllm/model_executor/models/qwen2_rm.py +122 -0
  1093. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1094. vllm/model_executor/models/qwen3.py +341 -0
  1095. vllm/model_executor/models/qwen3_moe.py +692 -0
  1096. vllm/model_executor/models/qwen3_next.py +1266 -0
  1097. vllm/model_executor/models/qwen3_next_mtp.py +281 -0
  1098. vllm/model_executor/models/qwen3_vl.py +1613 -0
  1099. vllm/model_executor/models/qwen3_vl_moe.py +358 -0
  1100. vllm/model_executor/models/qwen_vl.py +795 -0
  1101. vllm/model_executor/models/radio.py +576 -0
  1102. vllm/model_executor/models/registry.py +990 -0
  1103. vllm/model_executor/models/roberta.py +252 -0
  1104. vllm/model_executor/models/rvl.py +103 -0
  1105. vllm/model_executor/models/seed_oss.py +485 -0
  1106. vllm/model_executor/models/siglip.py +540 -0
  1107. vllm/model_executor/models/siglip2navit.py +689 -0
  1108. vllm/model_executor/models/skyworkr1v.py +911 -0
  1109. vllm/model_executor/models/smolvlm.py +44 -0
  1110. vllm/model_executor/models/solar.py +504 -0
  1111. vllm/model_executor/models/stablelm.py +341 -0
  1112. vllm/model_executor/models/starcoder2.py +354 -0
  1113. vllm/model_executor/models/step3_text.py +510 -0
  1114. vllm/model_executor/models/step3_vl.py +1072 -0
  1115. vllm/model_executor/models/swin.py +475 -0
  1116. vllm/model_executor/models/tarsier.py +639 -0
  1117. vllm/model_executor/models/telechat2.py +151 -0
  1118. vllm/model_executor/models/teleflm.py +79 -0
  1119. vllm/model_executor/models/terratorch.py +294 -0
  1120. vllm/model_executor/models/transformers.py +948 -0
  1121. vllm/model_executor/models/ultravox.py +654 -0
  1122. vllm/model_executor/models/utils.py +808 -0
  1123. vllm/model_executor/models/vision.py +404 -0
  1124. vllm/model_executor/models/voxtral.py +786 -0
  1125. vllm/model_executor/models/whisper.py +963 -0
  1126. vllm/model_executor/models/zamba2.py +960 -0
  1127. vllm/model_executor/parameter.py +620 -0
  1128. vllm/model_executor/utils.py +86 -0
  1129. vllm/model_executor/warmup/__init__.py +0 -0
  1130. vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
  1131. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1132. vllm/multimodal/__init__.py +33 -0
  1133. vllm/multimodal/audio.py +116 -0
  1134. vllm/multimodal/base.py +27 -0
  1135. vllm/multimodal/cache.py +697 -0
  1136. vllm/multimodal/evs.py +273 -0
  1137. vllm/multimodal/hasher.py +102 -0
  1138. vllm/multimodal/image.py +130 -0
  1139. vllm/multimodal/inputs.py +987 -0
  1140. vllm/multimodal/parse.py +511 -0
  1141. vllm/multimodal/processing.py +2148 -0
  1142. vllm/multimodal/profiling.py +284 -0
  1143. vllm/multimodal/registry.py +345 -0
  1144. vllm/multimodal/utils.py +503 -0
  1145. vllm/multimodal/video.py +319 -0
  1146. vllm/outputs.py +324 -0
  1147. vllm/platforms/__init__.py +263 -0
  1148. vllm/platforms/cpu.py +340 -0
  1149. vllm/platforms/cuda.py +668 -0
  1150. vllm/platforms/interface.py +620 -0
  1151. vllm/platforms/rocm.py +497 -0
  1152. vllm/platforms/tpu.py +233 -0
  1153. vllm/platforms/xpu.py +243 -0
  1154. vllm/plugins/__init__.py +72 -0
  1155. vllm/plugins/io_processors/__init__.py +68 -0
  1156. vllm/plugins/io_processors/interface.py +67 -0
  1157. vllm/plugins/lora_resolvers/README.md +16 -0
  1158. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1159. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1160. vllm/pooling_params.py +191 -0
  1161. vllm/profiler/__init__.py +0 -0
  1162. vllm/profiler/layerwise_profile.py +375 -0
  1163. vllm/profiler/utils.py +148 -0
  1164. vllm/py.typed +2 -0
  1165. vllm/ray/__init__.py +0 -0
  1166. vllm/ray/lazy_utils.py +22 -0
  1167. vllm/ray/ray_env.py +72 -0
  1168. vllm/reasoning/__init__.py +29 -0
  1169. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1170. vllm/reasoning/basic_parsers.py +156 -0
  1171. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1172. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1173. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1174. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1175. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1176. vllm/reasoning/mistral_reasoning_parser.py +56 -0
  1177. vllm/reasoning/qwen3_reasoning_parser.py +72 -0
  1178. vllm/reasoning/seedoss_reasoning_parser.py +28 -0
  1179. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1180. vllm/sampling_params.py +593 -0
  1181. vllm/scalar_type.py +349 -0
  1182. vllm/scripts.py +15 -0
  1183. vllm/sequence.py +103 -0
  1184. vllm/tasks.py +11 -0
  1185. vllm/test_utils.py +129 -0
  1186. vllm/third_party/__init__.py +0 -0
  1187. vllm/third_party/pynvml.py +6140 -0
  1188. vllm/tracing.py +136 -0
  1189. vllm/transformers_utils/__init__.py +24 -0
  1190. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1191. vllm/transformers_utils/chat_templates/registry.py +70 -0
  1192. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1193. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1194. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1195. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1196. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1197. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1198. vllm/transformers_utils/config.py +1102 -0
  1199. vllm/transformers_utils/config_parser_base.py +20 -0
  1200. vllm/transformers_utils/configs/__init__.py +63 -0
  1201. vllm/transformers_utils/configs/arctic.py +207 -0
  1202. vllm/transformers_utils/configs/chatglm.py +72 -0
  1203. vllm/transformers_utils/configs/deepseek_v3.py +101 -0
  1204. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1205. vllm/transformers_utils/configs/dotsocr.py +69 -0
  1206. vllm/transformers_utils/configs/eagle.py +84 -0
  1207. vllm/transformers_utils/configs/falcon.py +90 -0
  1208. vllm/transformers_utils/configs/jais.py +237 -0
  1209. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1210. vllm/transformers_utils/configs/medusa.py +63 -0
  1211. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1212. vllm/transformers_utils/configs/mistral.py +165 -0
  1213. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1214. vllm/transformers_utils/configs/moonvit.py +33 -0
  1215. vllm/transformers_utils/configs/nemotron.py +205 -0
  1216. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1217. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1218. vllm/transformers_utils/configs/olmo3.py +80 -0
  1219. vllm/transformers_utils/configs/ovis.py +176 -0
  1220. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1221. vllm/transformers_utils/configs/radio.py +91 -0
  1222. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1223. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1224. vllm/transformers_utils/configs/speculators/base.py +111 -0
  1225. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1226. vllm/transformers_utils/configs/ultravox.py +116 -0
  1227. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1228. vllm/transformers_utils/dynamic_module.py +60 -0
  1229. vllm/transformers_utils/processor.py +299 -0
  1230. vllm/transformers_utils/processors/__init__.py +16 -0
  1231. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1232. vllm/transformers_utils/processors/ovis.py +420 -0
  1233. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1234. vllm/transformers_utils/runai_utils.py +104 -0
  1235. vllm/transformers_utils/s3_utils.py +93 -0
  1236. vllm/transformers_utils/tokenizer.py +292 -0
  1237. vllm/transformers_utils/tokenizer_base.py +154 -0
  1238. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1239. vllm/transformers_utils/tokenizers/mistral.py +521 -0
  1240. vllm/transformers_utils/utils.py +108 -0
  1241. vllm/triton_utils/__init__.py +16 -0
  1242. vllm/triton_utils/importing.py +96 -0
  1243. vllm/usage/__init__.py +0 -0
  1244. vllm/usage/usage_lib.py +259 -0
  1245. vllm/utils/__init__.py +3566 -0
  1246. vllm/utils/deep_gemm.py +319 -0
  1247. vllm/utils/flashinfer.py +443 -0
  1248. vllm/utils/jsontree.py +178 -0
  1249. vllm/utils/tensor_schema.py +235 -0
  1250. vllm/v1/__init__.py +0 -0
  1251. vllm/v1/attention/__init__.py +0 -0
  1252. vllm/v1/attention/backends/__init__.py +0 -0
  1253. vllm/v1/attention/backends/cpu_attn.py +919 -0
  1254. vllm/v1/attention/backends/flash_attn.py +795 -0
  1255. vllm/v1/attention/backends/flashinfer.py +1181 -0
  1256. vllm/v1/attention/backends/flex_attention.py +861 -0
  1257. vllm/v1/attention/backends/gdn_attn.py +332 -0
  1258. vllm/v1/attention/backends/linear_attn.py +67 -0
  1259. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1260. vllm/v1/attention/backends/mamba2_attn.py +232 -0
  1261. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1262. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1263. vllm/v1/attention/backends/mla/common.py +1783 -0
  1264. vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
  1265. vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
  1266. vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
  1267. vllm/v1/attention/backends/mla/flashmla.py +203 -0
  1268. vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
  1269. vllm/v1/attention/backends/mla/indexer.py +342 -0
  1270. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1271. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1272. vllm/v1/attention/backends/pallas.py +409 -0
  1273. vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
  1274. vllm/v1/attention/backends/rocm_attn.py +426 -0
  1275. vllm/v1/attention/backends/short_conv_attn.py +94 -0
  1276. vllm/v1/attention/backends/tree_attn.py +451 -0
  1277. vllm/v1/attention/backends/triton_attn.py +361 -0
  1278. vllm/v1/attention/backends/utils.py +990 -0
  1279. vllm/v1/attention/backends/xformers.py +438 -0
  1280. vllm/v1/core/__init__.py +0 -0
  1281. vllm/v1/core/block_pool.py +416 -0
  1282. vllm/v1/core/encoder_cache_manager.py +333 -0
  1283. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1284. vllm/v1/core/kv_cache_manager.py +399 -0
  1285. vllm/v1/core/kv_cache_utils.py +1291 -0
  1286. vllm/v1/core/sched/__init__.py +0 -0
  1287. vllm/v1/core/sched/async_scheduler.py +47 -0
  1288. vllm/v1/core/sched/interface.py +158 -0
  1289. vllm/v1/core/sched/output.py +166 -0
  1290. vllm/v1/core/sched/request_queue.py +224 -0
  1291. vllm/v1/core/sched/scheduler.py +1296 -0
  1292. vllm/v1/core/sched/utils.py +69 -0
  1293. vllm/v1/core/single_type_kv_cache_manager.py +671 -0
  1294. vllm/v1/cudagraph_dispatcher.py +125 -0
  1295. vllm/v1/engine/__init__.py +203 -0
  1296. vllm/v1/engine/async_llm.py +742 -0
  1297. vllm/v1/engine/coordinator.py +357 -0
  1298. vllm/v1/engine/core.py +1235 -0
  1299. vllm/v1/engine/core_client.py +1334 -0
  1300. vllm/v1/engine/detokenizer.py +349 -0
  1301. vllm/v1/engine/exceptions.py +17 -0
  1302. vllm/v1/engine/llm_engine.py +370 -0
  1303. vllm/v1/engine/logprobs.py +201 -0
  1304. vllm/v1/engine/output_processor.py +576 -0
  1305. vllm/v1/engine/parallel_sampling.py +133 -0
  1306. vllm/v1/engine/processor.py +545 -0
  1307. vllm/v1/engine/utils.py +860 -0
  1308. vllm/v1/executor/__init__.py +0 -0
  1309. vllm/v1/executor/abstract.py +137 -0
  1310. vllm/v1/executor/multiproc_executor.py +726 -0
  1311. vllm/v1/executor/ray_distributed_executor.py +108 -0
  1312. vllm/v1/executor/utils.py +23 -0
  1313. vllm/v1/kv_cache_interface.py +375 -0
  1314. vllm/v1/kv_offload/__init__.py +0 -0
  1315. vllm/v1/kv_offload/abstract.py +165 -0
  1316. vllm/v1/kv_offload/backend.py +96 -0
  1317. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1318. vllm/v1/kv_offload/backends/cpu.py +61 -0
  1319. vllm/v1/kv_offload/cpu.py +75 -0
  1320. vllm/v1/kv_offload/factory.py +56 -0
  1321. vllm/v1/kv_offload/lru_manager.py +132 -0
  1322. vllm/v1/kv_offload/mediums.py +39 -0
  1323. vllm/v1/kv_offload/spec.py +61 -0
  1324. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1325. vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
  1326. vllm/v1/kv_offload/worker/worker.py +142 -0
  1327. vllm/v1/metrics/__init__.py +0 -0
  1328. vllm/v1/metrics/loggers.py +741 -0
  1329. vllm/v1/metrics/prometheus.py +82 -0
  1330. vllm/v1/metrics/ray_wrappers.py +152 -0
  1331. vllm/v1/metrics/reader.py +246 -0
  1332. vllm/v1/metrics/stats.py +257 -0
  1333. vllm/v1/outputs.py +161 -0
  1334. vllm/v1/pool/__init__.py +0 -0
  1335. vllm/v1/pool/metadata.py +77 -0
  1336. vllm/v1/request.py +241 -0
  1337. vllm/v1/sample/__init__.py +0 -0
  1338. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1339. vllm/v1/sample/logits_processor/builtin.py +275 -0
  1340. vllm/v1/sample/logits_processor/interface.py +97 -0
  1341. vllm/v1/sample/logits_processor/state.py +161 -0
  1342. vllm/v1/sample/metadata.py +43 -0
  1343. vllm/v1/sample/ops/__init__.py +0 -0
  1344. vllm/v1/sample/ops/bad_words.py +39 -0
  1345. vllm/v1/sample/ops/logprobs.py +26 -0
  1346. vllm/v1/sample/ops/penalties.py +43 -0
  1347. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1348. vllm/v1/sample/rejection_sampler.py +623 -0
  1349. vllm/v1/sample/sampler.py +285 -0
  1350. vllm/v1/sample/tpu/__init__.py +0 -0
  1351. vllm/v1/sample/tpu/metadata.py +124 -0
  1352. vllm/v1/sample/tpu/sampler.py +213 -0
  1353. vllm/v1/serial_utils.py +423 -0
  1354. vllm/v1/spec_decode/__init__.py +0 -0
  1355. vllm/v1/spec_decode/eagle.py +1011 -0
  1356. vllm/v1/spec_decode/medusa.py +66 -0
  1357. vllm/v1/spec_decode/metadata.py +62 -0
  1358. vllm/v1/spec_decode/metrics.py +211 -0
  1359. vllm/v1/spec_decode/ngram_proposer.py +276 -0
  1360. vllm/v1/spec_decode/utils.py +14 -0
  1361. vllm/v1/structured_output/__init__.py +295 -0
  1362. vllm/v1/structured_output/backend_guidance.py +245 -0
  1363. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1364. vllm/v1/structured_output/backend_outlines.py +320 -0
  1365. vllm/v1/structured_output/backend_types.py +134 -0
  1366. vllm/v1/structured_output/backend_xgrammar.py +327 -0
  1367. vllm/v1/structured_output/request.py +86 -0
  1368. vllm/v1/structured_output/utils.py +454 -0
  1369. vllm/v1/utils.py +396 -0
  1370. vllm/v1/worker/__init__.py +0 -0
  1371. vllm/v1/worker/block_table.py +210 -0
  1372. vllm/v1/worker/cpu_model_runner.py +175 -0
  1373. vllm/v1/worker/cpu_worker.py +156 -0
  1374. vllm/v1/worker/gpu_input_batch.py +863 -0
  1375. vllm/v1/worker/gpu_model_runner.py +4160 -0
  1376. vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
  1377. vllm/v1/worker/gpu_worker.py +710 -0
  1378. vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
  1379. vllm/v1/worker/lora_model_runner_mixin.py +183 -0
  1380. vllm/v1/worker/tpu_input_batch.py +587 -0
  1381. vllm/v1/worker/tpu_model_runner.py +1946 -0
  1382. vllm/v1/worker/tpu_worker.py +346 -0
  1383. vllm/v1/worker/ubatch_splitting.py +192 -0
  1384. vllm/v1/worker/ubatch_utils.py +27 -0
  1385. vllm/v1/worker/ubatching.py +224 -0
  1386. vllm/v1/worker/utils.py +344 -0
  1387. vllm/v1/worker/worker_base.py +65 -0
  1388. vllm/v1/worker/xpu_model_runner.py +57 -0
  1389. vllm/v1/worker/xpu_worker.py +179 -0
  1390. vllm/version.py +41 -0
  1391. vllm/vllm_flash_attn/.gitkeep +0 -0
  1392. vllm/worker/__init__.py +0 -0
  1393. vllm/worker/worker_base.py +279 -0
  1394. vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
  1395. vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
  1396. vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
  1397. vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
  1398. vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2148 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import time
4
+ from abc import ABC, abstractmethod
5
+ from collections import defaultdict
6
+ from collections.abc import (Callable, Generator, ItemsView, Iterable, Mapping,
7
+ Sequence)
8
+ from dataclasses import dataclass, field, replace
9
+ from enum import Enum
10
+ from functools import lru_cache
11
+ from typing import (TYPE_CHECKING, Any, Generic, NamedTuple, Optional,
12
+ Protocol, Union, cast, overload)
13
+
14
+ import regex as re
15
+ import torch
16
+ from typing_extensions import TypeVar, assert_never
17
+
18
+ from vllm.logger import init_logger
19
+ from vllm.transformers_utils.processor import cached_processor_from_config
20
+ from vllm.transformers_utils.tokenizer import (AnyTokenizer, decode_tokens,
21
+ encode_tokens)
22
+ from vllm.utils import (flatten_2d_lists, full_groupby,
23
+ get_allowed_kwarg_only_overrides)
24
+ from vllm.utils.jsontree import JSONTree, json_map_leaves
25
+
26
+ from .hasher import MultiModalHasher
27
+ from .inputs import (MultiModalDataDict, MultiModalEncDecInputs,
28
+ MultiModalFieldConfig, MultiModalInputs,
29
+ MultiModalKwargsItem, MultiModalKwargsItems,
30
+ MultiModalKwargsOptionalItems, MultiModalUUIDDict,
31
+ PlaceholderRange)
32
+ from .parse import (DictEmbeddingItems, EmbeddingItems, MultiModalDataItems,
33
+ MultiModalDataParser)
34
+
35
+ if TYPE_CHECKING:
36
+ from transformers.configuration_utils import PretrainedConfig
37
+ from transformers.feature_extraction_utils import BatchFeature
38
+ from transformers.processing_utils import ProcessorMixin
39
+
40
+ from vllm.config import ModelConfig
41
+
42
+ from .cache import BaseMultiModalProcessorCache
43
+ from .profiling import BaseDummyInputsBuilder
44
+
45
+ logger = init_logger(__name__)
46
+
47
+ _S = TypeVar("_S", str, list[int])
48
+
49
+ PromptSeq = Union[str, list[int]]
50
+ """A token sequence (list of token IDs) or text."""
51
+
52
+
53
+ @lru_cache(maxsize=2048)
54
+ def _cached_encode(
55
+ tokenizer: AnyTokenizer,
56
+ text: str,
57
+ *,
58
+ add_special_tokens: Optional[bool] = None,
59
+ ) -> list[int]:
60
+ return encode_tokens(tokenizer,
61
+ text,
62
+ add_special_tokens=add_special_tokens)
63
+
64
+
65
+ @lru_cache(maxsize=2048)
66
+ def _cached_decode(
67
+ tokenizer: AnyTokenizer,
68
+ token_ids: tuple[int, ...],
69
+ *,
70
+ skip_special_tokens: Optional[bool] = None,
71
+ ) -> str:
72
+ return decode_tokens(tokenizer,
73
+ list(token_ids),
74
+ skip_special_tokens=skip_special_tokens)
75
+
76
+
77
+ def _seq2text(tokenizer: AnyTokenizer, seq: PromptSeq) -> str:
78
+ if isinstance(seq, str):
79
+ return seq
80
+
81
+ return _cached_decode(tokenizer, tuple(seq))
82
+
83
+
84
+ def _seq2tokens(tokenizer: AnyTokenizer, seq: PromptSeq) -> list[int]:
85
+ if isinstance(seq, str):
86
+ return _cached_encode(tokenizer, seq, add_special_tokens=False)
87
+
88
+ return seq
89
+
90
+
91
+ class _GetMatchIndex(Protocol):
92
+
93
+ def __call__(
94
+ self,
95
+ tokenizer: AnyTokenizer,
96
+ prompt: PromptSeq,
97
+ start_idx: int = 0,
98
+ ) -> Optional[int]:
99
+ ...
100
+
101
+
102
+ @dataclass
103
+ class PromptIndex:
104
+ """Resolves to an index in the prompt."""
105
+ get_match_index: _GetMatchIndex
106
+
107
+
108
+ class PromptIndexTargets:
109
+
110
+ @staticmethod
111
+ def start() -> PromptIndex:
112
+ """
113
+ Resolves to the start of the prompt (before the first token).
114
+
115
+ This results in a match even if the prompt is empty.
116
+ """
117
+ return PromptIndex(lambda tokenizer, prompt, start_idx=0: 0)
118
+
119
+ @staticmethod
120
+ def prefix(seq: PromptSeq) -> PromptIndex:
121
+ """
122
+ Resolves to a location in the prompt after the given prefix.
123
+ """
124
+
125
+ def get_match_index(
126
+ tokenizer: AnyTokenizer,
127
+ prompt: PromptSeq,
128
+ start_idx: int = 0,
129
+ ) -> Optional[int]:
130
+ if start_idx != 0:
131
+ return None
132
+
133
+ prefix = seq
134
+
135
+ if isinstance(prompt, str):
136
+ if not isinstance(prefix, str):
137
+ # Make both `str`
138
+ prefix = decode_tokens(tokenizer, prefix)
139
+ else:
140
+ if isinstance(prefix, str):
141
+ # Make both `list[int]`
142
+ prefix = encode_tokens(tokenizer,
143
+ prefix,
144
+ add_special_tokens=False)
145
+
146
+ match_idx = len(prefix)
147
+ return match_idx if prompt[:match_idx] == prefix else None
148
+
149
+ return PromptIndex(get_match_index)
150
+
151
+ @staticmethod
152
+ def end() -> PromptIndex:
153
+ """
154
+ Resolves to the end of the prompt (after the last token).
155
+
156
+ This results in a match even if the prompt is empty.
157
+ """
158
+ return PromptIndex(lambda tokenizer, prompt, start_idx=0: len(prompt))
159
+
160
+
161
+ UpdateTarget = Union[PromptSeq, PromptIndex]
162
+ """
163
+ The token sequence or text to update.
164
+ """
165
+
166
+ PromptUpdateTarget = Union[Callable[[int], UpdateTarget], UpdateTarget]
167
+ """
168
+ Given the index of the processed item within
169
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
170
+ output the corresponding token sequence (or text).
171
+
172
+ For convenience, you can directly pass in the token sequence (or text)
173
+ instead of a function if it does not depend on the input.
174
+ """
175
+
176
+
177
+ @dataclass
178
+ class PromptUpdateDetails(Generic[_S]):
179
+ """Details about the token sequence or text that are part of the update."""
180
+
181
+ full: _S
182
+ """The full content."""
183
+
184
+ is_embed: Optional[Callable[[AnyTokenizer, PromptSeq],
185
+ torch.Tensor]] = None
186
+ """
187
+ Given [`full`][vllm.multimodal.processing.PromptUpdateDetails.full],
188
+ return a boolean mask of shape `(len(full),)` indicating which positions
189
+ of `full` to assign embeddings to.
190
+
191
+ `None` (default) means to assign embeddings to all positions of `full`.
192
+
193
+ The embeddings are obtained by calling
194
+ [`SupportsMultiModal.get_multimodal_embeddings`][vllm.model_executor.models.interfaces.SupportsMultiModal.get_multimodal_embeddings].
195
+ """
196
+
197
+ @staticmethod
198
+ def from_seq(seq: _S) -> "PromptUpdateDetails[_S]":
199
+ return PromptUpdateDetails(full=seq)
200
+
201
+ @staticmethod
202
+ def select_text(
203
+ seq: _S,
204
+ embed_text: str,
205
+ ) -> "PromptUpdateDetails[_S]":
206
+
207
+ def is_embed(tokenizer: AnyTokenizer, full: PromptSeq) -> torch.Tensor:
208
+ embed_token_ids = encode_tokens(tokenizer, embed_text)
209
+ token_ids = _seq2tokens(tokenizer, full)
210
+
211
+ return torch.isin(
212
+ torch.tensor(token_ids),
213
+ torch.tensor(embed_token_ids),
214
+ )
215
+
216
+ return PromptUpdateDetails(full=seq, is_embed=is_embed)
217
+
218
+ @staticmethod
219
+ def select_token_id(
220
+ seq: _S,
221
+ embed_token_id: int,
222
+ ) -> "PromptUpdateDetails[_S]":
223
+
224
+ def is_embed(tokenizer: AnyTokenizer, full: PromptSeq) -> torch.Tensor:
225
+ token_ids = _seq2tokens(tokenizer, full)
226
+
227
+ return torch.tensor(token_ids) == embed_token_id
228
+
229
+ return PromptUpdateDetails(full=seq, is_embed=is_embed)
230
+
231
+
232
+ PromptUpdateInfo = Union[PromptSeq, PromptUpdateDetails]
233
+ """
234
+ The token sequence or text that are part of the update.
235
+
236
+ If only part of the content corresponds to feature placeholders, you can
237
+ use [`PromptUpdateDetails`][vllm.multimodal.processing.PromptUpdateDetails] to
238
+ specify which part.
239
+ """
240
+
241
+ PromptUpdateContent = Union[Callable[[int], PromptUpdateInfo],
242
+ PromptUpdateInfo]
243
+ """
244
+ Given the index of the processed item within
245
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
246
+ output the corresponding token sequence (or text).
247
+
248
+ For convenience, you can directly pass in the token sequence (or text)
249
+ instead of a function if it does not depend on the input.
250
+ """
251
+
252
+
253
+ class UpdateMode(str, Enum):
254
+ INSERT = "insert"
255
+ REPLACE = "replace"
256
+
257
+
258
+ @dataclass
259
+ class PromptUpdate(ABC):
260
+ """
261
+ Defines how to update a prompt with placeholder tokens.
262
+ """
263
+
264
+ modality: str
265
+ """The modality for which the update is made."""
266
+
267
+ target: PromptUpdateTarget
268
+ """The token sequence (or text) to update."""
269
+
270
+ @property
271
+ @abstractmethod
272
+ def content(self) -> PromptUpdateContent:
273
+ """The placeholder tokens that are part of the update."""
274
+ raise NotImplementedError
275
+
276
+ @property
277
+ @abstractmethod
278
+ def mode(self) -> UpdateMode:
279
+ """Defines how to update the prompt."""
280
+ raise NotImplementedError
281
+
282
+ def _resolve_target(self, item_idx: int) -> UpdateTarget:
283
+ target = self.target
284
+ if callable(target):
285
+ target = target(item_idx)
286
+
287
+ return target
288
+
289
+ def _resolve_content(self, item_idx: int) -> PromptUpdateDetails:
290
+ content = self.content
291
+ if callable(content):
292
+ content = content(item_idx)
293
+
294
+ if not isinstance(content, PromptUpdateDetails):
295
+ content = PromptUpdateDetails.from_seq(content)
296
+
297
+ return content
298
+
299
+ def resolve(self, item_idx: int) -> "ResolvedPromptUpdate":
300
+ """
301
+ Given the index of the processed item within
302
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
303
+ output a copy of this object with its lazy attributes resolved.
304
+ """
305
+ return ResolvedPromptUpdate(
306
+ modality=self.modality,
307
+ item_idx=item_idx,
308
+ mode=self.mode,
309
+ target=self._resolve_target(item_idx),
310
+ content=self._resolve_content(item_idx),
311
+ )
312
+
313
+
314
+ @dataclass
315
+ class PromptInsertion(PromptUpdate):
316
+ """
317
+ Defines how to insert placeholder tokens into a prompt.
318
+
319
+ Example:
320
+
321
+ For each image, insert a number of ``<image>`` feature placeholders
322
+ equal to the feature size of the vision encoder after the ``<s>`` token:
323
+
324
+ ```python
325
+ PromptInsertion(
326
+ modality="image",
327
+ target="<s>",
328
+ insertion="<image>" * image_feature_size,
329
+ )
330
+ ```
331
+
332
+ Insert these tokens at the start of the prompt:
333
+
334
+ ```python
335
+ PromptInsertion(
336
+ modality="image",
337
+ target=PromptIndexTargets.start(),
338
+ insertion="<image>" * image_feature_size,
339
+ )
340
+ ```
341
+
342
+ Insert these tokens after a prefix ``Images:``:
343
+
344
+ ```python
345
+ PromptInsertion(
346
+ modality="image",
347
+ target=PromptIndexTargets.prefix("Images:"),
348
+ insertion="<image>" * image_feature_size,
349
+ )
350
+ ```
351
+
352
+ Insert these tokens at the end of the prompt:
353
+
354
+ ```python
355
+ PromptInsertion(
356
+ modality="image",
357
+ target=PromptIndexTargets.end(),
358
+ insertion="<image>" * image_feature_size,
359
+ )
360
+ ```
361
+ """
362
+
363
+ insertion: PromptUpdateContent = field(repr=False)
364
+ """
365
+ Given the index of the processed item within
366
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
367
+ output the token sequence (or text) to insert right after
368
+ [`target`][vllm.multimodal.processing.PromptUpdate.target].
369
+
370
+ For convenience, you can directly pass in the token sequence (or text)
371
+ instead of a function if it does not depend on the input.
372
+ """
373
+
374
+ @property
375
+ def content(self) -> PromptUpdateContent:
376
+ return self.insertion
377
+
378
+ @property
379
+ def mode(self) -> UpdateMode:
380
+ return UpdateMode.INSERT
381
+
382
+
383
+ @dataclass
384
+ class PromptReplacement(PromptUpdate):
385
+ """
386
+ Defines how to replace portions of an input prompt with placeholder tokens.
387
+
388
+ Example:
389
+
390
+ For each image, replace one ``<image>`` input placeholder in the prompt
391
+ with a number of ``<image>`` feature placeholders
392
+ equal to the feature size of the vision encoder:
393
+
394
+ ```python
395
+ PromptReplacement(
396
+ modality="image",
397
+ target="<image>",
398
+ replacement="<image>" * image_feature_size,
399
+ )
400
+ ```
401
+
402
+ As above, but further pad the feature placeholders with ``<image_bos>``
403
+ and `<image_eos>``, which are not supposed to be passed to the vision
404
+ encoder:
405
+
406
+ ```python
407
+ PromptReplacement(
408
+ modality="image",
409
+ target="<image>",
410
+ replacement=PromptUpdateDetails(
411
+ full="".join([
412
+ "<image_bos>",
413
+ "<image>" * image_feature_size,
414
+ "<image_eos>",
415
+ ]),
416
+ features="<image>" * image_feature_size,
417
+ ),
418
+ )
419
+ ```
420
+
421
+ To avoid unnecessary tokenization during prompt replacement,
422
+ we recommended passing token sequences instead of text:
423
+
424
+ ```python
425
+ PromptReplacement(
426
+ modality="image",
427
+ target=[image_token_id],
428
+ replacement=PromptUpdateDetails(
429
+ full=([image_bos_id] + [image_token_id] * image_feature_size
430
+ + [image_eos_id]),
431
+ features=[image_token_id] * image_feature_size,
432
+ ),
433
+ )
434
+ ```
435
+ """
436
+
437
+ replacement: PromptUpdateContent = field(repr=False)
438
+ """
439
+ Given the index of the processed item within
440
+ [`modality`][vllm.multimodal.processing.PromptUpdate.modality],
441
+ output the token sequence (or text) to replace
442
+ [`target`][vllm.multimodal.processing.PromptUpdate.target].
443
+
444
+ For convenience, you can directly pass in the token sequence (or text)
445
+ instead of a function if it does not depend on the input.
446
+ """
447
+
448
+ @property
449
+ def content(self) -> PromptUpdateContent:
450
+ return self.replacement
451
+
452
+ @property
453
+ def mode(self) -> UpdateMode:
454
+ return UpdateMode.REPLACE
455
+
456
+
457
+ class _HasModalityAttr(Protocol):
458
+ modality: str
459
+
460
+
461
+ class _HasModalityProp(Protocol):
462
+
463
+ @property
464
+ def modality(self) -> str:
465
+ ...
466
+
467
+
468
+ _M = TypeVar("_M", bound=Union[_HasModalityAttr, _HasModalityProp])
469
+
470
+
471
+ def full_groupby_modality(values: Iterable[_M]) -> ItemsView[str, list[_M]]:
472
+ """Convenience function to apply [`full_groupby`][vllm.utils.full_groupby]
473
+ based on modality."""
474
+ return full_groupby(values, key=lambda x: x.modality)
475
+
476
+
477
+ class PromptTargetMatch(NamedTuple):
478
+ start_idx: int
479
+ end_idx: int
480
+
481
+
482
+ @dataclass(frozen=True)
483
+ class ResolvedPromptUpdate:
484
+ """
485
+ A [`PromptUpdate`][vllm.multimodal.processing.PromptUpdate] with its
486
+ lazy attributes resolved, apart from those related to tokenization.
487
+ """
488
+
489
+ modality: str
490
+ """The modality for which the update is made."""
491
+
492
+ item_idx: int
493
+ """The index within `modality` of the item this update pertains to."""
494
+
495
+ mode: UpdateMode
496
+ """Defines how to update the prompt."""
497
+
498
+ target: UpdateTarget
499
+ """The token sequence (or text) to update."""
500
+
501
+ content: PromptUpdateDetails = field(repr=False)
502
+ """The placeholder tokens that are part of the update."""
503
+
504
+ def iter_token_matches(
505
+ self,
506
+ prompt: list[int],
507
+ tokenizer: AnyTokenizer,
508
+ *,
509
+ start_idx: int = 0,
510
+ ) -> Generator[PromptTargetMatch]:
511
+ """Yield each instance of `self.target` found in `prompt`."""
512
+ target = self.target
513
+
514
+ if isinstance(target, PromptIndex):
515
+ match_idx = target.get_match_index(tokenizer, prompt, start_idx)
516
+ if match_idx is not None:
517
+ yield PromptTargetMatch(match_idx, match_idx)
518
+
519
+ return
520
+
521
+ target_token_ids = _seq2tokens(tokenizer, target)
522
+
523
+ for match in iter_token_matches(prompt,
524
+ target_token_ids,
525
+ start_idx=start_idx):
526
+ yield PromptTargetMatch(match.start_idx, match.end_idx)
527
+
528
+ def iter_text_matches(
529
+ self,
530
+ prompt: str,
531
+ tokenizer: AnyTokenizer,
532
+ *,
533
+ start_idx: int = 0,
534
+ ) -> Generator[PromptTargetMatch]:
535
+ """Yield each instance of `self.target` found in `prompt`."""
536
+ target = self.target
537
+
538
+ if isinstance(target, PromptIndex):
539
+ match_idx = target.get_match_index(tokenizer, prompt, start_idx)
540
+ if match_idx is not None:
541
+ yield PromptTargetMatch(match_idx, match_idx)
542
+
543
+ return
544
+
545
+ target_text = _seq2text(tokenizer, target)
546
+
547
+ for match in re.finditer(re.escape(target_text), prompt,
548
+ pos=start_idx):
549
+ yield PromptTargetMatch(match.start(), match.end())
550
+
551
+ def iter_matches(
552
+ self,
553
+ prompt: Union[list[int], str],
554
+ tokenizer: AnyTokenizer,
555
+ *,
556
+ start_idx: int = 0,
557
+ ) -> Generator[PromptTargetMatch]:
558
+ """Yield each instance of `self.target` found in `prompt`."""
559
+ if isinstance(prompt, str):
560
+ return self.iter_text_matches(prompt,
561
+ tokenizer,
562
+ start_idx=start_idx)
563
+
564
+ return self.iter_token_matches(prompt, tokenizer, start_idx=start_idx)
565
+
566
+ def with_target(self, target: UpdateTarget):
567
+ return replace(self, target=target)
568
+
569
+ def with_content(self, content: PromptUpdateInfo):
570
+ if not isinstance(content, PromptUpdateDetails):
571
+ content = PromptUpdateDetails.from_seq(content)
572
+
573
+ return replace(self, content=content)
574
+
575
+
576
+ class _TokenMatch(NamedTuple):
577
+ start_idx: int
578
+ end_idx: int
579
+
580
+
581
+ def iter_token_matches(
582
+ token_ids: list[int],
583
+ match_ids: list[int],
584
+ *,
585
+ start_idx: int = 0,
586
+ ) -> Generator[_TokenMatch]:
587
+ """
588
+ Yield each occurrence of `match_ids` in `token_ids`.
589
+
590
+ Note that empty matches are ignored.
591
+ """
592
+ prompt_len = len(token_ids)
593
+ match_len = len(match_ids)
594
+
595
+ if match_len == 0:
596
+ return
597
+
598
+ while start_idx < prompt_len - match_len + 1:
599
+ end_idx = start_idx + match_len
600
+
601
+ if token_ids[start_idx:end_idx] == match_ids:
602
+ yield _TokenMatch(start_idx=start_idx, end_idx=end_idx)
603
+
604
+ # Exclude overlapping matches
605
+ start_idx = end_idx
606
+ else:
607
+ start_idx += 1
608
+
609
+
610
+ def replace_token_matches(
611
+ token_ids: list[int],
612
+ match_ids: list[int],
613
+ new_ids: list[int],
614
+ ) -> list[int]:
615
+ """
616
+ Replace each occurrence of `match_ids` in `token_ids`
617
+ with `new_ids`.
618
+
619
+ Note that empty matches are ignored.
620
+ """
621
+ out_seqs = list[list[int]]()
622
+ prev_end_idx = 0
623
+
624
+ for match in iter_token_matches(token_ids, match_ids):
625
+ start_idx = match.start_idx
626
+ end_idx = match.end_idx
627
+
628
+ out_seqs.append(token_ids[prev_end_idx:start_idx])
629
+ out_seqs.append(new_ids)
630
+ prev_end_idx = end_idx
631
+
632
+ out_seqs.append(token_ids[prev_end_idx:])
633
+
634
+ return flatten_2d_lists(out_seqs)
635
+
636
+
637
+ @dataclass
638
+ class PlaceholderFeaturesInfo:
639
+ modality: str
640
+ item_idx: int
641
+ start_idx: int
642
+ tokens: list[int]
643
+ is_embed: Optional[torch.Tensor]
644
+
645
+ @property
646
+ def length(self) -> int:
647
+ return len(self.tokens)
648
+
649
+ def to_range(self) -> PlaceholderRange:
650
+ # TODO: Is it worth it to optimize this by stripping the
651
+ # leading and ending positions where `is_embed=False`?
652
+ return PlaceholderRange(
653
+ offset=self.start_idx,
654
+ length=self.length,
655
+ is_embed=self.is_embed,
656
+ )
657
+
658
+
659
+ _MatchToApply = tuple[tuple[str, int], tuple[PromptTargetMatch, int]]
660
+
661
+
662
+ def _find_matches(
663
+ prompt: _S,
664
+ mm_prompt_updates: "MultiModalPromptUpdates",
665
+ tokenizer: AnyTokenizer,
666
+ *,
667
+ prev_end_idx: int = 0,
668
+ current_result: "MultiModalPromptUpdatesApplyResult",
669
+ ) -> tuple[Optional[UpdateMode], list[_MatchToApply]]:
670
+ mode: Optional[UpdateMode] = None
671
+ mm_matches = dict[tuple[str, int], tuple[PromptTargetMatch, int]]()
672
+
673
+ for modality, modality_updates in mm_prompt_updates.items():
674
+ for item_idx, item_updates in enumerate(modality_updates):
675
+ if current_result[modality][item_idx] is not None:
676
+ continue # Updates have already been applied for this item
677
+
678
+ for update_idx, update in enumerate(item_updates):
679
+ if (modality, item_idx) in mm_matches:
680
+ break # Already found a match for this item
681
+
682
+ for match in update.iter_matches(
683
+ prompt,
684
+ tokenizer,
685
+ start_idx=prev_end_idx,
686
+ ):
687
+ # All matches should share the same mode
688
+ if mode is None:
689
+ mode = update.mode
690
+ elif mode != update.mode:
691
+ continue
692
+
693
+ mm_matches[(modality, item_idx)] = match, update_idx
694
+ break # Get only the first valid match per item
695
+
696
+ # Prioritize earlier matches
697
+ matches_to_apply = sorted(mm_matches.items(), key=lambda item: item[1][0])
698
+
699
+ # To avoid conflicts, only replace one non-empty item at a time
700
+ if mode == UpdateMode.REPLACE:
701
+ matches_to_apply_ = list[_MatchToApply]()
702
+ has_non_empty_matches = False
703
+
704
+ for item in matches_to_apply:
705
+ _, (match, _) = item
706
+ if match.start_idx == match.end_idx:
707
+ matches_to_apply_.append(item)
708
+ elif not has_non_empty_matches:
709
+ has_non_empty_matches = True
710
+ matches_to_apply_.append(item)
711
+
712
+ matches_to_apply = matches_to_apply_
713
+
714
+ return mode, matches_to_apply
715
+
716
+
717
+ def _apply_matches(
718
+ prompt: _S,
719
+ mm_prompt_updates: "MultiModalPromptUpdates",
720
+ tokenizer: AnyTokenizer,
721
+ ) -> tuple[list[_S], "MultiModalPromptUpdatesApplyResult"]:
722
+ prompt_len = len(prompt)
723
+
724
+ out_seqs = list[Union[str, list[int]]]()
725
+ out_result: MultiModalPromptUpdatesApplyResult = {
726
+ m: [None] * len(items)
727
+ for m, items in mm_prompt_updates.items()
728
+ }
729
+
730
+ start_idx = prev_end_idx = 0
731
+ while start_idx < max(prompt_len, 1): # Allow inserts into empty prompt
732
+ found = False
733
+
734
+ mode, matches_to_apply = _find_matches(
735
+ prompt,
736
+ mm_prompt_updates,
737
+ tokenizer,
738
+ prev_end_idx=prev_end_idx,
739
+ current_result=out_result,
740
+ )
741
+
742
+ if mode is not None:
743
+ for (modality, item_idx), (match, update_idx) in matches_to_apply:
744
+ found = True
745
+
746
+ matched_update = mm_prompt_updates[modality][item_idx][
747
+ update_idx]
748
+ matched_content = matched_update.content.full
749
+
750
+ if mode == UpdateMode.INSERT:
751
+ end_idx_to_insert = match.end_idx
752
+ elif mode == UpdateMode.REPLACE:
753
+ end_idx_to_insert = match.start_idx
754
+ else:
755
+ assert_never(mode)
756
+
757
+ out_seqs.append(prompt[prev_end_idx:end_idx_to_insert])
758
+ out_seqs.append(
759
+ _seq2text(tokenizer, matched_content
760
+ ) if isinstance(prompt, str) else _seq2tokens(
761
+ tokenizer, matched_content))
762
+ out_result[modality][item_idx] = update_idx
763
+
764
+ # Exclude overlapping matches
765
+ start_idx = prev_end_idx = match.end_idx
766
+
767
+ if not found:
768
+ start_idx += 1
769
+
770
+ out_seqs.append(prompt[prev_end_idx:])
771
+
772
+ return cast(list[_S], out_seqs), out_result
773
+
774
+
775
+ def apply_token_matches(
776
+ prompt: list[int],
777
+ mm_prompt_updates: "MultiModalPromptUpdates",
778
+ tokenizer: AnyTokenizer,
779
+ ) -> tuple[list[int], "MultiModalPromptUpdatesApplyResult"]:
780
+ """
781
+ Apply the updates in `mm_prompt_updates` to `prompt`.
782
+
783
+ Matches are exclusive even when multiple modalities share
784
+ the same placeholder tokens. In that case, the modality that
785
+ appears earlier in `mm_prompt_updates` takes priority.
786
+ """
787
+ token_id_seqs, result = _apply_matches(prompt, mm_prompt_updates,
788
+ tokenizer)
789
+
790
+ return flatten_2d_lists(token_id_seqs), result
791
+
792
+
793
+ def apply_text_matches(
794
+ prompt: str,
795
+ mm_prompt_updates: "MultiModalPromptUpdates",
796
+ tokenizer: AnyTokenizer,
797
+ ) -> tuple[str, "MultiModalPromptUpdatesApplyResult"]:
798
+ """
799
+ Apply the updates in `mm_prompt_updates` to `prompt`.
800
+
801
+ Matches are exclusive even when multiple modalities share
802
+ the same placeholder tokens. In that case, the modality that
803
+ appears earlier in `mm_prompt_updates` takes priority.
804
+ """
805
+ texts, result = _apply_matches(prompt, mm_prompt_updates, tokenizer)
806
+
807
+ return "".join(texts), result
808
+
809
+
810
+ def _iter_placeholders(
811
+ prompt: list[int],
812
+ mm_prompt_updates: "MultiModalPromptUpdates",
813
+ tokenizer: AnyTokenizer,
814
+ ) -> Iterable[PlaceholderFeaturesInfo]:
815
+ """
816
+ Yield each set of placeholder tokens found in `prompt`.
817
+
818
+ Matches are exclusive even when multiple modalities share
819
+ the same placeholder tokens. In that case, the modality that
820
+ appears earlier in `mm_prompt_updates` takes priority.
821
+
822
+ Note that empty matches are ignored.
823
+ """
824
+ prompt_len = len(prompt)
825
+ mm_item_counts = {m: len(items) for m, items in mm_prompt_updates.items()}
826
+
827
+ item_idx_by_modality = defaultdict[str, int](lambda: 0)
828
+
829
+ start_idx = 0
830
+ while start_idx < prompt_len:
831
+ found = False
832
+
833
+ for modality, modality_updates in mm_prompt_updates.items():
834
+ item_idx = item_idx_by_modality[modality]
835
+ if item_idx >= mm_item_counts.get(modality, 0):
836
+ continue
837
+
838
+ for update in modality_updates[item_idx]:
839
+ content = update.content
840
+ content_tokens_full = _seq2tokens(tokenizer, content.full)
841
+ content_len_full = len(content_tokens_full)
842
+ end_idx_full = start_idx + content_len_full
843
+
844
+ if content_len_full == 0 or end_idx_full > prompt_len:
845
+ continue
846
+
847
+ if prompt[start_idx:end_idx_full] == content_tokens_full:
848
+ content_is_embed = content.is_embed
849
+ if content_is_embed is not None:
850
+ content_is_embed = content_is_embed(
851
+ tokenizer, content.full)
852
+
853
+ yield PlaceholderFeaturesInfo(
854
+ modality=modality,
855
+ item_idx=item_idx,
856
+ start_idx=start_idx,
857
+ tokens=content_tokens_full,
858
+ is_embed=content_is_embed,
859
+ )
860
+
861
+ # Exclude overlapping matches
862
+ start_idx = end_idx_full
863
+ item_idx_by_modality[modality] += 1
864
+ found = True
865
+ break
866
+
867
+ if found:
868
+ break # Go back to the outer while loop
869
+
870
+ if not found:
871
+ start_idx += 1
872
+
873
+
874
+ def find_mm_placeholders(
875
+ prompt: list[int],
876
+ mm_prompt_updates: "MultiModalPromptUpdates",
877
+ tokenizer: AnyTokenizer,
878
+ ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
879
+ it = _iter_placeholders(prompt, mm_prompt_updates, tokenizer)
880
+ return dict(full_groupby_modality(it))
881
+
882
+
883
+ _T = TypeVar("_T")
884
+ _C = TypeVar("_C", bound="PretrainedConfig", default="PretrainedConfig")
885
+ _P = TypeVar("_P", bound="ProcessorMixin", default="ProcessorMixin")
886
+
887
+
888
+ @dataclass(frozen=True)
889
+ class InputProcessingContext:
890
+ """
891
+ Contains information about the model which may be used to
892
+ modify the inputs.
893
+ """
894
+
895
+ model_config: "ModelConfig"
896
+ """The configuration of the model."""
897
+
898
+ tokenizer: AnyTokenizer
899
+ """The tokenizer used to tokenize the inputs."""
900
+
901
+ @overload
902
+ def get_hf_config(self, /) -> "PretrainedConfig":
903
+ ...
904
+
905
+ @overload
906
+ def get_hf_config(
907
+ self,
908
+ typ: Union[type[_C], tuple[type[_C], ...]],
909
+ /,
910
+ ) -> _C:
911
+ ...
912
+
913
+ def get_hf_config(
914
+ self,
915
+ typ: Optional[Union[type[Any], tuple[type[Any], ...]]] = None,
916
+ /,
917
+ ) -> Any:
918
+ """
919
+ Get the HuggingFace configuration
920
+ (`transformers.PretrainedConfig`) of the model,
921
+ additionally checking its type.
922
+
923
+ Raises:
924
+ TypeError: If the configuration is not of the specified type.
925
+ """
926
+ if typ is None:
927
+ from transformers.configuration_utils import PretrainedConfig
928
+
929
+ typ = PretrainedConfig
930
+
931
+ hf_config = self.model_config.hf_config
932
+ if not isinstance(hf_config, typ):
933
+ raise TypeError("Invalid type of HuggingFace config. "
934
+ f"Expected type: {typ}, but "
935
+ f"found type: {type(hf_config)}")
936
+
937
+ return hf_config
938
+
939
+ def get_hf_image_processor_config(self) -> dict[str, Any]:
940
+ """
941
+ Get the HuggingFace image processor configuration of the model.
942
+ """
943
+ return self.model_config.hf_image_processor_config
944
+
945
+ def get_mm_config(self):
946
+ """
947
+ Get the multimodal config of the model.
948
+
949
+ Raises:
950
+ RuntimeError: If the model is not a multimodal model.
951
+ """
952
+ mm_config = self.model_config.multimodal_config
953
+ if mm_config is None:
954
+ raise RuntimeError("Not a multimodal model")
955
+
956
+ return mm_config
957
+
958
+ @overload
959
+ def get_hf_processor(self, /, **kwargs: object) -> "ProcessorMixin":
960
+ ...
961
+
962
+ @overload
963
+ def get_hf_processor(
964
+ self,
965
+ typ: Union[type[_P], tuple[type[_P], ...]],
966
+ /,
967
+ **kwargs: object,
968
+ ) -> _P:
969
+ ...
970
+
971
+ def get_hf_processor(
972
+ self,
973
+ typ: Optional[Union[type[Any], tuple[type[Any], ...]]] = None,
974
+ /,
975
+ **kwargs: object,
976
+ ) -> Any:
977
+ """
978
+ Get the HuggingFace processor
979
+ (`transformers.ProcessorMixin`) of the model,
980
+ additionally checking its type.
981
+
982
+ Raises:
983
+ TypeError: If the processor is not of the specified type.
984
+ """
985
+ if typ is None:
986
+ from transformers.processing_utils import ProcessorMixin
987
+
988
+ typ = ProcessorMixin
989
+
990
+ return cached_processor_from_config(
991
+ self.model_config,
992
+ processor_cls=typ,
993
+ tokenizer=self.tokenizer,
994
+ **kwargs,
995
+ )
996
+
997
+ def init_processor(
998
+ self,
999
+ typ: type[_T],
1000
+ /,
1001
+ **kwargs: object,
1002
+ ) -> _T:
1003
+ """
1004
+ Initialize a HuggingFace-like processor class, merging the
1005
+ keyword arguments with those in the model's configuration.
1006
+ """
1007
+ mm_config = self.model_config.get_multimodal_config()
1008
+ base_kwargs = mm_config.mm_processor_kwargs
1009
+ if base_kwargs is None:
1010
+ base_kwargs = {}
1011
+
1012
+ merged_kwargs = {**base_kwargs, **kwargs}
1013
+
1014
+ return typ(**merged_kwargs)
1015
+
1016
+ def _postprocess_output(
1017
+ self,
1018
+ output: JSONTree,
1019
+ ) -> JSONTree:
1020
+
1021
+ def _postprocess_one(x: object):
1022
+ if isinstance(x, torch.Tensor): # noqa: SIM102
1023
+ # This mimics the behavior of transformers.BatchFeature
1024
+ if x.is_floating_point():
1025
+ x = x.to(dtype=self.model_config.dtype)
1026
+
1027
+ return x
1028
+
1029
+ return json_map_leaves(_postprocess_one, output)
1030
+
1031
+ def call_hf_processor(
1032
+ self,
1033
+ hf_processor: "ProcessorMixin",
1034
+ data: Mapping[str, object],
1035
+ kwargs: Mapping[str, object] = {},
1036
+ *,
1037
+ num_tries: int = 1,
1038
+ max_tries: int = 5,
1039
+ ) -> Union["BatchFeature", JSONTree]:
1040
+ """
1041
+ Call `hf_processor` on the prompt `data`
1042
+ (text, image, audio...) with configurable options `kwargs`.
1043
+ """
1044
+ assert callable(hf_processor)
1045
+
1046
+ mm_config = self.model_config.get_multimodal_config()
1047
+ merged_kwargs = mm_config.merge_mm_processor_kwargs(kwargs)
1048
+
1049
+ allowed_kwargs = get_allowed_kwarg_only_overrides(
1050
+ hf_processor,
1051
+ merged_kwargs,
1052
+ requires_kw_only=False,
1053
+ allow_var_kwargs=True,
1054
+ )
1055
+
1056
+ try:
1057
+ output = hf_processor(**data,
1058
+ **allowed_kwargs,
1059
+ return_tensors="pt")
1060
+ except Exception as exc:
1061
+ # See https://github.com/huggingface/tokenizers/issues/537
1062
+ if (isinstance(exc, RuntimeError) and exc
1063
+ and exc.args[0] == "Already borrowed"
1064
+ and num_tries < max_tries):
1065
+ logger.warning(
1066
+ "Failed to acquire tokenizer in current thread. "
1067
+ "Retrying (%d/%d)...", num_tries, max_tries)
1068
+ time.sleep(0.5)
1069
+ return self.call_hf_processor(
1070
+ hf_processor,
1071
+ data,
1072
+ kwargs,
1073
+ num_tries=num_tries + 1,
1074
+ max_tries=max_tries,
1075
+ )
1076
+
1077
+ msg = (f"Failed to apply {type(hf_processor).__name__} "
1078
+ f"on data={data} with kwargs={allowed_kwargs}")
1079
+
1080
+ raise ValueError(msg) from exc
1081
+
1082
+ # this emulates output.to(dtype=self.model_config.dtype)
1083
+ from transformers.feature_extraction_utils import BatchFeature
1084
+
1085
+ if isinstance(output, BatchFeature):
1086
+ output_ = self._postprocess_output(output.data)
1087
+ return BatchFeature(output_)
1088
+
1089
+ logger.warning_once(
1090
+ "%s did not return `BatchFeature`. "
1091
+ "Make sure to match the behaviour of `ProcessorMixin` when "
1092
+ "implementing custom processors.",
1093
+ type(hf_processor).__name__,
1094
+ )
1095
+
1096
+ return self._postprocess_output(output)
1097
+
1098
+
1099
+ class BaseProcessingInfo:
1100
+ """Base class to provide the information necessary for data processing."""
1101
+
1102
+ def __init__(self, ctx: InputProcessingContext) -> None:
1103
+ super().__init__()
1104
+
1105
+ self.ctx = ctx
1106
+
1107
+ @property
1108
+ def model_id(self) -> str:
1109
+ return self.ctx.model_config.model
1110
+
1111
+ def get_tokenizer(self) -> AnyTokenizer:
1112
+ return self.ctx.tokenizer
1113
+
1114
+ def get_hf_config(self) -> "PretrainedConfig":
1115
+ return self.ctx.get_hf_config()
1116
+
1117
+ def get_hf_processor(self, **kwargs: object) -> "ProcessorMixin":
1118
+ """
1119
+ Subclasses can override this method to handle
1120
+ specific kwargs from model config or user inputs.
1121
+ """
1122
+ return self.ctx.get_hf_processor(**kwargs)
1123
+
1124
+ @abstractmethod
1125
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
1126
+ """
1127
+ Return the maximum supported number of items for each modality.
1128
+
1129
+ A value of `None` means unlimited number of items.
1130
+
1131
+ Omitting a modality from the returned dictionary means that
1132
+ it is not supported at all.
1133
+ """
1134
+ raise NotImplementedError
1135
+
1136
+ def get_allowed_mm_limits(self) -> Mapping[str, int]:
1137
+ """Return the maximum allowed number of items for each modality."""
1138
+ supported_mm_limits = self.get_supported_mm_limits()
1139
+ mm_config = self.ctx.get_mm_config()
1140
+
1141
+ allowed_limits = dict[str, int]()
1142
+ for modality, supported_limit in supported_mm_limits.items():
1143
+ user_limit = mm_config.get_limit_per_prompt(modality)
1144
+
1145
+ allowed_limits[modality] = (user_limit if supported_limit is None
1146
+ else min(user_limit, supported_limit))
1147
+
1148
+ return allowed_limits
1149
+
1150
+ def get_mm_max_tokens_per_item(
1151
+ self,
1152
+ seq_len: int,
1153
+ mm_counts: Mapping[str, int],
1154
+ ) -> Optional[Mapping[str, int]]:
1155
+ """
1156
+ Return the maximum number of tokens per item of for each modality.
1157
+
1158
+ When `None` (the default) is returned, vLLM will generate dummy inputs
1159
+ (images/videos) at maximum possible sizes and process them to determine
1160
+ the maximum token count per modality.
1161
+
1162
+ This approach works but can be very slow for certain models (e.g.,
1163
+ Qwen2.5-VL), leading to very long startup time. For better performance,
1164
+ each model can override this method to return pre-computed maximum token
1165
+ counts, avoiding the need for dummy input generation and processing.
1166
+
1167
+ Note:
1168
+ The maximum number of tokens per item of each modality returned
1169
+ from this function should respect the model's maximum sequence
1170
+ length and the maximum number of items of each modality allowed,
1171
+ and agree with dummy inputs (images/videos) at maximum possible
1172
+ sizes.
1173
+ """
1174
+ return None
1175
+
1176
+
1177
+ _I = TypeVar("_I", bound=BaseProcessingInfo)
1178
+
1179
+ MultiModalHashes = dict[str, list[str]]
1180
+ """
1181
+ A collection of hashes with a similar structure as
1182
+ [`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
1183
+ """
1184
+
1185
+ MultiModalPromptUpdates = Mapping[str, list[Sequence[ResolvedPromptUpdate]]]
1186
+ """
1187
+ A collection of prompt updates with a similar structure as
1188
+ [`MultiModalKwargsItems`][vllm.multimodal.inputs.MultiModalKwargsItems].
1189
+ """
1190
+
1191
+ MultiModalPromptUpdatesApplyResult = Mapping[str, list[Optional[int]]]
1192
+ """
1193
+ For an item `MultiModalPromptUpdates[k][i]`,
1194
+ `MultiModalPromptUpdatesApplyResult[k][i]` represents the index of the
1195
+ `ResolvedPromptUpdate` instance that has been applied, or `None` if none of the
1196
+ `ResolvedPromptUpdate` instances have been applied.
1197
+ """
1198
+
1199
+
1200
+ class MultiModalProcessingInfo(NamedTuple):
1201
+ kwargs: MultiModalKwargsOptionalItems
1202
+ hashes: MultiModalHashes
1203
+ prompt_updates: MultiModalPromptUpdates
1204
+
1205
+
1206
+ class BaseMultiModalProcessor(ABC, Generic[_I]):
1207
+ """
1208
+ Abstract base class to process multi-modal inputs to be used in vLLM.
1209
+
1210
+ Not to be confused with `transformers.ProcessorMixin`.
1211
+ """
1212
+
1213
+ def __init__(
1214
+ self,
1215
+ info: _I,
1216
+ dummy_inputs: "BaseDummyInputsBuilder[_I]",
1217
+ *,
1218
+ cache: Optional["BaseMultiModalProcessorCache"] = None,
1219
+ ) -> None:
1220
+ super().__init__()
1221
+
1222
+ self.info = info
1223
+ self.dummy_inputs = dummy_inputs
1224
+ self.cache = cache
1225
+
1226
+ self.data_parser = self._get_data_parser()
1227
+
1228
+ # Avoid unnecessary recomputation
1229
+ self._supported_mm_limits = self.info.get_supported_mm_limits()
1230
+ self._allowed_mm_limits = self.info.get_allowed_mm_limits()
1231
+
1232
+ @property
1233
+ def supported_mm_limits(self):
1234
+ return self._supported_mm_limits
1235
+
1236
+ @property
1237
+ def allowed_mm_limits(self):
1238
+ return self._allowed_mm_limits
1239
+
1240
+ def __call__(
1241
+ self,
1242
+ prompt: str,
1243
+ mm_data: MultiModalDataDict,
1244
+ hf_processor_mm_kwargs: Mapping[str, object],
1245
+ *,
1246
+ mm_uuids: Optional[MultiModalUUIDDict] = None,
1247
+ ) -> MultiModalInputs:
1248
+ return self.apply(prompt,
1249
+ mm_data,
1250
+ hf_processor_mm_kwargs,
1251
+ mm_uuids=mm_uuids)
1252
+
1253
+ def _get_data_parser(self) -> MultiModalDataParser:
1254
+ """
1255
+ Construct a parser to preprocess multi-modal data items
1256
+ before passing them to
1257
+ [`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
1258
+
1259
+ You can support additional modalities by creating a subclass
1260
+ of [`MultiModalDataParser`][vllm.multimodal.parse.MultiModalDataParser]
1261
+ that has additional subparsers.
1262
+ """
1263
+ return MultiModalDataParser()
1264
+
1265
+ def validate_num_items(
1266
+ self,
1267
+ modality: str,
1268
+ num_items: int,
1269
+ ) -> None:
1270
+ supported_limit = self.supported_mm_limits.get(modality, 0)
1271
+ allowed_limit = self.allowed_mm_limits.get(modality, 0)
1272
+
1273
+ if supported_limit is None:
1274
+ supported_limit = allowed_limit
1275
+
1276
+ limit = min(supported_limit, allowed_limit)
1277
+
1278
+ if num_items > limit:
1279
+ msg = (f"At most {limit} {modality}(s) may be provided in "
1280
+ "one prompt.")
1281
+
1282
+ if num_items <= supported_limit:
1283
+ msg += " Set `--limit-mm-per-prompt` to increase this limit."
1284
+
1285
+ raise ValueError(msg)
1286
+
1287
+ def _to_mm_items(
1288
+ self,
1289
+ mm_data: MultiModalDataDict,
1290
+ ) -> MultiModalDataItems:
1291
+ """
1292
+ Normalize
1293
+ [`MultiModalDataDict`][vllm.multimodal.inputs.MultiModalDataDict]
1294
+ to [`MultiModalDataItems`][vllm.multimodal.parse.MultiModalDataItems]
1295
+ before passing them to
1296
+ [`_get_hf_mm_data`][vllm.multimodal.processing.BaseMultiModalProcessor._get_hf_mm_data].
1297
+ """
1298
+ mm_items = self.data_parser.parse_mm_data(mm_data)
1299
+ for modality, items in mm_items.items():
1300
+ self.validate_num_items(modality, len(items))
1301
+
1302
+ return mm_items
1303
+
1304
+ @abstractmethod
1305
+ def _get_mm_fields_config(
1306
+ self,
1307
+ hf_inputs: "BatchFeature",
1308
+ hf_processor_mm_kwargs: Mapping[str, object],
1309
+ ) -> Mapping[str, MultiModalFieldConfig]:
1310
+ """Given the HF-processed data, output the metadata of each field."""
1311
+ raise NotImplementedError
1312
+
1313
+ @abstractmethod
1314
+ def _get_prompt_updates(
1315
+ self,
1316
+ mm_items: MultiModalDataItems,
1317
+ hf_processor_mm_kwargs: Mapping[str, object],
1318
+ out_mm_kwargs: MultiModalKwargsItems,
1319
+ ) -> Sequence[PromptUpdate]:
1320
+ """
1321
+ Given the original multi-modal items for this modality
1322
+ and HF-processed data, output the updates to perform.
1323
+
1324
+ The information returned by this method is used to update token inputs
1325
+ which bypass the HF processor. It is also used to update the output of
1326
+ HF processor if the HF process does not apply prompt updates to text
1327
+ inputs.
1328
+
1329
+ Moreover, this information is critical to determine the token positions
1330
+ in order to construct
1331
+ [`PlaceholderRange`][vllm.multimodal.inputs.PlaceholderRange]
1332
+ for each multi-modal item.
1333
+ """
1334
+ raise NotImplementedError
1335
+
1336
+ def _bind_and_group_updates(
1337
+ self,
1338
+ prompt_updates: Sequence[PromptUpdate],
1339
+ mm_item_counts: Mapping[str, int],
1340
+ ) -> MultiModalPromptUpdates:
1341
+ return {
1342
+ modality: [[update.resolve(item_idx) for update in updates]
1343
+ for item_idx in range(mm_item_counts.get(modality, 0))]
1344
+ for modality, updates in full_groupby_modality(prompt_updates)
1345
+ }
1346
+
1347
+ def _get_mm_prompt_updates(
1348
+ self,
1349
+ mm_items: MultiModalDataItems,
1350
+ hf_processor_mm_kwargs: Mapping[str, object],
1351
+ out_mm_kwargs: MultiModalKwargsItems,
1352
+ ) -> MultiModalPromptUpdates:
1353
+ unbound_prompt_updates = self._get_prompt_updates(
1354
+ mm_items=mm_items,
1355
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1356
+ out_mm_kwargs=out_mm_kwargs,
1357
+ )
1358
+
1359
+ mm_prompt_updates = self._bind_and_group_updates(
1360
+ unbound_prompt_updates,
1361
+ mm_items.get_all_counts(),
1362
+ )
1363
+
1364
+ for modality, prompt_updates in mm_prompt_updates.items():
1365
+ for item_idx, item_prompt_updates in enumerate(prompt_updates):
1366
+ if len(item_prompt_updates) > 1:
1367
+ logger.warning_once(
1368
+ "Detected %d prompt updates for `mm_items[%r][%s]`. "
1369
+ "Multiple prompt updates per item is now "
1370
+ "deprecated and may be removed in v0.13. "
1371
+ "Instead, please specify dynamic update targets "
1372
+ "in the same prompt update definition by passing "
1373
+ "a function to `PromptUpdate.target`.",
1374
+ len(prompt_updates),
1375
+ modality,
1376
+ item_idx,
1377
+ )
1378
+
1379
+ return mm_prompt_updates
1380
+
1381
+ def _find_mm_placeholders(
1382
+ self,
1383
+ new_token_ids: list[int],
1384
+ mm_prompt_updates: MultiModalPromptUpdates,
1385
+ ) -> Mapping[str, list[PlaceholderFeaturesInfo]]:
1386
+ tokenizer = self.info.get_tokenizer()
1387
+
1388
+ return find_mm_placeholders(new_token_ids, mm_prompt_updates,
1389
+ tokenizer)
1390
+
1391
+ def _get_hf_mm_data(
1392
+ self,
1393
+ mm_items: MultiModalDataItems,
1394
+ ) -> tuple[Mapping[str, object], Mapping[str, object]]:
1395
+ processor_data = dict[str, object]()
1396
+ passthrough_data = dict[str, object]()
1397
+
1398
+ for items in mm_items.values():
1399
+ processor_data.update(items.get_processor_data())
1400
+ passthrough_data.update(items.get_passthrough_data())
1401
+
1402
+ return processor_data, passthrough_data
1403
+
1404
+ def _call_hf_processor(
1405
+ self,
1406
+ prompt: str,
1407
+ # Not to be confused with `mm_data` in `self.apply`.
1408
+ # This refers to the data to be passed to HF processor.
1409
+ mm_data: Mapping[str, object],
1410
+ mm_kwargs: Mapping[str, object],
1411
+ tok_kwargs: Mapping[str, object],
1412
+ ) -> "BatchFeature":
1413
+ """
1414
+ Call the HF processor on the prompt text and
1415
+ associated multi-modal data.
1416
+ """
1417
+ return self.info.ctx.call_hf_processor(
1418
+ self.info.get_hf_processor(**mm_kwargs),
1419
+ dict(text=prompt, **mm_data),
1420
+ dict(**mm_kwargs, **tok_kwargs),
1421
+ )
1422
+
1423
+ def _hf_processor_applies_updates(
1424
+ self,
1425
+ prompt_text: str,
1426
+ mm_items: MultiModalDataItems,
1427
+ hf_processor_mm_kwargs: Mapping[str, object],
1428
+ tokenization_kwargs: Mapping[str, object],
1429
+ ) -> bool:
1430
+ """
1431
+ Return whether the HF processor applies prompt updates.
1432
+
1433
+ For most HF processors, this should be `True` when multi-modal
1434
+ data items are passed, but `False` when multi-modal embeddings
1435
+ are passed.
1436
+ """
1437
+ return not any(
1438
+ isinstance(items, (EmbeddingItems, DictEmbeddingItems))
1439
+ for items in mm_items.values())
1440
+
1441
+ def _apply_hf_processor_text_mm(
1442
+ self,
1443
+ prompt_text: str,
1444
+ mm_items: MultiModalDataItems,
1445
+ hf_processor_mm_kwargs: Mapping[str, object],
1446
+ tokenization_kwargs: Mapping[str, object],
1447
+ ) -> tuple[list[int], "BatchFeature", bool]:
1448
+ """
1449
+ Apply the HF processor on the prompt text and multi-modal data
1450
+ together.
1451
+
1452
+ In addition, return whether prompt updates have been applied.
1453
+ """
1454
+ processor_data, passthrough_data = self._get_hf_mm_data(mm_items)
1455
+
1456
+ processed_data = self._call_hf_processor(
1457
+ prompt=prompt_text,
1458
+ mm_data=processor_data,
1459
+ mm_kwargs=hf_processor_mm_kwargs,
1460
+ tok_kwargs=tokenization_kwargs,
1461
+ )
1462
+ processed_data.update(passthrough_data)
1463
+
1464
+ prompt_ids, = processed_data.pop("input_ids").tolist()
1465
+
1466
+ is_update_applied = self._hf_processor_applies_updates(
1467
+ prompt_text=prompt_text,
1468
+ mm_items=mm_items,
1469
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1470
+ tokenization_kwargs=tokenization_kwargs,
1471
+ )
1472
+
1473
+ return prompt_ids, processed_data, is_update_applied
1474
+
1475
+ def _apply_hf_processor_text_only(
1476
+ self,
1477
+ prompt_text: str,
1478
+ tokenization_kwargs: Mapping[str, object],
1479
+ ) -> list[int]:
1480
+ """
1481
+ Apply the HF processor on the prompt text only.
1482
+
1483
+ Since HF processor requires that text and multi-modal items
1484
+ correspond to each other, we create dummy multi-modal items
1485
+ to go along with the text.
1486
+ """
1487
+ prompt_ids, _, _ = self._apply_hf_processor_text_mm(
1488
+ prompt_text=prompt_text,
1489
+ mm_items=MultiModalDataItems({}),
1490
+ hf_processor_mm_kwargs={},
1491
+ tokenization_kwargs=tokenization_kwargs,
1492
+ )
1493
+
1494
+ return prompt_ids
1495
+
1496
+ def _apply_hf_processor_tokens_only(
1497
+ self,
1498
+ prompt_tokens: list[int],
1499
+ ) -> list[int]:
1500
+ """
1501
+ Apply the HF processor on the prompt tokens only.
1502
+
1503
+ Most HF processors accept prompt text but not prompt tokens.
1504
+ If the HF processor adds or removes tokens that are not related to
1505
+ multi-modal data, you should override this method so it is consistent
1506
+ with the output of
1507
+ [`_apply_hf_processor_text_only`][vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_text_only]
1508
+ on the
1509
+ corresponding text.
1510
+ """
1511
+ return prompt_tokens
1512
+
1513
+ def _apply_hf_processor_mm_only(
1514
+ self,
1515
+ mm_items: MultiModalDataItems,
1516
+ hf_processor_mm_kwargs: Mapping[str, object],
1517
+ tokenization_kwargs: Mapping[str, object],
1518
+ ) -> "BatchFeature":
1519
+ """
1520
+ Apply the HF processor on the multi-modal data only.
1521
+
1522
+ Since HF processor requires that text and multi-modal items
1523
+ correspond to each other, we generate dummy text using
1524
+ [`DummyInputsBuilder`][vllm.multimodal.profiling.BaseDummyInputsBuilder]
1525
+ to go along with the multi-modal data.
1526
+ """
1527
+ mm_counts = mm_items.get_all_counts()
1528
+
1529
+ _, mm_processed_data, _ = self._apply_hf_processor_text_mm(
1530
+ prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
1531
+ mm_items=mm_items,
1532
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1533
+ tokenization_kwargs=tokenization_kwargs,
1534
+ )
1535
+
1536
+ return mm_processed_data
1537
+
1538
+ def _apply_hf_processor_main(
1539
+ self,
1540
+ prompt: Union[str, list[int]],
1541
+ mm_items: MultiModalDataItems,
1542
+ hf_processor_mm_kwargs: Mapping[str, object],
1543
+ tokenization_kwargs: Mapping[str, object],
1544
+ *,
1545
+ enable_hf_prompt_update: bool,
1546
+ ) -> tuple[list[int], "BatchFeature", bool]:
1547
+ """
1548
+ Apply the HF processor on the prompt text and multi-modal data.
1549
+
1550
+ In addition, return whether prompt updates have been applied
1551
+ (for most HF processors, this should be `True`).
1552
+
1553
+ Note:
1554
+ If `enable_hf_prompt_update=False`, we use HF processor
1555
+ to perform prompt updates if available; HF processor requires
1556
+ that the prompt corresponds to multi-modal items.
1557
+ """
1558
+ if isinstance(prompt, str):
1559
+ if enable_hf_prompt_update:
1560
+ return self._apply_hf_processor_text_mm(
1561
+ prompt_text=prompt,
1562
+ mm_items=mm_items,
1563
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1564
+ tokenization_kwargs=tokenization_kwargs,
1565
+ )
1566
+
1567
+ prompt_ids = self._apply_hf_processor_text_only(
1568
+ prompt, tokenization_kwargs)
1569
+ else:
1570
+ prompt_ids = self._apply_hf_processor_tokens_only(prompt)
1571
+
1572
+ mm_processed_data = self._apply_hf_processor_mm_only(
1573
+ mm_items=mm_items,
1574
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1575
+ tokenization_kwargs=tokenization_kwargs,
1576
+ )
1577
+
1578
+ return prompt_ids, mm_processed_data, False
1579
+
1580
+ def _hash_mm_items(
1581
+ self,
1582
+ mm_items: MultiModalDataItems,
1583
+ hf_processor_mm_kwargs: Mapping[str, object],
1584
+ tokenization_kwargs: Mapping[str, object],
1585
+ *,
1586
+ mm_uuids: Optional[MultiModalUUIDDict] = None,
1587
+ ) -> MultiModalHashes:
1588
+ """Create MM hashes to be returned.
1589
+
1590
+
1591
+ Note: When overrides are provided via callers of `apply`,
1592
+ `_hash_mm_items` will be bypassed and the overrides will be used.
1593
+ """
1594
+ model_id = self.info.model_id
1595
+
1596
+ hashes: MultiModalHashes = {}
1597
+ mm_uuids = mm_uuids or {}
1598
+
1599
+ for modality, items in mm_items.items():
1600
+ if modality in mm_uuids:
1601
+ mm_uuids_per_modality = mm_uuids[modality]
1602
+ if isinstance(mm_uuids_per_modality, str):
1603
+ mm_uuids_per_modality = [mm_uuids_per_modality]
1604
+
1605
+ # For None entries, compute a hash; otherwise, use provided ID.
1606
+ computed: list[str] = []
1607
+ for i, item in enumerate(items):
1608
+ item_uuid = mm_uuids_per_modality[i]
1609
+
1610
+ # NOTE: Even if a item_uuid is provided, we still compute a
1611
+ # hash if `hf_processor_mm_kwargs` or `tokenization_kwargs`
1612
+ # are provided. This is because the processed multimodal
1613
+ # inputs can be different depending on the processor kwargs.
1614
+ if item_uuid is None or \
1615
+ hf_processor_mm_kwargs or \
1616
+ tokenization_kwargs:
1617
+
1618
+ # NOTE: use provided hash string to hash with kwargs
1619
+ # if available for better performance.
1620
+ item = item_uuid if item_uuid is not None else item
1621
+ computed.append(
1622
+ MultiModalHasher.hash_kwargs(
1623
+ model_id=model_id,
1624
+ **{modality: item},
1625
+ **hf_processor_mm_kwargs,
1626
+ **tokenization_kwargs))
1627
+ else:
1628
+ computed.append(item_uuid)
1629
+ hashes[modality] = computed
1630
+ else:
1631
+ hashes[modality] = [
1632
+ MultiModalHasher.hash_kwargs(model_id=model_id,
1633
+ **{modality: item},
1634
+ **hf_processor_mm_kwargs,
1635
+ **tokenization_kwargs)
1636
+ for item in items
1637
+ ]
1638
+
1639
+ return hashes
1640
+
1641
+ def _get_cache_missing_items(
1642
+ self,
1643
+ cache: "BaseMultiModalProcessorCache",
1644
+ mm_data_items: MultiModalDataItems,
1645
+ mm_hashes: MultiModalHashes,
1646
+ ) -> MultiModalDataItems:
1647
+ mm_is_cached = {
1648
+ modality: cache.is_cached(hashes)
1649
+ for modality, hashes in mm_hashes.items()
1650
+ }
1651
+
1652
+ mm_missing_idxs = {
1653
+ modality: [
1654
+ idx for idx, item_is_cached in enumerate(items_is_cached)
1655
+ if not item_is_cached
1656
+ ]
1657
+ for modality, items_is_cached in mm_is_cached.items()
1658
+ }
1659
+ mm_missing_data = {}
1660
+ for modality, idxs in mm_missing_idxs.items():
1661
+ missing_modality_data = []
1662
+ for idx in idxs:
1663
+ data = mm_data_items[modality][idx]
1664
+ if data is None:
1665
+ raise ValueError(
1666
+ f"Cache miss for {modality} at index {idx} "
1667
+ f"but data is not provided.")
1668
+ else:
1669
+ missing_modality_data.append(data)
1670
+ mm_missing_data[modality] = missing_modality_data
1671
+
1672
+ return self._to_mm_items(mm_missing_data)
1673
+
1674
+ def _recompute_cached_prompt_update(
1675
+ self,
1676
+ cached_update: ResolvedPromptUpdate,
1677
+ new_item_idx: int,
1678
+ ) -> ResolvedPromptUpdate:
1679
+ """
1680
+ Override this if other attributes of `ResolvedPromptUpdate`
1681
+ also need to be recomputed after retrieving from the cache.
1682
+ """
1683
+ return replace(cached_update, item_idx=new_item_idx)
1684
+
1685
+ def _merge_mm_kwargs(
1686
+ self,
1687
+ cache: "BaseMultiModalProcessorCache",
1688
+ mm_hashes: MultiModalHashes,
1689
+ mm_missing_kwargs: MultiModalKwargsItems,
1690
+ mm_missing_prompt_updates: MultiModalPromptUpdates,
1691
+ ) -> tuple[MultiModalKwargsOptionalItems, MultiModalPromptUpdates]:
1692
+ # Need to calculate this at the beginning to avoid skipping cache logic
1693
+ # for subsequently repeated items in the same modality
1694
+ mm_is_cached = {
1695
+ modality: cache.is_cached(hashes)
1696
+ for modality, hashes in mm_hashes.items()
1697
+ }
1698
+
1699
+ mm_missing_next_idx = defaultdict[str, int](lambda: 0)
1700
+
1701
+ merged_kwargs = defaultdict[str,
1702
+ list[Optional[MultiModalKwargsItem]]](list)
1703
+ merged_prompt_updates = defaultdict[
1704
+ str, list[Sequence[ResolvedPromptUpdate]]](list)
1705
+ for modality, hashes in mm_hashes.items():
1706
+ missing_kwargs = mm_missing_kwargs.get(modality, [])
1707
+ missing_prompt_updates = mm_missing_prompt_updates.get(
1708
+ modality, [])
1709
+
1710
+ for item_idx, item_hash in enumerate(hashes):
1711
+ kwargs: Optional[MultiModalKwargsItem]
1712
+ if not mm_is_cached[modality][item_idx]:
1713
+ missing_next_idx = mm_missing_next_idx[modality]
1714
+ kwargs = missing_kwargs[missing_next_idx]
1715
+ updates = missing_prompt_updates[missing_next_idx]
1716
+
1717
+ mm_missing_next_idx[modality] += 1
1718
+
1719
+ item = kwargs, updates
1720
+ else:
1721
+ item = None
1722
+
1723
+ kwargs, updates = cache.get_and_update_item(item, item_hash)
1724
+
1725
+ merged_kwargs[modality].append(kwargs)
1726
+ merged_prompt_updates[modality].append([
1727
+ self._recompute_cached_prompt_update(update, item_idx)
1728
+ for update in updates
1729
+ ])
1730
+
1731
+ mm_kwargs = MultiModalKwargsItems(merged_kwargs)
1732
+ mm_prompt_updates = dict(merged_prompt_updates)
1733
+
1734
+ return mm_kwargs, mm_prompt_updates
1735
+
1736
+ def _apply_hf_processor(
1737
+ self,
1738
+ prompt: Union[str, list[int]],
1739
+ mm_data_items: MultiModalDataItems,
1740
+ hf_processor_mm_kwargs: Mapping[str, object],
1741
+ tokenization_kwargs: Mapping[str, object],
1742
+ *,
1743
+ mm_uuids: Optional[MultiModalUUIDDict] = None,
1744
+ ) -> tuple[list[int], MultiModalProcessingInfo, bool]:
1745
+ (
1746
+ prompt_ids,
1747
+ mm_processed_data,
1748
+ is_update_applied,
1749
+ ) = self._apply_hf_processor_main(
1750
+ prompt=prompt,
1751
+ mm_items=mm_data_items,
1752
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1753
+ tokenization_kwargs=tokenization_kwargs,
1754
+ enable_hf_prompt_update=True,
1755
+ )
1756
+
1757
+ mm_kwargs = MultiModalKwargsItems.from_hf_inputs(
1758
+ mm_processed_data,
1759
+ self._get_mm_fields_config(mm_processed_data,
1760
+ hf_processor_mm_kwargs),
1761
+ )
1762
+
1763
+ # Use overrides if provided; fallback to data-dependent hashing.
1764
+ mm_hashes = self._hash_mm_items(mm_data_items,
1765
+ hf_processor_mm_kwargs,
1766
+ tokenization_kwargs,
1767
+ mm_uuids=mm_uuids)
1768
+
1769
+ mm_prompt_updates = self._get_mm_prompt_updates(
1770
+ mm_data_items,
1771
+ hf_processor_mm_kwargs,
1772
+ mm_kwargs,
1773
+ )
1774
+
1775
+ mm_info = MultiModalProcessingInfo(
1776
+ kwargs=mm_kwargs,
1777
+ hashes=mm_hashes,
1778
+ prompt_updates=mm_prompt_updates,
1779
+ )
1780
+
1781
+ return prompt_ids, mm_info, is_update_applied
1782
+
1783
+ def _cached_apply_hf_processor(
1784
+ self,
1785
+ prompt: Union[str, list[int]],
1786
+ mm_data_items: MultiModalDataItems,
1787
+ hf_processor_mm_kwargs: Mapping[str, object],
1788
+ tokenization_kwargs: Mapping[str, object],
1789
+ *,
1790
+ mm_uuids: Optional[MultiModalUUIDDict] = None,
1791
+ ) -> tuple[list[int], MultiModalProcessingInfo, bool]:
1792
+ """
1793
+ Apply the HF processor on the full prompt text,
1794
+ caching the results and reusing cached results.
1795
+ """
1796
+ cache = self.cache
1797
+
1798
+ _, passthrough_data = self._get_hf_mm_data(mm_data_items)
1799
+ if cache is None or passthrough_data:
1800
+ return self._apply_hf_processor(
1801
+ prompt=prompt,
1802
+ mm_data_items=mm_data_items,
1803
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1804
+ tokenization_kwargs=tokenization_kwargs,
1805
+ mm_uuids=mm_uuids,
1806
+ )
1807
+
1808
+ mm_hashes = self._hash_mm_items(mm_data_items,
1809
+ hf_processor_mm_kwargs,
1810
+ tokenization_kwargs,
1811
+ mm_uuids=mm_uuids)
1812
+
1813
+ mm_missing_data_items = self._get_cache_missing_items(
1814
+ cache=cache,
1815
+ mm_data_items=mm_data_items,
1816
+ mm_hashes=mm_hashes,
1817
+ )
1818
+
1819
+ # NOTE: `prompt` does not correspond to `mm_missing_data_items`,
1820
+ # so we can't apply prompt updates until the new multimodal
1821
+ # items are combined with the cached multimodal items
1822
+ (
1823
+ prompt_ids,
1824
+ mm_missing_processed_data,
1825
+ is_update_applied,
1826
+ ) = self._apply_hf_processor_main(
1827
+ prompt=prompt,
1828
+ mm_items=mm_missing_data_items,
1829
+ hf_processor_mm_kwargs=hf_processor_mm_kwargs,
1830
+ tokenization_kwargs=tokenization_kwargs,
1831
+ enable_hf_prompt_update=False,
1832
+ )
1833
+
1834
+ mm_missing_kwargs = MultiModalKwargsItems.from_hf_inputs(
1835
+ mm_missing_processed_data,
1836
+ self._get_mm_fields_config(mm_missing_processed_data,
1837
+ hf_processor_mm_kwargs),
1838
+ )
1839
+
1840
+ mm_missing_prompt_updates = self._get_mm_prompt_updates(
1841
+ mm_missing_data_items,
1842
+ hf_processor_mm_kwargs,
1843
+ mm_missing_kwargs,
1844
+ )
1845
+
1846
+ mm_kwargs, mm_prompt_updates = self._merge_mm_kwargs(
1847
+ cache,
1848
+ mm_hashes=mm_hashes,
1849
+ mm_missing_kwargs=mm_missing_kwargs,
1850
+ mm_missing_prompt_updates=mm_missing_prompt_updates,
1851
+ )
1852
+
1853
+ mm_info = MultiModalProcessingInfo(
1854
+ kwargs=mm_kwargs,
1855
+ hashes=mm_hashes,
1856
+ prompt_updates=mm_prompt_updates,
1857
+ )
1858
+
1859
+ return prompt_ids, mm_info, is_update_applied
1860
+
1861
+ def _apply_token_matches(
1862
+ self,
1863
+ prompt: list[int],
1864
+ mm_prompt_updates: MultiModalPromptUpdates,
1865
+ ) -> tuple[list[int], MultiModalPromptUpdatesApplyResult]:
1866
+ tokenizer = self.info.get_tokenizer()
1867
+ return apply_token_matches(prompt, mm_prompt_updates, tokenizer)
1868
+
1869
+ def _apply_text_matches(
1870
+ self,
1871
+ prompt: str,
1872
+ mm_prompt_updates: MultiModalPromptUpdates,
1873
+ ) -> tuple[str, MultiModalPromptUpdatesApplyResult]:
1874
+ tokenizer = self.info.get_tokenizer()
1875
+ return apply_text_matches(prompt, mm_prompt_updates, tokenizer)
1876
+
1877
+ def _apply_prompt_updates(
1878
+ self,
1879
+ token_ids: list[int],
1880
+ mm_prompt_updates: MultiModalPromptUpdates,
1881
+ ) -> tuple[list[int], str, Mapping[str, list[PlaceholderFeaturesInfo]]]:
1882
+ tokenizer = self.info.get_tokenizer()
1883
+
1884
+ new_token_ids, match_result = self._apply_token_matches(
1885
+ token_ids,
1886
+ mm_prompt_updates,
1887
+ )
1888
+
1889
+ # If the search text does not represent a special token,
1890
+ # it may have different token IDs in the prompt, because
1891
+ # the tokens may go across the boundaries of the search text.
1892
+ # ----
1893
+ # e.g. when searching for "foo" in "food", if "food" itself makes
1894
+ # up a token, then the token ID of "foo" will not appear at all
1895
+ # ----
1896
+ # Since it is inefficient to search for all possible tokenizations
1897
+ # of the search text in the prompt, we instead perform string-based
1898
+ # updates on the decoded token IDs, then encode them back.
1899
+ if all(
1900
+ all(update_idx is not None for update_idx in update_idxs)
1901
+ for update_idxs in match_result.values()):
1902
+ new_text = decode_tokens(tokenizer, new_token_ids)
1903
+ else:
1904
+ new_text, match_result = self._apply_text_matches(
1905
+ decode_tokens(tokenizer, token_ids),
1906
+ mm_prompt_updates,
1907
+ )
1908
+
1909
+ new_token_ids = encode_tokens(
1910
+ tokenizer,
1911
+ new_text,
1912
+ add_special_tokens=False,
1913
+ )
1914
+
1915
+ matched_updates = defaultdict[
1916
+ str, list[Sequence[ResolvedPromptUpdate]]](list)
1917
+ for modality, update_idxs in match_result.items():
1918
+ for item_idx, update_idx in enumerate(update_idxs):
1919
+ assert update_idx is not None, (
1920
+ "Failed to apply prompt replacement for "
1921
+ f"mm_items[{modality!r}][{item_idx}]")
1922
+
1923
+ matched_updates[modality].append(
1924
+ [mm_prompt_updates[modality][item_idx][update_idx]])
1925
+
1926
+ placeholders = self._find_mm_placeholders(
1927
+ new_token_ids,
1928
+ dict(matched_updates),
1929
+ )
1930
+
1931
+ return new_token_ids, new_text, placeholders
1932
+
1933
+ def _validate_mm_kwargs(
1934
+ self,
1935
+ mm_kwargs: MultiModalKwargsOptionalItems,
1936
+ mm_item_counts: Mapping[str, int],
1937
+ ) -> None:
1938
+ for modality, item_count in mm_item_counts.items():
1939
+ items = mm_kwargs.get(modality, [])
1940
+
1941
+ if len(items) != item_count:
1942
+ raise RuntimeError(
1943
+ f"Expected there to be {item_count} {modality} items in "
1944
+ f"keyword arguments corresponding to {item_count} "
1945
+ f"{modality} data items, but only found {len(items)}! "
1946
+ "There is likely a problem with your "
1947
+ "implementation of merged multi-modal processor for this "
1948
+ "model (usually arising from an inconsistency between "
1949
+ "`_call_hf_processor` and `_get_mm_fields_config`).")
1950
+
1951
+ def _validate_mm_placeholders(
1952
+ self,
1953
+ mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
1954
+ mm_item_counts: Mapping[str, int],
1955
+ ) -> None:
1956
+ for modality, item_count in mm_item_counts.items():
1957
+ placeholders = mm_placeholders.get(modality, [])
1958
+
1959
+ if len(placeholders) != item_count:
1960
+ # NOTE: If you are a model developer, this can also arise from
1961
+ # an inconsistency between `_call_hf_processor` and
1962
+ # `_get_mm_fields_config` implementations
1963
+ raise RuntimeError(
1964
+ f"Expected there to be {item_count} prompt updates "
1965
+ f"corresponding to {item_count} {modality} items, but "
1966
+ f"instead found {len(placeholders)} prompt updates! "
1967
+ "This is likely because you forgot to include input "
1968
+ "placeholder tokens (e.g., `<image>`, `<|image_pad|>`) "
1969
+ "in the prompt. If the model has a chat template, make "
1970
+ "sure you have applied it before calling `LLM.generate`.")
1971
+
1972
+ def _maybe_apply_prompt_updates(
1973
+ self,
1974
+ mm_items: MultiModalDataItems,
1975
+ prompt_ids: list[int],
1976
+ mm_kwargs: MultiModalKwargsOptionalItems,
1977
+ mm_prompt_updates: MultiModalPromptUpdates,
1978
+ is_update_applied: bool,
1979
+ ) -> tuple[list[int], str, Mapping[str, list[PlaceholderFeaturesInfo]]]:
1980
+ mm_item_counts = mm_items.get_all_counts()
1981
+ self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
1982
+
1983
+ if is_update_applied:
1984
+ mm_placeholders = self._find_mm_placeholders(
1985
+ prompt_ids,
1986
+ mm_prompt_updates,
1987
+ )
1988
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
1989
+
1990
+ tokenizer = self.info.get_tokenizer()
1991
+ prompt = decode_tokens(tokenizer, prompt_ids)
1992
+ else:
1993
+ (
1994
+ prompt_ids,
1995
+ prompt,
1996
+ mm_placeholders,
1997
+ ) = self._apply_prompt_updates(
1998
+ prompt_ids,
1999
+ mm_prompt_updates,
2000
+ )
2001
+ self._validate_mm_placeholders(mm_placeholders, mm_item_counts)
2002
+
2003
+ return prompt_ids, prompt, mm_placeholders
2004
+
2005
+ def apply(
2006
+ self,
2007
+ prompt: Union[str, list[int]],
2008
+ mm_data: MultiModalDataDict,
2009
+ hf_processor_mm_kwargs: Mapping[str, object],
2010
+ tokenization_kwargs: Optional[Mapping[str, object]] = None,
2011
+ *,
2012
+ mm_uuids: Optional[MultiModalUUIDDict] = None,
2013
+ ) -> MultiModalInputs:
2014
+ """
2015
+ Process multi-modal inputs to be used in vLLM.
2016
+
2017
+ The main steps are:
2018
+
2019
+ 1. Apply HF Processor on prompt text and multi-modal data together,
2020
+ outputting token IDs and processed tensors.
2021
+ 2. Find and update sequences in the token IDs with placeholder tokens.
2022
+ The number of placeholder tokens equals the feature size of the
2023
+ multi-modal data outputted by the multi-modal encoder.
2024
+ 3. Extract information about the placeholder tokens from the
2025
+ processed token IDs.
2026
+ """
2027
+ mm_items = self._to_mm_items(mm_data)
2028
+
2029
+ if tokenization_kwargs is None:
2030
+ tokenization_kwargs = {}
2031
+
2032
+ (
2033
+ prompt_ids,
2034
+ mm_info,
2035
+ is_update_applied,
2036
+ ) = self._cached_apply_hf_processor(
2037
+ prompt,
2038
+ mm_items,
2039
+ hf_processor_mm_kwargs,
2040
+ tokenization_kwargs=tokenization_kwargs,
2041
+ mm_uuids=mm_uuids,
2042
+ )
2043
+
2044
+ # NOTE: tokenization_kwargs are not required to init processor
2045
+ prompt_ids, prompt, mm_placeholders = self._maybe_apply_prompt_updates(
2046
+ mm_items=mm_items,
2047
+ prompt_ids=prompt_ids,
2048
+ mm_kwargs=mm_info.kwargs,
2049
+ mm_prompt_updates=mm_info.prompt_updates,
2050
+ is_update_applied=is_update_applied,
2051
+ )
2052
+
2053
+ mm_placeholder_ranges = {
2054
+ modality: [item.to_range() for item in placeholders]
2055
+ for modality, placeholders in mm_placeholders.items()
2056
+ }
2057
+
2058
+ return MultiModalInputs(
2059
+ type="multimodal",
2060
+ prompt=prompt,
2061
+ prompt_token_ids=prompt_ids,
2062
+ mm_kwargs=mm_info.kwargs,
2063
+ mm_hashes=mm_info.hashes,
2064
+ mm_placeholders=mm_placeholder_ranges,
2065
+ )
2066
+
2067
+
2068
+ class EncDecMultiModalProcessor(BaseMultiModalProcessor[_I]):
2069
+
2070
+ @abstractmethod
2071
+ def create_encoder_prompt(
2072
+ self,
2073
+ prompt: Union[str, list[int]],
2074
+ mm_data: MultiModalDataDict,
2075
+ ) -> Union[str, list[int]]:
2076
+ """
2077
+ Create input prompt for the encoder. HF processor will be applied on
2078
+ this prompt during profiling and generation.
2079
+ """
2080
+ raise NotImplementedError
2081
+
2082
+ @property
2083
+ def pad_dummy_encoder_prompt(self) -> bool:
2084
+ return False
2085
+
2086
+ def create_decoder_prompt(
2087
+ self,
2088
+ prompt: Union[str, list[int]],
2089
+ mm_data: MultiModalDataDict,
2090
+ ) -> Union[str, list[int]]:
2091
+ """Create input prompt for the decoder."""
2092
+ return prompt
2093
+
2094
+ def _get_enc_dec_inputs(
2095
+ self,
2096
+ prompt: Union[str, list[int]],
2097
+ mm_data: MultiModalDataDict,
2098
+ encoder_inputs: MultiModalInputs,
2099
+ ):
2100
+ tokenizer = self.info.get_tokenizer()
2101
+ decoder_prompt_raw = self.create_decoder_prompt(prompt, mm_data)
2102
+ if isinstance(decoder_prompt_raw, str):
2103
+ decoder_prompt = decoder_prompt_raw
2104
+ decoder_prompt_ids = encode_tokens(tokenizer,
2105
+ decoder_prompt_raw,
2106
+ add_special_tokens=False)
2107
+ else:
2108
+ decoder_prompt = decode_tokens(tokenizer, decoder_prompt_raw)
2109
+ decoder_prompt_ids = decoder_prompt_raw
2110
+
2111
+ mm_inputs = MultiModalEncDecInputs(
2112
+ encoder_prompt=encoder_inputs["prompt"],
2113
+ encoder_prompt_token_ids=encoder_inputs["prompt_token_ids"],
2114
+ **encoder_inputs)
2115
+ mm_inputs["prompt"] = decoder_prompt
2116
+ mm_inputs["prompt_token_ids"] = decoder_prompt_ids
2117
+ return mm_inputs
2118
+
2119
+ def apply(
2120
+ self,
2121
+ prompt: Union[str, list[int]],
2122
+ mm_data: MultiModalDataDict,
2123
+ hf_processor_mm_kwargs: Mapping[str, object],
2124
+ tokenization_kwargs: Optional[Mapping[str, object]] = None,
2125
+ *,
2126
+ mm_uuids: Optional[MultiModalUUIDDict] = None,
2127
+ ) -> MultiModalEncDecInputs:
2128
+ """
2129
+ Process multi-modal inputs to be used in vLLM.
2130
+ The main processing steps are modified to fit encoder-decoder model:
2131
+ 1. Create encoder prompt from input prompt text.
2132
+ 2. Apply the HF processor on encoder prompt.
2133
+ 3. Copy the input prompt text as decoder prompt inputs.
2134
+ """
2135
+ encoder_prompt = self.create_encoder_prompt(prompt, mm_data)
2136
+ encoder_inputs = super().apply(
2137
+ encoder_prompt,
2138
+ mm_data,
2139
+ hf_processor_mm_kwargs,
2140
+ tokenization_kwargs,
2141
+ mm_uuids=mm_uuids,
2142
+ )
2143
+
2144
+ return self._get_enc_dec_inputs(
2145
+ prompt=prompt,
2146
+ mm_data=mm_data,
2147
+ encoder_inputs=encoder_inputs,
2148
+ )