vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1398) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2044 -0
  5. vllm/_ipex_ops.py +393 -0
  6. vllm/_version.py +34 -0
  7. vllm/assets/__init__.py +0 -0
  8. vllm/assets/audio.py +45 -0
  9. vllm/assets/base.py +41 -0
  10. vllm/assets/image.py +50 -0
  11. vllm/assets/video.py +145 -0
  12. vllm/attention/__init__.py +15 -0
  13. vllm/attention/backends/__init__.py +0 -0
  14. vllm/attention/backends/abstract.py +204 -0
  15. vllm/attention/backends/utils.py +33 -0
  16. vllm/attention/layer.py +645 -0
  17. vllm/attention/layers/__init__.py +0 -0
  18. vllm/attention/layers/chunked_local_attention.py +93 -0
  19. vllm/attention/layers/cross_attention.py +162 -0
  20. vllm/attention/layers/encoder_only_attention.py +86 -0
  21. vllm/attention/ops/__init__.py +0 -0
  22. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  23. vllm/attention/ops/common.py +345 -0
  24. vllm/attention/ops/flashmla.py +192 -0
  25. vllm/attention/ops/merge_attn_states.py +43 -0
  26. vllm/attention/ops/paged_attn.py +262 -0
  27. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  28. vllm/attention/ops/prefix_prefill.py +928 -0
  29. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  30. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  31. vllm/attention/ops/triton_decode_attention.py +691 -0
  32. vllm/attention/ops/triton_flash_attention.py +984 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
  35. vllm/attention/ops/triton_unified_attention.py +894 -0
  36. vllm/attention/selector.py +245 -0
  37. vllm/attention/utils/__init__.py +0 -0
  38. vllm/attention/utils/fa_utils.py +85 -0
  39. vllm/attention/utils/kv_sharing_utils.py +33 -0
  40. vllm/beam_search.py +87 -0
  41. vllm/benchmarks/__init__.py +0 -0
  42. vllm/benchmarks/datasets.py +2723 -0
  43. vllm/benchmarks/latency.py +170 -0
  44. vllm/benchmarks/lib/__init__.py +3 -0
  45. vllm/benchmarks/lib/endpoint_request_func.py +533 -0
  46. vllm/benchmarks/lib/ready_checker.py +73 -0
  47. vllm/benchmarks/lib/utils.py +80 -0
  48. vllm/benchmarks/serve.py +1358 -0
  49. vllm/benchmarks/throughput.py +696 -0
  50. vllm/collect_env.py +823 -0
  51. vllm/compilation/__init__.py +0 -0
  52. vllm/compilation/activation_quant_fusion.py +189 -0
  53. vllm/compilation/backends.py +650 -0
  54. vllm/compilation/base_static_graph.py +56 -0
  55. vllm/compilation/collective_fusion.py +1188 -0
  56. vllm/compilation/compiler_interface.py +573 -0
  57. vllm/compilation/counter.py +47 -0
  58. vllm/compilation/cuda_graph.py +199 -0
  59. vllm/compilation/cuda_piecewise_backend.py +117 -0
  60. vllm/compilation/decorators.py +400 -0
  61. vllm/compilation/fix_functionalization.py +205 -0
  62. vllm/compilation/fusion.py +383 -0
  63. vllm/compilation/fusion_attn.py +295 -0
  64. vllm/compilation/fx_utils.py +84 -0
  65. vllm/compilation/inductor_pass.py +136 -0
  66. vllm/compilation/monitor.py +57 -0
  67. vllm/compilation/noop_elimination.py +158 -0
  68. vllm/compilation/pass_manager.py +125 -0
  69. vllm/compilation/post_cleanup.py +20 -0
  70. vllm/compilation/sequence_parallelism.py +478 -0
  71. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  72. vllm/compilation/vllm_inductor_pass.py +156 -0
  73. vllm/compilation/wrapper.py +136 -0
  74. vllm/config/__init__.py +814 -0
  75. vllm/config/cache.py +220 -0
  76. vllm/config/compilation.py +673 -0
  77. vllm/config/device.py +74 -0
  78. vllm/config/kv_events.py +50 -0
  79. vllm/config/kv_transfer.py +111 -0
  80. vllm/config/load.py +113 -0
  81. vllm/config/lora.py +132 -0
  82. vllm/config/model.py +1912 -0
  83. vllm/config/multimodal.py +129 -0
  84. vllm/config/observability.py +99 -0
  85. vllm/config/parallel.py +524 -0
  86. vllm/config/pooler.py +97 -0
  87. vllm/config/scheduler.py +287 -0
  88. vllm/config/speculative.py +568 -0
  89. vllm/config/speech_to_text.py +39 -0
  90. vllm/config/structured_outputs.py +64 -0
  91. vllm/config/utils.py +145 -0
  92. vllm/connections.py +186 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +311 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +41 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +440 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +295 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +323 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
  106. vllm/distributed/device_communicators/pynccl.py +340 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +589 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +635 -0
  113. vllm/distributed/device_communicators/symm_mem.py +136 -0
  114. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  115. vllm/distributed/device_communicators/xpu_communicator.py +94 -0
  116. vllm/distributed/eplb/__init__.py +8 -0
  117. vllm/distributed/eplb/eplb_state.py +620 -0
  118. vllm/distributed/eplb/rebalance_algo.py +239 -0
  119. vllm/distributed/eplb/rebalance_execute.py +424 -0
  120. vllm/distributed/kv_events.py +362 -0
  121. vllm/distributed/kv_transfer/README.md +29 -0
  122. vllm/distributed/kv_transfer/__init__.py +13 -0
  123. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  124. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  125. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  126. vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
  132. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
  133. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
  134. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
  135. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
  140. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  141. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  142. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  144. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  145. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  146. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  147. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  148. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  149. vllm/distributed/parallel_state.py +1532 -0
  150. vllm/distributed/tpu_distributed_utils.py +178 -0
  151. vllm/distributed/utils.py +536 -0
  152. vllm/engine/__init__.py +0 -0
  153. vllm/engine/arg_utils.py +1778 -0
  154. vllm/engine/async_llm_engine.py +6 -0
  155. vllm/engine/llm_engine.py +6 -0
  156. vllm/engine/metrics.py +577 -0
  157. vllm/engine/metrics_types.py +84 -0
  158. vllm/engine/protocol.py +333 -0
  159. vllm/entrypoints/__init__.py +0 -0
  160. vllm/entrypoints/api_server.py +178 -0
  161. vllm/entrypoints/chat_utils.py +1705 -0
  162. vllm/entrypoints/cli/__init__.py +12 -0
  163. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  164. vllm/entrypoints/cli/benchmark/base.py +25 -0
  165. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  166. vllm/entrypoints/cli/benchmark/main.py +55 -0
  167. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  168. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  169. vllm/entrypoints/cli/collect_env.py +36 -0
  170. vllm/entrypoints/cli/main.py +60 -0
  171. vllm/entrypoints/cli/openai.py +233 -0
  172. vllm/entrypoints/cli/run_batch.py +67 -0
  173. vllm/entrypoints/cli/serve.py +232 -0
  174. vllm/entrypoints/cli/types.py +29 -0
  175. vllm/entrypoints/constants.py +10 -0
  176. vllm/entrypoints/context.py +481 -0
  177. vllm/entrypoints/harmony_utils.py +436 -0
  178. vllm/entrypoints/launcher.py +164 -0
  179. vllm/entrypoints/llm.py +1629 -0
  180. vllm/entrypoints/logger.py +79 -0
  181. vllm/entrypoints/openai/__init__.py +0 -0
  182. vllm/entrypoints/openai/api_server.py +1953 -0
  183. vllm/entrypoints/openai/cli_args.py +288 -0
  184. vllm/entrypoints/openai/logits_processors.py +90 -0
  185. vllm/entrypoints/openai/protocol.py +2757 -0
  186. vllm/entrypoints/openai/run_batch.py +491 -0
  187. vllm/entrypoints/openai/serving_chat.py +1597 -0
  188. vllm/entrypoints/openai/serving_classification.py +173 -0
  189. vllm/entrypoints/openai/serving_completion.py +692 -0
  190. vllm/entrypoints/openai/serving_embedding.py +631 -0
  191. vllm/entrypoints/openai/serving_engine.py +992 -0
  192. vllm/entrypoints/openai/serving_models.py +288 -0
  193. vllm/entrypoints/openai/serving_pooling.py +276 -0
  194. vllm/entrypoints/openai/serving_responses.py +1709 -0
  195. vllm/entrypoints/openai/serving_score.py +479 -0
  196. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  197. vllm/entrypoints/openai/serving_transcription.py +136 -0
  198. vllm/entrypoints/openai/speech_to_text.py +388 -0
  199. vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
  200. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  201. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  202. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  203. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  204. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  205. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  206. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
  207. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  208. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  209. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  210. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  211. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  212. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  213. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
  214. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  216. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
  217. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  218. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  219. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  220. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
  221. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  222. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  223. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  224. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  225. vllm/entrypoints/renderer.py +395 -0
  226. vllm/entrypoints/score_utils.py +232 -0
  227. vllm/entrypoints/ssl.py +75 -0
  228. vllm/entrypoints/tool.py +139 -0
  229. vllm/entrypoints/tool_server.py +206 -0
  230. vllm/entrypoints/utils.py +233 -0
  231. vllm/env_override.py +23 -0
  232. vllm/envs.py +1590 -0
  233. vllm/executor/__init__.py +0 -0
  234. vllm/executor/executor_base.py +381 -0
  235. vllm/executor/msgspec_utils.py +35 -0
  236. vllm/executor/ray_distributed_executor.py +699 -0
  237. vllm/executor/ray_utils.py +410 -0
  238. vllm/executor/uniproc_executor.py +176 -0
  239. vllm/forward_context.py +402 -0
  240. vllm/inputs/__init__.py +30 -0
  241. vllm/inputs/data.py +356 -0
  242. vllm/inputs/parse.py +151 -0
  243. vllm/inputs/preprocess.py +664 -0
  244. vllm/logger.py +229 -0
  245. vllm/logging_utils/__init__.py +10 -0
  246. vllm/logging_utils/dump_input.py +81 -0
  247. vllm/logging_utils/formatter.py +79 -0
  248. vllm/logging_utils/log_time.py +32 -0
  249. vllm/logits_process.py +119 -0
  250. vllm/logprobs.py +28 -0
  251. vllm/lora/__init__.py +0 -0
  252. vllm/lora/layers/__init__.py +34 -0
  253. vllm/lora/layers/base.py +69 -0
  254. vllm/lora/layers/base_linear.py +185 -0
  255. vllm/lora/layers/column_parallel_linear.py +609 -0
  256. vllm/lora/layers/logits_processor.py +247 -0
  257. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  258. vllm/lora/layers/replicated_linear.py +60 -0
  259. vllm/lora/layers/row_parallel_linear.py +196 -0
  260. vllm/lora/layers/utils.py +65 -0
  261. vllm/lora/layers/vocal_parallel_embedding.py +174 -0
  262. vllm/lora/lora_weights.py +199 -0
  263. vllm/lora/models.py +816 -0
  264. vllm/lora/ops/__init__.py +0 -0
  265. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  266. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  267. vllm/lora/ops/torch_ops/__init__.py +16 -0
  268. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  269. vllm/lora/ops/triton_ops/__init__.py +12 -0
  270. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  271. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  272. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  273. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  274. vllm/lora/ops/triton_ops/utils.py +126 -0
  275. vllm/lora/ops/xla_ops/__init__.py +7 -0
  276. vllm/lora/ops/xla_ops/lora_ops.py +144 -0
  277. vllm/lora/peft_helper.py +127 -0
  278. vllm/lora/punica_wrapper/__init__.py +10 -0
  279. vllm/lora/punica_wrapper/punica_base.py +458 -0
  280. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  281. vllm/lora/punica_wrapper/punica_gpu.py +272 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  284. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  285. vllm/lora/punica_wrapper/utils.py +136 -0
  286. vllm/lora/request.py +97 -0
  287. vllm/lora/resolver.py +85 -0
  288. vllm/lora/utils.py +246 -0
  289. vllm/lora/worker_manager.py +267 -0
  290. vllm/model_executor/__init__.py +12 -0
  291. vllm/model_executor/custom_op.py +194 -0
  292. vllm/model_executor/layers/__init__.py +0 -0
  293. vllm/model_executor/layers/activation.py +575 -0
  294. vllm/model_executor/layers/attention_layer_base.py +23 -0
  295. vllm/model_executor/layers/fla/__init__.py +8 -0
  296. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  297. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  298. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  299. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  300. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  301. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  302. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  303. vllm/model_executor/layers/fla/ops/index.py +39 -0
  304. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  305. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  306. vllm/model_executor/layers/fla/ops/op.py +39 -0
  307. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  308. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  309. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  310. vllm/model_executor/layers/fused_moe/__init__.py +89 -0
  311. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
  312. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
  313. vllm/model_executor/layers/fused_moe/config.py +804 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  545. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
  546. vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
  547. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
  548. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  549. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
  550. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
  551. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
  552. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
  553. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
  554. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
  555. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
  556. vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
  557. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
  558. vllm/model_executor/layers/fused_moe/layer.py +2195 -0
  559. vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
  560. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  561. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  562. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  563. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  564. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
  565. vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
  566. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
  567. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  568. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  569. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
  570. vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
  571. vllm/model_executor/layers/fused_moe/utils.py +274 -0
  572. vllm/model_executor/layers/layernorm.py +395 -0
  573. vllm/model_executor/layers/lightning_attn.py +661 -0
  574. vllm/model_executor/layers/linear.py +1603 -0
  575. vllm/model_executor/layers/logits_processor.py +106 -0
  576. vllm/model_executor/layers/mamba/__init__.py +0 -0
  577. vllm/model_executor/layers/mamba/abstract.py +42 -0
  578. vllm/model_executor/layers/mamba/linear_attn.py +403 -0
  579. vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
  580. vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
  581. vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
  582. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  583. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
  584. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  585. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  586. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
  587. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
  588. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
  589. vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
  590. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
  591. vllm/model_executor/layers/mamba/short_conv.py +253 -0
  592. vllm/model_executor/layers/mla.py +173 -0
  593. vllm/model_executor/layers/pooler.py +719 -0
  594. vllm/model_executor/layers/quantization/__init__.py +157 -0
  595. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  596. vllm/model_executor/layers/quantization/awq.py +228 -0
  597. vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
  598. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  599. vllm/model_executor/layers/quantization/base_config.py +170 -0
  600. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  601. vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
  602. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  603. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
  604. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
  605. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  606. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  607. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  608. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  609. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  610. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
  611. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  612. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  613. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  614. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
  615. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  616. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  625. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  626. vllm/model_executor/layers/quantization/experts_int8.py +223 -0
  627. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  628. vllm/model_executor/layers/quantization/fp8.py +1098 -0
  629. vllm/model_executor/layers/quantization/gguf.py +599 -0
  630. vllm/model_executor/layers/quantization/gptq.py +340 -0
  631. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  632. vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
  633. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  634. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  635. vllm/model_executor/layers/quantization/inc.py +61 -0
  636. vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
  637. vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
  638. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  639. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  640. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  641. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  642. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  643. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  644. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  645. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  646. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  647. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  648. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  649. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  650. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  651. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
  652. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  653. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  654. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  655. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  656. vllm/model_executor/layers/quantization/kv_cache.py +143 -0
  657. vllm/model_executor/layers/quantization/modelopt.py +1596 -0
  658. vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
  659. vllm/model_executor/layers/quantization/mxfp4.py +988 -0
  660. vllm/model_executor/layers/quantization/petit.py +306 -0
  661. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  662. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  663. vllm/model_executor/layers/quantization/quark/quark.py +432 -0
  664. vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
  665. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  666. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  667. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
  668. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  669. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  670. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  671. vllm/model_executor/layers/quantization/rtn.py +466 -0
  672. vllm/model_executor/layers/quantization/schema.py +86 -0
  673. vllm/model_executor/layers/quantization/torchao.py +214 -0
  674. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  675. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  676. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  677. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  889. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
  890. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
  891. vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
  892. vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
  893. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  894. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  895. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  896. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  897. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  898. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  899. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  900. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  901. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
  902. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  903. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  904. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  905. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  906. vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
  907. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  908. vllm/model_executor/layers/resampler.py +270 -0
  909. vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
  910. vllm/model_executor/layers/rotary_embedding/base.py +177 -0
  911. vllm/model_executor/layers/rotary_embedding/common.py +150 -0
  912. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
  913. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  914. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  915. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  916. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  917. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  918. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  919. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  920. vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
  921. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  922. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  923. vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
  924. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  925. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  926. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  927. vllm/model_executor/layers/utils.py +195 -0
  928. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  929. vllm/model_executor/model_loader/__init__.py +138 -0
  930. vllm/model_executor/model_loader/base_loader.py +52 -0
  931. vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
  932. vllm/model_executor/model_loader/default_loader.py +277 -0
  933. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  934. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  935. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  936. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  937. vllm/model_executor/model_loader/tensorizer.py +738 -0
  938. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  939. vllm/model_executor/model_loader/tpu.py +114 -0
  940. vllm/model_executor/model_loader/utils.py +292 -0
  941. vllm/model_executor/model_loader/weight_utils.py +990 -0
  942. vllm/model_executor/models/__init__.py +33 -0
  943. vllm/model_executor/models/adapters.py +542 -0
  944. vllm/model_executor/models/aimv2.py +246 -0
  945. vllm/model_executor/models/apertus.py +579 -0
  946. vllm/model_executor/models/arcee.py +422 -0
  947. vllm/model_executor/models/arctic.py +558 -0
  948. vllm/model_executor/models/aria.py +650 -0
  949. vllm/model_executor/models/aya_vision.py +468 -0
  950. vllm/model_executor/models/baichuan.py +474 -0
  951. vllm/model_executor/models/bailing_moe.py +642 -0
  952. vllm/model_executor/models/bamba.py +514 -0
  953. vllm/model_executor/models/bert.py +665 -0
  954. vllm/model_executor/models/bert_with_rope.py +687 -0
  955. vllm/model_executor/models/blip.py +339 -0
  956. vllm/model_executor/models/blip2.py +712 -0
  957. vllm/model_executor/models/bloom.py +374 -0
  958. vllm/model_executor/models/chameleon.py +1139 -0
  959. vllm/model_executor/models/chatglm.py +476 -0
  960. vllm/model_executor/models/clip.py +407 -0
  961. vllm/model_executor/models/cohere2_vision.py +481 -0
  962. vllm/model_executor/models/commandr.py +465 -0
  963. vllm/model_executor/models/config.py +445 -0
  964. vllm/model_executor/models/dbrx.py +471 -0
  965. vllm/model_executor/models/deepseek.py +497 -0
  966. vllm/model_executor/models/deepseek_eagle.py +240 -0
  967. vllm/model_executor/models/deepseek_mtp.py +289 -0
  968. vllm/model_executor/models/deepseek_v2.py +1444 -0
  969. vllm/model_executor/models/deepseek_vl2.py +658 -0
  970. vllm/model_executor/models/dots1.py +546 -0
  971. vllm/model_executor/models/dots_ocr.py +873 -0
  972. vllm/model_executor/models/ernie45.py +43 -0
  973. vllm/model_executor/models/ernie45_moe.py +607 -0
  974. vllm/model_executor/models/ernie45_vl.py +1527 -0
  975. vllm/model_executor/models/ernie45_vl_moe.py +727 -0
  976. vllm/model_executor/models/ernie_mtp.py +268 -0
  977. vllm/model_executor/models/exaone.py +550 -0
  978. vllm/model_executor/models/exaone4.py +533 -0
  979. vllm/model_executor/models/fairseq2_llama.py +154 -0
  980. vllm/model_executor/models/falcon.py +509 -0
  981. vllm/model_executor/models/falcon_h1.py +674 -0
  982. vllm/model_executor/models/fuyu.py +399 -0
  983. vllm/model_executor/models/gemma.py +425 -0
  984. vllm/model_executor/models/gemma2.py +422 -0
  985. vllm/model_executor/models/gemma3.py +555 -0
  986. vllm/model_executor/models/gemma3_mm.py +721 -0
  987. vllm/model_executor/models/gemma3n.py +1113 -0
  988. vllm/model_executor/models/gemma3n_mm.py +761 -0
  989. vllm/model_executor/models/glm.py +23 -0
  990. vllm/model_executor/models/glm4.py +304 -0
  991. vllm/model_executor/models/glm4_1v.py +1690 -0
  992. vllm/model_executor/models/glm4_moe.py +727 -0
  993. vllm/model_executor/models/glm4_moe_mtp.py +301 -0
  994. vllm/model_executor/models/glm4v.py +654 -0
  995. vllm/model_executor/models/gpt2.py +380 -0
  996. vllm/model_executor/models/gpt_bigcode.py +344 -0
  997. vllm/model_executor/models/gpt_j.py +339 -0
  998. vllm/model_executor/models/gpt_neox.py +330 -0
  999. vllm/model_executor/models/gpt_oss.py +712 -0
  1000. vllm/model_executor/models/granite.py +489 -0
  1001. vllm/model_executor/models/granite_speech.py +794 -0
  1002. vllm/model_executor/models/granitemoe.py +550 -0
  1003. vllm/model_executor/models/granitemoehybrid.py +614 -0
  1004. vllm/model_executor/models/granitemoeshared.py +332 -0
  1005. vllm/model_executor/models/gritlm.py +262 -0
  1006. vllm/model_executor/models/grok1.py +547 -0
  1007. vllm/model_executor/models/h2ovl.py +536 -0
  1008. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1009. vllm/model_executor/models/hyperclovax_vision.py +1192 -0
  1010. vllm/model_executor/models/idefics2_vision_model.py +417 -0
  1011. vllm/model_executor/models/idefics3.py +756 -0
  1012. vllm/model_executor/models/interfaces.py +959 -0
  1013. vllm/model_executor/models/interfaces_base.py +192 -0
  1014. vllm/model_executor/models/intern_vit.py +441 -0
  1015. vllm/model_executor/models/internlm2.py +450 -0
  1016. vllm/model_executor/models/internlm2_ve.py +148 -0
  1017. vllm/model_executor/models/interns1.py +838 -0
  1018. vllm/model_executor/models/interns1_vit.py +418 -0
  1019. vllm/model_executor/models/internvl.py +1423 -0
  1020. vllm/model_executor/models/jais.py +373 -0
  1021. vllm/model_executor/models/jamba.py +591 -0
  1022. vllm/model_executor/models/jina_vl.py +144 -0
  1023. vllm/model_executor/models/keye.py +1680 -0
  1024. vllm/model_executor/models/keye_vl1_5.py +602 -0
  1025. vllm/model_executor/models/kimi_vl.py +618 -0
  1026. vllm/model_executor/models/lfm2.py +548 -0
  1027. vllm/model_executor/models/llama.py +669 -0
  1028. vllm/model_executor/models/llama4.py +746 -0
  1029. vllm/model_executor/models/llama4_eagle.py +239 -0
  1030. vllm/model_executor/models/llama_eagle.py +179 -0
  1031. vllm/model_executor/models/llama_eagle3.py +296 -0
  1032. vllm/model_executor/models/llava.py +870 -0
  1033. vllm/model_executor/models/llava_next.py +571 -0
  1034. vllm/model_executor/models/llava_next_video.py +476 -0
  1035. vllm/model_executor/models/llava_onevision.py +942 -0
  1036. vllm/model_executor/models/longcat_flash.py +715 -0
  1037. vllm/model_executor/models/longcat_flash_mtp.py +352 -0
  1038. vllm/model_executor/models/mamba.py +275 -0
  1039. vllm/model_executor/models/mamba2.py +291 -0
  1040. vllm/model_executor/models/medusa.py +169 -0
  1041. vllm/model_executor/models/midashenglm.py +792 -0
  1042. vllm/model_executor/models/mimo.py +188 -0
  1043. vllm/model_executor/models/mimo_mtp.py +280 -0
  1044. vllm/model_executor/models/minicpm.py +631 -0
  1045. vllm/model_executor/models/minicpm3.py +230 -0
  1046. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1047. vllm/model_executor/models/minicpmo.py +770 -0
  1048. vllm/model_executor/models/minicpmv.py +1784 -0
  1049. vllm/model_executor/models/minimax_text_01.py +986 -0
  1050. vllm/model_executor/models/minimax_vl_01.py +426 -0
  1051. vllm/model_executor/models/mistral3.py +628 -0
  1052. vllm/model_executor/models/mixtral.py +606 -0
  1053. vllm/model_executor/models/mllama4.py +1076 -0
  1054. vllm/model_executor/models/mlp_speculator.py +206 -0
  1055. vllm/model_executor/models/modernbert.py +374 -0
  1056. vllm/model_executor/models/module_mapping.py +72 -0
  1057. vllm/model_executor/models/molmo.py +1567 -0
  1058. vllm/model_executor/models/moonvit.py +673 -0
  1059. vllm/model_executor/models/motif.py +345 -0
  1060. vllm/model_executor/models/mpt.py +329 -0
  1061. vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
  1062. vllm/model_executor/models/nemotron.py +507 -0
  1063. vllm/model_executor/models/nemotron_h.py +565 -0
  1064. vllm/model_executor/models/nemotron_nas.py +481 -0
  1065. vllm/model_executor/models/nemotron_vl.py +652 -0
  1066. vllm/model_executor/models/nvlm_d.py +203 -0
  1067. vllm/model_executor/models/olmo.py +404 -0
  1068. vllm/model_executor/models/olmo2.py +439 -0
  1069. vllm/model_executor/models/olmoe.py +483 -0
  1070. vllm/model_executor/models/opt.py +412 -0
  1071. vllm/model_executor/models/orion.py +348 -0
  1072. vllm/model_executor/models/ovis.py +559 -0
  1073. vllm/model_executor/models/ovis2_5.py +642 -0
  1074. vllm/model_executor/models/paligemma.py +411 -0
  1075. vllm/model_executor/models/persimmon.py +343 -0
  1076. vllm/model_executor/models/phi.py +356 -0
  1077. vllm/model_executor/models/phi3.py +19 -0
  1078. vllm/model_executor/models/phi3v.py +698 -0
  1079. vllm/model_executor/models/phi4_multimodal.py +1475 -0
  1080. vllm/model_executor/models/phi4mm.py +1279 -0
  1081. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1082. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1083. vllm/model_executor/models/phimoe.py +679 -0
  1084. vllm/model_executor/models/pixtral.py +1345 -0
  1085. vllm/model_executor/models/plamo2.py +978 -0
  1086. vllm/model_executor/models/qwen.py +361 -0
  1087. vllm/model_executor/models/qwen2.py +523 -0
  1088. vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
  1089. vllm/model_executor/models/qwen2_5_vl.py +1481 -0
  1090. vllm/model_executor/models/qwen2_audio.py +489 -0
  1091. vllm/model_executor/models/qwen2_moe.py +558 -0
  1092. vllm/model_executor/models/qwen2_rm.py +122 -0
  1093. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1094. vllm/model_executor/models/qwen3.py +341 -0
  1095. vllm/model_executor/models/qwen3_moe.py +692 -0
  1096. vllm/model_executor/models/qwen3_next.py +1266 -0
  1097. vllm/model_executor/models/qwen3_next_mtp.py +281 -0
  1098. vllm/model_executor/models/qwen3_vl.py +1613 -0
  1099. vllm/model_executor/models/qwen3_vl_moe.py +358 -0
  1100. vllm/model_executor/models/qwen_vl.py +795 -0
  1101. vllm/model_executor/models/radio.py +576 -0
  1102. vllm/model_executor/models/registry.py +990 -0
  1103. vllm/model_executor/models/roberta.py +252 -0
  1104. vllm/model_executor/models/rvl.py +103 -0
  1105. vllm/model_executor/models/seed_oss.py +485 -0
  1106. vllm/model_executor/models/siglip.py +540 -0
  1107. vllm/model_executor/models/siglip2navit.py +689 -0
  1108. vllm/model_executor/models/skyworkr1v.py +911 -0
  1109. vllm/model_executor/models/smolvlm.py +44 -0
  1110. vllm/model_executor/models/solar.py +504 -0
  1111. vllm/model_executor/models/stablelm.py +341 -0
  1112. vllm/model_executor/models/starcoder2.py +354 -0
  1113. vllm/model_executor/models/step3_text.py +510 -0
  1114. vllm/model_executor/models/step3_vl.py +1072 -0
  1115. vllm/model_executor/models/swin.py +475 -0
  1116. vllm/model_executor/models/tarsier.py +639 -0
  1117. vllm/model_executor/models/telechat2.py +151 -0
  1118. vllm/model_executor/models/teleflm.py +79 -0
  1119. vllm/model_executor/models/terratorch.py +294 -0
  1120. vllm/model_executor/models/transformers.py +948 -0
  1121. vllm/model_executor/models/ultravox.py +654 -0
  1122. vllm/model_executor/models/utils.py +808 -0
  1123. vllm/model_executor/models/vision.py +404 -0
  1124. vllm/model_executor/models/voxtral.py +786 -0
  1125. vllm/model_executor/models/whisper.py +963 -0
  1126. vllm/model_executor/models/zamba2.py +960 -0
  1127. vllm/model_executor/parameter.py +620 -0
  1128. vllm/model_executor/utils.py +86 -0
  1129. vllm/model_executor/warmup/__init__.py +0 -0
  1130. vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
  1131. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1132. vllm/multimodal/__init__.py +33 -0
  1133. vllm/multimodal/audio.py +116 -0
  1134. vllm/multimodal/base.py +27 -0
  1135. vllm/multimodal/cache.py +697 -0
  1136. vllm/multimodal/evs.py +273 -0
  1137. vllm/multimodal/hasher.py +102 -0
  1138. vllm/multimodal/image.py +130 -0
  1139. vllm/multimodal/inputs.py +987 -0
  1140. vllm/multimodal/parse.py +511 -0
  1141. vllm/multimodal/processing.py +2148 -0
  1142. vllm/multimodal/profiling.py +284 -0
  1143. vllm/multimodal/registry.py +345 -0
  1144. vllm/multimodal/utils.py +503 -0
  1145. vllm/multimodal/video.py +319 -0
  1146. vllm/outputs.py +324 -0
  1147. vllm/platforms/__init__.py +263 -0
  1148. vllm/platforms/cpu.py +340 -0
  1149. vllm/platforms/cuda.py +668 -0
  1150. vllm/platforms/interface.py +620 -0
  1151. vllm/platforms/rocm.py +497 -0
  1152. vllm/platforms/tpu.py +233 -0
  1153. vllm/platforms/xpu.py +243 -0
  1154. vllm/plugins/__init__.py +72 -0
  1155. vllm/plugins/io_processors/__init__.py +68 -0
  1156. vllm/plugins/io_processors/interface.py +67 -0
  1157. vllm/plugins/lora_resolvers/README.md +16 -0
  1158. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1159. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1160. vllm/pooling_params.py +191 -0
  1161. vllm/profiler/__init__.py +0 -0
  1162. vllm/profiler/layerwise_profile.py +375 -0
  1163. vllm/profiler/utils.py +148 -0
  1164. vllm/py.typed +2 -0
  1165. vllm/ray/__init__.py +0 -0
  1166. vllm/ray/lazy_utils.py +22 -0
  1167. vllm/ray/ray_env.py +72 -0
  1168. vllm/reasoning/__init__.py +29 -0
  1169. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1170. vllm/reasoning/basic_parsers.py +156 -0
  1171. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1172. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1173. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1174. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1175. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1176. vllm/reasoning/mistral_reasoning_parser.py +56 -0
  1177. vllm/reasoning/qwen3_reasoning_parser.py +72 -0
  1178. vllm/reasoning/seedoss_reasoning_parser.py +28 -0
  1179. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1180. vllm/sampling_params.py +593 -0
  1181. vllm/scalar_type.py +349 -0
  1182. vllm/scripts.py +15 -0
  1183. vllm/sequence.py +103 -0
  1184. vllm/tasks.py +11 -0
  1185. vllm/test_utils.py +129 -0
  1186. vllm/third_party/__init__.py +0 -0
  1187. vllm/third_party/pynvml.py +6140 -0
  1188. vllm/tracing.py +136 -0
  1189. vllm/transformers_utils/__init__.py +24 -0
  1190. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1191. vllm/transformers_utils/chat_templates/registry.py +70 -0
  1192. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1193. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1194. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1195. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1196. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1197. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1198. vllm/transformers_utils/config.py +1102 -0
  1199. vllm/transformers_utils/config_parser_base.py +20 -0
  1200. vllm/transformers_utils/configs/__init__.py +63 -0
  1201. vllm/transformers_utils/configs/arctic.py +207 -0
  1202. vllm/transformers_utils/configs/chatglm.py +72 -0
  1203. vllm/transformers_utils/configs/deepseek_v3.py +101 -0
  1204. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1205. vllm/transformers_utils/configs/dotsocr.py +69 -0
  1206. vllm/transformers_utils/configs/eagle.py +84 -0
  1207. vllm/transformers_utils/configs/falcon.py +90 -0
  1208. vllm/transformers_utils/configs/jais.py +237 -0
  1209. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1210. vllm/transformers_utils/configs/medusa.py +63 -0
  1211. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1212. vllm/transformers_utils/configs/mistral.py +165 -0
  1213. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1214. vllm/transformers_utils/configs/moonvit.py +33 -0
  1215. vllm/transformers_utils/configs/nemotron.py +205 -0
  1216. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1217. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1218. vllm/transformers_utils/configs/olmo3.py +80 -0
  1219. vllm/transformers_utils/configs/ovis.py +176 -0
  1220. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1221. vllm/transformers_utils/configs/radio.py +91 -0
  1222. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1223. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1224. vllm/transformers_utils/configs/speculators/base.py +111 -0
  1225. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1226. vllm/transformers_utils/configs/ultravox.py +116 -0
  1227. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1228. vllm/transformers_utils/dynamic_module.py +60 -0
  1229. vllm/transformers_utils/processor.py +299 -0
  1230. vllm/transformers_utils/processors/__init__.py +16 -0
  1231. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1232. vllm/transformers_utils/processors/ovis.py +420 -0
  1233. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1234. vllm/transformers_utils/runai_utils.py +104 -0
  1235. vllm/transformers_utils/s3_utils.py +93 -0
  1236. vllm/transformers_utils/tokenizer.py +292 -0
  1237. vllm/transformers_utils/tokenizer_base.py +154 -0
  1238. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1239. vllm/transformers_utils/tokenizers/mistral.py +521 -0
  1240. vllm/transformers_utils/utils.py +108 -0
  1241. vllm/triton_utils/__init__.py +16 -0
  1242. vllm/triton_utils/importing.py +96 -0
  1243. vllm/usage/__init__.py +0 -0
  1244. vllm/usage/usage_lib.py +259 -0
  1245. vllm/utils/__init__.py +3566 -0
  1246. vllm/utils/deep_gemm.py +319 -0
  1247. vllm/utils/flashinfer.py +443 -0
  1248. vllm/utils/jsontree.py +178 -0
  1249. vllm/utils/tensor_schema.py +235 -0
  1250. vllm/v1/__init__.py +0 -0
  1251. vllm/v1/attention/__init__.py +0 -0
  1252. vllm/v1/attention/backends/__init__.py +0 -0
  1253. vllm/v1/attention/backends/cpu_attn.py +919 -0
  1254. vllm/v1/attention/backends/flash_attn.py +795 -0
  1255. vllm/v1/attention/backends/flashinfer.py +1181 -0
  1256. vllm/v1/attention/backends/flex_attention.py +861 -0
  1257. vllm/v1/attention/backends/gdn_attn.py +332 -0
  1258. vllm/v1/attention/backends/linear_attn.py +67 -0
  1259. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1260. vllm/v1/attention/backends/mamba2_attn.py +232 -0
  1261. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1262. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1263. vllm/v1/attention/backends/mla/common.py +1783 -0
  1264. vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
  1265. vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
  1266. vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
  1267. vllm/v1/attention/backends/mla/flashmla.py +203 -0
  1268. vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
  1269. vllm/v1/attention/backends/mla/indexer.py +342 -0
  1270. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1271. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1272. vllm/v1/attention/backends/pallas.py +409 -0
  1273. vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
  1274. vllm/v1/attention/backends/rocm_attn.py +426 -0
  1275. vllm/v1/attention/backends/short_conv_attn.py +94 -0
  1276. vllm/v1/attention/backends/tree_attn.py +451 -0
  1277. vllm/v1/attention/backends/triton_attn.py +361 -0
  1278. vllm/v1/attention/backends/utils.py +990 -0
  1279. vllm/v1/attention/backends/xformers.py +438 -0
  1280. vllm/v1/core/__init__.py +0 -0
  1281. vllm/v1/core/block_pool.py +416 -0
  1282. vllm/v1/core/encoder_cache_manager.py +333 -0
  1283. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1284. vllm/v1/core/kv_cache_manager.py +399 -0
  1285. vllm/v1/core/kv_cache_utils.py +1291 -0
  1286. vllm/v1/core/sched/__init__.py +0 -0
  1287. vllm/v1/core/sched/async_scheduler.py +47 -0
  1288. vllm/v1/core/sched/interface.py +158 -0
  1289. vllm/v1/core/sched/output.py +166 -0
  1290. vllm/v1/core/sched/request_queue.py +224 -0
  1291. vllm/v1/core/sched/scheduler.py +1296 -0
  1292. vllm/v1/core/sched/utils.py +69 -0
  1293. vllm/v1/core/single_type_kv_cache_manager.py +671 -0
  1294. vllm/v1/cudagraph_dispatcher.py +125 -0
  1295. vllm/v1/engine/__init__.py +203 -0
  1296. vllm/v1/engine/async_llm.py +742 -0
  1297. vllm/v1/engine/coordinator.py +357 -0
  1298. vllm/v1/engine/core.py +1235 -0
  1299. vllm/v1/engine/core_client.py +1334 -0
  1300. vllm/v1/engine/detokenizer.py +349 -0
  1301. vllm/v1/engine/exceptions.py +17 -0
  1302. vllm/v1/engine/llm_engine.py +370 -0
  1303. vllm/v1/engine/logprobs.py +201 -0
  1304. vllm/v1/engine/output_processor.py +576 -0
  1305. vllm/v1/engine/parallel_sampling.py +133 -0
  1306. vllm/v1/engine/processor.py +545 -0
  1307. vllm/v1/engine/utils.py +860 -0
  1308. vllm/v1/executor/__init__.py +0 -0
  1309. vllm/v1/executor/abstract.py +137 -0
  1310. vllm/v1/executor/multiproc_executor.py +726 -0
  1311. vllm/v1/executor/ray_distributed_executor.py +108 -0
  1312. vllm/v1/executor/utils.py +23 -0
  1313. vllm/v1/kv_cache_interface.py +375 -0
  1314. vllm/v1/kv_offload/__init__.py +0 -0
  1315. vllm/v1/kv_offload/abstract.py +165 -0
  1316. vllm/v1/kv_offload/backend.py +96 -0
  1317. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1318. vllm/v1/kv_offload/backends/cpu.py +61 -0
  1319. vllm/v1/kv_offload/cpu.py +75 -0
  1320. vllm/v1/kv_offload/factory.py +56 -0
  1321. vllm/v1/kv_offload/lru_manager.py +132 -0
  1322. vllm/v1/kv_offload/mediums.py +39 -0
  1323. vllm/v1/kv_offload/spec.py +61 -0
  1324. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1325. vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
  1326. vllm/v1/kv_offload/worker/worker.py +142 -0
  1327. vllm/v1/metrics/__init__.py +0 -0
  1328. vllm/v1/metrics/loggers.py +741 -0
  1329. vllm/v1/metrics/prometheus.py +82 -0
  1330. vllm/v1/metrics/ray_wrappers.py +152 -0
  1331. vllm/v1/metrics/reader.py +246 -0
  1332. vllm/v1/metrics/stats.py +257 -0
  1333. vllm/v1/outputs.py +161 -0
  1334. vllm/v1/pool/__init__.py +0 -0
  1335. vllm/v1/pool/metadata.py +77 -0
  1336. vllm/v1/request.py +241 -0
  1337. vllm/v1/sample/__init__.py +0 -0
  1338. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1339. vllm/v1/sample/logits_processor/builtin.py +275 -0
  1340. vllm/v1/sample/logits_processor/interface.py +97 -0
  1341. vllm/v1/sample/logits_processor/state.py +161 -0
  1342. vllm/v1/sample/metadata.py +43 -0
  1343. vllm/v1/sample/ops/__init__.py +0 -0
  1344. vllm/v1/sample/ops/bad_words.py +39 -0
  1345. vllm/v1/sample/ops/logprobs.py +26 -0
  1346. vllm/v1/sample/ops/penalties.py +43 -0
  1347. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1348. vllm/v1/sample/rejection_sampler.py +623 -0
  1349. vllm/v1/sample/sampler.py +285 -0
  1350. vllm/v1/sample/tpu/__init__.py +0 -0
  1351. vllm/v1/sample/tpu/metadata.py +124 -0
  1352. vllm/v1/sample/tpu/sampler.py +213 -0
  1353. vllm/v1/serial_utils.py +423 -0
  1354. vllm/v1/spec_decode/__init__.py +0 -0
  1355. vllm/v1/spec_decode/eagle.py +1011 -0
  1356. vllm/v1/spec_decode/medusa.py +66 -0
  1357. vllm/v1/spec_decode/metadata.py +62 -0
  1358. vllm/v1/spec_decode/metrics.py +211 -0
  1359. vllm/v1/spec_decode/ngram_proposer.py +276 -0
  1360. vllm/v1/spec_decode/utils.py +14 -0
  1361. vllm/v1/structured_output/__init__.py +295 -0
  1362. vllm/v1/structured_output/backend_guidance.py +245 -0
  1363. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1364. vllm/v1/structured_output/backend_outlines.py +320 -0
  1365. vllm/v1/structured_output/backend_types.py +134 -0
  1366. vllm/v1/structured_output/backend_xgrammar.py +327 -0
  1367. vllm/v1/structured_output/request.py +86 -0
  1368. vllm/v1/structured_output/utils.py +454 -0
  1369. vllm/v1/utils.py +396 -0
  1370. vllm/v1/worker/__init__.py +0 -0
  1371. vllm/v1/worker/block_table.py +210 -0
  1372. vllm/v1/worker/cpu_model_runner.py +175 -0
  1373. vllm/v1/worker/cpu_worker.py +156 -0
  1374. vllm/v1/worker/gpu_input_batch.py +863 -0
  1375. vllm/v1/worker/gpu_model_runner.py +4160 -0
  1376. vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
  1377. vllm/v1/worker/gpu_worker.py +710 -0
  1378. vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
  1379. vllm/v1/worker/lora_model_runner_mixin.py +183 -0
  1380. vllm/v1/worker/tpu_input_batch.py +587 -0
  1381. vllm/v1/worker/tpu_model_runner.py +1946 -0
  1382. vllm/v1/worker/tpu_worker.py +346 -0
  1383. vllm/v1/worker/ubatch_splitting.py +192 -0
  1384. vllm/v1/worker/ubatch_utils.py +27 -0
  1385. vllm/v1/worker/ubatching.py +224 -0
  1386. vllm/v1/worker/utils.py +344 -0
  1387. vllm/v1/worker/worker_base.py +65 -0
  1388. vllm/v1/worker/xpu_model_runner.py +57 -0
  1389. vllm/v1/worker/xpu_worker.py +179 -0
  1390. vllm/version.py +41 -0
  1391. vllm/vllm_flash_attn/.gitkeep +0 -0
  1392. vllm/worker/__init__.py +0 -0
  1393. vllm/worker/worker_base.py +279 -0
  1394. vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
  1395. vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
  1396. vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
  1397. vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
  1398. vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1613 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Copyright 2025 The vLLM team.
5
+ # Copyright 2025 The Qwen Team.
6
+ # Copyright 2025 The HuggingFace Inc. team.
7
+ # All rights reserved.
8
+ #
9
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
10
+ # and OPT implementations in this library. It has been modified from its
11
+ # original forms to accommodate minor architectural differences compared
12
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
13
+ #
14
+ # Licensed under the Apache License, Version 2.0 (the "License");
15
+ # you may not use this file except in compliance with the License.
16
+ # You may obtain a copy of the License at
17
+ #
18
+ # http://www.apache.org/licenses/LICENSE-2.0
19
+ #
20
+ # Unless required by applicable law or agreed to in writing, software
21
+ # distributed under the License is distributed on an "AS IS" BASIS,
22
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
23
+ # See the License for the specific language governing permissions and
24
+ # limitations under the License.
25
+ """Inference-only Qwen3VL model compatible with HuggingFace weights."""
26
+ from collections.abc import Iterable, Mapping, Sequence
27
+ from functools import partial
28
+ from typing import Any, Callable, Optional, Union
29
+
30
+ import numpy as np
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.nn.functional as F
34
+ from transformers import BatchFeature
35
+ from transformers.models.qwen2_vl import Qwen2VLImageProcessorFast
36
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import (
37
+ smart_resize as image_smart_resize)
38
+ from transformers.models.qwen3_vl import (Qwen3VLProcessor,
39
+ Qwen3VLVideoProcessor)
40
+ from transformers.models.qwen3_vl.configuration_qwen3_vl import (
41
+ Qwen3VLConfig, Qwen3VLVisionConfig)
42
+ from transformers.models.qwen3_vl.video_processing_qwen3_vl import (
43
+ smart_resize as video_smart_resize)
44
+ from transformers.video_utils import VideoMetadata
45
+
46
+ from vllm.attention.layer import check_upstream_fa_availability
47
+ from vllm.compilation.decorators import support_torch_compile
48
+ from vllm.config import VllmConfig
49
+ from vllm.distributed import get_pp_group
50
+ from vllm.logger import init_logger
51
+ from vllm.model_executor.layers.activation import _ACTIVATION_REGISTRY
52
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
53
+ RowParallelLinear)
54
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
55
+ from vllm.model_executor.layers.quantization import QuantizationConfig
56
+ from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
57
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
58
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
59
+ from vllm.multimodal import MULTIMODAL_REGISTRY
60
+ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
61
+ MultiModalKwargsItem,
62
+ MultiModalKwargsItems, VideoItem)
63
+ from vllm.multimodal.parse import (ImageSize, MultiModalDataItems,
64
+ MultiModalDataParser)
65
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
66
+ PromptReplacement, PromptUpdate,
67
+ PromptUpdateDetails)
68
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
69
+ from vllm.platforms import _Backend
70
+ from vllm.sequence import IntermediateTensors
71
+ from vllm.transformers_utils.config import uses_mrope
72
+ from vllm.utils import is_list_of
73
+
74
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
75
+ SupportsMultiModal, SupportsPP)
76
+ from .qwen2_5_vl import (Qwen2_5_VisionAttention,
77
+ Qwen2_5_VisionRotaryEmbedding,
78
+ Qwen2_5_VLImageEmbeddingInputs, Qwen2_5_VLImageInputs,
79
+ Qwen2_5_VLImagePixelInputs,
80
+ Qwen2_5_VLVideoEmbeddingInputs, Qwen2_5_VLVideoInputs,
81
+ Qwen2_5_VLVideoPixelInputs)
82
+ from .qwen2_vl import Qwen2VLProcessingInfo
83
+ from .qwen3 import Qwen3ForCausalLM, Qwen3Model
84
+ from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper,
85
+ maybe_prefix, merge_multimodal_embeddings)
86
+ from .vision import get_vit_attn_backend, run_dp_sharded_mrope_vision_model
87
+
88
+ logger = init_logger(__name__)
89
+
90
+ # Official recommended max pixels is 24576 * 32 * 32
91
+ _MAX_FRAMES_PER_VIDEO = 24576
92
+
93
+
94
+ class Qwen3_VisionPatchEmbed(nn.Module):
95
+
96
+ def __init__(
97
+ self,
98
+ patch_size: int = 14,
99
+ temporal_patch_size: int = 2,
100
+ in_channels: int = 3,
101
+ hidden_size: int = 1152,
102
+ ) -> None:
103
+ super().__init__()
104
+ self.patch_size = patch_size
105
+ self.temporal_patch_size = temporal_patch_size
106
+ self.hidden_size = hidden_size
107
+
108
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
109
+ self.proj = nn.Conv3d(in_channels,
110
+ hidden_size,
111
+ kernel_size=kernel_size,
112
+ stride=kernel_size,
113
+ bias=True)
114
+
115
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
116
+ L, C = x.shape
117
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
118
+ self.patch_size)
119
+ x = self.proj(x).view(L, self.hidden_size)
120
+ return x
121
+
122
+
123
+ class Qwen3_VisionMLP(nn.Module):
124
+
125
+ def __init__(self,
126
+ in_features: int,
127
+ hidden_features: int,
128
+ bias: bool = False,
129
+ act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
130
+ quant_config: Optional[QuantizationConfig] = None,
131
+ prefix: str = "",
132
+ use_data_parallel: bool = False):
133
+ super().__init__()
134
+ self.linear_fc1 = ColumnParallelLinear(in_features,
135
+ hidden_features,
136
+ bias=bias,
137
+ quant_config=quant_config,
138
+ return_bias=False,
139
+ prefix=f"{prefix}.linear_fc1",
140
+ disable_tp=use_data_parallel)
141
+ self.linear_fc2 = RowParallelLinear(hidden_features,
142
+ in_features,
143
+ bias=bias,
144
+ quant_config=quant_config,
145
+ return_bias=False,
146
+ prefix=f"{prefix}.linear_fc2",
147
+ disable_tp=use_data_parallel)
148
+ self.act_fn = act_fn
149
+
150
+ def forward(self, x: torch.Tensor):
151
+ mlp_output = self.linear_fc2(self.act_fn(self.linear_fc1(x)))
152
+ return mlp_output
153
+
154
+
155
+ class Qwen3_VisionBlock(nn.Module):
156
+
157
+ def __init__(
158
+ self,
159
+ dim: int,
160
+ num_heads: int,
161
+ mlp_hidden_dim: int,
162
+ act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
163
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
164
+ quant_config: Optional[QuantizationConfig] = None,
165
+ prefix: str = "",
166
+ use_data_parallel: bool = False,
167
+ attn_backend: _Backend = _Backend.TORCH_SDPA,
168
+ use_upstream_fa: bool = False,
169
+ ) -> None:
170
+ super().__init__()
171
+ if norm_layer is None:
172
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
173
+ self.norm1 = norm_layer(dim)
174
+ self.norm2 = norm_layer(dim)
175
+ self.attn = Qwen2_5_VisionAttention(
176
+ embed_dim=dim,
177
+ num_heads=num_heads,
178
+ projection_size=dim,
179
+ quant_config=quant_config,
180
+ prefix=f"{prefix}.attn",
181
+ use_data_parallel=use_data_parallel,
182
+ attn_backend=attn_backend,
183
+ use_upstream_fa=use_upstream_fa)
184
+ self.mlp = Qwen3_VisionMLP(dim,
185
+ mlp_hidden_dim,
186
+ act_fn=act_fn,
187
+ bias=True,
188
+ quant_config=quant_config,
189
+ prefix=f"{prefix}.mlp",
190
+ use_data_parallel=use_data_parallel)
191
+
192
+ def forward(
193
+ self,
194
+ x: torch.Tensor,
195
+ cu_seqlens: torch.Tensor,
196
+ rotary_pos_emb: torch.Tensor,
197
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
198
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
199
+ ) -> torch.Tensor:
200
+ x = x + self.attn(self.norm1(x),
201
+ cu_seqlens=cu_seqlens,
202
+ rotary_pos_emb=rotary_pos_emb,
203
+ max_seqlen=max_seqlen,
204
+ seqlens=seqlens)
205
+
206
+ x = x + self.mlp(self.norm2(x))
207
+ return x
208
+
209
+
210
+ class Qwen3_VisionPatchMerger(nn.Module):
211
+
212
+ def __init__(
213
+ self,
214
+ d_model: int,
215
+ context_dim: int,
216
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
217
+ spatial_merge_size: int = 2,
218
+ use_postshuffle_norm: bool = False,
219
+ quant_config: Optional[QuantizationConfig] = None,
220
+ prefix: str = "",
221
+ use_data_parallel: bool = False,
222
+ ) -> None:
223
+ super().__init__()
224
+ self.hidden_size = context_dim * (spatial_merge_size**2)
225
+
226
+ self.use_postshuffle_norm = use_postshuffle_norm
227
+ if self.use_postshuffle_norm:
228
+ context_dim = self.hidden_size
229
+
230
+ if norm_layer is None:
231
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
232
+ self.norm = norm_layer(context_dim)
233
+ self.linear_fc1 = ColumnParallelLinear(self.hidden_size,
234
+ self.hidden_size,
235
+ bias=True,
236
+ quant_config=quant_config,
237
+ prefix=f"{prefix}.linear_fc1",
238
+ disable_tp=use_data_parallel)
239
+ self.act_fn = nn.GELU()
240
+ self.linear_fc2 = RowParallelLinear(self.hidden_size,
241
+ d_model,
242
+ bias=True,
243
+ quant_config=quant_config,
244
+ prefix=f"{prefix}.linear_fc2",
245
+ disable_tp=use_data_parallel)
246
+
247
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
248
+ if self.use_postshuffle_norm:
249
+ x = self.norm(x.view(-1, self.hidden_size))
250
+ else:
251
+ x = self.norm(x).view(-1, self.hidden_size)
252
+
253
+ x_parallel, _ = self.linear_fc1(x)
254
+ x_parallel = self.act_fn(x_parallel)
255
+ out, _ = self.linear_fc2(x_parallel)
256
+ return out
257
+
258
+
259
+ class Qwen3_VisionTransformer(nn.Module):
260
+
261
+ def __init__(
262
+ self,
263
+ vision_config: Qwen3VLVisionConfig,
264
+ norm_eps: float = 1e-6,
265
+ quant_config: Optional[QuantizationConfig] = None,
266
+ prefix: str = "",
267
+ use_data_parallel: bool = False,
268
+ ) -> None:
269
+ super().__init__()
270
+ self.hidden_size = vision_config.hidden_size
271
+ self.num_heads = vision_config.num_heads
272
+ self.num_position_embeddings = vision_config.num_position_embeddings
273
+ self.patch_size = vision_config.patch_size
274
+ self.spatial_merge_size = vision_config.spatial_merge_size
275
+ self.spatial_merge_unit = self.spatial_merge_size**2
276
+ self.temporal_patch_size = vision_config.temporal_patch_size
277
+ self.deepstack_visual_indexes = vision_config.deepstack_visual_indexes
278
+ self.use_data_parallel = use_data_parallel
279
+ self.num_grid_per_side = int(self.num_position_embeddings**0.5)
280
+
281
+ # NOTE: This is used for creating empty tensor for all_gather for
282
+ # DP ViT. Here out_hidden_size is enlarged due to deepstack
283
+ self.out_hidden_size = (vision_config.out_hidden_size *
284
+ (1 + len(self.deepstack_visual_indexes)))
285
+
286
+ self.patch_embed = Qwen3_VisionPatchEmbed(
287
+ patch_size=self.patch_size,
288
+ temporal_patch_size=self.temporal_patch_size,
289
+ in_channels=vision_config.in_channels,
290
+ hidden_size=self.hidden_size,
291
+ )
292
+
293
+ self.pos_embed = nn.Embedding(self.num_position_embeddings,
294
+ self.hidden_size)
295
+
296
+ norm_layer = partial(nn.LayerNorm, eps=norm_eps)
297
+ head_dim = self.hidden_size // self.num_heads
298
+ self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
299
+
300
+ self.merger = Qwen3_VisionPatchMerger(
301
+ d_model=vision_config.out_hidden_size,
302
+ context_dim=self.hidden_size,
303
+ norm_layer=norm_layer,
304
+ spatial_merge_size=self.spatial_merge_size,
305
+ quant_config=quant_config,
306
+ prefix=f"{prefix}.merger",
307
+ use_data_parallel=use_data_parallel,
308
+ )
309
+
310
+ self.deepstack_merger_list = nn.ModuleList([
311
+ Qwen3_VisionPatchMerger(
312
+ d_model=vision_config.out_hidden_size,
313
+ context_dim=self.hidden_size,
314
+ spatial_merge_size=self.spatial_merge_size,
315
+ use_postshuffle_norm=True,
316
+ norm_layer=norm_layer,
317
+ quant_config=quant_config,
318
+ prefix=f"{prefix}.deepstack_merger_list.{layer_idx}",
319
+ use_data_parallel=use_data_parallel)
320
+ for layer_idx in range(len(self.deepstack_visual_indexes))
321
+ ])
322
+
323
+ self.attn_backend = get_vit_attn_backend(
324
+ head_size=head_dim, dtype=torch.get_default_dtype())
325
+ use_upstream_fa = False
326
+ if self.attn_backend != _Backend.FLASH_ATTN and \
327
+ check_upstream_fa_availability(
328
+ torch.get_default_dtype()):
329
+ self.attn_backend = _Backend.FLASH_ATTN
330
+ use_upstream_fa = True
331
+
332
+ if self.attn_backend not in {
333
+ _Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS,
334
+ _Backend.ROCM_AITER_FA
335
+ }:
336
+ raise RuntimeError(
337
+ f"Qwen3-VL does not support {self.attn_backend} backend now.")
338
+
339
+ self.blocks = nn.ModuleList([
340
+ Qwen3_VisionBlock(
341
+ dim=self.hidden_size,
342
+ num_heads=self.num_heads,
343
+ mlp_hidden_dim=vision_config.intermediate_size,
344
+ act_fn=_ACTIVATION_REGISTRY[vision_config.hidden_act],
345
+ norm_layer=norm_layer,
346
+ quant_config=quant_config,
347
+ prefix=f"{prefix}.blocks.{layer_idx}",
348
+ use_data_parallel=use_data_parallel,
349
+ attn_backend=self.attn_backend,
350
+ use_upstream_fa=use_upstream_fa)
351
+ for layer_idx in range(vision_config.depth)
352
+ ])
353
+
354
+ @property
355
+ def dtype(self) -> torch.dtype:
356
+ return self.patch_embed.proj.weight.dtype
357
+
358
+ @property
359
+ def device(self) -> torch.device:
360
+ return self.patch_embed.proj.weight.device
361
+
362
+ def rot_pos_emb(self, grid_thw):
363
+ pos_ids = []
364
+ # Support both Tensor and list inputs for DP path
365
+ if isinstance(grid_thw, list):
366
+ grid_list = grid_thw
367
+ max_grid_size = max(max(h, w) for _, h, w in grid_list)
368
+ else:
369
+ grid_list = grid_thw.tolist()
370
+ max_grid_size = int(grid_thw[:, 1:].max().item())
371
+ for t, h, w in grid_list:
372
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
373
+ hpos_ids = hpos_ids.reshape(
374
+ h // self.spatial_merge_size,
375
+ self.spatial_merge_size,
376
+ w // self.spatial_merge_size,
377
+ self.spatial_merge_size,
378
+ )
379
+ hpos_ids = hpos_ids.permute(0, 2, 1, 3)
380
+ hpos_ids = hpos_ids.flatten()
381
+
382
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
383
+ wpos_ids = wpos_ids.reshape(
384
+ h // self.spatial_merge_size,
385
+ self.spatial_merge_size,
386
+ w // self.spatial_merge_size,
387
+ self.spatial_merge_size,
388
+ )
389
+ wpos_ids = wpos_ids.permute(0, 2, 1, 3)
390
+ wpos_ids = wpos_ids.flatten()
391
+ pos_ids.append(
392
+ torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
393
+ pos_ids = torch.cat(pos_ids, dim=0)
394
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
395
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
396
+ return rotary_pos_emb
397
+
398
+ def fast_pos_embed_interpolate(self,
399
+ grid_thw: list[list[int]]) -> torch.Tensor:
400
+
401
+ num_grid_per_side = self.num_grid_per_side
402
+ m_size = self.spatial_merge_size
403
+ hidden_dim = self.pos_embed.embedding_dim
404
+
405
+ outputs = []
406
+ for t, h, w in grid_thw:
407
+ h_idxs = torch.linspace(0,
408
+ num_grid_per_side - 1,
409
+ h,
410
+ dtype=torch.float32,
411
+ device=self.device)
412
+ w_idxs = torch.linspace(0,
413
+ num_grid_per_side - 1,
414
+ w,
415
+ dtype=torch.float32,
416
+ device=self.device)
417
+
418
+ h_floor = h_idxs.to(torch.long)
419
+ w_floor = w_idxs.to(torch.long)
420
+ h_ceil = torch.clamp(h_floor + 1, max=num_grid_per_side - 1)
421
+ w_ceil = torch.clamp(w_floor + 1, max=num_grid_per_side - 1)
422
+
423
+ dh = h_idxs - h_floor
424
+ dw = w_idxs - w_floor
425
+
426
+ # Create meshgrid view for all h, w vars
427
+ dh_grid, dw_grid = torch.meshgrid(dh, dw, indexing='ij')
428
+ h_floor_grid, w_floor_grid = torch.meshgrid(h_floor,
429
+ w_floor,
430
+ indexing='ij')
431
+ h_ceil_grid, w_ceil_grid = torch.meshgrid(h_ceil,
432
+ w_ceil,
433
+ indexing='ij')
434
+ h_floor_grid_idx = h_floor_grid * num_grid_per_side
435
+ h_ceil_grid_idx = h_ceil_grid * num_grid_per_side
436
+
437
+ # original computation of weights
438
+ # w00 = (1 - dh_grid) * (1 - dw_grid)
439
+ # w01 = (1 - dh_grid) * dw_grid
440
+ # w10 = dh_grid * (1 - dw_grid)
441
+ # w11 = dh_grid * dw_grid
442
+ # we reuse w11 here to avoid duplicate
443
+ # dh_grid * dw_grid computation
444
+ w11 = dh_grid * dw_grid
445
+ w10 = dh_grid - w11
446
+ w01 = dw_grid - w11
447
+ w00 = 1 - dh_grid - dw_grid + w11
448
+
449
+ idx00 = h_floor_grid_idx + w_floor_grid
450
+ idx01 = h_floor_grid_idx + w_ceil_grid
451
+ idx10 = h_ceil_grid_idx + w_floor_grid
452
+ idx11 = h_ceil_grid_idx + w_ceil_grid
453
+
454
+ indices = torch.stack([idx00, idx01, idx10, idx11],
455
+ dim=0).reshape(4, -1)
456
+ weights = torch.stack([w00, w01, w10, w11],
457
+ dim=0).reshape(4, -1, 1)
458
+ weights = weights.to(dtype=self.dtype, device=self.device)
459
+
460
+ embeds = self.pos_embed(indices)
461
+ weighted_embeds = embeds * weights
462
+ p0, p1, p2, p3 = weighted_embeds.unbind(dim=0)
463
+ combined = p0 + p1 + p2 + p3
464
+
465
+ combined = combined.view(h * w, hidden_dim)
466
+ repeated = combined.unsqueeze(0).expand(t, -1, -1).contiguous()
467
+ repeated = repeated.view(t, h // m_size, m_size, w // m_size,
468
+ m_size, hidden_dim)
469
+ repeated = repeated.permute(0, 1, 3, 2, 4,
470
+ 5).reshape(-1, hidden_dim)
471
+ outputs.append(repeated)
472
+
473
+ return torch.cat(outputs, dim=0)
474
+
475
+ def compute_attn_mask_seqlen(
476
+ self,
477
+ cu_seqlens: torch.Tensor,
478
+ ) -> tuple[Optional[int], Optional[list[int]]]:
479
+ max_seqlen, seqlens = None, None
480
+ if self.attn_backend == _Backend.FLASH_ATTN:
481
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
482
+ elif self.attn_backend == _Backend.XFORMERS:
483
+ seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
484
+ return max_seqlen, seqlens
485
+
486
+ def forward(
487
+ self,
488
+ x: torch.Tensor,
489
+ grid_thw: list[list[int]],
490
+ ) -> torch.Tensor:
491
+ hidden_states = x.to(device=self.device, dtype=self.dtype)
492
+ hidden_states = self.patch_embed(hidden_states)
493
+
494
+ pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
495
+ hidden_states = hidden_states + pos_embeds
496
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
497
+
498
+ grid_thw_tensor = torch.tensor(grid_thw,
499
+ device=self.device,
500
+ dtype=torch.int32)
501
+
502
+ cu_seqlens = torch.repeat_interleave(
503
+ grid_thw_tensor[:, 1] * grid_thw_tensor[:, 2],
504
+ grid_thw_tensor[:, 0]).cumsum(
505
+ dim=0,
506
+ dtype=grid_thw_tensor.dtype
507
+ if torch.jit.is_tracing() else torch.int32,
508
+ )
509
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
510
+
511
+ hidden_states = hidden_states.unsqueeze(1)
512
+ rotary_pos_emb = rotary_pos_emb.to(hidden_states.device)
513
+ max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
514
+
515
+ deepstack_feature_lists = []
516
+ for layer_num, blk in enumerate(self.blocks):
517
+ hidden_states = blk(hidden_states,
518
+ cu_seqlens=cu_seqlens,
519
+ rotary_pos_emb=rotary_pos_emb,
520
+ max_seqlen=max_seqlen,
521
+ seqlens=seqlens)
522
+ if layer_num in self.deepstack_visual_indexes:
523
+ deepstack_merger_idx = self.deepstack_visual_indexes.index(
524
+ layer_num)
525
+ deepstack_feature = self.deepstack_merger_list[
526
+ deepstack_merger_idx](hidden_states)
527
+ deepstack_feature_lists.append(deepstack_feature)
528
+ hidden_states = self.merger(hidden_states)
529
+ hidden_states = torch.cat(
530
+ [hidden_states] + deepstack_feature_lists,
531
+ dim=1) # [seq_len, hidden_size * (1 + depth_of_deepstack)]
532
+ return hidden_states
533
+
534
+ def load_weights(self, weights: Iterable[tuple[str,
535
+ torch.Tensor]]) -> set[str]:
536
+ stacked_params_mapping = [
537
+ # (param_name, shard_name, shard_id)
538
+ ("attn.qkv.", "attn.q.", "q"),
539
+ ("attn.qkv.", "attn.k.", "k"),
540
+ ("attn.qkv.", "attn.v.", "v"),
541
+ ]
542
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
543
+ loaded_params: set[str] = set()
544
+
545
+ for name, loaded_weight in weights:
546
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
547
+ if weight_name not in name:
548
+ continue
549
+ name = name.replace(weight_name, param_name)
550
+
551
+ param = params_dict[name]
552
+ weight_loader = param.weight_loader
553
+ weight_loader(param, loaded_weight, shard_id)
554
+ break
555
+ else:
556
+ param = params_dict[name]
557
+ weight_loader = getattr(param, "weight_loader",
558
+ default_weight_loader)
559
+ weight_loader(param, loaded_weight)
560
+ loaded_params.add(name)
561
+ return loaded_params
562
+
563
+
564
+ class Qwen3VLProcessingInfo(Qwen2VLProcessingInfo):
565
+
566
+ def get_hf_config(self):
567
+ return self.ctx.get_hf_config(Qwen3VLConfig)
568
+
569
+ def get_hf_processor(self, **kwargs: object) -> Qwen3VLProcessor:
570
+ return self.ctx.get_hf_processor(
571
+ Qwen3VLProcessor,
572
+ use_fast=kwargs.pop("use_fast", True),
573
+ **kwargs,
574
+ )
575
+
576
+ def get_tokenizer(self):
577
+ return self.ctx.tokenizer
578
+
579
+ def get_image_processor(self,
580
+ **kwargs: object) -> Qwen2VLImageProcessorFast:
581
+ return self.get_hf_processor(**kwargs).image_processor
582
+
583
+ def get_video_processor(self, **kwargs: object) -> Qwen3VLVideoProcessor:
584
+ return self.get_hf_processor(**kwargs).video_processor
585
+
586
+ def _get_vision_info(
587
+ self,
588
+ *,
589
+ image_width: int,
590
+ image_height: int,
591
+ num_frames: int = 2,
592
+ do_resize: bool = True,
593
+ image_processor: Optional[Union[Qwen2VLImageProcessorFast,
594
+ Qwen3VLVideoProcessor]],
595
+ ) -> tuple[ImageSize, int]:
596
+ if image_processor is None and num_frames > 1:
597
+ image_processor = self.get_video_processor()
598
+ elif image_processor is None:
599
+ image_processor = self.get_image_processor()
600
+
601
+ is_video = isinstance(image_processor, Qwen3VLVideoProcessor)
602
+
603
+ hf_config = self.get_hf_config()
604
+ vision_config = hf_config.vision_config
605
+ patch_size = vision_config.patch_size
606
+ merge_size = vision_config.spatial_merge_size
607
+ temporal_patch_size = vision_config.temporal_patch_size
608
+
609
+ if do_resize:
610
+ if is_video:
611
+ smart_resize = video_smart_resize
612
+ extra_kwargs = {
613
+ "num_frames": num_frames,
614
+ "temporal_factor": temporal_patch_size
615
+ }
616
+ else:
617
+ smart_resize = image_smart_resize
618
+ extra_kwargs = {}
619
+ resized_height, resized_width = smart_resize(
620
+ height=image_height,
621
+ width=image_width,
622
+ factor=patch_size * merge_size,
623
+ min_pixels=image_processor.size["shortest_edge"],
624
+ max_pixels=image_processor.size["longest_edge"],
625
+ **extra_kwargs,
626
+ )
627
+ preprocessed_size = ImageSize(width=resized_width,
628
+ height=resized_height)
629
+ else:
630
+ preprocessed_size = ImageSize(width=image_width,
631
+ height=image_height)
632
+
633
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
634
+
635
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
636
+ grid_h = preprocessed_size.height // patch_size
637
+ grid_w = preprocessed_size.width // patch_size
638
+
639
+ num_patches = grid_t * grid_h * grid_w
640
+ num_vision_tokens = num_patches // (merge_size**2)
641
+
642
+ return preprocessed_size, num_vision_tokens
643
+
644
+ def _get_max_video_frames(self,
645
+ max_tokens: int,
646
+ start_num_frames: int = 2) -> int:
647
+ return super()._get_max_video_frames(max_tokens,
648
+ start_num_frames=start_num_frames)
649
+
650
+ def get_num_frames_with_most_features(
651
+ self,
652
+ seq_len: int,
653
+ mm_counts: Mapping[str, int],
654
+ ) -> int:
655
+ return super().get_num_frames_with_most_features(
656
+ seq_len, mm_counts, max_frames_per_video=_MAX_FRAMES_PER_VIDEO)
657
+
658
+ def get_max_video_tokens(
659
+ self,
660
+ seq_len: int,
661
+ mm_counts: Mapping[str, int],
662
+ ) -> int:
663
+ target_width, target_height = self.get_image_size_with_most_features()
664
+ video_soft_tokens = self.get_num_video_tokens(
665
+ image_width=target_width,
666
+ image_height=target_height,
667
+ num_frames=self.get_num_frames_with_most_features(
668
+ seq_len, mm_counts),
669
+ image_processor=None,
670
+ )
671
+
672
+ # NOTE: By default in Qwen3-VL, one video token is converted to
673
+ # "<{timestamp} seconds>" (on average 9.5 tokens) + vision_start_token + video_token + vision_end_token # noqa: E501
674
+ formatted_video_soft_tokens = video_soft_tokens * 12.5
675
+ return int(formatted_video_soft_tokens)
676
+
677
+ def _calculate_timestamps(self, indices: list[int] | torch.Tensor,
678
+ video_fps: float, merge_size: int):
679
+ if not isinstance(indices, list):
680
+ indices = indices.tolist()
681
+ if len(indices) % merge_size != 0:
682
+ # don't update metadata's frames_indices directly
683
+ indices = indices + [indices[-1]
684
+ ] * (merge_size - len(indices) % merge_size)
685
+ timestamps = [idx / video_fps for idx in indices]
686
+ timestamps = [(timestamps[i] + timestamps[i + merge_size - 1]) / 2
687
+ for i in range(0, len(timestamps), merge_size)]
688
+ return timestamps
689
+
690
+ def _get_video_second_idx(
691
+ self,
692
+ metadata: dict[str, Any],
693
+ out_item: MultiModalKwargsItem,
694
+ do_sample_frames: Optional[bool] = None,
695
+ sampled_fps: Optional[float] = None) -> list[int]:
696
+ video_processor = self.get_video_processor()
697
+ merge_size = video_processor.merge_size
698
+ indices = metadata["frames_indices"]
699
+
700
+ # metadata["fps"] refers to the true fps of the input video.
701
+ video_fps = metadata["fps"]
702
+ if do_sample_frames is None:
703
+ do_sample_frames = metadata.get("do_sample_frames", False)
704
+
705
+ # If video frames are sampled in HF processor (instead of vLLM
706
+ # video loader), we need to re-calculate the indices from original
707
+ # metadata.
708
+ if do_sample_frames:
709
+ # here video_fps is the fps of the sampled video, and
710
+ # metadata["fps"] refers to the fps of the original video.
711
+ video_fps = sampled_fps if sampled_fps else video_processor.fps
712
+ total_num_frames = metadata["total_num_frames"]
713
+ num_frames = int(total_num_frames / metadata["fps"] * video_fps)
714
+ num_frames = min(
715
+ min(max(num_frames, video_processor.min_frames),
716
+ video_processor.max_frames), total_num_frames)
717
+ indices = np.linspace(0, total_num_frames - 1,
718
+ num_frames).round().astype(int).tolist()
719
+ timestamps = self._calculate_timestamps(indices, video_fps, merge_size)
720
+ return timestamps
721
+
722
+
723
+ class Qwen3VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen3VLProcessingInfo]):
724
+
725
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
726
+ num_images = mm_counts.get("image", 0)
727
+ num_videos = mm_counts.get("video", 0)
728
+
729
+ image_token = "<|vision_start|><|image_pad|><|vision_end|>"
730
+ video_token = "<|vision_start|><|video_pad|><|vision_end|>"
731
+
732
+ return image_token * num_images + video_token * num_videos
733
+
734
+ def get_dummy_mm_data(
735
+ self,
736
+ seq_len: int,
737
+ mm_counts: Mapping[str, int],
738
+ ) -> MultiModalDataDict:
739
+ num_images = mm_counts.get("image", 0)
740
+ num_videos = mm_counts.get("video", 0)
741
+
742
+ target_width, target_height = (
743
+ self.info.get_image_size_with_most_features())
744
+ target_num_frames = self.info.get_num_frames_with_most_features(
745
+ seq_len, mm_counts)
746
+ target_video_size, _ = self.info._get_vision_info(
747
+ image_width=target_width,
748
+ image_height=target_height,
749
+ num_frames=target_num_frames,
750
+ image_processor=self.info.get_video_processor(),
751
+ )
752
+ return {
753
+ "image":
754
+ self._get_dummy_images(width=target_width,
755
+ height=target_height,
756
+ num_images=num_images),
757
+ "video":
758
+ self._get_dummy_videos(
759
+ width=target_video_size.width,
760
+ height=target_video_size.height,
761
+ num_frames=target_num_frames,
762
+ num_videos=num_videos,
763
+ ),
764
+ }
765
+
766
+ def _get_dummy_videos(
767
+ self,
768
+ *,
769
+ width: int,
770
+ height: int,
771
+ num_frames: int,
772
+ num_videos: int,
773
+ ) -> list[VideoItem]:
774
+ num_frames = max(num_frames, 2)
775
+ video = np.full((num_frames, width, height, 3), 255, dtype=np.uint8)
776
+ video_items = []
777
+ for i in range(num_videos):
778
+ video_metadata = {
779
+ "fps": 2.0,
780
+ "duration": num_frames / 2.0,
781
+ "total_num_frames": num_frames,
782
+ "frames_indices": [i for i in range(num_frames)],
783
+ "video_backend": "opencv",
784
+ "do_sample_frames": False,
785
+ }
786
+ video_item = (video.copy(), video_metadata)
787
+ video_items.append(video_item)
788
+ return video_items
789
+
790
+ def get_dummy_processor_inputs(self, seq_len, mm_counts):
791
+ processor_inputs = super().get_dummy_processor_inputs(
792
+ seq_len, mm_counts)
793
+ # HACK(Isotr0py): We set do_resize to False here to reuse Qwen2-VL's
794
+ # profiling logic, which will be problematic for configurable mm
795
+ # profiling.
796
+ # TODO(Isotr0py): Switch to the implementation in
797
+ # https://github.com/vllm-project/vllm/pull/25557
798
+ # after supporting configurable mm profiling.
799
+ processor_inputs.hf_processor_mm_kwargs = {"do_resize": False}
800
+ return processor_inputs
801
+
802
+
803
+ class Qwen3VLMultiModalProcessor(BaseMultiModalProcessor[Qwen3VLProcessingInfo]
804
+ ):
805
+
806
+ def _get_data_parser(self) -> MultiModalDataParser:
807
+ return MultiModalDataParser(video_needs_metadata=True)
808
+
809
+ def _call_hf_processor(
810
+ self,
811
+ prompt: str,
812
+ mm_data: Mapping[str, object],
813
+ mm_kwargs: Mapping[str, object],
814
+ tok_kwargs: Mapping[str, object],
815
+ ) -> BatchFeature:
816
+ mm_data = dict(mm_data)
817
+ processor = self.info.get_hf_processor(**mm_kwargs)
818
+
819
+ # Separate video processing from image processing. Because the videos
820
+ # are processed into serval image patches
821
+ if ("videos" in mm_data and isinstance(mm_data["videos"], list)
822
+ and len(mm_data["videos"]) > 0):
823
+ video_grid_thw_lst = []
824
+ pixel_values_videos_lst = []
825
+
826
+ for item_idx, item in enumerate(mm_data.pop("videos", [])):
827
+ video_array, metadata = item
828
+
829
+ # NOTE: @JJJYmmm new attr metadata.frames_indices indicates
830
+ # the sampled frames indices of pre-sampled videos, which is
831
+ # used to calculate the timestamps. Make sure that
832
+ # do_sample_frames in mm_kwargs is false for presampled videos.
833
+
834
+ # NOTE: a copy of is created to update do_sample_frames,
835
+ # otherwise mm_hash for the object will be incorrect.
836
+ video_mm_kwargs = dict(**mm_kwargs)
837
+ if "do_sample_frames" not in video_mm_kwargs:
838
+ # qwen_vl_utils already has "do_sample_frames" in
839
+ # mm_kwargs, don't overwrite it.
840
+ video_mm_kwargs["do_sample_frames"] = metadata.get(
841
+ "do_sample_frames", False)
842
+
843
+ metadata = VideoMetadata(**{
844
+ k: metadata[k]
845
+ for k in metadata if k != "do_sample_frames"
846
+ })
847
+
848
+ video_mm_data = dict()
849
+ video_mm_data["videos"] = [[video_array]]
850
+ video_mm_data["video_metadata"] = [[metadata]]
851
+
852
+ video_outputs = super()._call_hf_processor(
853
+ prompt="<|vision_start|><|video_pad|><|vision_end|>",
854
+ mm_data=video_mm_data,
855
+ mm_kwargs=video_mm_kwargs,
856
+ tok_kwargs=tok_kwargs,
857
+ )
858
+ input_ids = video_outputs.pop("input_ids")
859
+ video_placeholder = processor.tokenizer.batch_decode(
860
+ input_ids)[0]
861
+ prompt = prompt.replace(
862
+ "<|vision_start|><|video_pad|><|vision_end|>",
863
+ video_placeholder,
864
+ 1,
865
+ )
866
+
867
+ video_grid_thw_lst.append(video_outputs["video_grid_thw"])
868
+ pixel_values_videos_lst.append(
869
+ video_outputs["pixel_values_videos"])
870
+ video_outputs = dict(
871
+ pixel_values_videos=torch.cat(pixel_values_videos_lst),
872
+ video_grid_thw=torch.cat(video_grid_thw_lst),
873
+ )
874
+ else:
875
+ video_outputs = dict()
876
+
877
+ processed_outputs = super()._call_hf_processor(
878
+ prompt=prompt,
879
+ mm_data=mm_data,
880
+ mm_kwargs=mm_kwargs,
881
+ tok_kwargs=tok_kwargs,
882
+ )
883
+ combined_outputs = dict(
884
+ processed_outputs,
885
+ **video_outputs,
886
+ )
887
+ return BatchFeature(combined_outputs)
888
+
889
+ def _get_mm_fields_config(
890
+ self,
891
+ hf_inputs: BatchFeature,
892
+ hf_processor_mm_kwargs: Mapping[str, object],
893
+ ) -> Mapping[str, MultiModalFieldConfig]:
894
+ image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
895
+ image_grid_sizes = image_grid_thw.prod(-1)
896
+
897
+ video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
898
+ video_grid_sizes = video_grid_thw.prod(-1)
899
+
900
+ return dict(
901
+ pixel_values=MultiModalFieldConfig.flat_from_sizes(
902
+ "image", image_grid_sizes),
903
+ image_embeds=MultiModalFieldConfig.flat_from_sizes(
904
+ "image", image_grid_sizes),
905
+ image_grid_thw=MultiModalFieldConfig.batched("image"),
906
+ pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
907
+ "video", video_grid_sizes),
908
+ video_embeds=MultiModalFieldConfig.flat_from_sizes(
909
+ "video", video_grid_sizes),
910
+ video_grid_thw=MultiModalFieldConfig.batched("video"),
911
+ )
912
+
913
+ def _get_prompt_updates(
914
+ self,
915
+ mm_items: MultiModalDataItems,
916
+ hf_processor_mm_kwargs: Mapping[str, Any],
917
+ out_mm_kwargs: MultiModalKwargsItems,
918
+ ) -> Sequence[PromptUpdate]:
919
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
920
+ image_processor = self.info.get_image_processor(
921
+ **hf_processor_mm_kwargs)
922
+ tokenizer = self.info.get_tokenizer()
923
+ hf_config = self.info.get_hf_config()
924
+
925
+ video_token_id = hf_config.video_token_id
926
+ vision_start_token_id = hf_config.vision_start_token_id
927
+ vision_end_token_id = hf_config.vision_end_token_id
928
+
929
+ merge_length = image_processor.merge_size**2
930
+
931
+ def get_image_replacement_qwen3vl(item_idx: int):
932
+ out_item = out_mm_kwargs["image"][item_idx]
933
+ grid_thw = out_item["image_grid_thw"].data
934
+ assert isinstance(grid_thw, torch.Tensor)
935
+
936
+ num_tokens = int(grid_thw.prod()) // merge_length
937
+ return [hf_processor.image_token_id] * num_tokens
938
+
939
+ def get_video_replacement_qwen3vl(item_idx: int):
940
+ out_item = out_mm_kwargs["video"][item_idx]
941
+ grid_thw = out_item["video_grid_thw"].data
942
+ assert isinstance(grid_thw, torch.Tensor)
943
+
944
+ video, metadata = mm_items["video"][item_idx]
945
+ do_sample_frames = hf_processor_mm_kwargs.get("do_sample_frames")
946
+ sampled_fps = hf_processor_mm_kwargs.get("fps")
947
+ if is_list_of(sampled_fps, float):
948
+ sampled_fps = sampled_fps[item_idx]
949
+ timestamps = self.info._get_video_second_idx(
950
+ metadata, out_item, do_sample_frames, sampled_fps)
951
+
952
+ assert len(timestamps) == grid_thw[0], (
953
+ f"The timestamps length({len(timestamps)}) should be equal "
954
+ f"video length ({grid_thw[0]}).")
955
+
956
+ frames_idx_token = [
957
+ tokenizer.encode(f"<{curr_time:.1f} seconds>",
958
+ add_special_tokens=False)
959
+ for curr_time in timestamps
960
+ ]
961
+ num_tokens_per_frame = int(grid_thw[1:].prod()) // merge_length
962
+ placeholder = []
963
+ for frame_idx in frames_idx_token:
964
+ placeholder.extend(frame_idx)
965
+ placeholder.extend([vision_start_token_id] +
966
+ [video_token_id] * num_tokens_per_frame +
967
+ [vision_end_token_id])
968
+ return PromptUpdateDetails.select_token_id(placeholder,
969
+ video_token_id)
970
+
971
+ return [
972
+ PromptReplacement(
973
+ modality="image",
974
+ target=hf_processor.image_token,
975
+ replacement=get_image_replacement_qwen3vl,
976
+ ),
977
+
978
+ # NOTE: We match string on purpose since searching sequence of
979
+ # token ids takes more time.
980
+ PromptReplacement(
981
+ modality="video",
982
+ target="<|vision_start|><|video_pad|><|vision_end|>",
983
+ replacement=get_video_replacement_qwen3vl,
984
+ ),
985
+ ]
986
+
987
+
988
+ @support_torch_compile(
989
+ dynamic_arg_dims={
990
+ "input_ids": 0,
991
+ # positions is of shape (3, seq_len) if mrope is enabled for qwen2-vl,
992
+ # otherwise (seq_len, ).
993
+ "positions": -1,
994
+ "intermediate_tensors": 0,
995
+ "inputs_embeds": 0,
996
+ # the same shape as input_embeds
997
+ "deepstack_input_embeds": 0
998
+ })
999
+ class Qwen3LLMModel(Qwen3Model):
1000
+
1001
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1002
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1003
+ if not get_pp_group().is_first_rank:
1004
+ assert self.start_layer >= len(
1005
+ vllm_config.model_config.hf_config.vision_config.
1006
+ deepstack_visual_indexes), (
1007
+ "start_layer should be greater than or equal to "
1008
+ "len(deepstack_visual_indexes)")
1009
+
1010
+ def forward(
1011
+ self,
1012
+ input_ids: torch.Tensor,
1013
+ positions: torch.Tensor,
1014
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1015
+ inputs_embeds: Optional[torch.Tensor] = None,
1016
+ # args for deepstack
1017
+ deepstack_input_embeds: Optional[IntermediateTensors] = None,
1018
+ ) -> Union[torch.Tensor, IntermediateTensors]:
1019
+ if get_pp_group().is_first_rank:
1020
+ if inputs_embeds is not None:
1021
+ hidden_states = inputs_embeds
1022
+ else:
1023
+ hidden_states = self.get_input_embeddings(input_ids)
1024
+ residual = None
1025
+ else:
1026
+ assert intermediate_tensors is not None
1027
+ hidden_states = intermediate_tensors["hidden_states"]
1028
+ residual = intermediate_tensors["residual"]
1029
+ for layer_idx, layer in enumerate(
1030
+ self.layers[self.start_layer:self.end_layer]):
1031
+ layer_idx = layer_idx + self.start_layer
1032
+
1033
+ hidden_states, residual = layer(
1034
+ positions,
1035
+ hidden_states,
1036
+ residual,
1037
+ )
1038
+
1039
+ if deepstack_input_embeds is not None and \
1040
+ layer_idx in range(0, len(deepstack_input_embeds)):
1041
+ hidden_states = hidden_states + deepstack_input_embeds[
1042
+ f"deepstack_input_embeds_{layer_idx}"]
1043
+
1044
+ if not get_pp_group().is_last_rank:
1045
+ return IntermediateTensors({
1046
+ "hidden_states": hidden_states,
1047
+ "residual": residual
1048
+ })
1049
+ hidden_states, _ = self.norm(hidden_states, residual)
1050
+ return hidden_states
1051
+
1052
+
1053
+ class Qwen3LLMForCausalLM(Qwen3ForCausalLM):
1054
+
1055
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1056
+ super(Qwen3ForCausalLM, self).__init__()
1057
+ config = vllm_config.model_config.hf_config.text_config
1058
+ quant_config = vllm_config.quant_config
1059
+ lora_config = vllm_config.lora_config
1060
+
1061
+ self.config = config
1062
+ self.lora_config = lora_config
1063
+
1064
+ self.quant_config = quant_config
1065
+ self.model = Qwen3LLMModel(vllm_config=vllm_config, prefix=prefix)
1066
+
1067
+ if get_pp_group().is_last_rank:
1068
+ if config.tie_word_embeddings:
1069
+ self.lm_head = self.model.embed_tokens
1070
+ else:
1071
+ self.lm_head = ParallelLMHead(config.vocab_size,
1072
+ config.hidden_size,
1073
+ quant_config=quant_config,
1074
+ prefix="lm_head")
1075
+ else:
1076
+ self.lm_head = PPMissingLayer()
1077
+
1078
+ self.logits_processor = LogitsProcessor(config.vocab_size)
1079
+
1080
+ self.make_empty_intermediate_tensors = (
1081
+ self.model.make_empty_intermediate_tensors)
1082
+
1083
+
1084
+ @MULTIMODAL_REGISTRY.register_processor(Qwen3VLMultiModalProcessor,
1085
+ info=Qwen3VLProcessingInfo,
1086
+ dummy_inputs=Qwen3VLDummyInputsBuilder)
1087
+ class Qwen3VLForConditionalGeneration(nn.Module, SupportsMultiModal,
1088
+ SupportsLoRA, SupportsPP):
1089
+ packed_modules_mapping = {
1090
+ "qkv_proj": [
1091
+ "q_proj",
1092
+ "k_proj",
1093
+ "v_proj",
1094
+ ],
1095
+ "gate_up_proj": [
1096
+ "gate_proj",
1097
+ "up_proj",
1098
+ ],
1099
+ }
1100
+
1101
+ supports_encoder_tp_data = True
1102
+
1103
+ # To ensure correct weight loading and mapping.
1104
+ hf_to_vllm_mapper = WeightsMapper(
1105
+ orig_to_new_prefix={
1106
+ "model.visual.": "visual.",
1107
+ "lm_head.": "language_model.lm_head.",
1108
+ "model.language_model.": "language_model.model.",
1109
+ })
1110
+
1111
+ @classmethod
1112
+ def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
1113
+ if modality.startswith("image"):
1114
+ return "<|vision_start|><|image_pad|><|vision_end|>"
1115
+ if modality.startswith("video"):
1116
+ return "<|vision_start|><|video_pad|><|vision_end|>"
1117
+
1118
+ raise ValueError("Only image or video modality is supported")
1119
+
1120
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = "model"):
1121
+ super().__init__()
1122
+ config: Qwen3VLConfig = vllm_config.model_config.hf_config
1123
+ quant_config = vllm_config.quant_config
1124
+ multimodal_config = vllm_config.model_config.multimodal_config
1125
+
1126
+ self.config = config
1127
+ self.multimodal_config = multimodal_config
1128
+ self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
1129
+ if not multimodal_config.get_limit_per_prompt("image") and \
1130
+ not multimodal_config.get_limit_per_prompt("video"):
1131
+ self.visual = None
1132
+ else:
1133
+ self.visual = Qwen3_VisionTransformer(
1134
+ config.vision_config,
1135
+ norm_eps=getattr(config, "rms_norm_eps", 1e-6),
1136
+ quant_config=quant_config,
1137
+ prefix=maybe_prefix(prefix, "visual"),
1138
+ use_data_parallel=self.use_data_parallel,
1139
+ )
1140
+
1141
+ self.language_model = Qwen3LLMForCausalLM(vllm_config=vllm_config,
1142
+ prefix=maybe_prefix(
1143
+ prefix,
1144
+ "language_model"))
1145
+
1146
+ self.make_empty_intermediate_tensors = (
1147
+ self.language_model.make_empty_intermediate_tensors)
1148
+
1149
+ self.use_deepstack = hasattr(config.vision_config,
1150
+ 'deepstack_visual_indexes')
1151
+ self.deepstack_num_level = len(
1152
+ config.vision_config.deepstack_visual_indexes
1153
+ ) if self.use_deepstack else 0
1154
+ # register buffer for deepstack
1155
+ if self.use_deepstack and self.visual is not None:
1156
+ self.deepstack_input_embeds = [
1157
+ torch.zeros(
1158
+ vllm_config.scheduler_config.max_num_batched_tokens,
1159
+ config.text_config.hidden_size)
1160
+ for _ in range(self.deepstack_num_level)
1161
+ ]
1162
+ else:
1163
+ self.deepstack_input_embeds = None
1164
+ self.visual_dim = config.vision_config.out_hidden_size
1165
+ self.multiscale_dim = self.visual_dim * self.deepstack_num_level
1166
+
1167
+ def _get_deepstack_input_embeds(self,
1168
+ num_tokens: int) -> IntermediateTensors:
1169
+ # get deepstack_input_embeds from buffer, and clear the buffer
1170
+ return IntermediateTensors({
1171
+ f"deepstack_input_embeds_{idx}":
1172
+ self.deepstack_input_embeds[idx][:num_tokens]
1173
+ for idx in range(self.deepstack_num_level)
1174
+ })
1175
+
1176
+ def _set_deepstack_input_embeds(
1177
+ self, deepstack_input_embeds: torch.Tensor) -> None:
1178
+ # set deepstack_input_embeds to buffer
1179
+ num_tokens = deepstack_input_embeds.size(1)
1180
+ if num_tokens > self.deepstack_input_embeds[0].size(0):
1181
+ self.deepstack_input_embeds = [
1182
+ torch.zeros(num_tokens,
1183
+ self.config.text_config.hidden_size,
1184
+ device=self.deepstack_input_embeds[0].device,
1185
+ dtype=self.deepstack_input_embeds[0].dtype)
1186
+ for _ in range(self.deepstack_num_level)
1187
+ ]
1188
+ for idx in range(self.deepstack_num_level):
1189
+ self.deepstack_input_embeds[idx][:num_tokens].copy_(
1190
+ deepstack_input_embeds[idx])
1191
+
1192
+ def _clear_deepstack_input_embeds(self, num_tokens: int) -> None:
1193
+ # clear deepstack_input_embeds in buffer
1194
+ if num_tokens > 0:
1195
+ for idx in range(self.deepstack_num_level):
1196
+ self.deepstack_input_embeds[idx][:num_tokens].zero_()
1197
+
1198
+ def _validate_and_reshape_mm_tensor(self, mm_input: object,
1199
+ name: str) -> torch.Tensor:
1200
+ if not isinstance(mm_input, (torch.Tensor, list)):
1201
+ raise ValueError(f"Incorrect type of {name}. "
1202
+ f"Got type: {type(mm_input)}")
1203
+ if isinstance(mm_input, torch.Tensor):
1204
+ if mm_input.ndim == 2:
1205
+ return mm_input
1206
+ if mm_input.ndim != 3:
1207
+ raise ValueError(f"{name} should be 2D or batched 3D tensor. "
1208
+ f"Got ndim: {mm_input.ndim} "
1209
+ f"(shape={mm_input.shape})")
1210
+ return torch.concat(list(mm_input))
1211
+ else:
1212
+ return torch.concat(mm_input)
1213
+
1214
+ def _parse_and_validate_image_input(
1215
+ self, **kwargs: object) -> Optional[Qwen2_5_VLImageInputs]:
1216
+ pixel_values = kwargs.pop("pixel_values", None)
1217
+ image_embeds = kwargs.pop("image_embeds", None)
1218
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1219
+
1220
+ if pixel_values is None and image_embeds is None:
1221
+ return None
1222
+
1223
+ if pixel_values is not None:
1224
+ pixel_values = self._validate_and_reshape_mm_tensor(
1225
+ pixel_values, "image pixel values")
1226
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1227
+ image_grid_thw, "image grid_thw")
1228
+
1229
+ if not isinstance(pixel_values, (torch.Tensor, list)):
1230
+ raise ValueError("Incorrect type of image pixel values. "
1231
+ f"Got type: {type(pixel_values)}")
1232
+
1233
+ return Qwen2_5_VLImagePixelInputs(type="pixel_values",
1234
+ pixel_values=pixel_values,
1235
+ image_grid_thw=image_grid_thw)
1236
+
1237
+ if image_embeds is not None:
1238
+ image_embeds = self._validate_and_reshape_mm_tensor(
1239
+ image_embeds, "image embeds")
1240
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1241
+ image_grid_thw, "image grid_thw")
1242
+
1243
+ if not isinstance(image_embeds, torch.Tensor):
1244
+ raise ValueError("Incorrect type of image embeddings. "
1245
+ f"Got type: {type(image_embeds)}")
1246
+ return Qwen2_5_VLImageEmbeddingInputs(
1247
+ type="image_embeds",
1248
+ image_embeds=image_embeds,
1249
+ image_grid_thw=image_grid_thw)
1250
+
1251
+ def _parse_and_validate_video_input(
1252
+ self, **kwargs: object) -> Optional[Qwen2_5_VLVideoInputs]:
1253
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1254
+ video_embeds = kwargs.pop("video_embeds", None)
1255
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1256
+ second_per_grid_ts = kwargs.pop("second_per_grid_ts", None)
1257
+
1258
+ if pixel_values_videos is None and video_embeds is None:
1259
+ return None
1260
+
1261
+ if pixel_values_videos is not None:
1262
+ pixel_values_videos = self._validate_and_reshape_mm_tensor(
1263
+ pixel_values_videos, "video pixel values")
1264
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1265
+ video_grid_thw, "video grid_thw")
1266
+
1267
+ return Qwen2_5_VLVideoPixelInputs(
1268
+ type="pixel_values_videos",
1269
+ pixel_values_videos=pixel_values_videos,
1270
+ video_grid_thw=video_grid_thw,
1271
+ second_per_grid_ts=second_per_grid_ts,
1272
+ )
1273
+
1274
+ if video_embeds is not None:
1275
+ video_embeds = self._validate_and_reshape_mm_tensor(
1276
+ video_embeds, "video embeds")
1277
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1278
+ video_grid_thw, "video grid_thw")
1279
+
1280
+ if not isinstance(video_embeds, torch.Tensor):
1281
+ raise ValueError("Incorrect type of video embeddings. "
1282
+ f"Got type: {type(video_embeds)}")
1283
+ return Qwen2_5_VLVideoEmbeddingInputs(
1284
+ type="video_embeds",
1285
+ video_embeds=video_embeds,
1286
+ video_grid_thw=video_grid_thw)
1287
+
1288
+ def _process_image_input(
1289
+ self,
1290
+ image_input: Qwen2_5_VLImageInputs) -> tuple[torch.Tensor, ...]:
1291
+
1292
+ grid_thw = image_input["image_grid_thw"]
1293
+ assert grid_thw.ndim == 2
1294
+ grid_thw_list = grid_thw.tolist()
1295
+
1296
+ if image_input["type"] == "image_embeds":
1297
+ image_embeds = image_input["image_embeds"].type(self.visual.dtype)
1298
+ else:
1299
+ pixel_values = image_input["pixel_values"].type(self.visual.dtype)
1300
+ if self.use_data_parallel:
1301
+ return run_dp_sharded_mrope_vision_model(self.visual,
1302
+ pixel_values,
1303
+ grid_thw_list,
1304
+ rope_type="rope_3d")
1305
+ else:
1306
+ image_embeds = self.visual(pixel_values,
1307
+ grid_thw=grid_thw_list)
1308
+
1309
+ # Split concatenated embeddings for each image item.
1310
+ # Using prod on grid_thw_list instead of grid_thw.prod avoids CUDA sync
1311
+ merge_size = self.visual.spatial_merge_size
1312
+ sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
1313
+ (merge_size * merge_size)).tolist()
1314
+ return image_embeds.split(sizes)
1315
+
1316
+ def _process_video_input(
1317
+ self,
1318
+ video_input: Qwen2_5_VLVideoInputs) -> tuple[torch.Tensor, ...]:
1319
+
1320
+ grid_thw = video_input["video_grid_thw"]
1321
+ assert grid_thw.ndim == 2
1322
+ grid_thw_list = grid_thw.tolist()
1323
+
1324
+ if video_input["type"] == "video_embeds":
1325
+ video_embeds = video_input["video_embeds"].type(self.visual.dtype)
1326
+ else:
1327
+ pixel_values_videos = video_input["pixel_values_videos"].type(
1328
+ self.visual.dtype)
1329
+ if self.use_data_parallel:
1330
+ return run_dp_sharded_mrope_vision_model(self.visual,
1331
+ pixel_values_videos,
1332
+ grid_thw_list,
1333
+ rope_type="rope_3d")
1334
+ else:
1335
+ video_embeds = self.visual(pixel_values_videos,
1336
+ grid_thw=grid_thw_list)
1337
+
1338
+ # Split concatenated embeddings for each video item.
1339
+ # Using prod on grid_thw_list instead of grid_thw.prod avoids CUDA sync
1340
+ merge_size = self.visual.spatial_merge_size
1341
+ sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
1342
+ (merge_size * merge_size)).tolist()
1343
+ return video_embeds.split(sizes)
1344
+
1345
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1346
+ mm_input_by_modality = {}
1347
+ for input_key in kwargs:
1348
+ if input_key in ("pixel_values", "image_embeds"
1349
+ ) and "image" not in mm_input_by_modality:
1350
+ mm_input_by_modality[
1351
+ "image"] = self._parse_and_validate_image_input(**kwargs)
1352
+ if input_key in ("pixel_values_videos", "video_embeds"
1353
+ ) and "video" not in mm_input_by_modality:
1354
+ mm_input_by_modality[
1355
+ "video"] = self._parse_and_validate_video_input(**kwargs)
1356
+ return mm_input_by_modality
1357
+
1358
+ def get_language_model(self) -> torch.nn.Module:
1359
+ return self.language_model
1360
+
1361
+ def get_multimodal_embeddings(
1362
+ self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
1363
+
1364
+ mm_input_by_modality = self._parse_and_validate_multimodal_inputs(
1365
+ **kwargs)
1366
+ if not mm_input_by_modality:
1367
+ return None
1368
+
1369
+ # The result multimodal_embeddings is tuple of tensors, with each
1370
+ # tensor correspoending to a multimodal data item (image or video).
1371
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1372
+
1373
+ # NOTE: It is important to iterate over the keys in this dictionary
1374
+ # to preserve the order of the modalities.
1375
+ for modality in mm_input_by_modality:
1376
+ multimodal_input = mm_input_by_modality[modality]
1377
+ if modality == "image":
1378
+ vision_embeddings = self._process_image_input(multimodal_input)
1379
+ multimodal_embeddings += vision_embeddings
1380
+ if modality == "video":
1381
+ video_embeddings = self._process_video_input(multimodal_input)
1382
+ multimodal_embeddings += video_embeddings
1383
+ return multimodal_embeddings
1384
+
1385
+ def _compute_deepstack_embeds(
1386
+ self, input_ids: torch.Tensor, inputs_embeds: torch.Tensor,
1387
+ multimodal_embeddings: MultiModalEmbeddings) -> torch.Tensor:
1388
+ visual_lens = [
1389
+ x.shape[0] if isinstance(x, torch.Tensor) else len(x)
1390
+ for x in multimodal_embeddings
1391
+ ]
1392
+ multimodal_embeddings_cat = torch.cat(multimodal_embeddings, dim=0)
1393
+
1394
+ multimodal_embeddings_main, multimodal_embeddings_multiscale = torch.split( # noqa:E501
1395
+ multimodal_embeddings_cat, [self.visual_dim, self.multiscale_dim],
1396
+ dim=-1)
1397
+
1398
+ multimodal_embeddings = torch.split(multimodal_embeddings_main,
1399
+ visual_lens,
1400
+ dim=0)
1401
+ multimodal_embeddings_multiscale = torch.split(
1402
+ multimodal_embeddings_multiscale, visual_lens, dim=0)
1403
+
1404
+ deepstack_input_embeds = inputs_embeds.new_zeros(
1405
+ inputs_embeds.size(0),
1406
+ self.deepstack_num_level * inputs_embeds.size(1))
1407
+
1408
+ deepstack_input_embeds = merge_multimodal_embeddings(
1409
+ input_ids,
1410
+ deepstack_input_embeds,
1411
+ multimodal_embeddings_multiscale,
1412
+ placeholder_token_id=[
1413
+ self.config.image_token_id, self.config.video_token_id
1414
+ ],
1415
+ )
1416
+ deepstack_input_embeds = deepstack_input_embeds.view(
1417
+ inputs_embeds.shape[0], self.deepstack_num_level, self.visual_dim)
1418
+ deepstack_input_embeds = deepstack_input_embeds.permute(1, 0, 2)
1419
+ return deepstack_input_embeds, multimodal_embeddings
1420
+
1421
+ def get_input_embeddings(
1422
+ self,
1423
+ input_ids: torch.Tensor,
1424
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1425
+ ) -> torch.Tensor:
1426
+ deepstack_input_embeds = None
1427
+ inputs_embeds = self.language_model.get_input_embeddings(input_ids)
1428
+ if multimodal_embeddings is not None:
1429
+ if self.use_deepstack:
1430
+ deepstack_input_embeds, multimodal_embeddings = self._compute_deepstack_embeds( # noqa:E501
1431
+ input_ids, inputs_embeds, multimodal_embeddings)
1432
+ inputs_embeds = merge_multimodal_embeddings(
1433
+ input_ids, inputs_embeds, multimodal_embeddings,
1434
+ [self.config.image_token_id, self.config.video_token_id])
1435
+
1436
+ if self.use_deepstack:
1437
+ if deepstack_input_embeds is None:
1438
+ deepstack_input_embeds = torch.zeros_like(
1439
+ inputs_embeds).unsqueeze(0).repeat(
1440
+ self.deepstack_num_level, 1, 1).contiguous()
1441
+ self._set_deepstack_input_embeds(deepstack_input_embeds)
1442
+
1443
+ return inputs_embeds
1444
+
1445
+ def get_input_embeddings_v0(
1446
+ self,
1447
+ input_ids: torch.Tensor,
1448
+ image_input: Optional[Qwen2_5_VLImageInputs] = None,
1449
+ video_input: Optional[Qwen2_5_VLVideoInputs] = None,
1450
+ ) -> torch.Tensor:
1451
+ inputs_embeds = self.get_input_embeddings(input_ids)
1452
+
1453
+ if self.use_deepstack:
1454
+ visual_dim = inputs_embeds.shape[-1]
1455
+ deepstack_input_embeds = None
1456
+ if image_input is not None or video_input is not None:
1457
+ deepstack_input_embeds = torch.zeros_like(
1458
+ inputs_embeds).unsqueeze(1).repeat(
1459
+ 1, self.deepstack_num_level, 1).flatten(1)
1460
+
1461
+ if image_input is not None:
1462
+ image_embeds = self._process_image_input(image_input)
1463
+ if self.use_deepstack:
1464
+ image_embeds = torch.cat(image_embeds)
1465
+
1466
+ image_embeds, image_embeds_multiscale = image_embeds.split(
1467
+ [visual_dim, visual_dim * self.deepstack_num_level],
1468
+ dim=-1)
1469
+
1470
+ deepstack_input_embeds = merge_multimodal_embeddings(
1471
+ input_ids,
1472
+ deepstack_input_embeds,
1473
+ image_embeds_multiscale,
1474
+ placeholder_token_id=self.config.image_token_id,
1475
+ )
1476
+
1477
+ inputs_embeds = merge_multimodal_embeddings(
1478
+ input_ids,
1479
+ inputs_embeds,
1480
+ image_embeds,
1481
+ placeholder_token_id=self.config.image_token_id,
1482
+ )
1483
+
1484
+ if video_input is not None:
1485
+ video_embeds = self._process_video_input(video_input)
1486
+ if self.use_deepstack:
1487
+ video_embeds = torch.cat(video_embeds)
1488
+
1489
+ video_embeds, video_embeds_multiscale = video_embeds.split(
1490
+ [visual_dim, visual_dim * self.deepstack_num_level],
1491
+ dim=-1)
1492
+
1493
+ deepstack_input_embeds = merge_multimodal_embeddings(
1494
+ input_ids,
1495
+ deepstack_input_embeds,
1496
+ video_embeds_multiscale,
1497
+ placeholder_token_id=self.config.video_token_id,
1498
+ )
1499
+
1500
+ inputs_embeds = merge_multimodal_embeddings(
1501
+ input_ids,
1502
+ inputs_embeds,
1503
+ video_embeds,
1504
+ placeholder_token_id=self.config.video_token_id,
1505
+ )
1506
+
1507
+ if self.use_deepstack and deepstack_input_embeds is not None:
1508
+ deepstack_input_embeds = deepstack_input_embeds.view(
1509
+ inputs_embeds.shape[0], self.deepstack_num_level,
1510
+ visual_dim).permute(1, 0, 2).contiguous()
1511
+ self._set_deepstack_input_embeds(deepstack_input_embeds)
1512
+ return inputs_embeds
1513
+
1514
+ def forward(
1515
+ self,
1516
+ input_ids: torch.Tensor,
1517
+ positions: torch.Tensor,
1518
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1519
+ inputs_embeds: Optional[torch.Tensor] = None,
1520
+ **kwargs: object,
1521
+ ) -> Union[torch.Tensor, IntermediateTensors]:
1522
+ """Run forward pass for Qwen3VL.
1523
+
1524
+ Args:
1525
+ input_ids: Flattened (concatenated) input_ids corresponding to a
1526
+ batch.
1527
+ positions: Flattened (concatenated) position ids corresponding to a
1528
+ batch.
1529
+ **NOTE**: If mrope is enabled (default setting for Qwen3VL
1530
+ opensource models), the shape will be `(3, seq_len)`,
1531
+ otherwise it will be `(seq_len,).
1532
+ intermediate_tensors: Intermediate tensors from previous pipeline
1533
+ stages.
1534
+ inputs_embeds: Pre-computed input embeddings.
1535
+ **kwargs: Additional keyword arguments including:
1536
+ - pixel_values: Pixel values to be fed to a model.
1537
+ `None` if no images are passed.
1538
+ - image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in
1539
+ LLM. `None` if no images are passed.
1540
+ - pixel_values_videos: Pixel values of videos to be fed to a
1541
+ model. `None` if no videos are passed.
1542
+ - video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in
1543
+ LLM. `None` if no videos are passed.
1544
+ """
1545
+
1546
+ if intermediate_tensors is not None:
1547
+ inputs_embeds = None
1548
+
1549
+ # NOTE: In v1, inputs_embeds is always generated at model runner from
1550
+ # `get_multimodal_embeddings` and `get_input_embeddings`, this
1551
+ # condition is only for v0 compatibility.
1552
+ elif inputs_embeds is None:
1553
+ image_input = self._parse_and_validate_image_input(**kwargs)
1554
+ video_input = self._parse_and_validate_video_input(**kwargs)
1555
+
1556
+ if image_input is None and video_input is None:
1557
+ inputs_embeds = None
1558
+ else:
1559
+ if uses_mrope(self.config):
1560
+ assert positions.ndim == 2 and positions.size(0) == 3, (
1561
+ "multimodal section rotary embedding requires "
1562
+ f"(3, seq_len) positions, but got {positions.size()}")
1563
+ inputs_embeds = self.get_input_embeddings_v0(
1564
+ input_ids,
1565
+ image_input=image_input,
1566
+ video_input=video_input)
1567
+ input_ids = None
1568
+
1569
+ if self.use_deepstack and inputs_embeds is not None and get_pp_group(
1570
+ ).is_first_rank:
1571
+ deepstack_input_embeds = self._get_deepstack_input_embeds(
1572
+ inputs_embeds.size(0))
1573
+ else:
1574
+ deepstack_input_embeds = None
1575
+
1576
+ hidden_states = self.language_model.model(
1577
+ input_ids=input_ids,
1578
+ positions=positions,
1579
+ intermediate_tensors=intermediate_tensors,
1580
+ inputs_embeds=inputs_embeds,
1581
+ # args for deepstack
1582
+ deepstack_input_embeds=deepstack_input_embeds,
1583
+ )
1584
+
1585
+ if inputs_embeds is not None and get_pp_group().is_first_rank:
1586
+ self._clear_deepstack_input_embeds(inputs_embeds.size(0))
1587
+
1588
+ return hidden_states
1589
+
1590
+ def compute_logits(
1591
+ self,
1592
+ hidden_states: torch.Tensor,
1593
+ ) -> Optional[torch.Tensor]:
1594
+ return self.language_model.compute_logits(hidden_states)
1595
+
1596
+ def load_weights(self, weights: Iterable[tuple[str,
1597
+ torch.Tensor]]) -> set[str]:
1598
+
1599
+ skip_prefixes = []
1600
+ if self.visual is None:
1601
+ skip_prefixes.extend(["visual."])
1602
+ loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
1603
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1604
+
1605
+ def get_mm_mapping(self) -> MultiModelKeys:
1606
+ """
1607
+ Get the module prefix in multimodal models
1608
+ """
1609
+ return MultiModelKeys.from_string_field(
1610
+ language_model="language_model",
1611
+ connector="model.visual.merger",
1612
+ tower_model="model.visual.",
1613
+ )