vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vllm/_C.abi3.so +0 -0
- vllm/__init__.py +220 -0
- vllm/_bc_linter.py +59 -0
- vllm/_custom_ops.py +2044 -0
- vllm/_ipex_ops.py +393 -0
- vllm/_version.py +34 -0
- vllm/assets/__init__.py +0 -0
- vllm/assets/audio.py +45 -0
- vllm/assets/base.py +41 -0
- vllm/assets/image.py +50 -0
- vllm/assets/video.py +145 -0
- vllm/attention/__init__.py +15 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +204 -0
- vllm/attention/backends/utils.py +33 -0
- vllm/attention/layer.py +645 -0
- vllm/attention/layers/__init__.py +0 -0
- vllm/attention/layers/chunked_local_attention.py +93 -0
- vllm/attention/layers/cross_attention.py +162 -0
- vllm/attention/layers/encoder_only_attention.py +86 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
- vllm/attention/ops/common.py +345 -0
- vllm/attention/ops/flashmla.py +192 -0
- vllm/attention/ops/merge_attn_states.py +43 -0
- vllm/attention/ops/paged_attn.py +262 -0
- vllm/attention/ops/pallas_kv_cache_update.py +124 -0
- vllm/attention/ops/prefix_prefill.py +928 -0
- vllm/attention/ops/rocm_aiter_mla.py +104 -0
- vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
- vllm/attention/ops/triton_decode_attention.py +691 -0
- vllm/attention/ops/triton_flash_attention.py +984 -0
- vllm/attention/ops/triton_merge_attn_states.py +97 -0
- vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
- vllm/attention/ops/triton_unified_attention.py +894 -0
- vllm/attention/selector.py +245 -0
- vllm/attention/utils/__init__.py +0 -0
- vllm/attention/utils/fa_utils.py +85 -0
- vllm/attention/utils/kv_sharing_utils.py +33 -0
- vllm/beam_search.py +87 -0
- vllm/benchmarks/__init__.py +0 -0
- vllm/benchmarks/datasets.py +2723 -0
- vllm/benchmarks/latency.py +170 -0
- vllm/benchmarks/lib/__init__.py +3 -0
- vllm/benchmarks/lib/endpoint_request_func.py +533 -0
- vllm/benchmarks/lib/ready_checker.py +73 -0
- vllm/benchmarks/lib/utils.py +80 -0
- vllm/benchmarks/serve.py +1358 -0
- vllm/benchmarks/throughput.py +696 -0
- vllm/collect_env.py +823 -0
- vllm/compilation/__init__.py +0 -0
- vllm/compilation/activation_quant_fusion.py +189 -0
- vllm/compilation/backends.py +650 -0
- vllm/compilation/base_static_graph.py +56 -0
- vllm/compilation/collective_fusion.py +1188 -0
- vllm/compilation/compiler_interface.py +573 -0
- vllm/compilation/counter.py +47 -0
- vllm/compilation/cuda_graph.py +199 -0
- vllm/compilation/cuda_piecewise_backend.py +117 -0
- vllm/compilation/decorators.py +400 -0
- vllm/compilation/fix_functionalization.py +205 -0
- vllm/compilation/fusion.py +383 -0
- vllm/compilation/fusion_attn.py +295 -0
- vllm/compilation/fx_utils.py +84 -0
- vllm/compilation/inductor_pass.py +136 -0
- vllm/compilation/monitor.py +57 -0
- vllm/compilation/noop_elimination.py +158 -0
- vllm/compilation/pass_manager.py +125 -0
- vllm/compilation/post_cleanup.py +20 -0
- vllm/compilation/sequence_parallelism.py +478 -0
- vllm/compilation/torch25_custom_graph_pass.py +42 -0
- vllm/compilation/vllm_inductor_pass.py +156 -0
- vllm/compilation/wrapper.py +136 -0
- vllm/config/__init__.py +814 -0
- vllm/config/cache.py +220 -0
- vllm/config/compilation.py +673 -0
- vllm/config/device.py +74 -0
- vllm/config/kv_events.py +50 -0
- vllm/config/kv_transfer.py +111 -0
- vllm/config/load.py +113 -0
- vllm/config/lora.py +132 -0
- vllm/config/model.py +1912 -0
- vllm/config/multimodal.py +129 -0
- vllm/config/observability.py +99 -0
- vllm/config/parallel.py +524 -0
- vllm/config/pooler.py +97 -0
- vllm/config/scheduler.py +287 -0
- vllm/config/speculative.py +568 -0
- vllm/config/speech_to_text.py +39 -0
- vllm/config/structured_outputs.py +64 -0
- vllm/config/utils.py +145 -0
- vllm/connections.py +186 -0
- vllm/device_allocator/__init__.py +0 -0
- vllm/device_allocator/cumem.py +311 -0
- vllm/distributed/__init__.py +6 -0
- vllm/distributed/communication_op.py +41 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/all2all.py +440 -0
- vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
- vllm/distributed/device_communicators/base_device_communicator.py +295 -0
- vllm/distributed/device_communicators/cpu_communicator.py +201 -0
- vllm/distributed/device_communicators/cuda_communicator.py +323 -0
- vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
- vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
- vllm/distributed/device_communicators/pynccl.py +340 -0
- vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
- vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
- vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
- vllm/distributed/device_communicators/ray_communicator.py +258 -0
- vllm/distributed/device_communicators/shm_broadcast.py +589 -0
- vllm/distributed/device_communicators/shm_object_storage.py +635 -0
- vllm/distributed/device_communicators/symm_mem.py +136 -0
- vllm/distributed/device_communicators/tpu_communicator.py +102 -0
- vllm/distributed/device_communicators/xpu_communicator.py +94 -0
- vllm/distributed/eplb/__init__.py +8 -0
- vllm/distributed/eplb/eplb_state.py +620 -0
- vllm/distributed/eplb/rebalance_algo.py +239 -0
- vllm/distributed/eplb/rebalance_execute.py +424 -0
- vllm/distributed/kv_events.py +362 -0
- vllm/distributed/kv_transfer/README.md +29 -0
- vllm/distributed/kv_transfer/__init__.py +13 -0
- vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
- vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
- vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
- vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
- vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
- vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
- vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
- vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
- vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
- vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
- vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
- vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
- vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
- vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
- vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
- vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
- vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
- vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
- vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
- vllm/distributed/parallel_state.py +1532 -0
- vllm/distributed/tpu_distributed_utils.py +178 -0
- vllm/distributed/utils.py +536 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +1778 -0
- vllm/engine/async_llm_engine.py +6 -0
- vllm/engine/llm_engine.py +6 -0
- vllm/engine/metrics.py +577 -0
- vllm/engine/metrics_types.py +84 -0
- vllm/engine/protocol.py +333 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +178 -0
- vllm/entrypoints/chat_utils.py +1705 -0
- vllm/entrypoints/cli/__init__.py +12 -0
- vllm/entrypoints/cli/benchmark/__init__.py +0 -0
- vllm/entrypoints/cli/benchmark/base.py +25 -0
- vllm/entrypoints/cli/benchmark/latency.py +21 -0
- vllm/entrypoints/cli/benchmark/main.py +55 -0
- vllm/entrypoints/cli/benchmark/serve.py +21 -0
- vllm/entrypoints/cli/benchmark/throughput.py +21 -0
- vllm/entrypoints/cli/collect_env.py +36 -0
- vllm/entrypoints/cli/main.py +60 -0
- vllm/entrypoints/cli/openai.py +233 -0
- vllm/entrypoints/cli/run_batch.py +67 -0
- vllm/entrypoints/cli/serve.py +232 -0
- vllm/entrypoints/cli/types.py +29 -0
- vllm/entrypoints/constants.py +10 -0
- vllm/entrypoints/context.py +481 -0
- vllm/entrypoints/harmony_utils.py +436 -0
- vllm/entrypoints/launcher.py +164 -0
- vllm/entrypoints/llm.py +1629 -0
- vllm/entrypoints/logger.py +79 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +1953 -0
- vllm/entrypoints/openai/cli_args.py +288 -0
- vllm/entrypoints/openai/logits_processors.py +90 -0
- vllm/entrypoints/openai/protocol.py +2757 -0
- vllm/entrypoints/openai/run_batch.py +491 -0
- vllm/entrypoints/openai/serving_chat.py +1597 -0
- vllm/entrypoints/openai/serving_classification.py +173 -0
- vllm/entrypoints/openai/serving_completion.py +692 -0
- vllm/entrypoints/openai/serving_embedding.py +631 -0
- vllm/entrypoints/openai/serving_engine.py +992 -0
- vllm/entrypoints/openai/serving_models.py +288 -0
- vllm/entrypoints/openai/serving_pooling.py +276 -0
- vllm/entrypoints/openai/serving_responses.py +1709 -0
- vllm/entrypoints/openai/serving_score.py +479 -0
- vllm/entrypoints/openai/serving_tokenization.py +196 -0
- vllm/entrypoints/openai/serving_transcription.py +136 -0
- vllm/entrypoints/openai/speech_to_text.py +388 -0
- vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
- vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
- vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
- vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
- vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
- vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
- vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
- vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
- vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
- vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
- vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
- vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
- vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
- vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
- vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
- vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
- vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
- vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
- vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
- vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
- vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
- vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
- vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
- vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
- vllm/entrypoints/renderer.py +395 -0
- vllm/entrypoints/score_utils.py +232 -0
- vllm/entrypoints/ssl.py +75 -0
- vllm/entrypoints/tool.py +139 -0
- vllm/entrypoints/tool_server.py +206 -0
- vllm/entrypoints/utils.py +233 -0
- vllm/env_override.py +23 -0
- vllm/envs.py +1590 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/executor_base.py +381 -0
- vllm/executor/msgspec_utils.py +35 -0
- vllm/executor/ray_distributed_executor.py +699 -0
- vllm/executor/ray_utils.py +410 -0
- vllm/executor/uniproc_executor.py +176 -0
- vllm/forward_context.py +402 -0
- vllm/inputs/__init__.py +30 -0
- vllm/inputs/data.py +356 -0
- vllm/inputs/parse.py +151 -0
- vllm/inputs/preprocess.py +664 -0
- vllm/logger.py +229 -0
- vllm/logging_utils/__init__.py +10 -0
- vllm/logging_utils/dump_input.py +81 -0
- vllm/logging_utils/formatter.py +79 -0
- vllm/logging_utils/log_time.py +32 -0
- vllm/logits_process.py +119 -0
- vllm/logprobs.py +28 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/layers/__init__.py +34 -0
- vllm/lora/layers/base.py +69 -0
- vllm/lora/layers/base_linear.py +185 -0
- vllm/lora/layers/column_parallel_linear.py +609 -0
- vllm/lora/layers/logits_processor.py +247 -0
- vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
- vllm/lora/layers/replicated_linear.py +60 -0
- vllm/lora/layers/row_parallel_linear.py +196 -0
- vllm/lora/layers/utils.py +65 -0
- vllm/lora/layers/vocal_parallel_embedding.py +174 -0
- vllm/lora/lora_weights.py +199 -0
- vllm/lora/models.py +816 -0
- vllm/lora/ops/__init__.py +0 -0
- vllm/lora/ops/ipex_ops/__init__.py +7 -0
- vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
- vllm/lora/ops/torch_ops/__init__.py +16 -0
- vllm/lora/ops/torch_ops/lora_ops.py +119 -0
- vllm/lora/ops/triton_ops/__init__.py +12 -0
- vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
- vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
- vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
- vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
- vllm/lora/ops/triton_ops/utils.py +126 -0
- vllm/lora/ops/xla_ops/__init__.py +7 -0
- vllm/lora/ops/xla_ops/lora_ops.py +144 -0
- vllm/lora/peft_helper.py +127 -0
- vllm/lora/punica_wrapper/__init__.py +10 -0
- vllm/lora/punica_wrapper/punica_base.py +458 -0
- vllm/lora/punica_wrapper/punica_cpu.py +349 -0
- vllm/lora/punica_wrapper/punica_gpu.py +272 -0
- vllm/lora/punica_wrapper/punica_selector.py +20 -0
- vllm/lora/punica_wrapper/punica_tpu.py +391 -0
- vllm/lora/punica_wrapper/punica_xpu.py +276 -0
- vllm/lora/punica_wrapper/utils.py +136 -0
- vllm/lora/request.py +97 -0
- vllm/lora/resolver.py +85 -0
- vllm/lora/utils.py +246 -0
- vllm/lora/worker_manager.py +267 -0
- vllm/model_executor/__init__.py +12 -0
- vllm/model_executor/custom_op.py +194 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +575 -0
- vllm/model_executor/layers/attention_layer_base.py +23 -0
- vllm/model_executor/layers/fla/__init__.py +8 -0
- vllm/model_executor/layers/fla/ops/__init__.py +17 -0
- vllm/model_executor/layers/fla/ops/chunk.py +225 -0
- vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
- vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
- vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
- vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
- vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
- vllm/model_executor/layers/fla/ops/index.py +39 -0
- vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
- vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
- vllm/model_executor/layers/fla/ops/op.py +39 -0
- vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
- vllm/model_executor/layers/fla/ops/utils.py +180 -0
- vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
- vllm/model_executor/layers/fused_moe/__init__.py +89 -0
- vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
- vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
- vllm/model_executor/layers/fused_moe/config.py +804 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/README +12 -0
- vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
- vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
- vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
- vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
- vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
- vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
- vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
- vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
- vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
- vllm/model_executor/layers/fused_moe/layer.py +2195 -0
- vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
- vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
- vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
- vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
- vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
- vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
- vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
- vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
- vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
- vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
- vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
- vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
- vllm/model_executor/layers/fused_moe/utils.py +274 -0
- vllm/model_executor/layers/layernorm.py +395 -0
- vllm/model_executor/layers/lightning_attn.py +661 -0
- vllm/model_executor/layers/linear.py +1603 -0
- vllm/model_executor/layers/logits_processor.py +106 -0
- vllm/model_executor/layers/mamba/__init__.py +0 -0
- vllm/model_executor/layers/mamba/abstract.py +42 -0
- vllm/model_executor/layers/mamba/linear_attn.py +403 -0
- vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
- vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
- vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
- vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
- vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
- vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
- vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
- vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
- vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
- vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
- vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
- vllm/model_executor/layers/mamba/short_conv.py +253 -0
- vllm/model_executor/layers/mla.py +173 -0
- vllm/model_executor/layers/pooler.py +719 -0
- vllm/model_executor/layers/quantization/__init__.py +157 -0
- vllm/model_executor/layers/quantization/auto_round.py +388 -0
- vllm/model_executor/layers/quantization/awq.py +228 -0
- vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
- vllm/model_executor/layers/quantization/awq_triton.py +320 -0
- vllm/model_executor/layers/quantization/base_config.py +170 -0
- vllm/model_executor/layers/quantization/bitblas.py +464 -0
- vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
- vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
- vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
- vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
- vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
- vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
- vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
- vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
- vllm/model_executor/layers/quantization/experts_int8.py +223 -0
- vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
- vllm/model_executor/layers/quantization/fp8.py +1098 -0
- vllm/model_executor/layers/quantization/gguf.py +599 -0
- vllm/model_executor/layers/quantization/gptq.py +340 -0
- vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
- vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
- vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
- vllm/model_executor/layers/quantization/inc.py +61 -0
- vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
- vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
- vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
- vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
- vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
- vllm/model_executor/layers/quantization/kv_cache.py +143 -0
- vllm/model_executor/layers/quantization/modelopt.py +1596 -0
- vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
- vllm/model_executor/layers/quantization/mxfp4.py +988 -0
- vllm/model_executor/layers/quantization/petit.py +306 -0
- vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
- vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
- vllm/model_executor/layers/quantization/quark/quark.py +432 -0
- vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
- vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
- vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
- vllm/model_executor/layers/quantization/quark/utils.py +105 -0
- vllm/model_executor/layers/quantization/rtn.py +466 -0
- vllm/model_executor/layers/quantization/schema.py +86 -0
- vllm/model_executor/layers/quantization/torchao.py +214 -0
- vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
- vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
- vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
- vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
- vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
- vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
- vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
- vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
- vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
- vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
- vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
- vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
- vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
- vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
- vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
- vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
- vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
- vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
- vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
- vllm/model_executor/layers/resampler.py +270 -0
- vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
- vllm/model_executor/layers/rotary_embedding/base.py +177 -0
- vllm/model_executor/layers/rotary_embedding/common.py +150 -0
- vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
- vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
- vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
- vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
- vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
- vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
- vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
- vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
- vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
- vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
- vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
- vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
- vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
- vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
- vllm/model_executor/layers/utils.py +195 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
- vllm/model_executor/model_loader/__init__.py +138 -0
- vllm/model_executor/model_loader/base_loader.py +52 -0
- vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
- vllm/model_executor/model_loader/default_loader.py +277 -0
- vllm/model_executor/model_loader/dummy_loader.py +28 -0
- vllm/model_executor/model_loader/gguf_loader.py +155 -0
- vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
- vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
- vllm/model_executor/model_loader/tensorizer.py +738 -0
- vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
- vllm/model_executor/model_loader/tpu.py +114 -0
- vllm/model_executor/model_loader/utils.py +292 -0
- vllm/model_executor/model_loader/weight_utils.py +990 -0
- vllm/model_executor/models/__init__.py +33 -0
- vllm/model_executor/models/adapters.py +542 -0
- vllm/model_executor/models/aimv2.py +246 -0
- vllm/model_executor/models/apertus.py +579 -0
- vllm/model_executor/models/arcee.py +422 -0
- vllm/model_executor/models/arctic.py +558 -0
- vllm/model_executor/models/aria.py +650 -0
- vllm/model_executor/models/aya_vision.py +468 -0
- vllm/model_executor/models/baichuan.py +474 -0
- vllm/model_executor/models/bailing_moe.py +642 -0
- vllm/model_executor/models/bamba.py +514 -0
- vllm/model_executor/models/bert.py +665 -0
- vllm/model_executor/models/bert_with_rope.py +687 -0
- vllm/model_executor/models/blip.py +339 -0
- vllm/model_executor/models/blip2.py +712 -0
- vllm/model_executor/models/bloom.py +374 -0
- vllm/model_executor/models/chameleon.py +1139 -0
- vllm/model_executor/models/chatglm.py +476 -0
- vllm/model_executor/models/clip.py +407 -0
- vllm/model_executor/models/cohere2_vision.py +481 -0
- vllm/model_executor/models/commandr.py +465 -0
- vllm/model_executor/models/config.py +445 -0
- vllm/model_executor/models/dbrx.py +471 -0
- vllm/model_executor/models/deepseek.py +497 -0
- vllm/model_executor/models/deepseek_eagle.py +240 -0
- vllm/model_executor/models/deepseek_mtp.py +289 -0
- vllm/model_executor/models/deepseek_v2.py +1444 -0
- vllm/model_executor/models/deepseek_vl2.py +658 -0
- vllm/model_executor/models/dots1.py +546 -0
- vllm/model_executor/models/dots_ocr.py +873 -0
- vllm/model_executor/models/ernie45.py +43 -0
- vllm/model_executor/models/ernie45_moe.py +607 -0
- vllm/model_executor/models/ernie45_vl.py +1527 -0
- vllm/model_executor/models/ernie45_vl_moe.py +727 -0
- vllm/model_executor/models/ernie_mtp.py +268 -0
- vllm/model_executor/models/exaone.py +550 -0
- vllm/model_executor/models/exaone4.py +533 -0
- vllm/model_executor/models/fairseq2_llama.py +154 -0
- vllm/model_executor/models/falcon.py +509 -0
- vllm/model_executor/models/falcon_h1.py +674 -0
- vllm/model_executor/models/fuyu.py +399 -0
- vllm/model_executor/models/gemma.py +425 -0
- vllm/model_executor/models/gemma2.py +422 -0
- vllm/model_executor/models/gemma3.py +555 -0
- vllm/model_executor/models/gemma3_mm.py +721 -0
- vllm/model_executor/models/gemma3n.py +1113 -0
- vllm/model_executor/models/gemma3n_mm.py +761 -0
- vllm/model_executor/models/glm.py +23 -0
- vllm/model_executor/models/glm4.py +304 -0
- vllm/model_executor/models/glm4_1v.py +1690 -0
- vllm/model_executor/models/glm4_moe.py +727 -0
- vllm/model_executor/models/glm4_moe_mtp.py +301 -0
- vllm/model_executor/models/glm4v.py +654 -0
- vllm/model_executor/models/gpt2.py +380 -0
- vllm/model_executor/models/gpt_bigcode.py +344 -0
- vllm/model_executor/models/gpt_j.py +339 -0
- vllm/model_executor/models/gpt_neox.py +330 -0
- vllm/model_executor/models/gpt_oss.py +712 -0
- vllm/model_executor/models/granite.py +489 -0
- vllm/model_executor/models/granite_speech.py +794 -0
- vllm/model_executor/models/granitemoe.py +550 -0
- vllm/model_executor/models/granitemoehybrid.py +614 -0
- vllm/model_executor/models/granitemoeshared.py +332 -0
- vllm/model_executor/models/gritlm.py +262 -0
- vllm/model_executor/models/grok1.py +547 -0
- vllm/model_executor/models/h2ovl.py +536 -0
- vllm/model_executor/models/hunyuan_v1.py +1042 -0
- vllm/model_executor/models/hyperclovax_vision.py +1192 -0
- vllm/model_executor/models/idefics2_vision_model.py +417 -0
- vllm/model_executor/models/idefics3.py +756 -0
- vllm/model_executor/models/interfaces.py +959 -0
- vllm/model_executor/models/interfaces_base.py +192 -0
- vllm/model_executor/models/intern_vit.py +441 -0
- vllm/model_executor/models/internlm2.py +450 -0
- vllm/model_executor/models/internlm2_ve.py +148 -0
- vllm/model_executor/models/interns1.py +838 -0
- vllm/model_executor/models/interns1_vit.py +418 -0
- vllm/model_executor/models/internvl.py +1423 -0
- vllm/model_executor/models/jais.py +373 -0
- vllm/model_executor/models/jamba.py +591 -0
- vllm/model_executor/models/jina_vl.py +144 -0
- vllm/model_executor/models/keye.py +1680 -0
- vllm/model_executor/models/keye_vl1_5.py +602 -0
- vllm/model_executor/models/kimi_vl.py +618 -0
- vllm/model_executor/models/lfm2.py +548 -0
- vllm/model_executor/models/llama.py +669 -0
- vllm/model_executor/models/llama4.py +746 -0
- vllm/model_executor/models/llama4_eagle.py +239 -0
- vllm/model_executor/models/llama_eagle.py +179 -0
- vllm/model_executor/models/llama_eagle3.py +296 -0
- vllm/model_executor/models/llava.py +870 -0
- vllm/model_executor/models/llava_next.py +571 -0
- vllm/model_executor/models/llava_next_video.py +476 -0
- vllm/model_executor/models/llava_onevision.py +942 -0
- vllm/model_executor/models/longcat_flash.py +715 -0
- vllm/model_executor/models/longcat_flash_mtp.py +352 -0
- vllm/model_executor/models/mamba.py +275 -0
- vllm/model_executor/models/mamba2.py +291 -0
- vllm/model_executor/models/medusa.py +169 -0
- vllm/model_executor/models/midashenglm.py +792 -0
- vllm/model_executor/models/mimo.py +188 -0
- vllm/model_executor/models/mimo_mtp.py +280 -0
- vllm/model_executor/models/minicpm.py +631 -0
- vllm/model_executor/models/minicpm3.py +230 -0
- vllm/model_executor/models/minicpm_eagle.py +389 -0
- vllm/model_executor/models/minicpmo.py +770 -0
- vllm/model_executor/models/minicpmv.py +1784 -0
- vllm/model_executor/models/minimax_text_01.py +986 -0
- vllm/model_executor/models/minimax_vl_01.py +426 -0
- vllm/model_executor/models/mistral3.py +628 -0
- vllm/model_executor/models/mixtral.py +606 -0
- vllm/model_executor/models/mllama4.py +1076 -0
- vllm/model_executor/models/mlp_speculator.py +206 -0
- vllm/model_executor/models/modernbert.py +374 -0
- vllm/model_executor/models/module_mapping.py +72 -0
- vllm/model_executor/models/molmo.py +1567 -0
- vllm/model_executor/models/moonvit.py +673 -0
- vllm/model_executor/models/motif.py +345 -0
- vllm/model_executor/models/mpt.py +329 -0
- vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
- vllm/model_executor/models/nemotron.py +507 -0
- vllm/model_executor/models/nemotron_h.py +565 -0
- vllm/model_executor/models/nemotron_nas.py +481 -0
- vllm/model_executor/models/nemotron_vl.py +652 -0
- vllm/model_executor/models/nvlm_d.py +203 -0
- vllm/model_executor/models/olmo.py +404 -0
- vllm/model_executor/models/olmo2.py +439 -0
- vllm/model_executor/models/olmoe.py +483 -0
- vllm/model_executor/models/opt.py +412 -0
- vllm/model_executor/models/orion.py +348 -0
- vllm/model_executor/models/ovis.py +559 -0
- vllm/model_executor/models/ovis2_5.py +642 -0
- vllm/model_executor/models/paligemma.py +411 -0
- vllm/model_executor/models/persimmon.py +343 -0
- vllm/model_executor/models/phi.py +356 -0
- vllm/model_executor/models/phi3.py +19 -0
- vllm/model_executor/models/phi3v.py +698 -0
- vllm/model_executor/models/phi4_multimodal.py +1475 -0
- vllm/model_executor/models/phi4mm.py +1279 -0
- vllm/model_executor/models/phi4mm_audio.py +1254 -0
- vllm/model_executor/models/phi4mm_utils.py +1875 -0
- vllm/model_executor/models/phimoe.py +679 -0
- vllm/model_executor/models/pixtral.py +1345 -0
- vllm/model_executor/models/plamo2.py +978 -0
- vllm/model_executor/models/qwen.py +361 -0
- vllm/model_executor/models/qwen2.py +523 -0
- vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
- vllm/model_executor/models/qwen2_5_vl.py +1481 -0
- vllm/model_executor/models/qwen2_audio.py +489 -0
- vllm/model_executor/models/qwen2_moe.py +558 -0
- vllm/model_executor/models/qwen2_rm.py +122 -0
- vllm/model_executor/models/qwen2_vl.py +1670 -0
- vllm/model_executor/models/qwen3.py +341 -0
- vllm/model_executor/models/qwen3_moe.py +692 -0
- vllm/model_executor/models/qwen3_next.py +1266 -0
- vllm/model_executor/models/qwen3_next_mtp.py +281 -0
- vllm/model_executor/models/qwen3_vl.py +1613 -0
- vllm/model_executor/models/qwen3_vl_moe.py +358 -0
- vllm/model_executor/models/qwen_vl.py +795 -0
- vllm/model_executor/models/radio.py +576 -0
- vllm/model_executor/models/registry.py +990 -0
- vllm/model_executor/models/roberta.py +252 -0
- vllm/model_executor/models/rvl.py +103 -0
- vllm/model_executor/models/seed_oss.py +485 -0
- vllm/model_executor/models/siglip.py +540 -0
- vllm/model_executor/models/siglip2navit.py +689 -0
- vllm/model_executor/models/skyworkr1v.py +911 -0
- vllm/model_executor/models/smolvlm.py +44 -0
- vllm/model_executor/models/solar.py +504 -0
- vllm/model_executor/models/stablelm.py +341 -0
- vllm/model_executor/models/starcoder2.py +354 -0
- vllm/model_executor/models/step3_text.py +510 -0
- vllm/model_executor/models/step3_vl.py +1072 -0
- vllm/model_executor/models/swin.py +475 -0
- vllm/model_executor/models/tarsier.py +639 -0
- vllm/model_executor/models/telechat2.py +151 -0
- vllm/model_executor/models/teleflm.py +79 -0
- vllm/model_executor/models/terratorch.py +294 -0
- vllm/model_executor/models/transformers.py +948 -0
- vllm/model_executor/models/ultravox.py +654 -0
- vllm/model_executor/models/utils.py +808 -0
- vllm/model_executor/models/vision.py +404 -0
- vllm/model_executor/models/voxtral.py +786 -0
- vllm/model_executor/models/whisper.py +963 -0
- vllm/model_executor/models/zamba2.py +960 -0
- vllm/model_executor/parameter.py +620 -0
- vllm/model_executor/utils.py +86 -0
- vllm/model_executor/warmup/__init__.py +0 -0
- vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
- vllm/model_executor/warmup/kernel_warmup.py +83 -0
- vllm/multimodal/__init__.py +33 -0
- vllm/multimodal/audio.py +116 -0
- vllm/multimodal/base.py +27 -0
- vllm/multimodal/cache.py +697 -0
- vllm/multimodal/evs.py +273 -0
- vllm/multimodal/hasher.py +102 -0
- vllm/multimodal/image.py +130 -0
- vllm/multimodal/inputs.py +987 -0
- vllm/multimodal/parse.py +511 -0
- vllm/multimodal/processing.py +2148 -0
- vllm/multimodal/profiling.py +284 -0
- vllm/multimodal/registry.py +345 -0
- vllm/multimodal/utils.py +503 -0
- vllm/multimodal/video.py +319 -0
- vllm/outputs.py +324 -0
- vllm/platforms/__init__.py +263 -0
- vllm/platforms/cpu.py +340 -0
- vllm/platforms/cuda.py +668 -0
- vllm/platforms/interface.py +620 -0
- vllm/platforms/rocm.py +497 -0
- vllm/platforms/tpu.py +233 -0
- vllm/platforms/xpu.py +243 -0
- vllm/plugins/__init__.py +72 -0
- vllm/plugins/io_processors/__init__.py +68 -0
- vllm/plugins/io_processors/interface.py +67 -0
- vllm/plugins/lora_resolvers/README.md +16 -0
- vllm/plugins/lora_resolvers/__init__.py +0 -0
- vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
- vllm/pooling_params.py +191 -0
- vllm/profiler/__init__.py +0 -0
- vllm/profiler/layerwise_profile.py +375 -0
- vllm/profiler/utils.py +148 -0
- vllm/py.typed +2 -0
- vllm/ray/__init__.py +0 -0
- vllm/ray/lazy_utils.py +22 -0
- vllm/ray/ray_env.py +72 -0
- vllm/reasoning/__init__.py +29 -0
- vllm/reasoning/abs_reasoning_parsers.py +202 -0
- vllm/reasoning/basic_parsers.py +156 -0
- vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
- vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
- vllm/reasoning/gptoss_reasoning_parser.py +87 -0
- vllm/reasoning/granite_reasoning_parser.py +363 -0
- vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
- vllm/reasoning/mistral_reasoning_parser.py +56 -0
- vllm/reasoning/qwen3_reasoning_parser.py +72 -0
- vllm/reasoning/seedoss_reasoning_parser.py +28 -0
- vllm/reasoning/step3_reasoning_parser.py +109 -0
- vllm/sampling_params.py +593 -0
- vllm/scalar_type.py +349 -0
- vllm/scripts.py +15 -0
- vllm/sequence.py +103 -0
- vllm/tasks.py +11 -0
- vllm/test_utils.py +129 -0
- vllm/third_party/__init__.py +0 -0
- vllm/third_party/pynvml.py +6140 -0
- vllm/tracing.py +136 -0
- vllm/transformers_utils/__init__.py +24 -0
- vllm/transformers_utils/chat_templates/__init__.py +5 -0
- vllm/transformers_utils/chat_templates/registry.py +70 -0
- vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
- vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
- vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
- vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
- vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
- vllm/transformers_utils/config.py +1102 -0
- vllm/transformers_utils/config_parser_base.py +20 -0
- vllm/transformers_utils/configs/__init__.py +63 -0
- vllm/transformers_utils/configs/arctic.py +207 -0
- vllm/transformers_utils/configs/chatglm.py +72 -0
- vllm/transformers_utils/configs/deepseek_v3.py +101 -0
- vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
- vllm/transformers_utils/configs/dotsocr.py +69 -0
- vllm/transformers_utils/configs/eagle.py +84 -0
- vllm/transformers_utils/configs/falcon.py +90 -0
- vllm/transformers_utils/configs/jais.py +237 -0
- vllm/transformers_utils/configs/kimi_vl.py +37 -0
- vllm/transformers_utils/configs/medusa.py +63 -0
- vllm/transformers_utils/configs/midashenglm.py +101 -0
- vllm/transformers_utils/configs/mistral.py +165 -0
- vllm/transformers_utils/configs/mlp_speculator.py +68 -0
- vllm/transformers_utils/configs/moonvit.py +33 -0
- vllm/transformers_utils/configs/nemotron.py +205 -0
- vllm/transformers_utils/configs/nemotron_h.py +259 -0
- vllm/transformers_utils/configs/nemotron_vl.py +56 -0
- vllm/transformers_utils/configs/olmo3.py +80 -0
- vllm/transformers_utils/configs/ovis.py +176 -0
- vllm/transformers_utils/configs/qwen3_next.py +275 -0
- vllm/transformers_utils/configs/radio.py +91 -0
- vllm/transformers_utils/configs/speculators/__init__.py +2 -0
- vllm/transformers_utils/configs/speculators/algos.py +32 -0
- vllm/transformers_utils/configs/speculators/base.py +111 -0
- vllm/transformers_utils/configs/step3_vl.py +123 -0
- vllm/transformers_utils/configs/ultravox.py +116 -0
- vllm/transformers_utils/detokenizer_utils.py +199 -0
- vllm/transformers_utils/dynamic_module.py +60 -0
- vllm/transformers_utils/processor.py +299 -0
- vllm/transformers_utils/processors/__init__.py +16 -0
- vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
- vllm/transformers_utils/processors/ovis.py +420 -0
- vllm/transformers_utils/processors/ovis2_5.py +458 -0
- vllm/transformers_utils/runai_utils.py +104 -0
- vllm/transformers_utils/s3_utils.py +93 -0
- vllm/transformers_utils/tokenizer.py +292 -0
- vllm/transformers_utils/tokenizer_base.py +154 -0
- vllm/transformers_utils/tokenizers/__init__.py +10 -0
- vllm/transformers_utils/tokenizers/mistral.py +521 -0
- vllm/transformers_utils/utils.py +108 -0
- vllm/triton_utils/__init__.py +16 -0
- vllm/triton_utils/importing.py +96 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +259 -0
- vllm/utils/__init__.py +3566 -0
- vllm/utils/deep_gemm.py +319 -0
- vllm/utils/flashinfer.py +443 -0
- vllm/utils/jsontree.py +178 -0
- vllm/utils/tensor_schema.py +235 -0
- vllm/v1/__init__.py +0 -0
- vllm/v1/attention/__init__.py +0 -0
- vllm/v1/attention/backends/__init__.py +0 -0
- vllm/v1/attention/backends/cpu_attn.py +919 -0
- vllm/v1/attention/backends/flash_attn.py +795 -0
- vllm/v1/attention/backends/flashinfer.py +1181 -0
- vllm/v1/attention/backends/flex_attention.py +861 -0
- vllm/v1/attention/backends/gdn_attn.py +332 -0
- vllm/v1/attention/backends/linear_attn.py +67 -0
- vllm/v1/attention/backends/mamba1_attn.py +81 -0
- vllm/v1/attention/backends/mamba2_attn.py +232 -0
- vllm/v1/attention/backends/mamba_attn.py +52 -0
- vllm/v1/attention/backends/mla/__init__.py +0 -0
- vllm/v1/attention/backends/mla/common.py +1783 -0
- vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
- vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
- vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
- vllm/v1/attention/backends/mla/flashmla.py +203 -0
- vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
- vllm/v1/attention/backends/mla/indexer.py +342 -0
- vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
- vllm/v1/attention/backends/mla/triton_mla.py +177 -0
- vllm/v1/attention/backends/pallas.py +409 -0
- vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
- vllm/v1/attention/backends/rocm_attn.py +426 -0
- vllm/v1/attention/backends/short_conv_attn.py +94 -0
- vllm/v1/attention/backends/tree_attn.py +451 -0
- vllm/v1/attention/backends/triton_attn.py +361 -0
- vllm/v1/attention/backends/utils.py +990 -0
- vllm/v1/attention/backends/xformers.py +438 -0
- vllm/v1/core/__init__.py +0 -0
- vllm/v1/core/block_pool.py +416 -0
- vllm/v1/core/encoder_cache_manager.py +333 -0
- vllm/v1/core/kv_cache_coordinator.py +440 -0
- vllm/v1/core/kv_cache_manager.py +399 -0
- vllm/v1/core/kv_cache_utils.py +1291 -0
- vllm/v1/core/sched/__init__.py +0 -0
- vllm/v1/core/sched/async_scheduler.py +47 -0
- vllm/v1/core/sched/interface.py +158 -0
- vllm/v1/core/sched/output.py +166 -0
- vllm/v1/core/sched/request_queue.py +224 -0
- vllm/v1/core/sched/scheduler.py +1296 -0
- vllm/v1/core/sched/utils.py +69 -0
- vllm/v1/core/single_type_kv_cache_manager.py +671 -0
- vllm/v1/cudagraph_dispatcher.py +125 -0
- vllm/v1/engine/__init__.py +203 -0
- vllm/v1/engine/async_llm.py +742 -0
- vllm/v1/engine/coordinator.py +357 -0
- vllm/v1/engine/core.py +1235 -0
- vllm/v1/engine/core_client.py +1334 -0
- vllm/v1/engine/detokenizer.py +349 -0
- vllm/v1/engine/exceptions.py +17 -0
- vllm/v1/engine/llm_engine.py +370 -0
- vllm/v1/engine/logprobs.py +201 -0
- vllm/v1/engine/output_processor.py +576 -0
- vllm/v1/engine/parallel_sampling.py +133 -0
- vllm/v1/engine/processor.py +545 -0
- vllm/v1/engine/utils.py +860 -0
- vllm/v1/executor/__init__.py +0 -0
- vllm/v1/executor/abstract.py +137 -0
- vllm/v1/executor/multiproc_executor.py +726 -0
- vllm/v1/executor/ray_distributed_executor.py +108 -0
- vllm/v1/executor/utils.py +23 -0
- vllm/v1/kv_cache_interface.py +375 -0
- vllm/v1/kv_offload/__init__.py +0 -0
- vllm/v1/kv_offload/abstract.py +165 -0
- vllm/v1/kv_offload/backend.py +96 -0
- vllm/v1/kv_offload/backends/__init__.py +0 -0
- vllm/v1/kv_offload/backends/cpu.py +61 -0
- vllm/v1/kv_offload/cpu.py +75 -0
- vllm/v1/kv_offload/factory.py +56 -0
- vllm/v1/kv_offload/lru_manager.py +132 -0
- vllm/v1/kv_offload/mediums.py +39 -0
- vllm/v1/kv_offload/spec.py +61 -0
- vllm/v1/kv_offload/worker/__init__.py +0 -0
- vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
- vllm/v1/kv_offload/worker/worker.py +142 -0
- vllm/v1/metrics/__init__.py +0 -0
- vllm/v1/metrics/loggers.py +741 -0
- vllm/v1/metrics/prometheus.py +82 -0
- vllm/v1/metrics/ray_wrappers.py +152 -0
- vllm/v1/metrics/reader.py +246 -0
- vllm/v1/metrics/stats.py +257 -0
- vllm/v1/outputs.py +161 -0
- vllm/v1/pool/__init__.py +0 -0
- vllm/v1/pool/metadata.py +77 -0
- vllm/v1/request.py +241 -0
- vllm/v1/sample/__init__.py +0 -0
- vllm/v1/sample/logits_processor/__init__.py +294 -0
- vllm/v1/sample/logits_processor/builtin.py +275 -0
- vllm/v1/sample/logits_processor/interface.py +97 -0
- vllm/v1/sample/logits_processor/state.py +161 -0
- vllm/v1/sample/metadata.py +43 -0
- vllm/v1/sample/ops/__init__.py +0 -0
- vllm/v1/sample/ops/bad_words.py +39 -0
- vllm/v1/sample/ops/logprobs.py +26 -0
- vllm/v1/sample/ops/penalties.py +43 -0
- vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
- vllm/v1/sample/rejection_sampler.py +623 -0
- vllm/v1/sample/sampler.py +285 -0
- vllm/v1/sample/tpu/__init__.py +0 -0
- vllm/v1/sample/tpu/metadata.py +124 -0
- vllm/v1/sample/tpu/sampler.py +213 -0
- vllm/v1/serial_utils.py +423 -0
- vllm/v1/spec_decode/__init__.py +0 -0
- vllm/v1/spec_decode/eagle.py +1011 -0
- vllm/v1/spec_decode/medusa.py +66 -0
- vllm/v1/spec_decode/metadata.py +62 -0
- vllm/v1/spec_decode/metrics.py +211 -0
- vllm/v1/spec_decode/ngram_proposer.py +276 -0
- vllm/v1/spec_decode/utils.py +14 -0
- vllm/v1/structured_output/__init__.py +295 -0
- vllm/v1/structured_output/backend_guidance.py +245 -0
- vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
- vllm/v1/structured_output/backend_outlines.py +320 -0
- vllm/v1/structured_output/backend_types.py +134 -0
- vllm/v1/structured_output/backend_xgrammar.py +327 -0
- vllm/v1/structured_output/request.py +86 -0
- vllm/v1/structured_output/utils.py +454 -0
- vllm/v1/utils.py +396 -0
- vllm/v1/worker/__init__.py +0 -0
- vllm/v1/worker/block_table.py +210 -0
- vllm/v1/worker/cpu_model_runner.py +175 -0
- vllm/v1/worker/cpu_worker.py +156 -0
- vllm/v1/worker/gpu_input_batch.py +863 -0
- vllm/v1/worker/gpu_model_runner.py +4160 -0
- vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
- vllm/v1/worker/gpu_worker.py +710 -0
- vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
- vllm/v1/worker/lora_model_runner_mixin.py +183 -0
- vllm/v1/worker/tpu_input_batch.py +587 -0
- vllm/v1/worker/tpu_model_runner.py +1946 -0
- vllm/v1/worker/tpu_worker.py +346 -0
- vllm/v1/worker/ubatch_splitting.py +192 -0
- vllm/v1/worker/ubatch_utils.py +27 -0
- vllm/v1/worker/ubatching.py +224 -0
- vllm/v1/worker/utils.py +344 -0
- vllm/v1/worker/worker_base.py +65 -0
- vllm/v1/worker/xpu_model_runner.py +57 -0
- vllm/v1/worker/xpu_worker.py +179 -0
- vllm/version.py +41 -0
- vllm/vllm_flash_attn/.gitkeep +0 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/worker_base.py +279 -0
- vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
- vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
- vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
- vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
- vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,990 @@
|
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
2
|
+
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
3
|
+
import abc
|
|
4
|
+
import enum
|
|
5
|
+
import functools
|
|
6
|
+
from abc import abstractmethod
|
|
7
|
+
from dataclasses import dataclass, fields, make_dataclass
|
|
8
|
+
from typing import (TYPE_CHECKING, Any, ClassVar, Generic, Literal, Optional,
|
|
9
|
+
Protocol, TypeVar, Union, get_args)
|
|
10
|
+
|
|
11
|
+
import numpy as np
|
|
12
|
+
import torch
|
|
13
|
+
from typing_extensions import runtime_checkable
|
|
14
|
+
|
|
15
|
+
from vllm.config import VllmConfig, get_layers_from_vllm_config
|
|
16
|
+
from vllm.utils import cdiv
|
|
17
|
+
|
|
18
|
+
if TYPE_CHECKING:
|
|
19
|
+
from vllm.attention.backends.abstract import AttentionImpl
|
|
20
|
+
from vllm.v1.core.sched.output import SchedulerOutput
|
|
21
|
+
from vllm.v1.worker.gpu_input_batch import InputBatch
|
|
22
|
+
|
|
23
|
+
import vllm.envs as envs
|
|
24
|
+
from vllm.attention.backends.abstract import (AttentionBackend,
|
|
25
|
+
AttentionMetadata)
|
|
26
|
+
from vllm.attention.layer import Attention
|
|
27
|
+
from vllm.distributed.kv_transfer.kv_connector.utils import (
|
|
28
|
+
get_kv_connector_cache_layout)
|
|
29
|
+
from vllm.logger import init_logger
|
|
30
|
+
from vllm.v1.kv_cache_interface import AttentionSpec
|
|
31
|
+
from vllm.v1.worker.ubatch_utils import UBatchSlice
|
|
32
|
+
|
|
33
|
+
logger = init_logger(__name__)
|
|
34
|
+
KVCacheLayoutType = Literal["NHD", "HND"]
|
|
35
|
+
_KV_CACHE_LAYOUT_OVERRIDE: Union[KVCacheLayoutType, None] = None
|
|
36
|
+
|
|
37
|
+
PAD_SLOT_ID = -1
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def is_valid_kv_cache_layout(value: str) -> bool:
|
|
41
|
+
return value in get_args(KVCacheLayoutType)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
@dataclass
|
|
45
|
+
class CommonAttentionMetadata:
|
|
46
|
+
"""
|
|
47
|
+
Per-batch attention metadata, shared across layers and backends.
|
|
48
|
+
AttentionMetadataBuilder instances use it to construct per-layer metadata.
|
|
49
|
+
|
|
50
|
+
For many of the tensors we keep both GPU and CPU versions.
|
|
51
|
+
"""
|
|
52
|
+
|
|
53
|
+
query_start_loc: torch.Tensor
|
|
54
|
+
query_start_loc_cpu: torch.Tensor
|
|
55
|
+
"""(batch_size + 1,), the start location of each request in query Tensor"""
|
|
56
|
+
|
|
57
|
+
seq_lens: torch.Tensor
|
|
58
|
+
seq_lens_cpu: torch.Tensor
|
|
59
|
+
"""(batch_size,), the length of each request including both computed tokens
|
|
60
|
+
and newly scheduled tokens"""
|
|
61
|
+
|
|
62
|
+
num_computed_tokens_cpu: torch.Tensor
|
|
63
|
+
"""(batch_size,), the number of computed tokens for each request"""
|
|
64
|
+
|
|
65
|
+
num_reqs: int
|
|
66
|
+
"""Number of requests"""
|
|
67
|
+
num_actual_tokens: int
|
|
68
|
+
"""Total number of tokens in batch"""
|
|
69
|
+
max_query_len: int
|
|
70
|
+
"""Longest query in batch"""
|
|
71
|
+
max_seq_len: int
|
|
72
|
+
"""Longest context length in batch"""
|
|
73
|
+
|
|
74
|
+
block_table_tensor: torch.Tensor
|
|
75
|
+
slot_mapping: torch.Tensor
|
|
76
|
+
|
|
77
|
+
causal: bool = True
|
|
78
|
+
|
|
79
|
+
# Needed by FastPrefillAttentionBuilder
|
|
80
|
+
logits_indices_padded: Optional[torch.Tensor] = None
|
|
81
|
+
num_logits_indices: Optional[int] = None
|
|
82
|
+
|
|
83
|
+
# Needed by CrossAttentionBuilder
|
|
84
|
+
encoder_seq_lens: Optional[np.ndarray] = None
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def slice_query_start_locs(
|
|
88
|
+
query_start_loc: torch.Tensor,
|
|
89
|
+
request_slice: slice,
|
|
90
|
+
) -> torch.Tensor:
|
|
91
|
+
"""
|
|
92
|
+
Creates a new query_start_loc that corresponds to the requests in
|
|
93
|
+
request_slice.
|
|
94
|
+
|
|
95
|
+
Note: This function creates a new tensor to hold the new query_start_locs.
|
|
96
|
+
This will break cudagraph compatibility.
|
|
97
|
+
"""
|
|
98
|
+
return query_start_loc[request_slice.start: request_slice.stop + 1] -\
|
|
99
|
+
query_start_loc[request_slice.start]
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
def _make_metadata_with_slice(
|
|
103
|
+
ubatch_slice: UBatchSlice,
|
|
104
|
+
attn_metadata: CommonAttentionMetadata) -> CommonAttentionMetadata:
|
|
105
|
+
"""
|
|
106
|
+
This function creates a new CommonAttentionMetadata that corresponds to
|
|
107
|
+
the requests included in ubatch_slice
|
|
108
|
+
"""
|
|
109
|
+
|
|
110
|
+
assert not ubatch_slice.is_empty(), (
|
|
111
|
+
f"Ubatch slice {ubatch_slice} is empty")
|
|
112
|
+
|
|
113
|
+
request_slice = ubatch_slice.request_slice
|
|
114
|
+
token_slice = ubatch_slice.token_slice
|
|
115
|
+
|
|
116
|
+
start_locs = attn_metadata.query_start_loc_cpu
|
|
117
|
+
first_req = request_slice.start
|
|
118
|
+
first_tok = token_slice.start
|
|
119
|
+
last_req = request_slice.stop - 1
|
|
120
|
+
last_tok = token_slice.stop - 1
|
|
121
|
+
|
|
122
|
+
assert start_locs[first_req] <= first_tok < start_locs[first_req + 1], \
|
|
123
|
+
"Token slice start outside of first request"
|
|
124
|
+
assert start_locs[last_req] <= last_tok < start_locs[last_req+1], \
|
|
125
|
+
"Token slice end outside of last request"
|
|
126
|
+
|
|
127
|
+
# If the "middle" request has tokens in both ubatches, we have to split it.
|
|
128
|
+
# If ubatch_slice is the first ubatch then we will be splitting the last
|
|
129
|
+
# request. If it's the second microbatch, then we will be splitting the
|
|
130
|
+
# first request
|
|
131
|
+
splits_first_request = first_tok > start_locs[first_req]
|
|
132
|
+
splits_last_request = last_tok < start_locs[last_req + 1] - 1
|
|
133
|
+
|
|
134
|
+
query_start_loc_cpu = slice_query_start_locs(start_locs, request_slice)
|
|
135
|
+
query_start_loc = slice_query_start_locs(attn_metadata.query_start_loc,
|
|
136
|
+
request_slice)
|
|
137
|
+
|
|
138
|
+
assert len(query_start_loc) >= 2, (
|
|
139
|
+
f"query_start_loc must have at least 2 elements, "
|
|
140
|
+
f"got {len(query_start_loc)}")
|
|
141
|
+
|
|
142
|
+
if splits_first_request:
|
|
143
|
+
tokens_skipped = first_tok - start_locs[first_req]
|
|
144
|
+
query_start_loc[1:] -= tokens_skipped
|
|
145
|
+
query_start_loc_cpu[1:] -= tokens_skipped
|
|
146
|
+
seq_lens = attn_metadata.seq_lens[request_slice]
|
|
147
|
+
seq_lens_cpu = attn_metadata.seq_lens_cpu[request_slice]
|
|
148
|
+
|
|
149
|
+
if splits_last_request:
|
|
150
|
+
tokens_skipped = query_start_loc_cpu[-1] - token_slice.stop
|
|
151
|
+
query_start_loc[-1] -= tokens_skipped
|
|
152
|
+
query_start_loc_cpu[-1] -= tokens_skipped
|
|
153
|
+
|
|
154
|
+
# Make sure we don't modify the seq_lens tensors
|
|
155
|
+
# (not cudagraph compatible)
|
|
156
|
+
seq_lens = seq_lens.clone()
|
|
157
|
+
seq_lens_cpu = seq_lens_cpu.clone()
|
|
158
|
+
seq_lens[-1] -= tokens_skipped
|
|
159
|
+
seq_lens_cpu[-1] -= tokens_skipped
|
|
160
|
+
|
|
161
|
+
max_seq_len = int(seq_lens_cpu.max())
|
|
162
|
+
num_computed_tokens_cpu = attn_metadata.num_computed_tokens_cpu[
|
|
163
|
+
request_slice]
|
|
164
|
+
|
|
165
|
+
num_requests = request_slice.stop - request_slice.start
|
|
166
|
+
num_actual_tokens = token_slice.stop - token_slice.start
|
|
167
|
+
max_query_len = int(
|
|
168
|
+
torch.max(torch.abs(query_start_loc_cpu[1:] -
|
|
169
|
+
query_start_loc_cpu[:-1])).item())
|
|
170
|
+
|
|
171
|
+
# This is to account for the case where we are in a dummy
|
|
172
|
+
# run and query_start_loc_cpu is full of 0s
|
|
173
|
+
if max_query_len == 0:
|
|
174
|
+
max_query_len = attn_metadata.max_query_len
|
|
175
|
+
|
|
176
|
+
block_table_tensor = attn_metadata.block_table_tensor[request_slice]
|
|
177
|
+
slot_mapping = attn_metadata.slot_mapping[token_slice]
|
|
178
|
+
|
|
179
|
+
return CommonAttentionMetadata(
|
|
180
|
+
query_start_loc=query_start_loc,
|
|
181
|
+
query_start_loc_cpu=query_start_loc_cpu,
|
|
182
|
+
seq_lens=seq_lens,
|
|
183
|
+
seq_lens_cpu=seq_lens_cpu,
|
|
184
|
+
num_computed_tokens_cpu=num_computed_tokens_cpu,
|
|
185
|
+
num_reqs=num_requests,
|
|
186
|
+
num_actual_tokens=num_actual_tokens,
|
|
187
|
+
max_query_len=max_query_len,
|
|
188
|
+
max_seq_len=max_seq_len,
|
|
189
|
+
block_table_tensor=block_table_tensor,
|
|
190
|
+
slot_mapping=slot_mapping,
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
def split_attn_metadata(
|
|
195
|
+
ubatch_slices: list[UBatchSlice],
|
|
196
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
197
|
+
) -> list[CommonAttentionMetadata]:
|
|
198
|
+
"""
|
|
199
|
+
Creates a new CommonAttentionMetadata instance that corresponds to the
|
|
200
|
+
requests for each UBatchSlice in ubatch_slices.
|
|
201
|
+
|
|
202
|
+
Note: This function does not modify common_attn_metadata
|
|
203
|
+
"""
|
|
204
|
+
results = []
|
|
205
|
+
for ubatch_slice in ubatch_slices:
|
|
206
|
+
results.append(
|
|
207
|
+
_make_metadata_with_slice(ubatch_slice, common_attn_metadata))
|
|
208
|
+
|
|
209
|
+
return results
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
M = TypeVar("M")
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
class AttentionCGSupport(enum.Enum):
|
|
216
|
+
""" Constants for the cudagraph support of the attention backend
|
|
217
|
+
Here we do not consider the cascade attention, as currently
|
|
218
|
+
it is never cudagraph supported."""
|
|
219
|
+
|
|
220
|
+
ALWAYS = 3
|
|
221
|
+
"""Cudagraph always supported; supports mixed-prefill-decode"""
|
|
222
|
+
UNIFORM_BATCH = 2
|
|
223
|
+
"""Cudagraph supported for batches the only contain query lengths that are
|
|
224
|
+
the same, this can be used for spec-decode
|
|
225
|
+
i.e. "decodes" are 1 + num_speculative_tokens"""
|
|
226
|
+
UNIFORM_SINGLE_TOKEN_DECODE = 1
|
|
227
|
+
"""Cudagraph supported for batches the only contain query_len==1 decodes"""
|
|
228
|
+
NEVER = 0
|
|
229
|
+
"""NO cudagraph support"""
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
class AttentionMetadataBuilder(abc.ABC, Generic[M]):
|
|
233
|
+
# Does this backend/builder support CUDA Graphs for attention (default: no).
|
|
234
|
+
cudagraph_support: ClassVar[AttentionCGSupport] = \
|
|
235
|
+
AttentionCGSupport.NEVER
|
|
236
|
+
# Does this backend/builder reorder the batch?
|
|
237
|
+
# If not, set this to None. Otherwise set it to the query
|
|
238
|
+
# length that will be pulled into the front of the batch.
|
|
239
|
+
reorder_batch_threshold: Optional[int] = None
|
|
240
|
+
|
|
241
|
+
@abstractmethod
|
|
242
|
+
def __init__(self, kv_cache_spec: AttentionSpec, layer_names: list[str],
|
|
243
|
+
vllm_config: VllmConfig, device: torch.device):
|
|
244
|
+
self.kv_cache_spec = kv_cache_spec
|
|
245
|
+
self.layer_names = layer_names
|
|
246
|
+
self.vllm_config = vllm_config
|
|
247
|
+
self.device = device
|
|
248
|
+
|
|
249
|
+
def _init_reorder_batch_threshold(
|
|
250
|
+
self,
|
|
251
|
+
reorder_batch_threshold: int = 1,
|
|
252
|
+
supports_spec_as_decode: bool = False) -> None:
|
|
253
|
+
self.reorder_batch_threshold = reorder_batch_threshold
|
|
254
|
+
if self.reorder_batch_threshold is not None \
|
|
255
|
+
and supports_spec_as_decode:
|
|
256
|
+
# If the backend supports spec-as-decode kernels, then we can set
|
|
257
|
+
# the reorder_batch_threshold based on the number of speculative
|
|
258
|
+
# tokens from the config.
|
|
259
|
+
speculative_config = self.vllm_config.speculative_config
|
|
260
|
+
if (speculative_config is not None
|
|
261
|
+
and speculative_config.num_speculative_tokens is not None):
|
|
262
|
+
self.reorder_batch_threshold = \
|
|
263
|
+
1 + speculative_config.num_speculative_tokens
|
|
264
|
+
|
|
265
|
+
@abstractmethod
|
|
266
|
+
def build(self,
|
|
267
|
+
common_prefix_len: int,
|
|
268
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
269
|
+
fast_build: bool = False) -> M:
|
|
270
|
+
"""
|
|
271
|
+
Central method that builds attention metadata.
|
|
272
|
+
Some builders (MLA) require reorder_batch to be called prior to build.
|
|
273
|
+
|
|
274
|
+
Args:
|
|
275
|
+
common_prefix_len: The length of the common prefix of the batch.
|
|
276
|
+
common_attn_metadata: The common attention metadata.
|
|
277
|
+
fast_build: The meta-data will prioritize speed of building over
|
|
278
|
+
then speed at execution. Can be used for spec-decode where the
|
|
279
|
+
result of a build call may only be used for few layers/iters.
|
|
280
|
+
"""
|
|
281
|
+
raise NotImplementedError
|
|
282
|
+
|
|
283
|
+
def reorder_batch(self, input_batch: "InputBatch",
|
|
284
|
+
scheduler_output: "SchedulerOutput") -> bool:
|
|
285
|
+
"""
|
|
286
|
+
Update the order of requests in the batch based on the attention
|
|
287
|
+
backend's needs. For example, some attention backends (namely MLA) may
|
|
288
|
+
want to separate requests based on if the attention computation will be
|
|
289
|
+
compute-bound or memory-bound.
|
|
290
|
+
|
|
291
|
+
Args:
|
|
292
|
+
input_batch: input batch
|
|
293
|
+
scheduler_output: scheduler output.
|
|
294
|
+
|
|
295
|
+
Returns:
|
|
296
|
+
True if the batch was modified, False otherwise.
|
|
297
|
+
"""
|
|
298
|
+
raise NotImplementedError
|
|
299
|
+
|
|
300
|
+
def build_for_cudagraph_capture(
|
|
301
|
+
self, common_attn_metadata: CommonAttentionMetadata) -> M:
|
|
302
|
+
"""
|
|
303
|
+
Build attention metadata for CUDA graph capture. Uses build by default.
|
|
304
|
+
Subclasses that override this method should call self.build or
|
|
305
|
+
super().build_for_cudagraph_capture.
|
|
306
|
+
"""
|
|
307
|
+
return self.build(common_prefix_len=0,
|
|
308
|
+
common_attn_metadata=common_attn_metadata)
|
|
309
|
+
|
|
310
|
+
def build_for_drafting(
|
|
311
|
+
self,
|
|
312
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
313
|
+
draft_index: int,
|
|
314
|
+
) -> M:
|
|
315
|
+
"""
|
|
316
|
+
Build attention metadata for draft model. Uses build by default.
|
|
317
|
+
|
|
318
|
+
Args:
|
|
319
|
+
common_attn_metadata: The common attention metadata.
|
|
320
|
+
draft_index: The index of the current draft operation.
|
|
321
|
+
When speculating a chain of tokens, this index refers to the
|
|
322
|
+
draft attempt for the i-th token.
|
|
323
|
+
For tree-based attention, this index instead refers to the
|
|
324
|
+
draft attempt for the i-th level in the tree of tokens.
|
|
325
|
+
"""
|
|
326
|
+
return self.build(common_prefix_len=0,
|
|
327
|
+
common_attn_metadata=common_attn_metadata,
|
|
328
|
+
fast_build=True)
|
|
329
|
+
|
|
330
|
+
def use_cascade_attention(
|
|
331
|
+
self,
|
|
332
|
+
common_prefix_len: int,
|
|
333
|
+
query_lens: np.ndarray,
|
|
334
|
+
num_query_heads: int,
|
|
335
|
+
num_kv_heads: int,
|
|
336
|
+
use_alibi: bool,
|
|
337
|
+
use_sliding_window: bool,
|
|
338
|
+
use_local_attention: bool,
|
|
339
|
+
num_sms: int,
|
|
340
|
+
) -> bool:
|
|
341
|
+
return False
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
@functools.lru_cache
|
|
345
|
+
def get_kv_cache_layout():
|
|
346
|
+
# Format specified by the code.
|
|
347
|
+
global _KV_CACHE_LAYOUT_OVERRIDE
|
|
348
|
+
|
|
349
|
+
if _KV_CACHE_LAYOUT_OVERRIDE is not None:
|
|
350
|
+
cache_layout = _KV_CACHE_LAYOUT_OVERRIDE
|
|
351
|
+
logger.info_once("`_KV_CACHE_LAYOUT_OVERRIDE` variable detected. " \
|
|
352
|
+
"Setting KV cache layout to %s.", cache_layout)
|
|
353
|
+
return cache_layout
|
|
354
|
+
|
|
355
|
+
# Format specified by the user.
|
|
356
|
+
cache_layout = envs.VLLM_KV_CACHE_LAYOUT
|
|
357
|
+
# When neither the user nor the override specified a layout, get default
|
|
358
|
+
if cache_layout is None:
|
|
359
|
+
cache_layout = get_kv_connector_cache_layout()
|
|
360
|
+
else:
|
|
361
|
+
assert is_valid_kv_cache_layout(cache_layout)
|
|
362
|
+
logger.info_once("`VLLM_KV_CACHE_LAYOUT` environment variable " \
|
|
363
|
+
"detected. Setting KV cache layout to %s.", cache_layout)
|
|
364
|
+
return cache_layout
|
|
365
|
+
|
|
366
|
+
|
|
367
|
+
def set_kv_cache_layout(cache_layout: KVCacheLayoutType):
|
|
368
|
+
global _KV_CACHE_LAYOUT_OVERRIDE
|
|
369
|
+
_KV_CACHE_LAYOUT_OVERRIDE = cache_layout
|
|
370
|
+
|
|
371
|
+
|
|
372
|
+
@dataclass
|
|
373
|
+
class PerLayerParameters:
|
|
374
|
+
"""
|
|
375
|
+
Currently, FlashInfer backend only support models in which all layers share
|
|
376
|
+
the same values for the following hyperparameters. Should not be used for
|
|
377
|
+
trtllm-gen backend since it supports different values for the following
|
|
378
|
+
hyperparameters.
|
|
379
|
+
"""
|
|
380
|
+
|
|
381
|
+
window_left: int
|
|
382
|
+
logits_soft_cap: Optional[float]
|
|
383
|
+
sm_scale: float
|
|
384
|
+
has_sinks: bool = False
|
|
385
|
+
|
|
386
|
+
|
|
387
|
+
def get_per_layer_parameters(
|
|
388
|
+
vllm_config: VllmConfig, layer_names: list[str],
|
|
389
|
+
cls_: type['AttentionImpl']) -> dict[str, PerLayerParameters]:
|
|
390
|
+
"""
|
|
391
|
+
Scan layers in `layer_names` and determine some hyperparameters
|
|
392
|
+
to use during `plan`.
|
|
393
|
+
"""
|
|
394
|
+
|
|
395
|
+
layers = get_layers_from_vllm_config(vllm_config, Attention, layer_names)
|
|
396
|
+
per_layer_params: dict[str, PerLayerParameters] = {}
|
|
397
|
+
|
|
398
|
+
for key, layer in layers.items():
|
|
399
|
+
impl = layer.impl
|
|
400
|
+
assert isinstance(impl, cls_)
|
|
401
|
+
|
|
402
|
+
# Infer hyperparameters from the attention layer
|
|
403
|
+
window_size = getattr(impl, "sliding_window", None)
|
|
404
|
+
window_left = window_size[0] if window_size is not None else -1
|
|
405
|
+
logits_soft_cap = getattr(impl, "logits_soft_cap", None)
|
|
406
|
+
sm_scale = impl.scale
|
|
407
|
+
has_sinks = getattr(impl, "sinks", None) is not None
|
|
408
|
+
|
|
409
|
+
per_layer_params[key] = PerLayerParameters(window_left,
|
|
410
|
+
logits_soft_cap, sm_scale,
|
|
411
|
+
has_sinks)
|
|
412
|
+
|
|
413
|
+
return per_layer_params
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
def infer_global_hyperparameters(
|
|
417
|
+
per_layer_params: dict[str, PerLayerParameters]) -> PerLayerParameters:
|
|
418
|
+
"""
|
|
419
|
+
Currently, FlashInfer backend other than trtllm-gen
|
|
420
|
+
only support models in which all layers share
|
|
421
|
+
the same values for the following hyperparameters:
|
|
422
|
+
- `window_left`
|
|
423
|
+
- `logits_soft_cap`
|
|
424
|
+
- `sm_scale`
|
|
425
|
+
|
|
426
|
+
So this function asserts that all layers share the same values for these
|
|
427
|
+
hyperparameters and returns the global values.
|
|
428
|
+
"""
|
|
429
|
+
|
|
430
|
+
assert len(per_layer_params) > 0, "No attention layers found in the model."
|
|
431
|
+
|
|
432
|
+
param_sets = list(per_layer_params.values())
|
|
433
|
+
global_params = param_sets[0]
|
|
434
|
+
|
|
435
|
+
# trtllm attention doesn't need global hyper params so disable the check
|
|
436
|
+
if not envs.VLLM_USE_TRTLLM_ATTENTION:
|
|
437
|
+
for params in param_sets:
|
|
438
|
+
if params.window_left != global_params.window_left:
|
|
439
|
+
raise ValueError(
|
|
440
|
+
"Window left is not the same for all layers. " \
|
|
441
|
+
"One potential fix is to set disable_sliding_window=True")
|
|
442
|
+
assert params == global_params, (
|
|
443
|
+
"FlashInfer backend currently only supports models in which all"
|
|
444
|
+
"layers share the same values "
|
|
445
|
+
"for the following hyperparameters:"
|
|
446
|
+
"`window_left`, `logits_soft_cap`, `sm_scale`.")
|
|
447
|
+
|
|
448
|
+
return global_params
|
|
449
|
+
|
|
450
|
+
|
|
451
|
+
#
|
|
452
|
+
# Take in `query_start_loc_np` and `seq_lens_np` and break the sequences into
|
|
453
|
+
# local attention blocks, where each block is passed to the attention kernel
|
|
454
|
+
# as an independent local ("virtual") batch item.
|
|
455
|
+
#
|
|
456
|
+
# For example, if are performing a chunked prefill a batch of 3 sequences:
|
|
457
|
+
# q_seqlens = [4, 10, 5]
|
|
458
|
+
# kv_seqlens = [6, 17, 9]
|
|
459
|
+
# Then normally for regular attention we would compute with an attention mask
|
|
460
|
+
# for batch idx 0 (q_seqlens = 4, kv_seqlens = 6) like:
|
|
461
|
+
# batch idx: 0 (q_seqlens = 4, kv_seqlens = 6)
|
|
462
|
+
# k_toks > 0 1 2 3 4 5
|
|
463
|
+
# q_toks v _____________
|
|
464
|
+
# 0 | 1 1 1
|
|
465
|
+
# 1 | 1 1 1 1
|
|
466
|
+
# 2 | 1 1 1 1 1
|
|
467
|
+
# 3 | 1 1 1 1 1 1
|
|
468
|
+
#
|
|
469
|
+
# for local attention (with attn_chunk_size = 4) we would compute with an
|
|
470
|
+
# attention mask like:
|
|
471
|
+
# batch idx: 0 (q_seqlens = 4, kv_seqlens = 6, attn_chunk_size = 4)
|
|
472
|
+
# k_toks > 0 1 2 3 4 5
|
|
473
|
+
# q_toks v _____________
|
|
474
|
+
# 0 | 1 1 1
|
|
475
|
+
# 1 | 1 1 1 1
|
|
476
|
+
# 2 | 1
|
|
477
|
+
# 3 | 1 1
|
|
478
|
+
#
|
|
479
|
+
# We can simulate this mask using standard flash-attention by breaking the
|
|
480
|
+
# sequences into local ("virtual") batches, where each local batch item is a
|
|
481
|
+
# local attention block, so in this case batch idx 0 would be broken up into:
|
|
482
|
+
#
|
|
483
|
+
# local-batch idx: 0 (q_seqlens = 2, kv_seqlens = 4) (batch 0)
|
|
484
|
+
# k_toks > 0 1 2 3
|
|
485
|
+
# q_toks v _____________
|
|
486
|
+
# 0 | 1 1 1
|
|
487
|
+
# 1 | 1 1 1 1
|
|
488
|
+
# local-batch idx: 1 (q_seqlens = 2, kv_seqlens = 2) (batch 0)
|
|
489
|
+
# k_toks > 4 5
|
|
490
|
+
# q_toks v _____________
|
|
491
|
+
# 2 | 1
|
|
492
|
+
# 3 | 1 1
|
|
493
|
+
#
|
|
494
|
+
# e.g. if we have:
|
|
495
|
+
# attn_chunk_size = 4
|
|
496
|
+
# query_start_loc_np = [0, 4, 14, 19] (q_seqlens = [4, 10, 5])
|
|
497
|
+
# Then this function would return:
|
|
498
|
+
# __b0__ ______b1______ __b2__ < orig batch indices
|
|
499
|
+
# q_seqlens_local = [ 2, 2, 1, 4, 4, 1, 4, 1]
|
|
500
|
+
# cu_seqlens_q_local = [0, 4, 6, 10, 14, 18, 19, 23, 24]
|
|
501
|
+
# seqlens_k_local = [ 4, 2, 4, 4, 4, 1, 4, 1]
|
|
502
|
+
# block_table_local : shape[local_virtual_batches, pages_per_local_batch]
|
|
503
|
+
def make_local_attention_virtual_batches(
|
|
504
|
+
attn_chunk_size: int,
|
|
505
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
506
|
+
block_size: int = 0,
|
|
507
|
+
) -> CommonAttentionMetadata:
|
|
508
|
+
query_start_loc_np = common_attn_metadata.query_start_loc_cpu.numpy()
|
|
509
|
+
seq_lens_np = common_attn_metadata.seq_lens_cpu.numpy()
|
|
510
|
+
block_table = common_attn_metadata.block_table_tensor
|
|
511
|
+
device = common_attn_metadata.query_start_loc.device
|
|
512
|
+
|
|
513
|
+
q_seqlens = query_start_loc_np[1:] - query_start_loc_np[:-1]
|
|
514
|
+
actual_batch_size = seq_lens_np.shape[0]
|
|
515
|
+
|
|
516
|
+
# Handle if we are starting in the middle of a local attention block,
|
|
517
|
+
# we assume q_seqlens > 0 (for all elements), for each batch idx we compute
|
|
518
|
+
# the number of tokens that are not in the first local attention block and
|
|
519
|
+
# then we can simply use a cdiv for the rest.
|
|
520
|
+
# For example if we have:
|
|
521
|
+
# attn_chunk_size = 4
|
|
522
|
+
# q_seqlens = [4, 10, 5]
|
|
523
|
+
# k_seqlens = [6, 17, 9]
|
|
524
|
+
# Then we would get:
|
|
525
|
+
# new_tokens_in_first_block = [2, 1, 4]
|
|
526
|
+
# local_blocks = [2, 4, 2]
|
|
527
|
+
q_tokens_in_first_block = np.minimum(
|
|
528
|
+
attn_chunk_size - ((seq_lens_np - q_seqlens) % attn_chunk_size),
|
|
529
|
+
q_seqlens).astype(np.int32)
|
|
530
|
+
tokens_in_last_block = attn_chunk_size + (seq_lens_np % -attn_chunk_size)
|
|
531
|
+
local_blocks = 1 + cdiv(q_seqlens - q_tokens_in_first_block,
|
|
532
|
+
attn_chunk_size)
|
|
533
|
+
|
|
534
|
+
# Once we know the number of local blocks we can compute the request spans
|
|
535
|
+
# for each batch idx, we can figure out the number of "virtual" requests we
|
|
536
|
+
# have to make,
|
|
537
|
+
# For the above example we would get:
|
|
538
|
+
# seqlens_q_local = [2, 2, 1, 4, 4, 1, 4, 1]
|
|
539
|
+
#
|
|
540
|
+
# First Get batched arange. (E.g., [2, 4, 2] -> [0, 1, 0, 1, 2, 3, 0, 1])
|
|
541
|
+
# (TODO: max a utility to share this code with _prepare_inputs)
|
|
542
|
+
# arange step 1. [2, 4, 2] -> [2, 6, 8]
|
|
543
|
+
cu_num_blocks = np.cumsum(local_blocks)
|
|
544
|
+
virtual_batches = cu_num_blocks[-1]
|
|
545
|
+
# arange step 2. [2, 6, 8] -> [0, 0, 2, 2, 2, 2, 6, 6]
|
|
546
|
+
block_offsets = np.repeat(cu_num_blocks - local_blocks, local_blocks)
|
|
547
|
+
# arange step 3. [0, 1, 0, 1, 2, 3, 0, 1]
|
|
548
|
+
arange = np.arange(virtual_batches, dtype=np.int32) - block_offsets
|
|
549
|
+
# also compute reverse arange (i.e. [1, 0, 3, 2, 1, 0, 1, 0])
|
|
550
|
+
rarange = np.repeat(local_blocks, local_blocks) - arange - 1
|
|
551
|
+
# Then we can compute the seqlens_q_local, handling the fact that the
|
|
552
|
+
# first and last blocks could be partial
|
|
553
|
+
seqlens_q_local = \
|
|
554
|
+
np.repeat(q_seqlens - q_tokens_in_first_block, local_blocks)
|
|
555
|
+
# set the first block since this may be a partial block
|
|
556
|
+
seqlens_q_local[arange == 0] = q_tokens_in_first_block
|
|
557
|
+
# set the remaining blocks
|
|
558
|
+
seqlens_q_local[arange > 0] = np.minimum(
|
|
559
|
+
seqlens_q_local - attn_chunk_size * (arange - 1),
|
|
560
|
+
attn_chunk_size)[arange > 0]
|
|
561
|
+
|
|
562
|
+
# convert from q_seqlens to cu_seqlens_q
|
|
563
|
+
cu_seqlens_q_local = np.empty(virtual_batches + 1, dtype=np.int32)
|
|
564
|
+
np.cumsum(seqlens_q_local, out=cu_seqlens_q_local[1:])
|
|
565
|
+
cu_seqlens_q_local[0] = 0
|
|
566
|
+
|
|
567
|
+
# compute the seqlens_k_local,
|
|
568
|
+
# basically a full local attention block for all but the last block in each
|
|
569
|
+
# batch
|
|
570
|
+
# For our example this will be:
|
|
571
|
+
# seqlens_k_local = [4, 2, 4, 4, 4, 1, 4, 1]
|
|
572
|
+
seqlens_k_local = np.full(cu_num_blocks[-1],
|
|
573
|
+
attn_chunk_size,
|
|
574
|
+
dtype=np.int32)
|
|
575
|
+
seqlens_k_local[cu_num_blocks - 1] = tokens_in_last_block
|
|
576
|
+
num_computed_tokens_local = seqlens_k_local - seqlens_q_local
|
|
577
|
+
|
|
578
|
+
k_seqstarts_absolute = np.repeat(seq_lens_np, local_blocks) - \
|
|
579
|
+
(rarange * attn_chunk_size + \
|
|
580
|
+
np.repeat(tokens_in_last_block, local_blocks))
|
|
581
|
+
# For the example the local attention blocks start at:
|
|
582
|
+
# _b0_ _____b1_____ _b2_
|
|
583
|
+
# k_seqstarts_absolute = [0, 4, 4, 8, 12, 16, 4, 8]
|
|
584
|
+
block_starts = k_seqstarts_absolute // block_size
|
|
585
|
+
assert attn_chunk_size % block_size == 0, \
|
|
586
|
+
f"attn_chunk_size {attn_chunk_size} is not " \
|
|
587
|
+
f"divisible by block_size {block_size}"
|
|
588
|
+
pages_per_local_batch = attn_chunk_size // block_size
|
|
589
|
+
|
|
590
|
+
# Create a block_table for the local attention blocks
|
|
591
|
+
# For out example if we have a block-table like (assuming block_size=2):
|
|
592
|
+
# block_table = [
|
|
593
|
+
# [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], < batch 0
|
|
594
|
+
# [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], < batch 1
|
|
595
|
+
# [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], < batch 2
|
|
596
|
+
# ]
|
|
597
|
+
# Then for the local batches we would want a block-table like
|
|
598
|
+
# block_table_local = [
|
|
599
|
+
# [ 0, 1 ], < local-batch 0, (batch 0, starting from k[0])
|
|
600
|
+
# [ 2, 3 ], < local-batch 1, (batch 0, starting from k[4])
|
|
601
|
+
# [ 12, 13 ], < local-batch 2, (batch 1, starting from k[4])
|
|
602
|
+
# [ 14, 15 ], < local-batch 3, (batch 1, starting from k[8])
|
|
603
|
+
# [ 16, 17 ], < local-batch 4, (batch 1, starting from k[12])
|
|
604
|
+
# [ 18, 19 ], < local-batch 5, (batch 1, starting from k[16])
|
|
605
|
+
# [ 22, 23 ], < local-batch 6, (batch 2, starting from k[4])
|
|
606
|
+
# [ 24, 25 ], < local-batch 7, (batch 2, starting from k[8])
|
|
607
|
+
# ]
|
|
608
|
+
block_indices = (block_starts[:, None] +
|
|
609
|
+
np.arange(pages_per_local_batch, dtype=np.int32))
|
|
610
|
+
block_indices = block_indices.reshape(-1).clip(max=block_table.shape[1] -
|
|
611
|
+
1)
|
|
612
|
+
batch_indices = np.repeat(np.arange(actual_batch_size, dtype=np.int32),
|
|
613
|
+
local_blocks * pages_per_local_batch)
|
|
614
|
+
|
|
615
|
+
# NOTE: https://github.com/pytorch/pytorch/pull/160256 causes performance
|
|
616
|
+
# regression when using numpy arrays (batch and block indices) to index into
|
|
617
|
+
# torch tensor (block_table). As a workaround, convert numpy arrays to torch
|
|
618
|
+
# tensor first, which recovers perf.
|
|
619
|
+
batch_indices_torch = torch.from_numpy(batch_indices)
|
|
620
|
+
block_indices_torch = torch.from_numpy(block_indices)
|
|
621
|
+
block_table_local = block_table[batch_indices_torch, block_indices_torch]\
|
|
622
|
+
.view(virtual_batches, -1)
|
|
623
|
+
|
|
624
|
+
query_start_loc_cpu = torch.from_numpy(cu_seqlens_q_local)
|
|
625
|
+
seq_lens_cpu = torch.from_numpy(seqlens_k_local)
|
|
626
|
+
max_seq_len = int(seq_lens_cpu.max())
|
|
627
|
+
|
|
628
|
+
return CommonAttentionMetadata(
|
|
629
|
+
query_start_loc_cpu=query_start_loc_cpu,
|
|
630
|
+
query_start_loc=query_start_loc_cpu.to(device=device,
|
|
631
|
+
non_blocking=True),
|
|
632
|
+
seq_lens_cpu=seq_lens_cpu,
|
|
633
|
+
seq_lens=seq_lens_cpu.to(device=device, non_blocking=True),
|
|
634
|
+
num_computed_tokens_cpu=torch.from_numpy(num_computed_tokens_local),
|
|
635
|
+
num_reqs=len(seq_lens_cpu),
|
|
636
|
+
num_actual_tokens=common_attn_metadata.num_actual_tokens,
|
|
637
|
+
max_query_len=seqlens_q_local.max(),
|
|
638
|
+
max_seq_len=max_seq_len,
|
|
639
|
+
block_table_tensor=block_table_local,
|
|
640
|
+
slot_mapping=common_attn_metadata.slot_mapping,
|
|
641
|
+
causal=True,
|
|
642
|
+
)
|
|
643
|
+
|
|
644
|
+
|
|
645
|
+
def make_kv_sharing_fast_prefill_common_attn_metadata(
|
|
646
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
647
|
+
) -> CommonAttentionMetadata:
|
|
648
|
+
if common_attn_metadata.max_query_len == 1:
|
|
649
|
+
# All requests are decode (assume 1 token for now)
|
|
650
|
+
# Skip computing fast prefill path
|
|
651
|
+
return common_attn_metadata
|
|
652
|
+
|
|
653
|
+
assert common_attn_metadata.logits_indices_padded is not None
|
|
654
|
+
assert common_attn_metadata.num_logits_indices is not None
|
|
655
|
+
|
|
656
|
+
logits_indices_padded = common_attn_metadata.logits_indices_padded
|
|
657
|
+
num_logits_indices = common_attn_metadata.num_logits_indices
|
|
658
|
+
# Get rid of CUDAGraph padding, if any
|
|
659
|
+
logits_indices = logits_indices_padded[:num_logits_indices]
|
|
660
|
+
num_reqs = common_attn_metadata.num_reqs
|
|
661
|
+
query_start_loc = common_attn_metadata.query_start_loc
|
|
662
|
+
seq_lens = common_attn_metadata.seq_lens
|
|
663
|
+
# Example inputs
|
|
664
|
+
# num_reqs: 3
|
|
665
|
+
# generation_indices: [14, 18, 19, 27]
|
|
666
|
+
# query_start_loc: [0, 15, 20, 28]
|
|
667
|
+
# seq_lens: [41, 31, 40]
|
|
668
|
+
|
|
669
|
+
# Find how many decode indices belong to each request
|
|
670
|
+
# request_ids: [0, 1, 1, 2]
|
|
671
|
+
request_ids = torch.bucketize(logits_indices,
|
|
672
|
+
query_start_loc[1:],
|
|
673
|
+
right=True)
|
|
674
|
+
|
|
675
|
+
# Figure out how many tokens are in each request
|
|
676
|
+
# num_decode_tokens: [1, 2, 1]
|
|
677
|
+
num_decode_tokens = torch.bincount(request_ids, minlength=num_reqs)
|
|
678
|
+
|
|
679
|
+
# Calculate new query_start_loc with tokens in generation_indices
|
|
680
|
+
# decode_query_start_loc: [0, 1, 3, 4]
|
|
681
|
+
decode_query_start_loc = torch.empty(num_reqs + 1,
|
|
682
|
+
device=query_start_loc.device,
|
|
683
|
+
dtype=query_start_loc.dtype)
|
|
684
|
+
|
|
685
|
+
decode_query_start_loc[0] = 0
|
|
686
|
+
decode_query_start_loc[1:] = torch.cumsum(num_decode_tokens, dim=0)
|
|
687
|
+
decode_max_query_len = int(num_decode_tokens.max().item())
|
|
688
|
+
total_num_decode_tokens = int(num_decode_tokens.sum().item())
|
|
689
|
+
|
|
690
|
+
common_attn_metadata = CommonAttentionMetadata(
|
|
691
|
+
query_start_loc=decode_query_start_loc,
|
|
692
|
+
query_start_loc_cpu=decode_query_start_loc.to("cpu",
|
|
693
|
+
non_blocking=True),
|
|
694
|
+
seq_lens=seq_lens,
|
|
695
|
+
seq_lens_cpu=seq_lens.to("cpu", non_blocking=True),
|
|
696
|
+
num_computed_tokens_cpu=common_attn_metadata.num_computed_tokens_cpu,
|
|
697
|
+
num_reqs=num_reqs,
|
|
698
|
+
num_actual_tokens=total_num_decode_tokens,
|
|
699
|
+
max_query_len=decode_max_query_len,
|
|
700
|
+
max_seq_len=common_attn_metadata.max_seq_len,
|
|
701
|
+
block_table_tensor=common_attn_metadata.block_table_tensor,
|
|
702
|
+
slot_mapping=common_attn_metadata.slot_mapping,
|
|
703
|
+
causal=True,
|
|
704
|
+
)
|
|
705
|
+
return common_attn_metadata
|
|
706
|
+
|
|
707
|
+
|
|
708
|
+
def subclass_attention_backend(
|
|
709
|
+
name_prefix: str, attention_backend_cls: type[AttentionBackend],
|
|
710
|
+
builder_cls: type[AttentionMetadataBuilder[M]]
|
|
711
|
+
) -> type[AttentionBackend]:
|
|
712
|
+
"""
|
|
713
|
+
Return a new subclass where `get_builder_cls` returns `builder_cls`.
|
|
714
|
+
"""
|
|
715
|
+
name: str = name_prefix + attention_backend_cls.__name__ # type: ignore
|
|
716
|
+
|
|
717
|
+
return type(name, (attention_backend_cls, ),
|
|
718
|
+
{"get_builder_cls": lambda: builder_cls})
|
|
719
|
+
|
|
720
|
+
|
|
721
|
+
def split_decodes_and_prefills(
|
|
722
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
723
|
+
decode_threshold: int = 1,
|
|
724
|
+
require_uniform: bool = False) -> tuple[int, int, int, int]:
|
|
725
|
+
"""
|
|
726
|
+
Assuming a reordered batch, finds the boundary between prefill and decode
|
|
727
|
+
requests.
|
|
728
|
+
|
|
729
|
+
Args:
|
|
730
|
+
common_attn_metadata: CommonAttentionMetadata object containing the
|
|
731
|
+
batch metadata.
|
|
732
|
+
decode_threshold: The maximum query length to be considered a decode.
|
|
733
|
+
require_uniform: If True, requires that all decode requests have the
|
|
734
|
+
same query length. When set, some queries may be considered prefills
|
|
735
|
+
even if they are <= decode_threshold, in order to ensure uniformity.
|
|
736
|
+
|
|
737
|
+
Returns:
|
|
738
|
+
num_decodes: The number of decode requests.
|
|
739
|
+
num_prefills: The number of prefill requests.
|
|
740
|
+
num_decode_tokens: The number of tokens in the decode requests.
|
|
741
|
+
num_prefill_tokens: The number of tokens in the prefill requests.
|
|
742
|
+
"""
|
|
743
|
+
max_query_len = common_attn_metadata.max_query_len
|
|
744
|
+
num_reqs = common_attn_metadata.num_reqs
|
|
745
|
+
num_tokens = common_attn_metadata.num_actual_tokens
|
|
746
|
+
query_start_loc = common_attn_metadata.query_start_loc_cpu
|
|
747
|
+
|
|
748
|
+
if max_query_len <= decode_threshold and \
|
|
749
|
+
(not require_uniform or decode_threshold <= 1):
|
|
750
|
+
return num_reqs, 0, num_tokens, 0
|
|
751
|
+
|
|
752
|
+
query_lens = query_start_loc[1:] - query_start_loc[:-1]
|
|
753
|
+
if query_lens[0].item() > decode_threshold:
|
|
754
|
+
# first request is not decode, so no decode requests
|
|
755
|
+
return 0, num_reqs, 0, num_tokens
|
|
756
|
+
|
|
757
|
+
if require_uniform:
|
|
758
|
+
is_prefill = query_lens != query_lens[0]
|
|
759
|
+
else:
|
|
760
|
+
is_prefill = query_lens > decode_threshold
|
|
761
|
+
|
|
762
|
+
if not torch.any(is_prefill):
|
|
763
|
+
return num_reqs, 0, num_tokens, 0
|
|
764
|
+
|
|
765
|
+
first_prefill = is_prefill.int().argmax(dim=-1).item()
|
|
766
|
+
assert torch.all(query_lens[:first_prefill] <= decode_threshold)
|
|
767
|
+
num_decodes = first_prefill
|
|
768
|
+
num_prefills = num_reqs - num_decodes
|
|
769
|
+
num_decode_tokens = query_start_loc[first_prefill].item()
|
|
770
|
+
num_prefill_tokens = num_tokens - num_decode_tokens
|
|
771
|
+
return (num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens)
|
|
772
|
+
|
|
773
|
+
|
|
774
|
+
def reorder_batch_to_split_decodes_and_prefills(
|
|
775
|
+
input_batch: "InputBatch",
|
|
776
|
+
scheduler_output: "SchedulerOutput",
|
|
777
|
+
decode_threshold: int = 1,
|
|
778
|
+
) -> bool:
|
|
779
|
+
"""
|
|
780
|
+
Reorders the batch to split into prefill and decode requests; places all
|
|
781
|
+
requests with <= decode_threshold tokens at the front of the batch.
|
|
782
|
+
|
|
783
|
+
Returns:
|
|
784
|
+
True if the batch was modified, False otherwise.
|
|
785
|
+
"""
|
|
786
|
+
# We now want to reorder the batch so that the "decode" requests are at
|
|
787
|
+
# the front and the "prefill" requests are at the back using the least
|
|
788
|
+
# amount of swaps possible. (NOTE for now we loosely use "decode" to mean
|
|
789
|
+
# requests where attention is likely memory-bound and "prefill" to mean
|
|
790
|
+
# requests where attention is likely compute-bound, TODO(lucas): figure out
|
|
791
|
+
# a better naming here)
|
|
792
|
+
decodes = []
|
|
793
|
+
prefills = []
|
|
794
|
+
num_decode_tokens = 0
|
|
795
|
+
num_prefill_tokens = 0
|
|
796
|
+
|
|
797
|
+
for i, req_id in enumerate(input_batch.req_ids):
|
|
798
|
+
num_tokens = scheduler_output.num_scheduled_tokens[req_id]
|
|
799
|
+
# for now treat 1 scheduled token as "decode" even if it's not,
|
|
800
|
+
# we should update this to something like < 8 in the future but
|
|
801
|
+
# currently the TritonMLA._forward_decode only supports
|
|
802
|
+
# num_tokens = 1
|
|
803
|
+
if num_tokens <= decode_threshold:
|
|
804
|
+
decodes.append(i)
|
|
805
|
+
num_decode_tokens += num_tokens
|
|
806
|
+
else:
|
|
807
|
+
prefills.append(i)
|
|
808
|
+
num_prefill_tokens += num_tokens
|
|
809
|
+
|
|
810
|
+
# We hope that this is fairly minimal since decodes
|
|
811
|
+
# should be around for a number of iterations so hopefully they are
|
|
812
|
+
# relatively stationary (and new request are generally appended to the
|
|
813
|
+
# persistent batch so already should be at the back)
|
|
814
|
+
# To achieve this we loop over the decodes in descending order and
|
|
815
|
+
# the prefills in ascending order. We swap decodes from the "back"
|
|
816
|
+
# i.e. past where the last decode should be in the reodorered with
|
|
817
|
+
# prefills from the front of the batch.
|
|
818
|
+
# `decodes` and `prefills` are already in ascending order just based on
|
|
819
|
+
# the above loop
|
|
820
|
+
num_decodes = len(decodes)
|
|
821
|
+
num_prefills = len(prefills)
|
|
822
|
+
modified_batch = False
|
|
823
|
+
|
|
824
|
+
for i in range(1, min(num_decodes, num_prefills) + 1):
|
|
825
|
+
# If the decode is at the "back" of the batch, i, we can swap it
|
|
826
|
+
# with the prefill closest to the front of the batch
|
|
827
|
+
decode_idx = decodes[num_decodes - i]
|
|
828
|
+
if decode_idx < num_decodes:
|
|
829
|
+
break
|
|
830
|
+
|
|
831
|
+
input_batch.swap_states(prefills[i - 1], decode_idx)
|
|
832
|
+
modified_batch = True
|
|
833
|
+
|
|
834
|
+
return modified_batch
|
|
835
|
+
|
|
836
|
+
|
|
837
|
+
def reshape_query_for_spec_decode(query: torch.Tensor,
|
|
838
|
+
batch_size: int) -> torch.Tensor:
|
|
839
|
+
"""
|
|
840
|
+
Reshapes the query tensor for the specified batch size, so that
|
|
841
|
+
it has shape (batch_size, seq_len, num_heads, head_dim).
|
|
842
|
+
"""
|
|
843
|
+
assert query.dim() == 3, f"query must be 3D, got {query.dim()}D"
|
|
844
|
+
total_tokens = query.shape[0]
|
|
845
|
+
num_heads = query.shape[1]
|
|
846
|
+
head_dim = query.shape[2]
|
|
847
|
+
assert total_tokens % batch_size == 0, (
|
|
848
|
+
f"{total_tokens=} is not divisible by {batch_size=}")
|
|
849
|
+
seq_len = total_tokens // batch_size
|
|
850
|
+
return query.view(batch_size, seq_len, num_heads, head_dim)
|
|
851
|
+
|
|
852
|
+
|
|
853
|
+
def reshape_attn_output_for_spec_decode(
|
|
854
|
+
attn_output: torch.Tensor) -> torch.Tensor:
|
|
855
|
+
"""
|
|
856
|
+
Reshapes the attention output tensor, so that
|
|
857
|
+
the batch_size and seq_len dimensions are combined.
|
|
858
|
+
"""
|
|
859
|
+
if attn_output.dim() == 3:
|
|
860
|
+
# Already in the correct shape
|
|
861
|
+
return attn_output
|
|
862
|
+
assert attn_output.dim() == 4, \
|
|
863
|
+
f"attn_output must be 4D, got {attn_output.dim()}D"
|
|
864
|
+
total_tokens = attn_output.shape[0] * attn_output.shape[1]
|
|
865
|
+
return attn_output.view(total_tokens, attn_output.shape[2],
|
|
866
|
+
attn_output.shape[3])
|
|
867
|
+
|
|
868
|
+
|
|
869
|
+
KV_SHARING_FAST_PREFILL_METADATA_FIELDS = [
|
|
870
|
+
('logits_indices_padded', Optional[torch.Tensor], None),
|
|
871
|
+
('num_logits_indices', int, 0),
|
|
872
|
+
]
|
|
873
|
+
|
|
874
|
+
|
|
875
|
+
def subclass_attention_metadata(
|
|
876
|
+
name_prefix: str,
|
|
877
|
+
metadata_cls: Any,
|
|
878
|
+
fields: list[tuple[str, Any, Any]],
|
|
879
|
+
) -> Any:
|
|
880
|
+
"""
|
|
881
|
+
Return a new subclass of `metadata_cls` with additional fields
|
|
882
|
+
"""
|
|
883
|
+
name: str = name_prefix + metadata_cls.__name__ # type: ignore
|
|
884
|
+
Wrapped = make_dataclass(name, fields, bases=(metadata_cls, ))
|
|
885
|
+
return Wrapped
|
|
886
|
+
|
|
887
|
+
|
|
888
|
+
@runtime_checkable
|
|
889
|
+
class KVSharingFastPrefillMetadata(Protocol):
|
|
890
|
+
logits_indices_padded: torch.Tensor
|
|
891
|
+
num_logits_indices: int
|
|
892
|
+
|
|
893
|
+
|
|
894
|
+
def create_fast_prefill_custom_backend(
|
|
895
|
+
prefix: str,
|
|
896
|
+
underlying_attn_backend: AttentionBackend,
|
|
897
|
+
) -> type[AttentionBackend]:
|
|
898
|
+
|
|
899
|
+
underlying_builder = underlying_attn_backend.get_builder_cls()
|
|
900
|
+
|
|
901
|
+
class FastPrefillAttentionBuilder(underlying_builder): # type: ignore
|
|
902
|
+
|
|
903
|
+
def build(self,
|
|
904
|
+
common_prefix_len: int,
|
|
905
|
+
common_attn_metadata: CommonAttentionMetadata,
|
|
906
|
+
fast_build: bool = False) -> AttentionMetadata:
|
|
907
|
+
new_common_attn_metadata =\
|
|
908
|
+
make_kv_sharing_fast_prefill_common_attn_metadata(common_attn_metadata)
|
|
909
|
+
metadata = super().build(common_prefix_len,
|
|
910
|
+
new_common_attn_metadata, fast_build)
|
|
911
|
+
|
|
912
|
+
class KVSharingFastPrefillAttentionMetadata(
|
|
913
|
+
metadata.__class__, # type: ignore
|
|
914
|
+
KVSharingFastPrefillMetadata):
|
|
915
|
+
|
|
916
|
+
def __init__(self, metadata, common_attn_metadata):
|
|
917
|
+
# Shallow copy all fields in metadata cls
|
|
918
|
+
for field in fields(metadata.__class__):
|
|
919
|
+
setattr(self, field.name,
|
|
920
|
+
getattr(metadata, field.name))
|
|
921
|
+
|
|
922
|
+
# Set additional fields that will be used in model code
|
|
923
|
+
assert (common_attn_metadata.logits_indices_padded
|
|
924
|
+
is not None
|
|
925
|
+
and common_attn_metadata.num_logits_indices
|
|
926
|
+
is not None)
|
|
927
|
+
self.logits_indices_padded = \
|
|
928
|
+
common_attn_metadata.logits_indices_padded
|
|
929
|
+
self.num_logits_indices = \
|
|
930
|
+
common_attn_metadata.num_logits_indices
|
|
931
|
+
|
|
932
|
+
return KVSharingFastPrefillAttentionMetadata(
|
|
933
|
+
metadata, common_attn_metadata)
|
|
934
|
+
|
|
935
|
+
attn_backend = subclass_attention_backend(
|
|
936
|
+
name_prefix=prefix,
|
|
937
|
+
attention_backend_cls=underlying_attn_backend,
|
|
938
|
+
builder_cls=FastPrefillAttentionBuilder)
|
|
939
|
+
|
|
940
|
+
return attn_backend
|
|
941
|
+
|
|
942
|
+
|
|
943
|
+
def compute_causal_conv1d_metadata(query_start_loc_p: torch.Tensor):
|
|
944
|
+
|
|
945
|
+
# Needed for causal_conv1d
|
|
946
|
+
seqlens = query_start_loc_p.diff().to('cpu')
|
|
947
|
+
nums_dict = {} # type: ignore
|
|
948
|
+
batch_ptr = None
|
|
949
|
+
token_chunk_offset_ptr = None
|
|
950
|
+
device = query_start_loc_p.device
|
|
951
|
+
for BLOCK_M in [8]: # cover all BLOCK_M values
|
|
952
|
+
nums = -(-seqlens // BLOCK_M)
|
|
953
|
+
nums_dict[BLOCK_M] = {}
|
|
954
|
+
nums_dict[BLOCK_M]['nums'] = nums
|
|
955
|
+
nums_dict[BLOCK_M]['tot'] = nums.sum().item()
|
|
956
|
+
mlist = torch.from_numpy(np.repeat(np.arange(len(nums)), nums))
|
|
957
|
+
nums_dict[BLOCK_M]['mlist'] = mlist
|
|
958
|
+
mlist_len = len(nums_dict[BLOCK_M]['mlist'])
|
|
959
|
+
nums_dict[BLOCK_M]['mlist_len'] = mlist_len
|
|
960
|
+
MAX_NUM_PROGRAMS = max(1024, mlist_len) * 2
|
|
961
|
+
offsetlist = [] # type: ignore
|
|
962
|
+
for idx, num in enumerate(nums):
|
|
963
|
+
offsetlist.extend(range(num))
|
|
964
|
+
offsetlist = torch.tensor(offsetlist, dtype=torch.int32)
|
|
965
|
+
nums_dict[BLOCK_M]['offsetlist'] = offsetlist
|
|
966
|
+
|
|
967
|
+
if batch_ptr is None:
|
|
968
|
+
# Update default value after class definition
|
|
969
|
+
batch_ptr = torch.full((MAX_NUM_PROGRAMS, ),
|
|
970
|
+
PAD_SLOT_ID,
|
|
971
|
+
dtype=torch.int32,
|
|
972
|
+
device=device)
|
|
973
|
+
token_chunk_offset_ptr = torch.full((MAX_NUM_PROGRAMS, ),
|
|
974
|
+
PAD_SLOT_ID,
|
|
975
|
+
dtype=torch.int32,
|
|
976
|
+
device=device)
|
|
977
|
+
else:
|
|
978
|
+
if batch_ptr.nelement() < MAX_NUM_PROGRAMS:
|
|
979
|
+
batch_ptr.resize_(MAX_NUM_PROGRAMS).fill_(PAD_SLOT_ID)
|
|
980
|
+
token_chunk_offset_ptr.resize_( # type: ignore
|
|
981
|
+
MAX_NUM_PROGRAMS).fill_(PAD_SLOT_ID)
|
|
982
|
+
|
|
983
|
+
batch_ptr[0:mlist_len].copy_(mlist)
|
|
984
|
+
token_chunk_offset_ptr[ # type: ignore
|
|
985
|
+
0:mlist_len].copy_(offsetlist)
|
|
986
|
+
nums_dict[BLOCK_M]['batch_ptr'] = batch_ptr
|
|
987
|
+
nums_dict[BLOCK_M]['token_chunk_offset_ptr'] = (token_chunk_offset_ptr
|
|
988
|
+
) # type: ignore
|
|
989
|
+
|
|
990
|
+
return nums_dict, batch_ptr, token_chunk_offset_ptr
|