vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +220 -0
- vllm/_bc_linter.py +59 -0
- vllm/_custom_ops.py +2044 -0
- vllm/_ipex_ops.py +393 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +50 -0
- vllm/assets/video.py +145 -0
- vllm/attention/__init__.py +15 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +204 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +645 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +93 -0
- vllm/attention/layers/cross_attention.py +162 -0
- vllm/attention/layers/encoder_only_attention.py +86 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
- vllm/attention/ops/common.py +345 -0
- vllm/attention/ops/flashmla.py +192 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/paged_attn.py +262 -0
- vllm/attention/ops/pallas_kv_cache_update.py +124 -0
- vllm/attention/ops/prefix_prefill.py +928 -0
- vllm/attention/ops/rocm_aiter_mla.py +104 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +691 -0
- vllm/attention/ops/triton_flash_attention.py +984 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
- vllm/attention/ops/triton_unified_attention.py +894 -0
- vllm/attention/selector.py +245 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +85 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +2723 -0
- vllm/benchmarks/latency.py +170 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +533 -0
- vllm/benchmarks/lib/ready_checker.py +73 -0
- vllm/benchmarks/lib/utils.py +80 -0
- vllm/benchmarks/serve.py +1358 -0
- vllm/benchmarks/throughput.py +696 -0
- vllm/collect_env.py +823 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +189 -0
- vllm/compilation/backends.py +650 -0
- vllm/compilation/base_static_graph.py +56 -0
- vllm/compilation/collective_fusion.py +1188 -0
- vllm/compilation/compiler_interface.py +573 -0
- vllm/compilation/counter.py +47 -0
- vllm/compilation/cuda_graph.py +199 -0
- vllm/compilation/cuda_piecewise_backend.py +117 -0
- vllm/compilation/decorators.py +400 -0
- vllm/compilation/fix_functionalization.py +205 -0
- vllm/compilation/fusion.py +383 -0
- vllm/compilation/fusion_attn.py +295 -0
- vllm/compilation/fx_utils.py +84 -0
- vllm/compilation/inductor_pass.py +136 -0
- vllm/compilation/monitor.py +57 -0
- vllm/compilation/noop_elimination.py +158 -0
- vllm/compilation/pass_manager.py +125 -0
- vllm/compilation/post_cleanup.py +20 -0
- vllm/compilation/sequence_parallelism.py +478 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +156 -0
- vllm/compilation/wrapper.py +136 -0
- vllm/config/__init__.py +814 -0
- vllm/config/cache.py +220 -0
- vllm/config/compilation.py +673 -0
- vllm/config/device.py +74 -0
- vllm/config/kv_events.py +50 -0
- vllm/config/kv_transfer.py +111 -0
- vllm/config/load.py +113 -0
- vllm/config/lora.py +132 -0
- vllm/config/model.py +1912 -0
- vllm/config/multimodal.py +129 -0
- vllm/config/observability.py +99 -0
- vllm/config/parallel.py +524 -0
- vllm/config/pooler.py +97 -0
- vllm/config/scheduler.py +287 -0
- vllm/config/speculative.py +568 -0
- vllm/config/speech_to_text.py +39 -0
- vllm/config/structured_outputs.py +64 -0
- vllm/config/utils.py +145 -0
- vllm/connections.py +186 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +311 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +440 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
- vllm/distributed/device_communicators/base_device_communicator.py +295 -0
- vllm/distributed/device_communicators/cpu_communicator.py +201 -0
- vllm/distributed/device_communicators/cuda_communicator.py +323 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
- vllm/distributed/device_communicators/pynccl.py +340 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
- vllm/distributed/device_communicators/ray_communicator.py +258 -0
- vllm/distributed/device_communicators/shm_broadcast.py +589 -0
- vllm/distributed/device_communicators/shm_object_storage.py +635 -0
- vllm/distributed/device_communicators/symm_mem.py +136 -0
- vllm/distributed/device_communicators/tpu_communicator.py +102 -0
- vllm/distributed/device_communicators/xpu_communicator.py +94 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +620 -0
- vllm/distributed/eplb/rebalance_algo.py +239 -0
- vllm/distributed/eplb/rebalance_execute.py +424 -0
- vllm/distributed/kv_events.py +362 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +13 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
- vllm/distributed/parallel_state.py +1532 -0
- vllm/distributed/tpu_distributed_utils.py +178 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1778 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/metrics.py +577 -0
- vllm/engine/metrics_types.py +84 -0
- vllm/engine/protocol.py +333 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1705 -0
- vllm/entrypoints/cli/__init__.py +12 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +55 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +36 -0
- vllm/entrypoints/cli/main.py +60 -0
- vllm/entrypoints/cli/openai.py +233 -0
- vllm/entrypoints/cli/run_batch.py +67 -0
- vllm/entrypoints/cli/serve.py +232 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +481 -0
- vllm/entrypoints/harmony_utils.py +436 -0
- vllm/entrypoints/launcher.py +164 -0
- vllm/entrypoints/llm.py +1629 -0
- vllm/entrypoints/logger.py +79 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1953 -0
- vllm/entrypoints/openai/cli_args.py +288 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +2757 -0
- vllm/entrypoints/openai/run_batch.py +491 -0
- vllm/entrypoints/openai/serving_chat.py +1597 -0
- vllm/entrypoints/openai/serving_classification.py +173 -0
- vllm/entrypoints/openai/serving_completion.py +692 -0
- vllm/entrypoints/openai/serving_embedding.py +631 -0
- vllm/entrypoints/openai/serving_engine.py +992 -0
- vllm/entrypoints/openai/serving_models.py +288 -0
- vllm/entrypoints/openai/serving_pooling.py +276 -0
- vllm/entrypoints/openai/serving_responses.py +1709 -0
- vllm/entrypoints/openai/serving_score.py +479 -0
- vllm/entrypoints/openai/serving_tokenization.py +196 -0
- vllm/entrypoints/openai/serving_transcription.py +136 -0
- vllm/entrypoints/openai/speech_to_text.py +388 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
- vllm/entrypoints/renderer.py +395 -0
- vllm/entrypoints/score_utils.py +232 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/tool.py +139 -0
- vllm/entrypoints/tool_server.py +206 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +23 -0
- vllm/envs.py +1590 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +381 -0
- vllm/executor/msgspec_utils.py +35 -0
- vllm/executor/ray_distributed_executor.py +699 -0
- vllm/executor/ray_utils.py +410 -0
- vllm/executor/uniproc_executor.py +176 -0
- vllm/forward_context.py +402 -0
- vllm/inputs/__init__.py +30 -0
- vllm/inputs/data.py +356 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +664 -0
- vllm/logger.py +229 -0
- vllm/logging_utils/__init__.py +10 -0
- vllm/logging_utils/dump_input.py +81 -0
- vllm/logging_utils/formatter.py +79 -0
- vllm/logging_utils/log_time.py +32 -0
- vllm/logits_process.py +119 -0
- vllm/logprobs.py +28 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +34 -0
- vllm/lora/layers/base.py +69 -0
- vllm/lora/layers/base_linear.py +185 -0
- vllm/lora/layers/column_parallel_linear.py +609 -0
- vllm/lora/layers/logits_processor.py +247 -0
- vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
- vllm/lora/layers/replicated_linear.py +60 -0
- vllm/lora/layers/row_parallel_linear.py +196 -0
- vllm/lora/layers/utils.py +65 -0
- vllm/lora/layers/vocal_parallel_embedding.py +174 -0
- vllm/lora/lora_weights.py +199 -0
- vllm/lora/models.py +816 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +7 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
- vllm/lora/ops/triton_ops/utils.py +126 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +144 -0
- vllm/lora/peft_helper.py +127 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +458 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +272 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +391 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +136 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +246 -0
- vllm/lora/worker_manager.py +267 -0
- vllm/model_executor/__init__.py +12 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +575 -0
- vllm/model_executor/layers/attention_layer_base.py +23 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +225 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
- vllm/model_executor/layers/fla/ops/index.py +39 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
- vllm/model_executor/layers/fla/ops/op.py +39 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
- vllm/model_executor/layers/fla/ops/utils.py +180 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
- vllm/model_executor/layers/fused_moe/__init__.py +89 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
- vllm/model_executor/layers/fused_moe/config.py +804 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/layer.py +2195 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
- vllm/model_executor/layers/fused_moe/utils.py +274 -0
- vllm/model_executor/layers/layernorm.py +395 -0
- vllm/model_executor/layers/lightning_attn.py +661 -0
- vllm/model_executor/layers/linear.py +1603 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +42 -0
- vllm/model_executor/layers/mamba/linear_attn.py +403 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
- vllm/model_executor/layers/mamba/short_conv.py +253 -0
- vllm/model_executor/layers/mla.py +173 -0
- vllm/model_executor/layers/pooler.py +719 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/auto_round.py +388 -0
- vllm/model_executor/layers/quantization/awq.py +228 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +464 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
- vllm/model_executor/layers/quantization/experts_int8.py +223 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +1098 -0
- vllm/model_executor/layers/quantization/gguf.py +599 -0
- vllm/model_executor/layers/quantization/gptq.py +340 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
- vllm/model_executor/layers/quantization/inc.py +61 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +143 -0
- vllm/model_executor/layers/quantization/modelopt.py +1596 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
- vllm/model_executor/layers/quantization/mxfp4.py +988 -0
- vllm/model_executor/layers/quantization/petit.py +306 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +432 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/rtn.py +466 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +214 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
- vllm/model_executor/layers/rotary_embedding/base.py +177 -0
- vllm/model_executor/layers/rotary_embedding/common.py +150 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
- vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
- vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
- vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
- vllm/model_executor/layers/utils.py +195 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +138 -0
- vllm/model_executor/model_loader/base_loader.py +52 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
- vllm/model_executor/model_loader/default_loader.py +277 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +155 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
- vllm/model_executor/model_loader/tensorizer.py +738 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
- vllm/model_executor/model_loader/tpu.py +114 -0
- vllm/model_executor/model_loader/utils.py +292 -0
- vllm/model_executor/model_loader/weight_utils.py +990 -0
- vllm/model_executor/models/__init__.py +33 -0
- vllm/model_executor/models/adapters.py +542 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/apertus.py +579 -0
- vllm/model_executor/models/arcee.py +422 -0
- vllm/model_executor/models/arctic.py +558 -0
- vllm/model_executor/models/aria.py +650 -0
- vllm/model_executor/models/aya_vision.py +468 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bailing_moe.py +642 -0
- vllm/model_executor/models/bamba.py +514 -0
- vllm/model_executor/models/bert.py +665 -0
- vllm/model_executor/models/bert_with_rope.py +687 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +712 -0
- vllm/model_executor/models/bloom.py +374 -0
- vllm/model_executor/models/chameleon.py +1139 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/cohere2_vision.py +481 -0
- vllm/model_executor/models/commandr.py +465 -0
- vllm/model_executor/models/config.py +445 -0
- vllm/model_executor/models/dbrx.py +471 -0
- vllm/model_executor/models/deepseek.py +497 -0
- vllm/model_executor/models/deepseek_eagle.py +240 -0
- vllm/model_executor/models/deepseek_mtp.py +289 -0
- vllm/model_executor/models/deepseek_v2.py +1444 -0
- vllm/model_executor/models/deepseek_vl2.py +658 -0
- vllm/model_executor/models/dots1.py +546 -0
- vllm/model_executor/models/dots_ocr.py +873 -0
- vllm/model_executor/models/ernie45.py +43 -0
- vllm/model_executor/models/ernie45_moe.py +607 -0
- vllm/model_executor/models/ernie45_vl.py +1527 -0
- vllm/model_executor/models/ernie45_vl_moe.py +727 -0
- vllm/model_executor/models/ernie_mtp.py +268 -0
- vllm/model_executor/models/exaone.py +550 -0
- vllm/model_executor/models/exaone4.py +533 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +509 -0
- vllm/model_executor/models/falcon_h1.py +674 -0
- vllm/model_executor/models/fuyu.py +399 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +422 -0
- vllm/model_executor/models/gemma3.py +555 -0
- vllm/model_executor/models/gemma3_mm.py +721 -0
- vllm/model_executor/models/gemma3n.py +1113 -0
- vllm/model_executor/models/gemma3n_mm.py +761 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +304 -0
- vllm/model_executor/models/glm4_1v.py +1690 -0
- vllm/model_executor/models/glm4_moe.py +727 -0
- vllm/model_executor/models/glm4_moe_mtp.py +301 -0
- vllm/model_executor/models/glm4v.py +654 -0
- vllm/model_executor/models/gpt2.py +380 -0
- vllm/model_executor/models/gpt_bigcode.py +344 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/gpt_oss.py +712 -0
- vllm/model_executor/models/granite.py +489 -0
- vllm/model_executor/models/granite_speech.py +794 -0
- vllm/model_executor/models/granitemoe.py +550 -0
- vllm/model_executor/models/granitemoehybrid.py +614 -0
- vllm/model_executor/models/granitemoeshared.py +332 -0
- vllm/model_executor/models/gritlm.py +262 -0
- vllm/model_executor/models/grok1.py +547 -0
- vllm/model_executor/models/h2ovl.py +536 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hyperclovax_vision.py +1192 -0
- vllm/model_executor/models/idefics2_vision_model.py +417 -0
- vllm/model_executor/models/idefics3.py +756 -0
- vllm/model_executor/models/interfaces.py +959 -0
- vllm/model_executor/models/interfaces_base.py +192 -0
- vllm/model_executor/models/intern_vit.py +441 -0
- vllm/model_executor/models/internlm2.py +450 -0
- vllm/model_executor/models/internlm2_ve.py +148 -0
- vllm/model_executor/models/interns1.py +838 -0
- vllm/model_executor/models/interns1_vit.py +418 -0
- vllm/model_executor/models/internvl.py +1423 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +591 -0
- vllm/model_executor/models/jina_vl.py +144 -0
- vllm/model_executor/models/keye.py +1680 -0
- vllm/model_executor/models/keye_vl1_5.py +602 -0
- vllm/model_executor/models/kimi_vl.py +618 -0
- vllm/model_executor/models/lfm2.py +548 -0
- vllm/model_executor/models/llama.py +669 -0
- vllm/model_executor/models/llama4.py +746 -0
- vllm/model_executor/models/llama4_eagle.py +239 -0
- vllm/model_executor/models/llama_eagle.py +179 -0
- vllm/model_executor/models/llama_eagle3.py +296 -0
- vllm/model_executor/models/llava.py +870 -0
- vllm/model_executor/models/llava_next.py +571 -0
- vllm/model_executor/models/llava_next_video.py +476 -0
- vllm/model_executor/models/llava_onevision.py +942 -0
- vllm/model_executor/models/longcat_flash.py +715 -0
- vllm/model_executor/models/longcat_flash_mtp.py +352 -0
- vllm/model_executor/models/mamba.py +275 -0
- vllm/model_executor/models/mamba2.py +291 -0
- vllm/model_executor/models/medusa.py +169 -0
- vllm/model_executor/models/midashenglm.py +792 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +280 -0
- vllm/model_executor/models/minicpm.py +631 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +389 -0
- vllm/model_executor/models/minicpmo.py +770 -0
- vllm/model_executor/models/minicpmv.py +1784 -0
- vllm/model_executor/models/minimax_text_01.py +986 -0
- vllm/model_executor/models/minimax_vl_01.py +426 -0
- vllm/model_executor/models/mistral3.py +628 -0
- vllm/model_executor/models/mixtral.py +606 -0
- vllm/model_executor/models/mllama4.py +1076 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +374 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +673 -0
- vllm/model_executor/models/motif.py +345 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
- vllm/model_executor/models/nemotron.py +507 -0
- vllm/model_executor/models/nemotron_h.py +565 -0
- vllm/model_executor/models/nemotron_nas.py +481 -0
- vllm/model_executor/models/nemotron_vl.py +652 -0
- vllm/model_executor/models/nvlm_d.py +203 -0
- vllm/model_executor/models/olmo.py +404 -0
- vllm/model_executor/models/olmo2.py +439 -0
- vllm/model_executor/models/olmoe.py +483 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +348 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +642 -0
- vllm/model_executor/models/paligemma.py +411 -0
- vllm/model_executor/models/persimmon.py +343 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3v.py +698 -0
- vllm/model_executor/models/phi4_multimodal.py +1475 -0
- vllm/model_executor/models/phi4mm.py +1279 -0
- vllm/model_executor/models/phi4mm_audio.py +1254 -0
- vllm/model_executor/models/phi4mm_utils.py +1875 -0
- vllm/model_executor/models/phimoe.py +679 -0
- vllm/model_executor/models/pixtral.py +1345 -0
- vllm/model_executor/models/plamo2.py +978 -0
- vllm/model_executor/models/qwen.py +361 -0
- vllm/model_executor/models/qwen2.py +523 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
- vllm/model_executor/models/qwen2_5_vl.py +1481 -0
- vllm/model_executor/models/qwen2_audio.py +489 -0
- vllm/model_executor/models/qwen2_moe.py +558 -0
- vllm/model_executor/models/qwen2_rm.py +122 -0
- vllm/model_executor/models/qwen2_vl.py +1670 -0
- vllm/model_executor/models/qwen3.py +341 -0
- vllm/model_executor/models/qwen3_moe.py +692 -0
- vllm/model_executor/models/qwen3_next.py +1266 -0
- vllm/model_executor/models/qwen3_next_mtp.py +281 -0
- vllm/model_executor/models/qwen3_vl.py +1613 -0
- vllm/model_executor/models/qwen3_vl_moe.py +358 -0
- vllm/model_executor/models/qwen_vl.py +795 -0
- vllm/model_executor/models/radio.py +576 -0
- vllm/model_executor/models/registry.py +990 -0
- vllm/model_executor/models/roberta.py +252 -0
- vllm/model_executor/models/rvl.py +103 -0
- vllm/model_executor/models/seed_oss.py +485 -0
- vllm/model_executor/models/siglip.py +540 -0
- vllm/model_executor/models/siglip2navit.py +689 -0
- vllm/model_executor/models/skyworkr1v.py +911 -0
- vllm/model_executor/models/smolvlm.py +44 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +341 -0
- vllm/model_executor/models/starcoder2.py +354 -0
- vllm/model_executor/models/step3_text.py +510 -0
- vllm/model_executor/models/step3_vl.py +1072 -0
- vllm/model_executor/models/swin.py +475 -0
- vllm/model_executor/models/tarsier.py +639 -0
- vllm/model_executor/models/telechat2.py +151 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/terratorch.py +294 -0
- vllm/model_executor/models/transformers.py +948 -0
- vllm/model_executor/models/ultravox.py +654 -0
- vllm/model_executor/models/utils.py +808 -0
- vllm/model_executor/models/vision.py +404 -0
- vllm/model_executor/models/voxtral.py +786 -0
- vllm/model_executor/models/whisper.py +963 -0
- vllm/model_executor/models/zamba2.py +960 -0
- vllm/model_executor/parameter.py +620 -0
- vllm/model_executor/utils.py +86 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
- vllm/model_executor/warmup/kernel_warmup.py +83 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +116 -0
- vllm/multimodal/base.py +27 -0
- vllm/multimodal/cache.py +697 -0
- vllm/multimodal/evs.py +273 -0
- vllm/multimodal/hasher.py +102 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +987 -0
- vllm/multimodal/parse.py +511 -0
- vllm/multimodal/processing.py +2148 -0
- vllm/multimodal/profiling.py +284 -0
- vllm/multimodal/registry.py +345 -0
- vllm/multimodal/utils.py +503 -0
- vllm/multimodal/video.py +319 -0
- vllm/outputs.py +324 -0
- vllm/platforms/__init__.py +263 -0
- vllm/platforms/cpu.py +340 -0
- vllm/platforms/cuda.py +668 -0
- vllm/platforms/interface.py +620 -0
- vllm/platforms/rocm.py +497 -0
- vllm/platforms/tpu.py +233 -0
- vllm/platforms/xpu.py +243 -0
- vllm/plugins/__init__.py +72 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +67 -0
- vllm/plugins/lora_resolvers/README.md +16 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +191 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +22 -0
- vllm/ray/ray_env.py +72 -0
- vllm/reasoning/__init__.py +29 -0
- vllm/reasoning/abs_reasoning_parsers.py +202 -0
- vllm/reasoning/basic_parsers.py +156 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
- vllm/reasoning/gptoss_reasoning_parser.py +87 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
- vllm/reasoning/mistral_reasoning_parser.py +56 -0
- vllm/reasoning/qwen3_reasoning_parser.py +72 -0
- vllm/reasoning/seedoss_reasoning_parser.py +28 -0
- vllm/reasoning/step3_reasoning_parser.py +109 -0
- vllm/sampling_params.py +593 -0
- vllm/scalar_type.py +349 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +103 -0
- vllm/tasks.py +11 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +136 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +70 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1102 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +63 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/deepseek_v3.py +101 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/dotsocr.py +69 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/midashenglm.py +101 -0
- vllm/transformers_utils/configs/mistral.py +165 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +259 -0
- vllm/transformers_utils/configs/nemotron_vl.py +56 -0
- vllm/transformers_utils/configs/olmo3.py +80 -0
- vllm/transformers_utils/configs/ovis.py +176 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/radio.py +91 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +32 -0
- vllm/transformers_utils/configs/speculators/base.py +111 -0
- vllm/transformers_utils/configs/step3_vl.py +123 -0
- vllm/transformers_utils/configs/ultravox.py +116 -0
- vllm/transformers_utils/detokenizer_utils.py +199 -0
- vllm/transformers_utils/dynamic_module.py +60 -0
- vllm/transformers_utils/processor.py +299 -0
- vllm/transformers_utils/processors/__init__.py +16 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/processors/ovis2_5.py +458 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +93 -0
- vllm/transformers_utils/tokenizer.py +292 -0
- vllm/transformers_utils/tokenizer_base.py +154 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +521 -0
- vllm/transformers_utils/utils.py +108 -0
- vllm/triton_utils/__init__.py +16 -0
- vllm/triton_utils/importing.py +96 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +259 -0
- vllm/utils/__init__.py +3566 -0
- vllm/utils/deep_gemm.py +319 -0
- vllm/utils/flashinfer.py +443 -0
- vllm/utils/jsontree.py +178 -0
- vllm/utils/tensor_schema.py +235 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +919 -0
- vllm/v1/attention/backends/flash_attn.py +795 -0
- vllm/v1/attention/backends/flashinfer.py +1181 -0
- vllm/v1/attention/backends/flex_attention.py +861 -0
- vllm/v1/attention/backends/gdn_attn.py +332 -0
- vllm/v1/attention/backends/linear_attn.py +67 -0
- vllm/v1/attention/backends/mamba1_attn.py +81 -0
- vllm/v1/attention/backends/mamba2_attn.py +232 -0
- vllm/v1/attention/backends/mamba_attn.py +52 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +1783 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
- vllm/v1/attention/backends/mla/flashmla.py +203 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
- vllm/v1/attention/backends/mla/indexer.py +342 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
- vllm/v1/attention/backends/mla/triton_mla.py +177 -0
- vllm/v1/attention/backends/pallas.py +409 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
- vllm/v1/attention/backends/rocm_attn.py +426 -0
- vllm/v1/attention/backends/short_conv_attn.py +94 -0
- vllm/v1/attention/backends/tree_attn.py +451 -0
- vllm/v1/attention/backends/triton_attn.py +361 -0
- vllm/v1/attention/backends/utils.py +990 -0
- vllm/v1/attention/backends/xformers.py +438 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +416 -0
- vllm/v1/core/encoder_cache_manager.py +333 -0
- vllm/v1/core/kv_cache_coordinator.py +440 -0
- vllm/v1/core/kv_cache_manager.py +399 -0
- vllm/v1/core/kv_cache_utils.py +1291 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +47 -0
- vllm/v1/core/sched/interface.py +158 -0
- vllm/v1/core/sched/output.py +166 -0
- vllm/v1/core/sched/request_queue.py +224 -0
- vllm/v1/core/sched/scheduler.py +1296 -0
- vllm/v1/core/sched/utils.py +69 -0
- vllm/v1/core/single_type_kv_cache_manager.py +671 -0
- vllm/v1/cudagraph_dispatcher.py +125 -0
- vllm/v1/engine/__init__.py +203 -0
- vllm/v1/engine/async_llm.py +742 -0
- vllm/v1/engine/coordinator.py +357 -0
- vllm/v1/engine/core.py +1235 -0
- vllm/v1/engine/core_client.py +1334 -0
- vllm/v1/engine/detokenizer.py +349 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +370 -0
- vllm/v1/engine/logprobs.py +201 -0
- vllm/v1/engine/output_processor.py +576 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +545 -0
- vllm/v1/engine/utils.py +860 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +137 -0
- vllm/v1/executor/multiproc_executor.py +726 -0
- vllm/v1/executor/ray_distributed_executor.py +108 -0
- vllm/v1/executor/utils.py +23 -0
- vllm/v1/kv_cache_interface.py +375 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +165 -0
- vllm/v1/kv_offload/backend.py +96 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +61 -0
- vllm/v1/kv_offload/cpu.py +75 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +132 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +61 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
- vllm/v1/kv_offload/worker/worker.py +142 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +741 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +152 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +257 -0
- vllm/v1/outputs.py +161 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +77 -0
- vllm/v1/request.py +241 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +294 -0
- vllm/v1/sample/logits_processor/builtin.py +275 -0
- vllm/v1/sample/logits_processor/interface.py +97 -0
- vllm/v1/sample/logits_processor/state.py +161 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/logprobs.py +26 -0
- vllm/v1/sample/ops/penalties.py +43 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
- vllm/v1/sample/rejection_sampler.py +623 -0
- vllm/v1/sample/sampler.py +285 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +213 -0
- vllm/v1/serial_utils.py +423 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1011 -0
- vllm/v1/spec_decode/medusa.py +66 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +211 -0
- vllm/v1/spec_decode/ngram_proposer.py +276 -0
- vllm/v1/spec_decode/utils.py +14 -0
- vllm/v1/structured_output/__init__.py +295 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
- vllm/v1/structured_output/backend_outlines.py +320 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +327 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +454 -0
- vllm/v1/utils.py +396 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +210 -0
- vllm/v1/worker/cpu_model_runner.py +175 -0
- vllm/v1/worker/cpu_worker.py +156 -0
- vllm/v1/worker/gpu_input_batch.py +863 -0
- vllm/v1/worker/gpu_model_runner.py +4160 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
- vllm/v1/worker/gpu_worker.py +710 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
- vllm/v1/worker/lora_model_runner_mixin.py +183 -0
- vllm/v1/worker/tpu_input_batch.py +587 -0
- vllm/v1/worker/tpu_model_runner.py +1946 -0
- vllm/v1/worker/tpu_worker.py +346 -0
- vllm/v1/worker/ubatch_splitting.py +192 -0
- vllm/v1/worker/ubatch_utils.py +27 -0
- vllm/v1/worker/ubatching.py +224 -0
- vllm/v1/worker/utils.py +344 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/v1/worker/xpu_model_runner.py +57 -0
- vllm/v1/worker/xpu_worker.py +179 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/worker_base.py +279 -0
- vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
- vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
- vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1473 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
import contextlib
|
|
4
|
+
import copy
|
|
5
|
+
import logging
|
|
6
|
+
import math
|
|
7
|
+
import queue
|
|
8
|
+
import threading
|
|
9
|
+
import time
|
|
10
|
+
import uuid
|
|
11
|
+
from collections import defaultdict
|
|
12
|
+
from collections.abc import Iterator
|
|
13
|
+
from concurrent.futures import Future, ThreadPoolExecutor
|
|
14
|
+
from dataclasses import dataclass
|
|
15
|
+
from typing import TYPE_CHECKING, Any, Optional, Union
|
|
16
|
+
|
|
17
|
+
import msgspec
|
|
18
|
+
import numpy as np
|
|
19
|
+
import torch
|
|
20
|
+
import zmq
|
|
21
|
+
|
|
22
|
+
from vllm import envs
|
|
23
|
+
from vllm.attention.selector import backend_name_to_enum, get_attn_backend
|
|
24
|
+
from vllm.config import VllmConfig
|
|
25
|
+
from vllm.distributed.kv_transfer.kv_connector.v1.base import (
|
|
26
|
+
CopyBlocksOp, KVConnectorBase_V1, KVConnectorMetadata, KVConnectorRole)
|
|
27
|
+
from vllm.distributed.kv_transfer.kv_connector.v1.metrics import (
|
|
28
|
+
KVConnectorStats)
|
|
29
|
+
from vllm.distributed.parallel_state import (
|
|
30
|
+
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size,
|
|
31
|
+
get_tp_group)
|
|
32
|
+
from vllm.distributed.utils import divide
|
|
33
|
+
from vllm.forward_context import ForwardContext
|
|
34
|
+
from vllm.logger import init_logger
|
|
35
|
+
from vllm.platforms import _Backend, current_platform
|
|
36
|
+
from vllm.utils import make_zmq_path, make_zmq_socket
|
|
37
|
+
from vllm.v1.attention.backends.utils import get_kv_cache_layout
|
|
38
|
+
from vllm.v1.core.sched.output import SchedulerOutput
|
|
39
|
+
|
|
40
|
+
if TYPE_CHECKING:
|
|
41
|
+
from vllm.attention.backends.abstract import AttentionMetadata
|
|
42
|
+
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
|
|
43
|
+
from vllm.v1.request import Request
|
|
44
|
+
|
|
45
|
+
Transfer = tuple[int, float] # (xfer_handle, start_time)
|
|
46
|
+
EngineId = str
|
|
47
|
+
ReqId = str
|
|
48
|
+
|
|
49
|
+
GET_META_MSG = b"get_meta_msg"
|
|
50
|
+
|
|
51
|
+
logger = init_logger(__name__)
|
|
52
|
+
|
|
53
|
+
# Lazy import nixl_wrapper to avoid loading nixl_bindings if nixl is not used
|
|
54
|
+
try:
|
|
55
|
+
from nixl._api import nixl_agent as NixlWrapper
|
|
56
|
+
logger.info("NIXL is available")
|
|
57
|
+
except ImportError:
|
|
58
|
+
logger.warning("NIXL is not available")
|
|
59
|
+
NixlWrapper = None
|
|
60
|
+
|
|
61
|
+
try:
|
|
62
|
+
from nixl._api import nixl_agent_config
|
|
63
|
+
except ImportError:
|
|
64
|
+
nixl_agent_config = None
|
|
65
|
+
logger.warning("NIXL agent config is not available")
|
|
66
|
+
|
|
67
|
+
# Supported platforms and types of kv transfer buffer.
|
|
68
|
+
# {device: tuple of supported kv buffer types}
|
|
69
|
+
_NIXL_SUPPORTED_DEVICE = {
|
|
70
|
+
"cuda": ("cuda", ),
|
|
71
|
+
"tpu": ("cpu", ),
|
|
72
|
+
"xpu": ("cpu", ),
|
|
73
|
+
}
|
|
74
|
+
# support for oot platform by providing mapping in current_platform
|
|
75
|
+
_NIXL_SUPPORTED_DEVICE.update(current_platform.get_nixl_supported_devices())
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class NixlAgentMetadata(
|
|
79
|
+
msgspec.Struct,
|
|
80
|
+
omit_defaults=True, # type: ignore[call-arg]
|
|
81
|
+
# required for @cached_property.
|
|
82
|
+
dict=True):
|
|
83
|
+
engine_id: str
|
|
84
|
+
agent_metadata: bytes
|
|
85
|
+
kv_caches_base_addr: list[int]
|
|
86
|
+
num_blocks: int
|
|
87
|
+
block_lens: list[int]
|
|
88
|
+
attn_backend_name: str
|
|
89
|
+
kv_cache_layout: str
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
@dataclass
|
|
93
|
+
class ReqMeta:
|
|
94
|
+
local_block_ids: list[int]
|
|
95
|
+
remote_block_ids: list[int]
|
|
96
|
+
remote_host: str
|
|
97
|
+
remote_port: int
|
|
98
|
+
remote_engine_id: str
|
|
99
|
+
tp_size: int
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
class NixlConnectorMetadata(KVConnectorMetadata):
|
|
103
|
+
|
|
104
|
+
def __init__(self):
|
|
105
|
+
self.reqs_to_recv: dict[ReqId, ReqMeta] = {}
|
|
106
|
+
self.reqs_to_save: dict[ReqId, ReqMeta] = {}
|
|
107
|
+
self.reqs_to_send: dict[ReqId, float] = {}
|
|
108
|
+
self.reqs_in_batch: set[ReqId] = set()
|
|
109
|
+
|
|
110
|
+
def add_new_req(
|
|
111
|
+
self,
|
|
112
|
+
request_id: ReqId,
|
|
113
|
+
local_block_ids: list[int],
|
|
114
|
+
kv_transfer_params: dict[str, Any],
|
|
115
|
+
load_remote_cache: bool = True,
|
|
116
|
+
save_to_host: bool = False,
|
|
117
|
+
):
|
|
118
|
+
# save and load are mutually exclusive
|
|
119
|
+
assert load_remote_cache ^ save_to_host
|
|
120
|
+
_req = ReqMeta(
|
|
121
|
+
local_block_ids=local_block_ids,
|
|
122
|
+
remote_block_ids=kv_transfer_params["remote_block_ids"],
|
|
123
|
+
remote_engine_id=kv_transfer_params["remote_engine_id"],
|
|
124
|
+
remote_host=kv_transfer_params["remote_host"],
|
|
125
|
+
remote_port=kv_transfer_params["remote_port"],
|
|
126
|
+
# P workers don't need to receive tp_size from proxy here.
|
|
127
|
+
tp_size=kv_transfer_params.get("tp_size", 1),
|
|
128
|
+
)
|
|
129
|
+
if save_to_host:
|
|
130
|
+
self.reqs_to_save[request_id] = _req
|
|
131
|
+
if load_remote_cache:
|
|
132
|
+
self.reqs_to_recv[request_id] = _req
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
class NixlConnector(KVConnectorBase_V1):
|
|
136
|
+
|
|
137
|
+
def __init__(self, vllm_config: VllmConfig, role: KVConnectorRole):
|
|
138
|
+
assert vllm_config.kv_transfer_config is not None
|
|
139
|
+
assert vllm_config.kv_transfer_config.engine_id is not None
|
|
140
|
+
self.engine_id: EngineId = vllm_config.kv_transfer_config.engine_id
|
|
141
|
+
|
|
142
|
+
if role == KVConnectorRole.SCHEDULER:
|
|
143
|
+
self.connector_scheduler: Optional[NixlConnectorScheduler] = \
|
|
144
|
+
NixlConnectorScheduler(vllm_config, self.engine_id)
|
|
145
|
+
self.connector_worker: Optional[NixlConnectorWorker] = None
|
|
146
|
+
elif role == KVConnectorRole.WORKER:
|
|
147
|
+
self.connector_scheduler = None
|
|
148
|
+
self.connector_worker = NixlConnectorWorker(
|
|
149
|
+
vllm_config, self.engine_id)
|
|
150
|
+
|
|
151
|
+
############################################################
|
|
152
|
+
# Class Methods
|
|
153
|
+
############################################################
|
|
154
|
+
@classmethod
|
|
155
|
+
def get_required_kvcache_layout(cls, vllm_config: VllmConfig):
|
|
156
|
+
if vllm_config.model_config is None:
|
|
157
|
+
logger.warning_once("Unable to detect current VLLM config. "
|
|
158
|
+
"Fallback to default kv cache layout.")
|
|
159
|
+
return None
|
|
160
|
+
use_mla = vllm_config.model_config.use_mla
|
|
161
|
+
if use_mla:
|
|
162
|
+
# return None when we have mla
|
|
163
|
+
# as the layout should not matter in that case,
|
|
164
|
+
# which fallback to the default behavior.
|
|
165
|
+
return None
|
|
166
|
+
logger.info_once("NixlConnector setting KV cache "
|
|
167
|
+
"layout to HND for better xfer performance.")
|
|
168
|
+
return "HND"
|
|
169
|
+
|
|
170
|
+
############################################################
|
|
171
|
+
# Scheduler Side Methods
|
|
172
|
+
############################################################
|
|
173
|
+
|
|
174
|
+
def get_num_new_matched_tokens(
|
|
175
|
+
self, request: "Request",
|
|
176
|
+
num_computed_tokens: int) -> tuple[Optional[int], bool]:
|
|
177
|
+
assert self.connector_scheduler is not None
|
|
178
|
+
return self.connector_scheduler.get_num_new_matched_tokens(
|
|
179
|
+
request, num_computed_tokens)
|
|
180
|
+
|
|
181
|
+
def update_state_after_alloc(self, request: "Request",
|
|
182
|
+
blocks: "KVCacheBlocks",
|
|
183
|
+
num_external_tokens: int):
|
|
184
|
+
assert self.connector_scheduler is not None
|
|
185
|
+
return self.connector_scheduler.update_state_after_alloc(
|
|
186
|
+
request, blocks, num_external_tokens)
|
|
187
|
+
|
|
188
|
+
def build_connector_meta(
|
|
189
|
+
self,
|
|
190
|
+
scheduler_output: SchedulerOutput,
|
|
191
|
+
) -> KVConnectorMetadata:
|
|
192
|
+
assert self.connector_scheduler is not None
|
|
193
|
+
return self.connector_scheduler.build_connector_meta(scheduler_output)
|
|
194
|
+
|
|
195
|
+
def request_finished(
|
|
196
|
+
self,
|
|
197
|
+
request: "Request",
|
|
198
|
+
block_ids: list[int],
|
|
199
|
+
) -> tuple[bool, Optional[dict[str, Any]]]:
|
|
200
|
+
assert self.connector_scheduler is not None
|
|
201
|
+
return self.connector_scheduler.request_finished(request, block_ids)
|
|
202
|
+
|
|
203
|
+
############################################################
|
|
204
|
+
# Worker Side Methods
|
|
205
|
+
############################################################
|
|
206
|
+
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
|
|
207
|
+
assert self.connector_worker is not None
|
|
208
|
+
self.connector_worker.register_kv_caches(kv_caches)
|
|
209
|
+
|
|
210
|
+
def set_host_xfer_buffer_ops(self, copy_operation: CopyBlocksOp):
|
|
211
|
+
assert self.connector_worker is not None
|
|
212
|
+
self.connector_worker.set_host_xfer_buffer_ops(copy_operation)
|
|
213
|
+
|
|
214
|
+
def get_finished(self,
|
|
215
|
+
finished_req_ids: set[str]) -> tuple[set[str], set[str]]:
|
|
216
|
+
"""Get the finished recving and sending requests."""
|
|
217
|
+
assert self.connector_worker is not None
|
|
218
|
+
return self.connector_worker.get_finished()
|
|
219
|
+
|
|
220
|
+
def get_kv_connector_stats(self) -> Optional[KVConnectorStats]:
|
|
221
|
+
assert self.connector_worker is not None
|
|
222
|
+
return self.connector_worker.get_kv_connector_stats()
|
|
223
|
+
|
|
224
|
+
@classmethod
|
|
225
|
+
def build_kv_connector_stats(
|
|
226
|
+
cls,
|
|
227
|
+
data: Optional[dict[str,
|
|
228
|
+
Any]] = None) -> Optional[KVConnectorStats]:
|
|
229
|
+
return NixlKVConnectorStats(data=data) if data is not None \
|
|
230
|
+
else NixlKVConnectorStats()
|
|
231
|
+
|
|
232
|
+
def start_load_kv(self, forward_context: "ForwardContext",
|
|
233
|
+
**kwargs) -> None:
|
|
234
|
+
assert self.connector_worker is not None
|
|
235
|
+
assert isinstance(self._connector_metadata, NixlConnectorMetadata)
|
|
236
|
+
self.connector_worker.start_load_kv(self._connector_metadata)
|
|
237
|
+
|
|
238
|
+
def wait_for_layer_load(self, layer_name: str) -> None:
|
|
239
|
+
"""NixlConnector does not do layerwise saving."""
|
|
240
|
+
pass
|
|
241
|
+
|
|
242
|
+
def save_kv_layer(self, layer_name: str, kv_layer: torch.Tensor,
|
|
243
|
+
attn_metadata: "AttentionMetadata", **kwargs) -> None:
|
|
244
|
+
"""NixlConnector does not save explicitly."""
|
|
245
|
+
pass
|
|
246
|
+
|
|
247
|
+
def wait_for_save(self):
|
|
248
|
+
assert self.connector_worker is not None
|
|
249
|
+
assert isinstance(self._connector_metadata, NixlConnectorMetadata)
|
|
250
|
+
if self.connector_worker.use_host_buffer and \
|
|
251
|
+
self.connector_worker.copy_blocks:
|
|
252
|
+
self.connector_worker.save_kv_to_host(self._connector_metadata)
|
|
253
|
+
|
|
254
|
+
def shutdown(self):
|
|
255
|
+
if self.connector_worker is not None:
|
|
256
|
+
self.connector_worker.shutdown()
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
class NixlConnectorScheduler:
|
|
260
|
+
"""Implementation of Scheduler side methods"""
|
|
261
|
+
|
|
262
|
+
def __init__(self, vllm_config: VllmConfig, engine_id: str):
|
|
263
|
+
self.vllm_config = vllm_config
|
|
264
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
265
|
+
self.engine_id: EngineId = engine_id
|
|
266
|
+
self.side_channel_host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
|
|
267
|
+
self.side_channel_port = (
|
|
268
|
+
envs.VLLM_NIXL_SIDE_CHANNEL_PORT +
|
|
269
|
+
vllm_config.parallel_config.data_parallel_rank *
|
|
270
|
+
vllm_config.parallel_config.tensor_parallel_size)
|
|
271
|
+
self.use_host_buffer = \
|
|
272
|
+
vllm_config.kv_transfer_config.kv_buffer_device == "cpu"
|
|
273
|
+
logger.info("Initializing NIXL Scheduler %s", engine_id)
|
|
274
|
+
|
|
275
|
+
# Requests that need to start recv/send.
|
|
276
|
+
# New requests are added by update_state_after_alloc in
|
|
277
|
+
# the scheduler. Used to make metadata passed to Worker.
|
|
278
|
+
self._reqs_need_recv: dict[ReqId, tuple[Request, list[int]]] = {}
|
|
279
|
+
self._reqs_need_save: dict[ReqId, tuple[Request, list[int]]] = {}
|
|
280
|
+
# Reqs to send and their expiration time
|
|
281
|
+
self._reqs_need_send: dict[ReqId, float] = {}
|
|
282
|
+
self._reqs_in_batch: set[ReqId] = set()
|
|
283
|
+
|
|
284
|
+
def get_num_new_matched_tokens(
|
|
285
|
+
self, request: "Request",
|
|
286
|
+
num_computed_tokens: int) -> tuple[int, bool]:
|
|
287
|
+
"""
|
|
288
|
+
For remote prefill, pull all prompt blocks from remote
|
|
289
|
+
asynchronously relative to engine execution.
|
|
290
|
+
|
|
291
|
+
Args:
|
|
292
|
+
request (Request): the request object.
|
|
293
|
+
num_computed_tokens (int): the number of locally
|
|
294
|
+
computed tokens for this request
|
|
295
|
+
Returns:
|
|
296
|
+
* the number of tokens that can be loaded from the
|
|
297
|
+
external KV cache beyond what is already computed.
|
|
298
|
+
* true if the external KV cache tokens will be loaded
|
|
299
|
+
asynchronously (between scheduler steps).
|
|
300
|
+
"""
|
|
301
|
+
|
|
302
|
+
params = request.kv_transfer_params
|
|
303
|
+
logger.debug(
|
|
304
|
+
"NIXLConnector get_num_new_matched_tokens: "
|
|
305
|
+
"num_computed_tokens=%s, kv_transfer_params=%s",
|
|
306
|
+
num_computed_tokens, params)
|
|
307
|
+
|
|
308
|
+
if params is not None and params.get("do_remote_prefill"):
|
|
309
|
+
# Remote prefill: get all prompt blocks from remote.
|
|
310
|
+
count = len(request.prompt_token_ids) - num_computed_tokens
|
|
311
|
+
if count > 0:
|
|
312
|
+
return count, True
|
|
313
|
+
|
|
314
|
+
# No remote prefill for this request.
|
|
315
|
+
return 0, False
|
|
316
|
+
|
|
317
|
+
def update_state_after_alloc(self, request: "Request",
|
|
318
|
+
blocks: "KVCacheBlocks",
|
|
319
|
+
num_external_tokens: int):
|
|
320
|
+
|
|
321
|
+
params = request.kv_transfer_params
|
|
322
|
+
logger.debug(
|
|
323
|
+
"NIXLConnector update_state_after_alloc: "
|
|
324
|
+
"num_external_tokens=%s, kv_transfer_params=%s",
|
|
325
|
+
num_external_tokens, params)
|
|
326
|
+
|
|
327
|
+
if not params:
|
|
328
|
+
return
|
|
329
|
+
|
|
330
|
+
if params.get("do_remote_decode"):
|
|
331
|
+
self._reqs_in_batch.add(request.request_id)
|
|
332
|
+
if self.use_host_buffer and params.get("do_remote_decode"):
|
|
333
|
+
# NOTE: when accelerator is not directly supported by Nixl,
|
|
334
|
+
# prefilled blocks need to be saved to host memory before transfer.
|
|
335
|
+
|
|
336
|
+
# save all blocks
|
|
337
|
+
block_ids = blocks.get_block_ids()[0]
|
|
338
|
+
# TODO: skip the blocks that are already in the host xfer buffer.
|
|
339
|
+
# Currently, the host xfer buffer block is 1-to-1 mapped to device
|
|
340
|
+
# kv blocks, so host blocks won't be flushed as long as its device
|
|
341
|
+
# block is not overwritten; and it will be safe to skip saving them
|
|
342
|
+
# to host xfer buffer.
|
|
343
|
+
if block_ids:
|
|
344
|
+
self._reqs_need_save[request.request_id] = \
|
|
345
|
+
(request, block_ids)
|
|
346
|
+
elif params.get("do_remote_prefill"):
|
|
347
|
+
if params.get("remote_block_ids"):
|
|
348
|
+
if all(p in params for p in ("remote_engine_id", "remote_host",
|
|
349
|
+
"remote_port")):
|
|
350
|
+
# If remote_blocks and num_external_tokens = 0, we have
|
|
351
|
+
# a full prefix cache hit on the D worker. We need to call
|
|
352
|
+
# send_notif in _read_blocks to free the memory on the P.
|
|
353
|
+
local_block_ids = (blocks.get_unhashed_block_ids()
|
|
354
|
+
if num_external_tokens > 0 else [])
|
|
355
|
+
# Get unhashed blocks to pull from remote.
|
|
356
|
+
self._reqs_need_recv[request.request_id] = (
|
|
357
|
+
request, local_block_ids)
|
|
358
|
+
|
|
359
|
+
else:
|
|
360
|
+
logger.warning(
|
|
361
|
+
"Got invalid KVTransferParams: %s. This "
|
|
362
|
+
"request will not utilize KVTransfer", params)
|
|
363
|
+
else:
|
|
364
|
+
assert num_external_tokens == 0
|
|
365
|
+
# Only trigger 1 KV transfer per request.
|
|
366
|
+
params["do_remote_prefill"] = False
|
|
367
|
+
|
|
368
|
+
def build_connector_meta(
|
|
369
|
+
self,
|
|
370
|
+
scheduler_output: SchedulerOutput,
|
|
371
|
+
) -> KVConnectorMetadata:
|
|
372
|
+
meta = NixlConnectorMetadata()
|
|
373
|
+
|
|
374
|
+
# Loop through scheduled reqs and convert to ReqMeta.
|
|
375
|
+
for req_id, (req, block_ids) in self._reqs_need_recv.items():
|
|
376
|
+
assert req.kv_transfer_params is not None
|
|
377
|
+
meta.add_new_req(
|
|
378
|
+
request_id=req_id,
|
|
379
|
+
local_block_ids=block_ids,
|
|
380
|
+
kv_transfer_params=req.kv_transfer_params,
|
|
381
|
+
load_remote_cache=True,
|
|
382
|
+
save_to_host=False,
|
|
383
|
+
)
|
|
384
|
+
|
|
385
|
+
for req_id, (req, block_ids) in self._reqs_need_save.items():
|
|
386
|
+
assert req.kv_transfer_params is not None
|
|
387
|
+
meta.add_new_req(
|
|
388
|
+
request_id=req_id,
|
|
389
|
+
local_block_ids=block_ids,
|
|
390
|
+
kv_transfer_params=req.kv_transfer_params,
|
|
391
|
+
load_remote_cache=False,
|
|
392
|
+
save_to_host=True,
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
meta.reqs_to_send = self._reqs_need_send
|
|
396
|
+
meta.reqs_in_batch = self._reqs_in_batch
|
|
397
|
+
|
|
398
|
+
# Clear the list once workers start the transfers
|
|
399
|
+
self._reqs_need_recv.clear()
|
|
400
|
+
self._reqs_need_save.clear()
|
|
401
|
+
self._reqs_in_batch = set()
|
|
402
|
+
self._reqs_need_send = {}
|
|
403
|
+
|
|
404
|
+
return meta
|
|
405
|
+
|
|
406
|
+
def request_finished(
|
|
407
|
+
self,
|
|
408
|
+
request: "Request",
|
|
409
|
+
block_ids: list[int],
|
|
410
|
+
) -> tuple[bool, Optional[dict[str, Any]]]:
|
|
411
|
+
"""
|
|
412
|
+
Once a request is finished, determine whether request blocks
|
|
413
|
+
should be freed now or will be sent asynchronously and freed later.
|
|
414
|
+
"""
|
|
415
|
+
from vllm.v1.request import RequestStatus
|
|
416
|
+
|
|
417
|
+
params = request.kv_transfer_params
|
|
418
|
+
logger.debug(
|
|
419
|
+
"NIXLConnector request_finished, request_status=%s, "
|
|
420
|
+
"kv_transfer_params=%s", request.status, params)
|
|
421
|
+
if not params:
|
|
422
|
+
return False, None
|
|
423
|
+
|
|
424
|
+
if params.get("do_remote_prefill"):
|
|
425
|
+
# If do_remote_prefill is still True when the request is finished,
|
|
426
|
+
# update_state_after_alloc must not have been called (the request
|
|
427
|
+
# must have been aborted before it was scheduled).
|
|
428
|
+
# To avoid stranding the prefill blocks in the prefill instance,
|
|
429
|
+
# we must add empty block_ids to _reqs_need_recv so that our
|
|
430
|
+
# worker side will notify and free blocks in the prefill instance.
|
|
431
|
+
self._reqs_need_recv[request.request_id] = (request, [])
|
|
432
|
+
params["do_remote_prefill"] = False
|
|
433
|
+
return False, None
|
|
434
|
+
|
|
435
|
+
if (not params.get("do_remote_decode")
|
|
436
|
+
or request.status != RequestStatus.FINISHED_LENGTH_CAPPED):
|
|
437
|
+
return False, None
|
|
438
|
+
|
|
439
|
+
# TODO: check whether block_ids actually ever be 0. If not we could
|
|
440
|
+
# remove the conditional below
|
|
441
|
+
delay_free_blocks = len(block_ids) > 0
|
|
442
|
+
|
|
443
|
+
if delay_free_blocks:
|
|
444
|
+
# Prefill request on remote. It will be read from D upon completion
|
|
445
|
+
self._reqs_need_send[request.request_id] = time.perf_counter(
|
|
446
|
+
) + envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT
|
|
447
|
+
|
|
448
|
+
return delay_free_blocks, dict(
|
|
449
|
+
do_remote_prefill=True,
|
|
450
|
+
do_remote_decode=False,
|
|
451
|
+
remote_block_ids=block_ids,
|
|
452
|
+
remote_engine_id=self.engine_id,
|
|
453
|
+
remote_host=self.side_channel_host,
|
|
454
|
+
remote_port=self.side_channel_port,
|
|
455
|
+
tp_size=self.vllm_config.parallel_config.tensor_parallel_size)
|
|
456
|
+
|
|
457
|
+
|
|
458
|
+
class NixlConnectorWorker:
|
|
459
|
+
"""Implementation of Worker side methods"""
|
|
460
|
+
|
|
461
|
+
def __init__(self, vllm_config: VllmConfig, engine_id: str):
|
|
462
|
+
if NixlWrapper is None:
|
|
463
|
+
logger.error("NIXL is not available")
|
|
464
|
+
raise RuntimeError("NIXL is not available")
|
|
465
|
+
logger.info("Initializing NIXL wrapper")
|
|
466
|
+
logger.info("Initializing NIXL worker %s", engine_id)
|
|
467
|
+
|
|
468
|
+
# Config.
|
|
469
|
+
self.vllm_config = vllm_config
|
|
470
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
471
|
+
|
|
472
|
+
self.nixl_backends = \
|
|
473
|
+
vllm_config.kv_transfer_config.get_from_extra_config(
|
|
474
|
+
"backends", ["UCX"])
|
|
475
|
+
# Agent.
|
|
476
|
+
non_ucx_backends = [b for b in self.nixl_backends if b != "UCX"]
|
|
477
|
+
if nixl_agent_config is None:
|
|
478
|
+
config = None
|
|
479
|
+
else:
|
|
480
|
+
config = nixl_agent_config(backends=self.nixl_backends) if len(
|
|
481
|
+
non_ucx_backends) > 0 else nixl_agent_config(num_threads=8)
|
|
482
|
+
|
|
483
|
+
self.nixl_wrapper = NixlWrapper(str(uuid.uuid4()), config)
|
|
484
|
+
# Map of engine_id -> {rank0: agent_name0, rank1: agent_name1..}.
|
|
485
|
+
self._remote_agents: dict[EngineId, dict[int, str]] = defaultdict(dict)
|
|
486
|
+
|
|
487
|
+
# NIXL handshake port.
|
|
488
|
+
# NOTE(rob): Within a DP group, each DP rank gets its own
|
|
489
|
+
# base port (which is sent in the KVTransferParams).
|
|
490
|
+
# Each TP rank listens/queries on the base_port + tp_rank.
|
|
491
|
+
self.side_channel_port: int = (
|
|
492
|
+
envs.VLLM_NIXL_SIDE_CHANNEL_PORT +
|
|
493
|
+
vllm_config.parallel_config.data_parallel_rank *
|
|
494
|
+
vllm_config.parallel_config.tensor_parallel_size)
|
|
495
|
+
|
|
496
|
+
# Metadata.
|
|
497
|
+
self.engine_id: EngineId = engine_id
|
|
498
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
|
499
|
+
self.world_size = get_tensor_model_parallel_world_size()
|
|
500
|
+
self.tp_group = get_tp_group()
|
|
501
|
+
self.num_blocks = 0
|
|
502
|
+
|
|
503
|
+
# KV Caches and nixl tracking data.
|
|
504
|
+
self.device_type = current_platform.device_type
|
|
505
|
+
self.kv_buffer_device: str = \
|
|
506
|
+
vllm_config.kv_transfer_config.kv_buffer_device
|
|
507
|
+
if self.device_type not in _NIXL_SUPPORTED_DEVICE:
|
|
508
|
+
raise RuntimeError(f"{self.device_type} is not supported.")
|
|
509
|
+
elif self.kv_buffer_device not in _NIXL_SUPPORTED_DEVICE[
|
|
510
|
+
self.device_type]:
|
|
511
|
+
raise RuntimeError(
|
|
512
|
+
f"{self.device_type} with {self.kv_buffer_device} kv_buffer "
|
|
513
|
+
"is not supported.")
|
|
514
|
+
self.device_kv_caches: dict[str, torch.Tensor] = {}
|
|
515
|
+
|
|
516
|
+
# cpu kv buffer for xfer
|
|
517
|
+
# used when device memory can not be registered under nixl
|
|
518
|
+
self.host_xfer_buffers: dict[str, torch.Tensor] = {}
|
|
519
|
+
self.use_host_buffer = self.kv_buffer_device == "cpu"
|
|
520
|
+
# support for oot platform which can't register nixl memory
|
|
521
|
+
# type based on kv_buffer_device
|
|
522
|
+
self.nixl_memory_type = current_platform.get_nixl_memory_type()
|
|
523
|
+
if self.nixl_memory_type is None:
|
|
524
|
+
if self.kv_buffer_device == "cuda":
|
|
525
|
+
self.nixl_memory_type = "VRAM"
|
|
526
|
+
elif self.kv_buffer_device == "cpu":
|
|
527
|
+
self.nixl_memory_type = "DRAM"
|
|
528
|
+
if self.nixl_memory_type is None:
|
|
529
|
+
raise RuntimeError(
|
|
530
|
+
f"{self.device_type} with {self.kv_buffer_device} kv_buffer "
|
|
531
|
+
"is not supported.")
|
|
532
|
+
|
|
533
|
+
# Note: host xfer buffer ops when use_host_buffer is True
|
|
534
|
+
self.copy_blocks: Optional[CopyBlocksOp] = None
|
|
535
|
+
|
|
536
|
+
# Map of engine_id -> kv_caches_base_addr. For TP case, each local
|
|
537
|
+
# rank will still only pull from a single remote TP worker.
|
|
538
|
+
self.kv_caches_base_addr: dict[EngineId, list[int]] = {}
|
|
539
|
+
|
|
540
|
+
# Number of NIXL regions. Currently one region per cache
|
|
541
|
+
# (so 1 per layer for MLA, otherwise 2 per layer)
|
|
542
|
+
self.num_regions = 0
|
|
543
|
+
self.num_layers = 0
|
|
544
|
+
|
|
545
|
+
# nixl_prepped_dlist_handle.
|
|
546
|
+
self.src_xfer_side_handle: int = 0
|
|
547
|
+
# Map of engine_id -> nixl_prepped_dlist_handle (int)].
|
|
548
|
+
self.dst_xfer_side_handles: dict[EngineId, int] = {}
|
|
549
|
+
|
|
550
|
+
# Map of engine_id -> num_blocks. All ranks in the same deployment will
|
|
551
|
+
# have the same number of blocks.
|
|
552
|
+
self.dst_num_blocks: dict[EngineId, int] = {}
|
|
553
|
+
self._registered_descs: list[Any] = []
|
|
554
|
+
|
|
555
|
+
# In progress transfers.
|
|
556
|
+
# [req_id -> list[handle]]
|
|
557
|
+
self._recving_metadata: dict[ReqId, ReqMeta] = {}
|
|
558
|
+
self._recving_transfers = defaultdict[ReqId, list[Transfer]](list)
|
|
559
|
+
# Track the expiration time of requests that are waiting to be sent.
|
|
560
|
+
self._reqs_to_send: dict[ReqId, float] = {}
|
|
561
|
+
# Set of requests that have been part of a batch, regardless of status.
|
|
562
|
+
self._reqs_to_process: set[ReqId] = set()
|
|
563
|
+
|
|
564
|
+
# Background thread for handling new handshake requests.
|
|
565
|
+
self._nixl_handshake_listener_t: Optional[threading.Thread] = None
|
|
566
|
+
# Background thread for initializing new NIXL handshakes.
|
|
567
|
+
self._handshake_initiation_executor = ThreadPoolExecutor(
|
|
568
|
+
# NIXL is not guaranteed to be thread-safe, limit 1 worker.
|
|
569
|
+
max_workers=1,
|
|
570
|
+
thread_name_prefix="vllm-nixl-handshake-initiator")
|
|
571
|
+
self._ready_requests = queue.Queue[tuple[ReqId, ReqMeta]]()
|
|
572
|
+
self._handshake_futures: dict[EngineId, Future[dict[int, str]]] = {}
|
|
573
|
+
# Protects _handshake_futures and _remote_agents.
|
|
574
|
+
self._handshake_lock = threading.RLock()
|
|
575
|
+
|
|
576
|
+
self.vllm_config = vllm_config
|
|
577
|
+
self.block_size = vllm_config.cache_config.block_size
|
|
578
|
+
self.model_config = vllm_config.model_config
|
|
579
|
+
self.cache_config = vllm_config.cache_config
|
|
580
|
+
|
|
581
|
+
# TODO(mgoin): remove this once we have hybrid memory allocator
|
|
582
|
+
# Optimization for models with local attention (Llama 4)
|
|
583
|
+
# List of block window sizes for each layer for local attention
|
|
584
|
+
self.block_window_per_layer: list[Optional[int]] = []
|
|
585
|
+
self.use_mla = self.model_config.use_mla
|
|
586
|
+
|
|
587
|
+
backend = get_attn_backend(self.model_config.get_head_size(),
|
|
588
|
+
self.model_config.dtype,
|
|
589
|
+
self.cache_config.cache_dtype,
|
|
590
|
+
self.block_size,
|
|
591
|
+
use_mla=self.use_mla)
|
|
592
|
+
self.backend_name = backend.get_name()
|
|
593
|
+
attn_backend = backend_name_to_enum(self.backend_name)
|
|
594
|
+
self._use_flashinfer = attn_backend == _Backend.FLASHINFER
|
|
595
|
+
self._use_pallas = attn_backend == _Backend.PALLAS
|
|
596
|
+
self.kv_cache_layout = get_kv_cache_layout()
|
|
597
|
+
logger.debug("Detected attention backend %s", self.backend_name)
|
|
598
|
+
logger.debug("Detected kv cache layout %s", self.kv_cache_layout)
|
|
599
|
+
|
|
600
|
+
self._tp_size: dict[EngineId, int] = {self.engine_id: self.world_size}
|
|
601
|
+
# With heterogeneous TP, P must wait for all assigned D TP workers to
|
|
602
|
+
# finish reading before safely freeing the blocks.
|
|
603
|
+
self.consumer_notification_counts_by_req = defaultdict[ReqId, int](int)
|
|
604
|
+
self.xfer_stats = NixlKVConnectorStats()
|
|
605
|
+
|
|
606
|
+
@staticmethod
|
|
607
|
+
def _nixl_handshake_listener(metadata: NixlAgentMetadata,
|
|
608
|
+
ready_event: threading.Event, base_port: int,
|
|
609
|
+
tp_rank: int):
|
|
610
|
+
"""Background thread for getting new NIXL handshakes."""
|
|
611
|
+
# NOTE(rob): this is a simple implementation. We will move
|
|
612
|
+
# to a better approach via HTTP endpoint soon.
|
|
613
|
+
|
|
614
|
+
encoder = msgspec.msgpack.Encoder()
|
|
615
|
+
encoded_data = encoder.encode(metadata)
|
|
616
|
+
size_in_bytes = len(encoded_data)
|
|
617
|
+
logger.debug("Size of encoded NixlAgentMetadata: %s bytes",
|
|
618
|
+
str(size_in_bytes))
|
|
619
|
+
|
|
620
|
+
# Listen for new requests for metadata.
|
|
621
|
+
host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
|
|
622
|
+
path = make_zmq_path("tcp", host, base_port + tp_rank)
|
|
623
|
+
logger.debug("Starting listening on path: %s", path)
|
|
624
|
+
with zmq_ctx(zmq.ROUTER, path) as sock:
|
|
625
|
+
ready_event.set()
|
|
626
|
+
while True:
|
|
627
|
+
identity, _, msg = sock.recv_multipart()
|
|
628
|
+
if msg != GET_META_MSG:
|
|
629
|
+
logger.warning(
|
|
630
|
+
"Connection listener got unexpected message %s", msg)
|
|
631
|
+
sock.send_multipart((identity, b"", encoded_data))
|
|
632
|
+
|
|
633
|
+
def _nixl_handshake(
|
|
634
|
+
self,
|
|
635
|
+
host: str,
|
|
636
|
+
port: int,
|
|
637
|
+
remote_tp_size: int,
|
|
638
|
+
expected_engine_id: str,
|
|
639
|
+
) -> dict[int, str]:
|
|
640
|
+
"""Do a NIXL handshake with a remote instance."""
|
|
641
|
+
|
|
642
|
+
start_time = time.perf_counter()
|
|
643
|
+
|
|
644
|
+
# NOTE(rob): we need each rank to have a unique port. This is
|
|
645
|
+
# a hack to keep us moving. We will switch when moving to etcd
|
|
646
|
+
# or where we have a single ZMQ socket in the scheduler.
|
|
647
|
+
|
|
648
|
+
# Handshake only with the remote TP rank that current local rank will
|
|
649
|
+
# pull from. With homogeneous TP it happens to be the same rank_i.
|
|
650
|
+
tp_ratio = self._tp_size[self.engine_id] // remote_tp_size
|
|
651
|
+
p_remote_rank = self.tp_rank // tp_ratio
|
|
652
|
+
path = make_zmq_path("tcp", host, port + p_remote_rank)
|
|
653
|
+
logger.debug("Querying metadata on path: %s at remote rank %s", path,
|
|
654
|
+
p_remote_rank)
|
|
655
|
+
|
|
656
|
+
# Send query for the request.
|
|
657
|
+
with zmq_ctx(zmq.REQ, path) as sock:
|
|
658
|
+
sock.send(GET_META_MSG)
|
|
659
|
+
metadata_bytes = sock.recv()
|
|
660
|
+
decoder = msgspec.msgpack.Decoder(NixlAgentMetadata)
|
|
661
|
+
metadata = decoder.decode(metadata_bytes)
|
|
662
|
+
got_metadata_time = time.perf_counter()
|
|
663
|
+
logger.debug("NIXL handshake: get metadata took: %s",
|
|
664
|
+
got_metadata_time - start_time)
|
|
665
|
+
|
|
666
|
+
# Ensure engine id matches.
|
|
667
|
+
if metadata.engine_id != expected_engine_id:
|
|
668
|
+
raise RuntimeError(f"Remote NIXL agent engine ID mismatch. "
|
|
669
|
+
f"Expected {expected_engine_id},"
|
|
670
|
+
f"received {metadata.engine_id}.")
|
|
671
|
+
|
|
672
|
+
# Register Remote agent.
|
|
673
|
+
remote_agent_name = self.add_remote_agent(metadata, p_remote_rank,
|
|
674
|
+
remote_tp_size)
|
|
675
|
+
setup_agent_time = time.perf_counter()
|
|
676
|
+
logger.debug("NIXL handshake: add agent took: %s",
|
|
677
|
+
setup_agent_time - got_metadata_time)
|
|
678
|
+
|
|
679
|
+
# Remote rank -> agent name.
|
|
680
|
+
return {p_remote_rank: remote_agent_name}
|
|
681
|
+
|
|
682
|
+
def initialize_host_xfer_buffer(
|
|
683
|
+
self, kv_caches: dict[str, torch.Tensor]) -> None:
|
|
684
|
+
"""
|
|
685
|
+
Initialize transfer buffer in CPU mem for accelerators
|
|
686
|
+
NOT directly supported by NIXL (e.g., tpu)
|
|
687
|
+
"""
|
|
688
|
+
xfer_buffers: dict[str, torch.Tensor] = {}
|
|
689
|
+
try:
|
|
690
|
+
for layer_name, kv_cache in kv_caches.items():
|
|
691
|
+
kv_shape = kv_cache.shape
|
|
692
|
+
kv_dtype = kv_cache.dtype
|
|
693
|
+
xfer_buffers[layer_name] = torch.empty(kv_shape,
|
|
694
|
+
dtype=kv_dtype,
|
|
695
|
+
device="cpu")
|
|
696
|
+
except MemoryError as e:
|
|
697
|
+
logger.error("NIXLConnectorWorker gets %s.", e)
|
|
698
|
+
raise
|
|
699
|
+
|
|
700
|
+
self.host_xfer_buffers = xfer_buffers
|
|
701
|
+
|
|
702
|
+
def set_host_xfer_buffer_ops(self, copy_operation: CopyBlocksOp):
|
|
703
|
+
"""Assign copy (d2h, h2d) operations when host buffer is used."""
|
|
704
|
+
assert self.use_host_buffer
|
|
705
|
+
self.copy_blocks = copy_operation
|
|
706
|
+
|
|
707
|
+
def _background_nixl_handshake(self, req_id: str,
|
|
708
|
+
remote_engine_id: EngineId, meta: ReqMeta):
|
|
709
|
+
# Do NIXL handshake in background and add to _ready_requests when done.
|
|
710
|
+
fut = self._handshake_futures.get(remote_engine_id)
|
|
711
|
+
if fut is None:
|
|
712
|
+
fut = self._handshake_initiation_executor.submit(
|
|
713
|
+
self._nixl_handshake, meta.remote_host, meta.remote_port,
|
|
714
|
+
meta.tp_size, remote_engine_id)
|
|
715
|
+
self._handshake_futures[remote_engine_id] = fut
|
|
716
|
+
|
|
717
|
+
def done_callback(f: Future[dict[int, str]], eid=remote_engine_id):
|
|
718
|
+
with self._handshake_lock:
|
|
719
|
+
del self._handshake_futures[eid]
|
|
720
|
+
try:
|
|
721
|
+
self._remote_agents[eid] = f.result()
|
|
722
|
+
except Exception:
|
|
723
|
+
logger.exception("Handshake with %s failed", eid)
|
|
724
|
+
|
|
725
|
+
fut.add_done_callback(done_callback)
|
|
726
|
+
|
|
727
|
+
# TODO: handle failure state of future in the
|
|
728
|
+
# callback, we want to fail the request in this case.
|
|
729
|
+
def request_ready(_f: Future[Any], entry=(req_id, meta)):
|
|
730
|
+
self._ready_requests.put(entry)
|
|
731
|
+
|
|
732
|
+
fut.add_done_callback(request_ready)
|
|
733
|
+
|
|
734
|
+
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
|
|
735
|
+
"""Register the KV Cache data in nixl."""
|
|
736
|
+
|
|
737
|
+
if self.use_host_buffer:
|
|
738
|
+
self.initialize_host_xfer_buffer(kv_caches=kv_caches)
|
|
739
|
+
assert len(self.host_xfer_buffers) == len(kv_caches), (
|
|
740
|
+
f"host_buffer: {len(self.host_xfer_buffers)}, "
|
|
741
|
+
f"kv_caches: {len(kv_caches)}")
|
|
742
|
+
xfer_buffers = self.host_xfer_buffers
|
|
743
|
+
else:
|
|
744
|
+
xfer_buffers = kv_caches
|
|
745
|
+
assert not self.host_xfer_buffers, (
|
|
746
|
+
"host_xfer_buffer should not be initialized when "
|
|
747
|
+
f"kv_buffer_device is {self.kv_buffer_device}")
|
|
748
|
+
|
|
749
|
+
logger.info(
|
|
750
|
+
"Registering KV_Caches. use_mla: %s, kv_buffer_device: %s, "
|
|
751
|
+
"use_host_buffer: %s", self.use_mla, self.kv_buffer_device,
|
|
752
|
+
self.use_host_buffer)
|
|
753
|
+
|
|
754
|
+
caches_data = []
|
|
755
|
+
# With hybrid allocator, layers can share a kv cache tensor
|
|
756
|
+
seen_base_addresses = []
|
|
757
|
+
|
|
758
|
+
# Note(tms): I modified this from the original region setup code.
|
|
759
|
+
# K and V are now in different regions. Advantage is that we can
|
|
760
|
+
# elegantly support MLA and any cases where the K and V tensors
|
|
761
|
+
# are non-contiguous (it's not locally guaranteed that they will be)
|
|
762
|
+
# Disadvantage is that the encoded NixlAgentMetadata is now larger
|
|
763
|
+
# (roughly 8KB vs 5KB).
|
|
764
|
+
# Conversely for FlashInfer, K and V are registered in the same region
|
|
765
|
+
# to better exploit the memory layout (ie num_blocks is the first dim).
|
|
766
|
+
split_k_and_v = not (self.use_mla or self._use_pallas
|
|
767
|
+
or self._use_flashinfer)
|
|
768
|
+
tensor_size_bytes = None
|
|
769
|
+
# Enable different block lengths for different layers when MLA is used.
|
|
770
|
+
self.block_len_per_layer = list[int]()
|
|
771
|
+
self.slot_size_per_layer = list[int]() # HD bytes in kv terms
|
|
772
|
+
for layer_name, cache_or_caches in xfer_buffers.items():
|
|
773
|
+
cache_list = cache_or_caches if split_k_and_v else [
|
|
774
|
+
cache_or_caches
|
|
775
|
+
]
|
|
776
|
+
|
|
777
|
+
for cache in cache_list:
|
|
778
|
+
base_addr = cache.data_ptr()
|
|
779
|
+
if base_addr in seen_base_addresses:
|
|
780
|
+
continue
|
|
781
|
+
|
|
782
|
+
seen_base_addresses.append(base_addr)
|
|
783
|
+
curr_tensor_size_bytes = cache.numel() * cache.element_size()
|
|
784
|
+
|
|
785
|
+
if tensor_size_bytes is None:
|
|
786
|
+
tensor_size_bytes = curr_tensor_size_bytes
|
|
787
|
+
self.num_blocks = cache.shape[0]
|
|
788
|
+
|
|
789
|
+
assert cache.shape[0] == self.num_blocks, \
|
|
790
|
+
"All kv cache tensors must have the same number of blocks"
|
|
791
|
+
|
|
792
|
+
self.block_len_per_layer.append(curr_tensor_size_bytes //
|
|
793
|
+
self.num_blocks)
|
|
794
|
+
self.slot_size_per_layer.append(self.block_len_per_layer[-1] //
|
|
795
|
+
self.block_size)
|
|
796
|
+
|
|
797
|
+
if not self.use_mla:
|
|
798
|
+
# Different kv cache shape is not supported by HeteroTP
|
|
799
|
+
assert tensor_size_bytes == curr_tensor_size_bytes, \
|
|
800
|
+
"All kv cache tensors must have the same size"
|
|
801
|
+
caches_data.append(
|
|
802
|
+
(base_addr, curr_tensor_size_bytes, self.tp_rank, ""))
|
|
803
|
+
|
|
804
|
+
logger.debug("Different block lengths collected: %s",
|
|
805
|
+
set(self.block_len_per_layer))
|
|
806
|
+
assert len(self.block_len_per_layer) == len(seen_base_addresses)
|
|
807
|
+
assert self.num_blocks != 0
|
|
808
|
+
|
|
809
|
+
self.kv_caches_base_addr[self.engine_id] = seen_base_addresses
|
|
810
|
+
self.num_regions = len(caches_data)
|
|
811
|
+
self.num_layers = len(xfer_buffers.keys())
|
|
812
|
+
|
|
813
|
+
descs = self.nixl_wrapper.get_reg_descs(caches_data,
|
|
814
|
+
self.nixl_memory_type)
|
|
815
|
+
logger.debug("Registering descs: %s", caches_data)
|
|
816
|
+
self.nixl_wrapper.register_memory(descs, backends=self.nixl_backends)
|
|
817
|
+
logger.debug("Done registering descs")
|
|
818
|
+
self._registered_descs.append(descs)
|
|
819
|
+
|
|
820
|
+
self.device_kv_caches = kv_caches
|
|
821
|
+
self.dst_num_blocks[self.engine_id] = self.num_blocks
|
|
822
|
+
if self._use_flashinfer:
|
|
823
|
+
for i in range(len(self.slot_size_per_layer)):
|
|
824
|
+
assert self.slot_size_per_layer[i] % 2 == 0
|
|
825
|
+
self.slot_size_per_layer[i] //= 2
|
|
826
|
+
|
|
827
|
+
# NOTE (NickLucche) When FlashInfer is used, memory is registered
|
|
828
|
+
# with joint KV for each block. This minimizes the overhead in
|
|
829
|
+
# registerMem allowing faster descs queries. In order to be able to
|
|
830
|
+
# split on kv_heads dim as required by heterogeneous TP, one must
|
|
831
|
+
# be able to index K/V separately. Hence we double the number
|
|
832
|
+
# of 'virtual' regions here and halve `block_len` below.
|
|
833
|
+
self.num_regions *= 2
|
|
834
|
+
|
|
835
|
+
# Register local/src descr for NIXL xfer.
|
|
836
|
+
blocks_data = []
|
|
837
|
+
for i, base_addr in enumerate(seen_base_addresses):
|
|
838
|
+
kv_block_len = self.get_backend_aware_kv_block_len(layer_idx=i)
|
|
839
|
+
# NOTE With heter-TP, more blocks are prepared than what are
|
|
840
|
+
# needed as self.num_blocks >= nixl_agent_meta.num_blocks. We
|
|
841
|
+
# could create fewer, but then _get_block_descs_ids needs to
|
|
842
|
+
# select agent_meta.num_blocks instead of self.num_blocks for
|
|
843
|
+
# local descr, and that makes handling regular flow less clean.
|
|
844
|
+
for block_id in range(self.num_blocks):
|
|
845
|
+
block_offset = block_id * self.block_len_per_layer[i]
|
|
846
|
+
addr = base_addr + block_offset
|
|
847
|
+
# (addr, len, device id)
|
|
848
|
+
blocks_data.append((addr, kv_block_len, self.tp_rank))
|
|
849
|
+
|
|
850
|
+
if self._use_flashinfer:
|
|
851
|
+
# Separate and interleave K/V regions to maintain the same
|
|
852
|
+
# descs ordering. This is needed for selecting contiguous heads
|
|
853
|
+
# when split across TP ranks.
|
|
854
|
+
for block_id in range(self.num_blocks):
|
|
855
|
+
block_offset = block_id * self.block_len_per_layer[i]
|
|
856
|
+
addr = base_addr + block_offset
|
|
857
|
+
# Register addresses for V cache (K registered first).
|
|
858
|
+
v_addr = addr + kv_block_len
|
|
859
|
+
blocks_data.append((v_addr, kv_block_len, self.tp_rank))
|
|
860
|
+
logger.debug("Created %s blocks for src engine %s and rank %s",
|
|
861
|
+
len(blocks_data), self.engine_id, self.tp_rank)
|
|
862
|
+
|
|
863
|
+
descs = self.nixl_wrapper.get_xfer_descs(blocks_data,
|
|
864
|
+
self.nixl_memory_type)
|
|
865
|
+
# NIXL_INIT_AGENT to be used for preparations of local descs.
|
|
866
|
+
self.src_xfer_side_handle = self.nixl_wrapper.prep_xfer_dlist(
|
|
867
|
+
"NIXL_INIT_AGENT", descs)
|
|
868
|
+
|
|
869
|
+
# TODO(mgoin): Hybrid memory allocator is currently disabled for
|
|
870
|
+
# models with local attention (Llama 4). Can remove this once enabled.
|
|
871
|
+
if self.vllm_config.model_config.hf_config.model_type == "llama4":
|
|
872
|
+
from transformers import Llama4TextConfig
|
|
873
|
+
assert isinstance(self.vllm_config.model_config.hf_text_config,
|
|
874
|
+
Llama4TextConfig)
|
|
875
|
+
llama4_config = self.vllm_config.model_config.hf_text_config
|
|
876
|
+
no_rope_layers = llama4_config.no_rope_layers
|
|
877
|
+
chunk_size = llama4_config.attention_chunk_size
|
|
878
|
+
chunk_block_size = math.ceil(chunk_size / self.block_size)
|
|
879
|
+
for layer_idx in range(self.num_layers):
|
|
880
|
+
# no_rope_layers[layer_idx] == 0 means NoPE (global)
|
|
881
|
+
# Any other value means RoPE (local chunked)
|
|
882
|
+
is_local_attention = no_rope_layers[layer_idx] != 0
|
|
883
|
+
block_window = chunk_block_size if is_local_attention else None
|
|
884
|
+
self.block_window_per_layer.append(block_window)
|
|
885
|
+
logger.debug("Llama 4 block window per layer mapping: %s",
|
|
886
|
+
self.block_window_per_layer)
|
|
887
|
+
assert len(self.block_window_per_layer) == self.num_layers
|
|
888
|
+
|
|
889
|
+
# After KV Caches registered, listen for new connections.
|
|
890
|
+
metadata = NixlAgentMetadata(
|
|
891
|
+
engine_id=self.engine_id,
|
|
892
|
+
agent_metadata=self.nixl_wrapper.get_agent_metadata(),
|
|
893
|
+
kv_caches_base_addr=self.kv_caches_base_addr[self.engine_id],
|
|
894
|
+
num_blocks=self.num_blocks,
|
|
895
|
+
block_lens=self.block_len_per_layer,
|
|
896
|
+
attn_backend_name=self.backend_name,
|
|
897
|
+
kv_cache_layout=self.kv_cache_layout)
|
|
898
|
+
ready_event = threading.Event()
|
|
899
|
+
self._nixl_handshake_listener_t = threading.Thread(
|
|
900
|
+
target=self._nixl_handshake_listener,
|
|
901
|
+
args=(metadata, ready_event, self.side_channel_port, self.tp_rank),
|
|
902
|
+
daemon=True,
|
|
903
|
+
name="nixl_handshake_listener")
|
|
904
|
+
self._nixl_handshake_listener_t.start()
|
|
905
|
+
ready_event.wait() # Wait for listener ZMQ socket to be ready.
|
|
906
|
+
|
|
907
|
+
def add_remote_agent(self,
|
|
908
|
+
nixl_agent_meta: NixlAgentMetadata,
|
|
909
|
+
remote_tp_rank: int = 0,
|
|
910
|
+
remote_tp_size: int = 1) -> str:
|
|
911
|
+
"""
|
|
912
|
+
Add the remote NIXL agent and prepare the descriptors for reading cache
|
|
913
|
+
blocks from remote.
|
|
914
|
+
|
|
915
|
+
In particular, handle both homogeneous and heterogeneous TP. The former
|
|
916
|
+
requires local rank_i to read from remote rank_i.
|
|
917
|
+
The latter, assuming D.world_size > P.world_size, requires that two or
|
|
918
|
+
more local TP worker share the xfer from a single TP worker.
|
|
919
|
+
|
|
920
|
+
Here's an example (non-MLA case):
|
|
921
|
+
|
|
922
|
+
rank_offset p_remote_tp_rank
|
|
923
|
+
(kv split no)
|
|
924
|
+
--------------------------------
|
|
925
|
+
0 0 Worker0 ---- 1st half of KV ----> Worker0 [ KV Cache ]
|
|
926
|
+
/
|
|
927
|
+
1 0 Worker1 ---- 2nd half of KV -----/
|
|
928
|
+
|
|
929
|
+
0 1 Worker2 ---- 1st half of KV ----> Worker1 [ KV Cache ]
|
|
930
|
+
/
|
|
931
|
+
1 1 Worker3 ---- 2nd half of KV -----/
|
|
932
|
+
|
|
933
|
+
|
|
934
|
+
Decoder TP workers Prefix TP workers
|
|
935
|
+
(world_size=4) (world_size=2)
|
|
936
|
+
tp_ratio = 4 // 2 = 2
|
|
937
|
+
|
|
938
|
+
Considering the KV Caches, if P-Worker_i has cache size [2, num_blocksP, kv_heads, block_size, head_dim]
|
|
939
|
+
then D-Worker_j has [2, num_blocksD, kv_heads//tp_ratio, block_size, head_dim]. Mind the "HND" layout format.
|
|
940
|
+
Assuming num_blocksD >= num_blocksP, D-Worker0 reads from P-Worker0 by preparing the kv_heads//tp_ratio
|
|
941
|
+
first heads from all the slots of all the blocks. D-Worker1 will do the same, but reading the second split
|
|
942
|
+
along the kv_heads dimension, and so forth until "tp_ratio" D TP workers have pulled from P-Worker0.
|
|
943
|
+
|
|
944
|
+
Note that the above will also hold true for the homogeneous TP case, where tp_ratio evaluates to 1.
|
|
945
|
+
|
|
946
|
+
Regarding MLA case, the cache is replicated across TP workers so the rank_offset will just always be 0
|
|
947
|
+
so that the whole cache is shared by "tp_ratio" D TP workers.
|
|
948
|
+
""" # noqa: E501
|
|
949
|
+
engine_id = nixl_agent_meta.engine_id
|
|
950
|
+
# TODO re-evaluate refreshing for scaling/recovery
|
|
951
|
+
if remote_tp_rank in self._remote_agents.get(engine_id, {}):
|
|
952
|
+
return self._remote_agents[engine_id][remote_tp_rank]
|
|
953
|
+
|
|
954
|
+
if engine_id not in self._tp_size:
|
|
955
|
+
self._tp_size[engine_id] = remote_tp_size
|
|
956
|
+
else:
|
|
957
|
+
assert self._tp_size[engine_id] == remote_tp_size
|
|
958
|
+
# TODO We may eventually want to skip enforcing the same attn backend.
|
|
959
|
+
assert nixl_agent_meta.attn_backend_name == self.backend_name
|
|
960
|
+
|
|
961
|
+
remote_agent_name = self.nixl_wrapper.add_remote_agent(
|
|
962
|
+
nixl_agent_meta.agent_metadata)
|
|
963
|
+
|
|
964
|
+
# Number of D TP workers reading from a single P TP worker. This is
|
|
965
|
+
# 1 when P and D `--tensor-parallel-size` match.
|
|
966
|
+
tp_ratio = divide(self._tp_size[self.engine_id],
|
|
967
|
+
self._tp_size[engine_id])
|
|
968
|
+
assert tp_ratio > 0, "Decode TP cannot be smaller than prefill TP"
|
|
969
|
+
assert not self._use_pallas or tp_ratio == 1, \
|
|
970
|
+
"TPU (pallas_v1) DOES NOT support heterogeneous TP yet."
|
|
971
|
+
|
|
972
|
+
# Handle tp_size>num_kv_heads: replicate KV cache.
|
|
973
|
+
total_num_kv_heads = self.model_config.get_total_num_kv_heads()
|
|
974
|
+
is_kv_replicated = self._tp_size[engine_id] // total_num_kv_heads >= 1
|
|
975
|
+
|
|
976
|
+
remote_block_len = nixl_agent_meta.block_lens[0]
|
|
977
|
+
if self.use_mla or is_kv_replicated:
|
|
978
|
+
# With replicated KV cache, only the number of blocks can differ.
|
|
979
|
+
assert self.block_len_per_layer == nixl_agent_meta.block_lens, \
|
|
980
|
+
"KV cache sizes must match between P and D when replicated"
|
|
981
|
+
remote_block_size = remote_block_len // (
|
|
982
|
+
self.slot_size_per_layer[0])
|
|
983
|
+
else:
|
|
984
|
+
# When MLA is not used, this is a list of the same block length
|
|
985
|
+
for block_len in nixl_agent_meta.block_lens:
|
|
986
|
+
assert block_len == remote_block_len, \
|
|
987
|
+
"All remote layers must have the same block size"
|
|
988
|
+
remote_block_size = remote_block_len // (
|
|
989
|
+
self.slot_size_per_layer[0] * tp_ratio)
|
|
990
|
+
if self._use_flashinfer:
|
|
991
|
+
# With flashinfer, KV are sent in the same message.
|
|
992
|
+
remote_block_size //= 2
|
|
993
|
+
if tp_ratio > 1:
|
|
994
|
+
# Heterogeneous TP expects same kv_cache_layout.
|
|
995
|
+
assert nixl_agent_meta.kv_cache_layout == self.kv_cache_layout
|
|
996
|
+
if self.device_type == "xpu":
|
|
997
|
+
raise ValueError(
|
|
998
|
+
"Heterogeneous TP is not supported on XPU")
|
|
999
|
+
|
|
1000
|
+
assert remote_block_len == self.block_len_per_layer[0] * tp_ratio, (
|
|
1001
|
+
"Remote P worker KV layer cache must be of shape [2, N, "
|
|
1002
|
+
"local_kv_heads*tp_ratio, block_size, head_dim] and same dtype."
|
|
1003
|
+
)
|
|
1004
|
+
|
|
1005
|
+
assert self.block_size == remote_block_size, (
|
|
1006
|
+
"Remote P worker with different page/block size is not supported "
|
|
1007
|
+
f"{self.block_size=}, {remote_block_size=}")
|
|
1008
|
+
|
|
1009
|
+
# Create dst descs and xfer side handles. TP workers have same #blocks.
|
|
1010
|
+
if engine_id in self.dst_num_blocks:
|
|
1011
|
+
assert self.dst_num_blocks[engine_id] == nixl_agent_meta.num_blocks
|
|
1012
|
+
else:
|
|
1013
|
+
self.dst_num_blocks[engine_id] = nixl_agent_meta.num_blocks
|
|
1014
|
+
|
|
1015
|
+
blocks_data = []
|
|
1016
|
+
# With homogeneous TP, D pulls the whole kv cache from corresponding
|
|
1017
|
+
# rank. With heterogeneous TP, prepare the descriptors by splitting the
|
|
1018
|
+
# P KV cache along kv_head dim, of D worker's kv_head size (D>P).
|
|
1019
|
+
# Eg. PTP1 DTP2 => P0 KV:[block0-KV_0 | block0-KV_1..].
|
|
1020
|
+
self.kv_caches_base_addr[
|
|
1021
|
+
engine_id] = nixl_agent_meta.kv_caches_base_addr
|
|
1022
|
+
|
|
1023
|
+
assert len(nixl_agent_meta.kv_caches_base_addr) == len(
|
|
1024
|
+
self.block_len_per_layer)
|
|
1025
|
+
# Register all remote blocks, but only the corresponding kv heads.
|
|
1026
|
+
for i, base_addr in enumerate(nixl_agent_meta.kv_caches_base_addr):
|
|
1027
|
+
kv_block_len = self.get_backend_aware_kv_block_len(layer_idx=i)
|
|
1028
|
+
rank_offset = self.tp_rank % tp_ratio * kv_block_len \
|
|
1029
|
+
if not (self.use_mla or is_kv_replicated) else 0
|
|
1030
|
+
for block_id in range(nixl_agent_meta.num_blocks):
|
|
1031
|
+
block_offset = block_id * nixl_agent_meta.block_lens[i]
|
|
1032
|
+
# For each block, grab the heads chunk belonging to rank_i
|
|
1033
|
+
# of size remote_nheads // tp_ratio, which correspond to
|
|
1034
|
+
# self.block_len == remote_block_len//tp_ratio bytes.
|
|
1035
|
+
addr = base_addr + block_offset + rank_offset
|
|
1036
|
+
# (addr, len, device id)
|
|
1037
|
+
blocks_data.append((addr, kv_block_len, remote_tp_rank))
|
|
1038
|
+
|
|
1039
|
+
if self._use_flashinfer:
|
|
1040
|
+
# With FlashInfer index V separately to allow head splitting.
|
|
1041
|
+
for block_id in range(nixl_agent_meta.num_blocks):
|
|
1042
|
+
block_offset = block_id * nixl_agent_meta.block_lens[i]
|
|
1043
|
+
addr = base_addr + block_offset + rank_offset
|
|
1044
|
+
v_addr = addr + nixl_agent_meta.block_lens[i] // 2
|
|
1045
|
+
blocks_data.append((v_addr, kv_block_len, remote_tp_rank))
|
|
1046
|
+
|
|
1047
|
+
logger.debug(
|
|
1048
|
+
"Created %s blocks for dst engine %s with remote rank %s and "
|
|
1049
|
+
"local rank %s", len(blocks_data), engine_id, remote_tp_rank,
|
|
1050
|
+
self.tp_rank)
|
|
1051
|
+
|
|
1052
|
+
# Register with NIXL.
|
|
1053
|
+
descs = self.nixl_wrapper.get_xfer_descs(blocks_data,
|
|
1054
|
+
self.nixl_memory_type)
|
|
1055
|
+
self.dst_xfer_side_handles[
|
|
1056
|
+
engine_id] = self.nixl_wrapper.prep_xfer_dlist(
|
|
1057
|
+
remote_agent_name, descs)
|
|
1058
|
+
|
|
1059
|
+
return remote_agent_name
|
|
1060
|
+
|
|
1061
|
+
def sync_recved_kv_to_device(self, req_id: str, meta: ReqMeta):
|
|
1062
|
+
"""copy recved kv from host buffer to device."""
|
|
1063
|
+
assert self.use_host_buffer
|
|
1064
|
+
assert self.copy_blocks is not None
|
|
1065
|
+
|
|
1066
|
+
local_block_ids = meta.local_block_ids
|
|
1067
|
+
self.copy_blocks(self.host_xfer_buffers, self.device_kv_caches,
|
|
1068
|
+
local_block_ids, local_block_ids, "h2d")
|
|
1069
|
+
if logger.isEnabledFor(logging.DEBUG):
|
|
1070
|
+
logger.debug(
|
|
1071
|
+
"synced recved kv of request[%s] to device kv buffer,"
|
|
1072
|
+
"local_block_ids: %s. ", req_id,
|
|
1073
|
+
",".join(map(str, meta.local_block_ids)))
|
|
1074
|
+
|
|
1075
|
+
def save_kv_to_host(self, metadata: NixlConnectorMetadata):
|
|
1076
|
+
"""copy kv from device to host buffer."""
|
|
1077
|
+
assert self.use_host_buffer
|
|
1078
|
+
assert self.copy_blocks is not None
|
|
1079
|
+
|
|
1080
|
+
for req_id, meta in metadata.reqs_to_save.items():
|
|
1081
|
+
if logger.isEnabledFor(logging.DEBUG):
|
|
1082
|
+
logger.debug(
|
|
1083
|
+
"save_load_kv for request[%s] to host xfer buffer."
|
|
1084
|
+
"local_block_ids: %s. ", req_id,
|
|
1085
|
+
",".join(map(str, meta.local_block_ids)))
|
|
1086
|
+
# blocking
|
|
1087
|
+
self.copy_blocks(self.device_kv_caches, self.host_xfer_buffers,
|
|
1088
|
+
meta.local_block_ids, meta.local_block_ids, "d2h")
|
|
1089
|
+
|
|
1090
|
+
def get_finished(self) -> tuple[set[str], set[str]]:
|
|
1091
|
+
"""
|
|
1092
|
+
Get requests that are done sending or recving on this specific worker.
|
|
1093
|
+
The scheduler process (via the MultiprocExecutor) will use this output
|
|
1094
|
+
to track which workers are done.
|
|
1095
|
+
"""
|
|
1096
|
+
done_sending = self._get_new_notifs()
|
|
1097
|
+
done_recving = self._pop_done_transfers(self._recving_transfers)
|
|
1098
|
+
if len(done_sending) > 0 or len(done_recving) > 0:
|
|
1099
|
+
logger.debug(
|
|
1100
|
+
"Rank %s, get_finished: %s requests done sending "
|
|
1101
|
+
"and %s requests done recving", self.tp_rank,
|
|
1102
|
+
len(done_sending), len(done_recving))
|
|
1103
|
+
|
|
1104
|
+
if self.use_host_buffer:
|
|
1105
|
+
for req_id in done_recving:
|
|
1106
|
+
meta = self._recving_metadata.pop(req_id)
|
|
1107
|
+
assert meta, f"{req_id} not found in recving_metadata list"
|
|
1108
|
+
self.sync_recved_kv_to_device(req_id, meta)
|
|
1109
|
+
|
|
1110
|
+
# Handle timeout to avoid stranding blocks on remote.
|
|
1111
|
+
now = time.perf_counter()
|
|
1112
|
+
while self._reqs_to_send:
|
|
1113
|
+
req_id, expires = next(iter(self._reqs_to_send.items()))
|
|
1114
|
+
# Sorted dict, oldest requests are put first so we can exit early.
|
|
1115
|
+
if now < expires:
|
|
1116
|
+
break
|
|
1117
|
+
count = self.consumer_notification_counts_by_req.pop(req_id, 0)
|
|
1118
|
+
logger.warning(
|
|
1119
|
+
"Releasing expired KV blocks for request %s which were "
|
|
1120
|
+
"retrieved by %d decode worker(s) within %d seconds.", req_id,
|
|
1121
|
+
count, envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT)
|
|
1122
|
+
self._reqs_to_process.remove(req_id)
|
|
1123
|
+
del self._reqs_to_send[req_id]
|
|
1124
|
+
done_sending.add(req_id)
|
|
1125
|
+
|
|
1126
|
+
return done_sending, done_recving
|
|
1127
|
+
|
|
1128
|
+
def _get_new_notifs(self) -> set[str]:
|
|
1129
|
+
"""
|
|
1130
|
+
Get req_ids which got a remote xfer message. When multiple consumers
|
|
1131
|
+
are reading from the same producer (heterogeneous TP scenario), wait
|
|
1132
|
+
for all consumers to be done pulling.
|
|
1133
|
+
"""
|
|
1134
|
+
notified_req_ids: set[str] = set()
|
|
1135
|
+
for notifs in self.nixl_wrapper.get_new_notifs().values():
|
|
1136
|
+
for notif in notifs:
|
|
1137
|
+
req_id, tp_ratio = notif.decode("utf-8").rsplit(":", 1)
|
|
1138
|
+
if (req_id not in self._reqs_to_send
|
|
1139
|
+
and req_id not in self._reqs_to_process):
|
|
1140
|
+
logger.error(
|
|
1141
|
+
"Potentially invalid KV blocks for "
|
|
1142
|
+
"unrecognized request %s were retrieved by "
|
|
1143
|
+
"a decode worker. They may have expired.", req_id)
|
|
1144
|
+
continue
|
|
1145
|
+
|
|
1146
|
+
self.consumer_notification_counts_by_req[req_id] += 1
|
|
1147
|
+
# Wait all consumers (D) to be done reading before freeing.
|
|
1148
|
+
if self.consumer_notification_counts_by_req[req_id] == int(
|
|
1149
|
+
tp_ratio):
|
|
1150
|
+
notified_req_ids.add(req_id)
|
|
1151
|
+
del self.consumer_notification_counts_by_req[req_id]
|
|
1152
|
+
self._reqs_to_process.remove(req_id)
|
|
1153
|
+
self._reqs_to_send.pop(req_id, None)
|
|
1154
|
+
return notified_req_ids
|
|
1155
|
+
|
|
1156
|
+
def _pop_done_transfers(
|
|
1157
|
+
self, transfers: dict[str, list[tuple[int, float]]]) -> set[str]:
|
|
1158
|
+
"""
|
|
1159
|
+
Pop completed xfers by checking for DONE state.
|
|
1160
|
+
Args:
|
|
1161
|
+
transfers: dict of req_id -> list[running_xfer]
|
|
1162
|
+
Returns:
|
|
1163
|
+
set of req_ids that have all done xfers
|
|
1164
|
+
"""
|
|
1165
|
+
done_req_ids: set[str] = set()
|
|
1166
|
+
for req_id, handles in list(transfers.items()):
|
|
1167
|
+
in_progress = False
|
|
1168
|
+
for handle, _xfer_stime in handles:
|
|
1169
|
+
xfer_state = self.nixl_wrapper.check_xfer_state(handle)
|
|
1170
|
+
if xfer_state == "DONE":
|
|
1171
|
+
self.nixl_wrapper.release_xfer_handle(handle)
|
|
1172
|
+
# TODO (NickLucche) Get from NIXL telemetry once integrated
|
|
1173
|
+
self.xfer_stats.record_transfer()
|
|
1174
|
+
elif xfer_state == "PROC":
|
|
1175
|
+
in_progress = True
|
|
1176
|
+
continue
|
|
1177
|
+
else:
|
|
1178
|
+
raise RuntimeError("Transfer failed with state %s",
|
|
1179
|
+
xfer_state)
|
|
1180
|
+
if not in_progress:
|
|
1181
|
+
done_req_ids.add(req_id)
|
|
1182
|
+
del transfers[req_id]
|
|
1183
|
+
return done_req_ids
|
|
1184
|
+
|
|
1185
|
+
def start_load_kv(self, metadata: NixlConnectorMetadata):
|
|
1186
|
+
"""
|
|
1187
|
+
Start loading by triggering non-blocking nixl_xfer.
|
|
1188
|
+
We check for these trnxs to complete in each step().
|
|
1189
|
+
"""
|
|
1190
|
+
for req_id, meta in metadata.reqs_to_recv.items():
|
|
1191
|
+
remote_engine_id = meta.remote_engine_id
|
|
1192
|
+
logger.debug(
|
|
1193
|
+
"start_load_kv for request %s from remote engine %s. "
|
|
1194
|
+
"Num local_block_ids: %s. Num remote_block_ids: %s. ", req_id,
|
|
1195
|
+
remote_engine_id, len(meta.local_block_ids),
|
|
1196
|
+
len(meta.remote_block_ids))
|
|
1197
|
+
if self.use_host_buffer:
|
|
1198
|
+
self._recving_metadata[req_id] = meta
|
|
1199
|
+
if remote_engine_id not in self._remote_agents:
|
|
1200
|
+
# Initiate handshake with remote engine to exchange metadata.
|
|
1201
|
+
with self._handshake_lock:
|
|
1202
|
+
if remote_engine_id not in self._remote_agents:
|
|
1203
|
+
self._background_nixl_handshake(
|
|
1204
|
+
req_id, remote_engine_id, meta)
|
|
1205
|
+
continue
|
|
1206
|
+
|
|
1207
|
+
# Handshake already completed, start async read xfer.
|
|
1208
|
+
self._read_blocks_for_req(req_id, meta)
|
|
1209
|
+
|
|
1210
|
+
# Start transfers for requests whose handshakes have now finished.
|
|
1211
|
+
while not self._ready_requests.empty():
|
|
1212
|
+
self._read_blocks_for_req(*self._ready_requests.get_nowait())
|
|
1213
|
+
|
|
1214
|
+
# Keep around the requests that have been part of a batch. This is
|
|
1215
|
+
# needed because async scheduling pushes the misalignment between the
|
|
1216
|
+
# moment in which requests expiration is set (P side) and the moment in
|
|
1217
|
+
# which blocks are read from D. As P can now more easily lag behind D
|
|
1218
|
+
# while processing the next batch, we make sure to only set an
|
|
1219
|
+
# expiration for requests that have not been read from D yet.
|
|
1220
|
+
for req_id in metadata.reqs_in_batch:
|
|
1221
|
+
self._reqs_to_process.add(req_id)
|
|
1222
|
+
|
|
1223
|
+
# Add to requests that are waiting to be read and track expiration.
|
|
1224
|
+
for req_id, expiration_time in metadata.reqs_to_send.items():
|
|
1225
|
+
if req_id in self._reqs_to_process:
|
|
1226
|
+
self._reqs_to_send[req_id] = expiration_time
|
|
1227
|
+
|
|
1228
|
+
def _read_blocks_for_req(self, req_id: str, meta: ReqMeta):
|
|
1229
|
+
logger.debug(
|
|
1230
|
+
"Remote agent %s available, calling _read_blocks for req %s",
|
|
1231
|
+
meta.remote_engine_id, req_id)
|
|
1232
|
+
self._read_blocks(
|
|
1233
|
+
request_id=req_id,
|
|
1234
|
+
dst_engine_id=meta.remote_engine_id,
|
|
1235
|
+
local_block_ids=meta.local_block_ids,
|
|
1236
|
+
remote_block_ids=meta.remote_block_ids,
|
|
1237
|
+
)
|
|
1238
|
+
|
|
1239
|
+
def _read_blocks(self, local_block_ids: list[int],
|
|
1240
|
+
remote_block_ids: list[int], dst_engine_id: str,
|
|
1241
|
+
request_id: str):
|
|
1242
|
+
# NOTE(rob): having the staging blocks be on the READER side is
|
|
1243
|
+
# not going to work well (since we will have to call rearrange tensors).
|
|
1244
|
+
# after we detect the txn is complete (which means we cannot make the
|
|
1245
|
+
# read trxn async easily). If we want to make "READ" happen cleanly,
|
|
1246
|
+
# then we will need to have the staging blocks on the remote side.
|
|
1247
|
+
|
|
1248
|
+
# NOTE(rob): according to nvidia the staging blocks are used to
|
|
1249
|
+
# saturate IB with heterogeneous TP sizes. We should remove the staging
|
|
1250
|
+
# blocks until we are ready.
|
|
1251
|
+
|
|
1252
|
+
# Number of D TP workers that will read from dst P. Propagate tp_ratio
|
|
1253
|
+
# on notification so that dst worker can wait before freeing blocks.
|
|
1254
|
+
tp_ratio = self._tp_size[
|
|
1255
|
+
self.engine_id] // self._tp_size[dst_engine_id]
|
|
1256
|
+
notif_id = f"{request_id}:{tp_ratio}".encode()
|
|
1257
|
+
|
|
1258
|
+
# Full prefix cache hit: do not need to read remote blocks,
|
|
1259
|
+
# just notify P worker that we have the blocks we need.
|
|
1260
|
+
num_local_blocks = len(local_block_ids)
|
|
1261
|
+
if num_local_blocks == 0:
|
|
1262
|
+
remote_rank = self.tp_rank // tp_ratio
|
|
1263
|
+
agent_name = self._remote_agents[dst_engine_id][remote_rank]
|
|
1264
|
+
self.nixl_wrapper.send_notif(agent_name, notif_msg=notif_id)
|
|
1265
|
+
return
|
|
1266
|
+
|
|
1267
|
+
# Partial prefix cache hit: just read uncomputed blocks.
|
|
1268
|
+
num_remote_blocks = len(remote_block_ids)
|
|
1269
|
+
assert num_local_blocks <= num_remote_blocks
|
|
1270
|
+
if num_local_blocks < num_remote_blocks:
|
|
1271
|
+
remote_block_ids = remote_block_ids[-num_local_blocks:]
|
|
1272
|
+
|
|
1273
|
+
# Get side handles.
|
|
1274
|
+
local_xfer_side_handle = self.src_xfer_side_handle
|
|
1275
|
+
remote_xfer_side_handle = self.dst_xfer_side_handles[dst_engine_id]
|
|
1276
|
+
|
|
1277
|
+
# NOTE (nicolo) With homogeneous TP, each TP worker loads KV from
|
|
1278
|
+
# corresponding rank. With heterogeneous TP, fixing D>P, the D tp
|
|
1279
|
+
# workers will issue xfers to parts of the P worker remote kv caches.
|
|
1280
|
+
|
|
1281
|
+
# Get descs ids.
|
|
1282
|
+
local_block_descs_ids: np.ndarray
|
|
1283
|
+
remote_block_descs_ids: np.ndarray
|
|
1284
|
+
if not self.block_window_per_layer:
|
|
1285
|
+
# Default case: assume global attention
|
|
1286
|
+
remote_block_descs_ids = self._get_block_descs_ids(
|
|
1287
|
+
dst_engine_id, remote_block_ids)
|
|
1288
|
+
local_block_descs_ids = self._get_block_descs_ids(
|
|
1289
|
+
self.engine_id, local_block_ids)
|
|
1290
|
+
else:
|
|
1291
|
+
# TODO(mgoin): remove this once we have hybrid memory allocator
|
|
1292
|
+
# Optimization for models with local attention (Llama 4)
|
|
1293
|
+
local_descs_list = []
|
|
1294
|
+
remote_descs_list = []
|
|
1295
|
+
for layer_idx, block_window in enumerate(
|
|
1296
|
+
self.block_window_per_layer):
|
|
1297
|
+
# For each layer:
|
|
1298
|
+
if block_window is None:
|
|
1299
|
+
# If not chunked, we just use the
|
|
1300
|
+
# full block lists (global attention)
|
|
1301
|
+
layer_local_block_ids = local_block_ids
|
|
1302
|
+
layer_remote_block_ids = remote_block_ids
|
|
1303
|
+
else:
|
|
1304
|
+
# If chunked, get the last block_window blocks
|
|
1305
|
+
layer_local_block_ids = local_block_ids[-block_window:]
|
|
1306
|
+
layer_remote_block_ids = remote_block_ids[-block_window:]
|
|
1307
|
+
|
|
1308
|
+
# Get descs ids for the layer.
|
|
1309
|
+
layer_local_desc_ids = self._get_block_descs_ids(
|
|
1310
|
+
self.engine_id, layer_local_block_ids, layer_idx)
|
|
1311
|
+
layer_remote_desc_ids = self._get_block_descs_ids(
|
|
1312
|
+
dst_engine_id, layer_remote_block_ids, layer_idx)
|
|
1313
|
+
|
|
1314
|
+
local_descs_list.append(layer_local_desc_ids)
|
|
1315
|
+
remote_descs_list.append(layer_remote_desc_ids)
|
|
1316
|
+
|
|
1317
|
+
local_block_descs_ids = np.concatenate(local_descs_list)
|
|
1318
|
+
remote_block_descs_ids = np.concatenate(remote_descs_list)
|
|
1319
|
+
|
|
1320
|
+
assert len(local_block_descs_ids) == len(remote_block_descs_ids)
|
|
1321
|
+
|
|
1322
|
+
# Prepare transfer with Nixl.
|
|
1323
|
+
handle = self.nixl_wrapper.make_prepped_xfer(
|
|
1324
|
+
"READ",
|
|
1325
|
+
local_xfer_side_handle,
|
|
1326
|
+
local_block_descs_ids,
|
|
1327
|
+
remote_xfer_side_handle,
|
|
1328
|
+
remote_block_descs_ids,
|
|
1329
|
+
notif_msg=notif_id,
|
|
1330
|
+
)
|
|
1331
|
+
|
|
1332
|
+
# Begin async xfer.
|
|
1333
|
+
self.nixl_wrapper.transfer(handle)
|
|
1334
|
+
|
|
1335
|
+
# Use handle to check completion in future step().
|
|
1336
|
+
self._recving_transfers[request_id].append(
|
|
1337
|
+
(handle, time.perf_counter()))
|
|
1338
|
+
|
|
1339
|
+
def _get_block_descs_ids(self,
|
|
1340
|
+
engine_id: str,
|
|
1341
|
+
block_ids: list[int],
|
|
1342
|
+
layer_idx: Optional[int] = None) -> np.ndarray:
|
|
1343
|
+
"""
|
|
1344
|
+
Get the descs ids for a set of block ids.
|
|
1345
|
+
If layer_idx is provided, we use the region_ids for the given layer.
|
|
1346
|
+
Otherwise, we use all regions.
|
|
1347
|
+
"""
|
|
1348
|
+
if layer_idx is None:
|
|
1349
|
+
region_ids = np.arange(self.num_regions)
|
|
1350
|
+
else:
|
|
1351
|
+
assert layer_idx < self.num_layers
|
|
1352
|
+
if self.num_layers < self.num_regions:
|
|
1353
|
+
# If we have more regions than layers, we assume that
|
|
1354
|
+
# the regions are organized as [K0, V0, K1, V1, ...]
|
|
1355
|
+
# and we select K_i and V_i
|
|
1356
|
+
assert 2 * self.num_layers == self.num_regions
|
|
1357
|
+
region_ids = np.arange(2 * layer_idx, 2 * layer_idx + 2)
|
|
1358
|
+
else:
|
|
1359
|
+
# Otherwise, we assume we have MLA and select i-th layer
|
|
1360
|
+
assert self.num_layers == self.num_regions
|
|
1361
|
+
region_ids = np.arange(layer_idx, layer_idx + 1)
|
|
1362
|
+
|
|
1363
|
+
num_blocks = self.dst_num_blocks[engine_id]
|
|
1364
|
+
|
|
1365
|
+
# Compute the desc ids for each block.
|
|
1366
|
+
region_ids = region_ids[:, None]
|
|
1367
|
+
block_ids = np.array(block_ids)[None, :]
|
|
1368
|
+
descs_ids = region_ids * num_blocks + block_ids
|
|
1369
|
+
return descs_ids.flatten()
|
|
1370
|
+
|
|
1371
|
+
def get_backend_aware_kv_block_len(self, layer_idx: int):
|
|
1372
|
+
"""
|
|
1373
|
+
Get the block length for one K/V element (K and V have the same size).
|
|
1374
|
+
|
|
1375
|
+
For FA and other backends, this is equal to the length of the whole
|
|
1376
|
+
block, as K and V are in separate regions.
|
|
1377
|
+
For FlashInfer, this is half the length of the whole block, as K and V
|
|
1378
|
+
share the same region.
|
|
1379
|
+
"""
|
|
1380
|
+
if self._use_flashinfer:
|
|
1381
|
+
# For indexing only half (either just the K or V part).
|
|
1382
|
+
block_len = self.block_len_per_layer[layer_idx] // 2
|
|
1383
|
+
else:
|
|
1384
|
+
block_len = self.block_len_per_layer[layer_idx]
|
|
1385
|
+
return block_len
|
|
1386
|
+
|
|
1387
|
+
def get_kv_connector_stats(self) -> Optional[KVConnectorStats]:
|
|
1388
|
+
"""
|
|
1389
|
+
Get the KV transfer stats for the connector.
|
|
1390
|
+
"""
|
|
1391
|
+
# Clear stats for next iteration
|
|
1392
|
+
if not self.xfer_stats.is_empty():
|
|
1393
|
+
return self.xfer_stats.clone_and_reset()
|
|
1394
|
+
return None
|
|
1395
|
+
|
|
1396
|
+
def shutdown(self):
|
|
1397
|
+
"""Shutdown the connector worker."""
|
|
1398
|
+
self._handshake_initiation_executor.shutdown(wait=False)
|
|
1399
|
+
if self._nixl_handshake_listener_t is not None:
|
|
1400
|
+
self._nixl_handshake_listener_t.join(timeout=0)
|
|
1401
|
+
self._nixl_handshake_listener_t = None
|
|
1402
|
+
for handles in self._recving_transfers.values():
|
|
1403
|
+
for handle, _ in handles:
|
|
1404
|
+
self.nixl_wrapper.release_xfer_handle(handle)
|
|
1405
|
+
self._recving_transfers.clear()
|
|
1406
|
+
if self.src_xfer_side_handle:
|
|
1407
|
+
self.nixl_wrapper.release_dlist_handle(self.src_xfer_side_handle)
|
|
1408
|
+
self.src_xfer_side_handle = 0
|
|
1409
|
+
for dst_xfer_side_handle in self.dst_xfer_side_handles.values():
|
|
1410
|
+
self.nixl_wrapper.release_dlist_handle(dst_xfer_side_handle)
|
|
1411
|
+
self.dst_xfer_side_handles.clear()
|
|
1412
|
+
for remote_agents in self._remote_agents.values():
|
|
1413
|
+
for agent_name in remote_agents.values():
|
|
1414
|
+
self.nixl_wrapper.remove_remote_agent(agent_name)
|
|
1415
|
+
self._remote_agents.clear()
|
|
1416
|
+
for desc in self._registered_descs:
|
|
1417
|
+
self.nixl_wrapper.deregister_memory(desc)
|
|
1418
|
+
self._registered_descs.clear()
|
|
1419
|
+
|
|
1420
|
+
|
|
1421
|
+
@contextlib.contextmanager
|
|
1422
|
+
def zmq_ctx(socket_type: Any, addr: str) -> Iterator[zmq.Socket]:
|
|
1423
|
+
"""Context manager for a ZMQ socket"""
|
|
1424
|
+
|
|
1425
|
+
if socket_type not in (zmq.ROUTER, zmq.REQ):
|
|
1426
|
+
raise ValueError(f"Unexpected socket type: {socket_type}")
|
|
1427
|
+
|
|
1428
|
+
ctx: Optional[zmq.Context] = None
|
|
1429
|
+
try:
|
|
1430
|
+
ctx = zmq.Context() # type: ignore[attr-defined]
|
|
1431
|
+
yield make_zmq_socket(ctx=ctx,
|
|
1432
|
+
path=addr,
|
|
1433
|
+
socket_type=socket_type,
|
|
1434
|
+
bind=socket_type == zmq.ROUTER)
|
|
1435
|
+
finally:
|
|
1436
|
+
if ctx is not None:
|
|
1437
|
+
ctx.destroy(linger=0)
|
|
1438
|
+
|
|
1439
|
+
|
|
1440
|
+
@dataclass
|
|
1441
|
+
class NixlKVConnectorStats(KVConnectorStats):
|
|
1442
|
+
"""Container for transfer performance metrics"""
|
|
1443
|
+
|
|
1444
|
+
def __post_init__(self):
|
|
1445
|
+
if "num_successful_transfers" not in self.data:
|
|
1446
|
+
self.data["num_successful_transfers"] = 0
|
|
1447
|
+
|
|
1448
|
+
def reset(self):
|
|
1449
|
+
self.data = {"num_successful_transfers": 0}
|
|
1450
|
+
|
|
1451
|
+
def record_transfer(self):
|
|
1452
|
+
# TODO: record actual transfer stats when available
|
|
1453
|
+
self.data["num_successful_transfers"] += 1
|
|
1454
|
+
|
|
1455
|
+
def clone_and_reset(self) -> "NixlKVConnectorStats":
|
|
1456
|
+
old = copy.copy(self)
|
|
1457
|
+
self.reset()
|
|
1458
|
+
return old
|
|
1459
|
+
|
|
1460
|
+
def is_empty(self) -> bool:
|
|
1461
|
+
return self.data["num_successful_transfers"] == 0
|
|
1462
|
+
|
|
1463
|
+
def aggregate(self, other: KVConnectorStats) -> KVConnectorStats:
|
|
1464
|
+
if not other.is_empty():
|
|
1465
|
+
self.data["num_successful_transfers"] += other.data[
|
|
1466
|
+
"num_successful_transfers"]
|
|
1467
|
+
return self
|
|
1468
|
+
|
|
1469
|
+
def reduce(self) -> dict[str, Union[int, float]]:
|
|
1470
|
+
# TODO: reduce stats to a single value, calculate latency/throughput
|
|
1471
|
+
return {
|
|
1472
|
+
"num_successful_transfers": self.data["num_successful_transfers"]
|
|
1473
|
+
}
|