vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1398) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2044 -0
  5. vllm/_ipex_ops.py +393 -0
  6. vllm/_version.py +34 -0
  7. vllm/assets/__init__.py +0 -0
  8. vllm/assets/audio.py +45 -0
  9. vllm/assets/base.py +41 -0
  10. vllm/assets/image.py +50 -0
  11. vllm/assets/video.py +145 -0
  12. vllm/attention/__init__.py +15 -0
  13. vllm/attention/backends/__init__.py +0 -0
  14. vllm/attention/backends/abstract.py +204 -0
  15. vllm/attention/backends/utils.py +33 -0
  16. vllm/attention/layer.py +645 -0
  17. vllm/attention/layers/__init__.py +0 -0
  18. vllm/attention/layers/chunked_local_attention.py +93 -0
  19. vllm/attention/layers/cross_attention.py +162 -0
  20. vllm/attention/layers/encoder_only_attention.py +86 -0
  21. vllm/attention/ops/__init__.py +0 -0
  22. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  23. vllm/attention/ops/common.py +345 -0
  24. vllm/attention/ops/flashmla.py +192 -0
  25. vllm/attention/ops/merge_attn_states.py +43 -0
  26. vllm/attention/ops/paged_attn.py +262 -0
  27. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  28. vllm/attention/ops/prefix_prefill.py +928 -0
  29. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  30. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  31. vllm/attention/ops/triton_decode_attention.py +691 -0
  32. vllm/attention/ops/triton_flash_attention.py +984 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
  35. vllm/attention/ops/triton_unified_attention.py +894 -0
  36. vllm/attention/selector.py +245 -0
  37. vllm/attention/utils/__init__.py +0 -0
  38. vllm/attention/utils/fa_utils.py +85 -0
  39. vllm/attention/utils/kv_sharing_utils.py +33 -0
  40. vllm/beam_search.py +87 -0
  41. vllm/benchmarks/__init__.py +0 -0
  42. vllm/benchmarks/datasets.py +2723 -0
  43. vllm/benchmarks/latency.py +170 -0
  44. vllm/benchmarks/lib/__init__.py +3 -0
  45. vllm/benchmarks/lib/endpoint_request_func.py +533 -0
  46. vllm/benchmarks/lib/ready_checker.py +73 -0
  47. vllm/benchmarks/lib/utils.py +80 -0
  48. vllm/benchmarks/serve.py +1358 -0
  49. vllm/benchmarks/throughput.py +696 -0
  50. vllm/collect_env.py +823 -0
  51. vllm/compilation/__init__.py +0 -0
  52. vllm/compilation/activation_quant_fusion.py +189 -0
  53. vllm/compilation/backends.py +650 -0
  54. vllm/compilation/base_static_graph.py +56 -0
  55. vllm/compilation/collective_fusion.py +1188 -0
  56. vllm/compilation/compiler_interface.py +573 -0
  57. vllm/compilation/counter.py +47 -0
  58. vllm/compilation/cuda_graph.py +199 -0
  59. vllm/compilation/cuda_piecewise_backend.py +117 -0
  60. vllm/compilation/decorators.py +400 -0
  61. vllm/compilation/fix_functionalization.py +205 -0
  62. vllm/compilation/fusion.py +383 -0
  63. vllm/compilation/fusion_attn.py +295 -0
  64. vllm/compilation/fx_utils.py +84 -0
  65. vllm/compilation/inductor_pass.py +136 -0
  66. vllm/compilation/monitor.py +57 -0
  67. vllm/compilation/noop_elimination.py +158 -0
  68. vllm/compilation/pass_manager.py +125 -0
  69. vllm/compilation/post_cleanup.py +20 -0
  70. vllm/compilation/sequence_parallelism.py +478 -0
  71. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  72. vllm/compilation/vllm_inductor_pass.py +156 -0
  73. vllm/compilation/wrapper.py +136 -0
  74. vllm/config/__init__.py +814 -0
  75. vllm/config/cache.py +220 -0
  76. vllm/config/compilation.py +673 -0
  77. vllm/config/device.py +74 -0
  78. vllm/config/kv_events.py +50 -0
  79. vllm/config/kv_transfer.py +111 -0
  80. vllm/config/load.py +113 -0
  81. vllm/config/lora.py +132 -0
  82. vllm/config/model.py +1912 -0
  83. vllm/config/multimodal.py +129 -0
  84. vllm/config/observability.py +99 -0
  85. vllm/config/parallel.py +524 -0
  86. vllm/config/pooler.py +97 -0
  87. vllm/config/scheduler.py +287 -0
  88. vllm/config/speculative.py +568 -0
  89. vllm/config/speech_to_text.py +39 -0
  90. vllm/config/structured_outputs.py +64 -0
  91. vllm/config/utils.py +145 -0
  92. vllm/connections.py +186 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +311 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +41 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +440 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +295 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +323 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
  106. vllm/distributed/device_communicators/pynccl.py +340 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +589 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +635 -0
  113. vllm/distributed/device_communicators/symm_mem.py +136 -0
  114. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  115. vllm/distributed/device_communicators/xpu_communicator.py +94 -0
  116. vllm/distributed/eplb/__init__.py +8 -0
  117. vllm/distributed/eplb/eplb_state.py +620 -0
  118. vllm/distributed/eplb/rebalance_algo.py +239 -0
  119. vllm/distributed/eplb/rebalance_execute.py +424 -0
  120. vllm/distributed/kv_events.py +362 -0
  121. vllm/distributed/kv_transfer/README.md +29 -0
  122. vllm/distributed/kv_transfer/__init__.py +13 -0
  123. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  124. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  125. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  126. vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
  132. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
  133. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
  134. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
  135. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
  140. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  141. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  142. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  144. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  145. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  146. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  147. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  148. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  149. vllm/distributed/parallel_state.py +1532 -0
  150. vllm/distributed/tpu_distributed_utils.py +178 -0
  151. vllm/distributed/utils.py +536 -0
  152. vllm/engine/__init__.py +0 -0
  153. vllm/engine/arg_utils.py +1778 -0
  154. vllm/engine/async_llm_engine.py +6 -0
  155. vllm/engine/llm_engine.py +6 -0
  156. vllm/engine/metrics.py +577 -0
  157. vllm/engine/metrics_types.py +84 -0
  158. vllm/engine/protocol.py +333 -0
  159. vllm/entrypoints/__init__.py +0 -0
  160. vllm/entrypoints/api_server.py +178 -0
  161. vllm/entrypoints/chat_utils.py +1705 -0
  162. vllm/entrypoints/cli/__init__.py +12 -0
  163. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  164. vllm/entrypoints/cli/benchmark/base.py +25 -0
  165. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  166. vllm/entrypoints/cli/benchmark/main.py +55 -0
  167. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  168. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  169. vllm/entrypoints/cli/collect_env.py +36 -0
  170. vllm/entrypoints/cli/main.py +60 -0
  171. vllm/entrypoints/cli/openai.py +233 -0
  172. vllm/entrypoints/cli/run_batch.py +67 -0
  173. vllm/entrypoints/cli/serve.py +232 -0
  174. vllm/entrypoints/cli/types.py +29 -0
  175. vllm/entrypoints/constants.py +10 -0
  176. vllm/entrypoints/context.py +481 -0
  177. vllm/entrypoints/harmony_utils.py +436 -0
  178. vllm/entrypoints/launcher.py +164 -0
  179. vllm/entrypoints/llm.py +1629 -0
  180. vllm/entrypoints/logger.py +79 -0
  181. vllm/entrypoints/openai/__init__.py +0 -0
  182. vllm/entrypoints/openai/api_server.py +1953 -0
  183. vllm/entrypoints/openai/cli_args.py +288 -0
  184. vllm/entrypoints/openai/logits_processors.py +90 -0
  185. vllm/entrypoints/openai/protocol.py +2757 -0
  186. vllm/entrypoints/openai/run_batch.py +491 -0
  187. vllm/entrypoints/openai/serving_chat.py +1597 -0
  188. vllm/entrypoints/openai/serving_classification.py +173 -0
  189. vllm/entrypoints/openai/serving_completion.py +692 -0
  190. vllm/entrypoints/openai/serving_embedding.py +631 -0
  191. vllm/entrypoints/openai/serving_engine.py +992 -0
  192. vllm/entrypoints/openai/serving_models.py +288 -0
  193. vllm/entrypoints/openai/serving_pooling.py +276 -0
  194. vllm/entrypoints/openai/serving_responses.py +1709 -0
  195. vllm/entrypoints/openai/serving_score.py +479 -0
  196. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  197. vllm/entrypoints/openai/serving_transcription.py +136 -0
  198. vllm/entrypoints/openai/speech_to_text.py +388 -0
  199. vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
  200. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  201. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  202. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  203. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  204. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  205. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  206. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
  207. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  208. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  209. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  210. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  211. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  212. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  213. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
  214. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  216. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
  217. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  218. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  219. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  220. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
  221. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  222. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  223. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  224. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  225. vllm/entrypoints/renderer.py +395 -0
  226. vllm/entrypoints/score_utils.py +232 -0
  227. vllm/entrypoints/ssl.py +75 -0
  228. vllm/entrypoints/tool.py +139 -0
  229. vllm/entrypoints/tool_server.py +206 -0
  230. vllm/entrypoints/utils.py +233 -0
  231. vllm/env_override.py +23 -0
  232. vllm/envs.py +1590 -0
  233. vllm/executor/__init__.py +0 -0
  234. vllm/executor/executor_base.py +381 -0
  235. vllm/executor/msgspec_utils.py +35 -0
  236. vllm/executor/ray_distributed_executor.py +699 -0
  237. vllm/executor/ray_utils.py +410 -0
  238. vllm/executor/uniproc_executor.py +176 -0
  239. vllm/forward_context.py +402 -0
  240. vllm/inputs/__init__.py +30 -0
  241. vllm/inputs/data.py +356 -0
  242. vllm/inputs/parse.py +151 -0
  243. vllm/inputs/preprocess.py +664 -0
  244. vllm/logger.py +229 -0
  245. vllm/logging_utils/__init__.py +10 -0
  246. vllm/logging_utils/dump_input.py +81 -0
  247. vllm/logging_utils/formatter.py +79 -0
  248. vllm/logging_utils/log_time.py +32 -0
  249. vllm/logits_process.py +119 -0
  250. vllm/logprobs.py +28 -0
  251. vllm/lora/__init__.py +0 -0
  252. vllm/lora/layers/__init__.py +34 -0
  253. vllm/lora/layers/base.py +69 -0
  254. vllm/lora/layers/base_linear.py +185 -0
  255. vllm/lora/layers/column_parallel_linear.py +609 -0
  256. vllm/lora/layers/logits_processor.py +247 -0
  257. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  258. vllm/lora/layers/replicated_linear.py +60 -0
  259. vllm/lora/layers/row_parallel_linear.py +196 -0
  260. vllm/lora/layers/utils.py +65 -0
  261. vllm/lora/layers/vocal_parallel_embedding.py +174 -0
  262. vllm/lora/lora_weights.py +199 -0
  263. vllm/lora/models.py +816 -0
  264. vllm/lora/ops/__init__.py +0 -0
  265. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  266. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  267. vllm/lora/ops/torch_ops/__init__.py +16 -0
  268. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  269. vllm/lora/ops/triton_ops/__init__.py +12 -0
  270. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  271. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  272. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  273. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  274. vllm/lora/ops/triton_ops/utils.py +126 -0
  275. vllm/lora/ops/xla_ops/__init__.py +7 -0
  276. vllm/lora/ops/xla_ops/lora_ops.py +144 -0
  277. vllm/lora/peft_helper.py +127 -0
  278. vllm/lora/punica_wrapper/__init__.py +10 -0
  279. vllm/lora/punica_wrapper/punica_base.py +458 -0
  280. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  281. vllm/lora/punica_wrapper/punica_gpu.py +272 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  284. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  285. vllm/lora/punica_wrapper/utils.py +136 -0
  286. vllm/lora/request.py +97 -0
  287. vllm/lora/resolver.py +85 -0
  288. vllm/lora/utils.py +246 -0
  289. vllm/lora/worker_manager.py +267 -0
  290. vllm/model_executor/__init__.py +12 -0
  291. vllm/model_executor/custom_op.py +194 -0
  292. vllm/model_executor/layers/__init__.py +0 -0
  293. vllm/model_executor/layers/activation.py +575 -0
  294. vllm/model_executor/layers/attention_layer_base.py +23 -0
  295. vllm/model_executor/layers/fla/__init__.py +8 -0
  296. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  297. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  298. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  299. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  300. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  301. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  302. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  303. vllm/model_executor/layers/fla/ops/index.py +39 -0
  304. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  305. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  306. vllm/model_executor/layers/fla/ops/op.py +39 -0
  307. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  308. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  309. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  310. vllm/model_executor/layers/fused_moe/__init__.py +89 -0
  311. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
  312. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
  313. vllm/model_executor/layers/fused_moe/config.py +804 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  545. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
  546. vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
  547. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
  548. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  549. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
  550. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
  551. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
  552. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
  553. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
  554. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
  555. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
  556. vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
  557. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
  558. vllm/model_executor/layers/fused_moe/layer.py +2195 -0
  559. vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
  560. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  561. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  562. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  563. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  564. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
  565. vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
  566. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
  567. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  568. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  569. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
  570. vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
  571. vllm/model_executor/layers/fused_moe/utils.py +274 -0
  572. vllm/model_executor/layers/layernorm.py +395 -0
  573. vllm/model_executor/layers/lightning_attn.py +661 -0
  574. vllm/model_executor/layers/linear.py +1603 -0
  575. vllm/model_executor/layers/logits_processor.py +106 -0
  576. vllm/model_executor/layers/mamba/__init__.py +0 -0
  577. vllm/model_executor/layers/mamba/abstract.py +42 -0
  578. vllm/model_executor/layers/mamba/linear_attn.py +403 -0
  579. vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
  580. vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
  581. vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
  582. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  583. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
  584. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  585. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  586. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
  587. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
  588. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
  589. vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
  590. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
  591. vllm/model_executor/layers/mamba/short_conv.py +253 -0
  592. vllm/model_executor/layers/mla.py +173 -0
  593. vllm/model_executor/layers/pooler.py +719 -0
  594. vllm/model_executor/layers/quantization/__init__.py +157 -0
  595. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  596. vllm/model_executor/layers/quantization/awq.py +228 -0
  597. vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
  598. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  599. vllm/model_executor/layers/quantization/base_config.py +170 -0
  600. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  601. vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
  602. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  603. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
  604. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
  605. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  606. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  607. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  608. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  609. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  610. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
  611. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  612. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  613. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  614. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
  615. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  616. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  625. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  626. vllm/model_executor/layers/quantization/experts_int8.py +223 -0
  627. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  628. vllm/model_executor/layers/quantization/fp8.py +1098 -0
  629. vllm/model_executor/layers/quantization/gguf.py +599 -0
  630. vllm/model_executor/layers/quantization/gptq.py +340 -0
  631. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  632. vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
  633. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  634. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  635. vllm/model_executor/layers/quantization/inc.py +61 -0
  636. vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
  637. vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
  638. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  639. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  640. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  641. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  642. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  643. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  644. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  645. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  646. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  647. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  648. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  649. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  650. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  651. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
  652. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  653. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  654. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  655. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  656. vllm/model_executor/layers/quantization/kv_cache.py +143 -0
  657. vllm/model_executor/layers/quantization/modelopt.py +1596 -0
  658. vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
  659. vllm/model_executor/layers/quantization/mxfp4.py +988 -0
  660. vllm/model_executor/layers/quantization/petit.py +306 -0
  661. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  662. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  663. vllm/model_executor/layers/quantization/quark/quark.py +432 -0
  664. vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
  665. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  666. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  667. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
  668. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  669. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  670. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  671. vllm/model_executor/layers/quantization/rtn.py +466 -0
  672. vllm/model_executor/layers/quantization/schema.py +86 -0
  673. vllm/model_executor/layers/quantization/torchao.py +214 -0
  674. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  675. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  676. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  677. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  889. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
  890. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
  891. vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
  892. vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
  893. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  894. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  895. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  896. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  897. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  898. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  899. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  900. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  901. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
  902. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  903. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  904. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  905. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  906. vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
  907. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  908. vllm/model_executor/layers/resampler.py +270 -0
  909. vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
  910. vllm/model_executor/layers/rotary_embedding/base.py +177 -0
  911. vllm/model_executor/layers/rotary_embedding/common.py +150 -0
  912. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
  913. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  914. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  915. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  916. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  917. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  918. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  919. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  920. vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
  921. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  922. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  923. vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
  924. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  925. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  926. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  927. vllm/model_executor/layers/utils.py +195 -0
  928. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  929. vllm/model_executor/model_loader/__init__.py +138 -0
  930. vllm/model_executor/model_loader/base_loader.py +52 -0
  931. vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
  932. vllm/model_executor/model_loader/default_loader.py +277 -0
  933. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  934. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  935. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  936. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  937. vllm/model_executor/model_loader/tensorizer.py +738 -0
  938. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  939. vllm/model_executor/model_loader/tpu.py +114 -0
  940. vllm/model_executor/model_loader/utils.py +292 -0
  941. vllm/model_executor/model_loader/weight_utils.py +990 -0
  942. vllm/model_executor/models/__init__.py +33 -0
  943. vllm/model_executor/models/adapters.py +542 -0
  944. vllm/model_executor/models/aimv2.py +246 -0
  945. vllm/model_executor/models/apertus.py +579 -0
  946. vllm/model_executor/models/arcee.py +422 -0
  947. vllm/model_executor/models/arctic.py +558 -0
  948. vllm/model_executor/models/aria.py +650 -0
  949. vllm/model_executor/models/aya_vision.py +468 -0
  950. vllm/model_executor/models/baichuan.py +474 -0
  951. vllm/model_executor/models/bailing_moe.py +642 -0
  952. vllm/model_executor/models/bamba.py +514 -0
  953. vllm/model_executor/models/bert.py +665 -0
  954. vllm/model_executor/models/bert_with_rope.py +687 -0
  955. vllm/model_executor/models/blip.py +339 -0
  956. vllm/model_executor/models/blip2.py +712 -0
  957. vllm/model_executor/models/bloom.py +374 -0
  958. vllm/model_executor/models/chameleon.py +1139 -0
  959. vllm/model_executor/models/chatglm.py +476 -0
  960. vllm/model_executor/models/clip.py +407 -0
  961. vllm/model_executor/models/cohere2_vision.py +481 -0
  962. vllm/model_executor/models/commandr.py +465 -0
  963. vllm/model_executor/models/config.py +445 -0
  964. vllm/model_executor/models/dbrx.py +471 -0
  965. vllm/model_executor/models/deepseek.py +497 -0
  966. vllm/model_executor/models/deepseek_eagle.py +240 -0
  967. vllm/model_executor/models/deepseek_mtp.py +289 -0
  968. vllm/model_executor/models/deepseek_v2.py +1444 -0
  969. vllm/model_executor/models/deepseek_vl2.py +658 -0
  970. vllm/model_executor/models/dots1.py +546 -0
  971. vllm/model_executor/models/dots_ocr.py +873 -0
  972. vllm/model_executor/models/ernie45.py +43 -0
  973. vllm/model_executor/models/ernie45_moe.py +607 -0
  974. vllm/model_executor/models/ernie45_vl.py +1527 -0
  975. vllm/model_executor/models/ernie45_vl_moe.py +727 -0
  976. vllm/model_executor/models/ernie_mtp.py +268 -0
  977. vllm/model_executor/models/exaone.py +550 -0
  978. vllm/model_executor/models/exaone4.py +533 -0
  979. vllm/model_executor/models/fairseq2_llama.py +154 -0
  980. vllm/model_executor/models/falcon.py +509 -0
  981. vllm/model_executor/models/falcon_h1.py +674 -0
  982. vllm/model_executor/models/fuyu.py +399 -0
  983. vllm/model_executor/models/gemma.py +425 -0
  984. vllm/model_executor/models/gemma2.py +422 -0
  985. vllm/model_executor/models/gemma3.py +555 -0
  986. vllm/model_executor/models/gemma3_mm.py +721 -0
  987. vllm/model_executor/models/gemma3n.py +1113 -0
  988. vllm/model_executor/models/gemma3n_mm.py +761 -0
  989. vllm/model_executor/models/glm.py +23 -0
  990. vllm/model_executor/models/glm4.py +304 -0
  991. vllm/model_executor/models/glm4_1v.py +1690 -0
  992. vllm/model_executor/models/glm4_moe.py +727 -0
  993. vllm/model_executor/models/glm4_moe_mtp.py +301 -0
  994. vllm/model_executor/models/glm4v.py +654 -0
  995. vllm/model_executor/models/gpt2.py +380 -0
  996. vllm/model_executor/models/gpt_bigcode.py +344 -0
  997. vllm/model_executor/models/gpt_j.py +339 -0
  998. vllm/model_executor/models/gpt_neox.py +330 -0
  999. vllm/model_executor/models/gpt_oss.py +712 -0
  1000. vllm/model_executor/models/granite.py +489 -0
  1001. vllm/model_executor/models/granite_speech.py +794 -0
  1002. vllm/model_executor/models/granitemoe.py +550 -0
  1003. vllm/model_executor/models/granitemoehybrid.py +614 -0
  1004. vllm/model_executor/models/granitemoeshared.py +332 -0
  1005. vllm/model_executor/models/gritlm.py +262 -0
  1006. vllm/model_executor/models/grok1.py +547 -0
  1007. vllm/model_executor/models/h2ovl.py +536 -0
  1008. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1009. vllm/model_executor/models/hyperclovax_vision.py +1192 -0
  1010. vllm/model_executor/models/idefics2_vision_model.py +417 -0
  1011. vllm/model_executor/models/idefics3.py +756 -0
  1012. vllm/model_executor/models/interfaces.py +959 -0
  1013. vllm/model_executor/models/interfaces_base.py +192 -0
  1014. vllm/model_executor/models/intern_vit.py +441 -0
  1015. vllm/model_executor/models/internlm2.py +450 -0
  1016. vllm/model_executor/models/internlm2_ve.py +148 -0
  1017. vllm/model_executor/models/interns1.py +838 -0
  1018. vllm/model_executor/models/interns1_vit.py +418 -0
  1019. vllm/model_executor/models/internvl.py +1423 -0
  1020. vllm/model_executor/models/jais.py +373 -0
  1021. vllm/model_executor/models/jamba.py +591 -0
  1022. vllm/model_executor/models/jina_vl.py +144 -0
  1023. vllm/model_executor/models/keye.py +1680 -0
  1024. vllm/model_executor/models/keye_vl1_5.py +602 -0
  1025. vllm/model_executor/models/kimi_vl.py +618 -0
  1026. vllm/model_executor/models/lfm2.py +548 -0
  1027. vllm/model_executor/models/llama.py +669 -0
  1028. vllm/model_executor/models/llama4.py +746 -0
  1029. vllm/model_executor/models/llama4_eagle.py +239 -0
  1030. vllm/model_executor/models/llama_eagle.py +179 -0
  1031. vllm/model_executor/models/llama_eagle3.py +296 -0
  1032. vllm/model_executor/models/llava.py +870 -0
  1033. vllm/model_executor/models/llava_next.py +571 -0
  1034. vllm/model_executor/models/llava_next_video.py +476 -0
  1035. vllm/model_executor/models/llava_onevision.py +942 -0
  1036. vllm/model_executor/models/longcat_flash.py +715 -0
  1037. vllm/model_executor/models/longcat_flash_mtp.py +352 -0
  1038. vllm/model_executor/models/mamba.py +275 -0
  1039. vllm/model_executor/models/mamba2.py +291 -0
  1040. vllm/model_executor/models/medusa.py +169 -0
  1041. vllm/model_executor/models/midashenglm.py +792 -0
  1042. vllm/model_executor/models/mimo.py +188 -0
  1043. vllm/model_executor/models/mimo_mtp.py +280 -0
  1044. vllm/model_executor/models/minicpm.py +631 -0
  1045. vllm/model_executor/models/minicpm3.py +230 -0
  1046. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1047. vllm/model_executor/models/minicpmo.py +770 -0
  1048. vllm/model_executor/models/minicpmv.py +1784 -0
  1049. vllm/model_executor/models/minimax_text_01.py +986 -0
  1050. vllm/model_executor/models/minimax_vl_01.py +426 -0
  1051. vllm/model_executor/models/mistral3.py +628 -0
  1052. vllm/model_executor/models/mixtral.py +606 -0
  1053. vllm/model_executor/models/mllama4.py +1076 -0
  1054. vllm/model_executor/models/mlp_speculator.py +206 -0
  1055. vllm/model_executor/models/modernbert.py +374 -0
  1056. vllm/model_executor/models/module_mapping.py +72 -0
  1057. vllm/model_executor/models/molmo.py +1567 -0
  1058. vllm/model_executor/models/moonvit.py +673 -0
  1059. vllm/model_executor/models/motif.py +345 -0
  1060. vllm/model_executor/models/mpt.py +329 -0
  1061. vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
  1062. vllm/model_executor/models/nemotron.py +507 -0
  1063. vllm/model_executor/models/nemotron_h.py +565 -0
  1064. vllm/model_executor/models/nemotron_nas.py +481 -0
  1065. vllm/model_executor/models/nemotron_vl.py +652 -0
  1066. vllm/model_executor/models/nvlm_d.py +203 -0
  1067. vllm/model_executor/models/olmo.py +404 -0
  1068. vllm/model_executor/models/olmo2.py +439 -0
  1069. vllm/model_executor/models/olmoe.py +483 -0
  1070. vllm/model_executor/models/opt.py +412 -0
  1071. vllm/model_executor/models/orion.py +348 -0
  1072. vllm/model_executor/models/ovis.py +559 -0
  1073. vllm/model_executor/models/ovis2_5.py +642 -0
  1074. vllm/model_executor/models/paligemma.py +411 -0
  1075. vllm/model_executor/models/persimmon.py +343 -0
  1076. vllm/model_executor/models/phi.py +356 -0
  1077. vllm/model_executor/models/phi3.py +19 -0
  1078. vllm/model_executor/models/phi3v.py +698 -0
  1079. vllm/model_executor/models/phi4_multimodal.py +1475 -0
  1080. vllm/model_executor/models/phi4mm.py +1279 -0
  1081. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1082. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1083. vllm/model_executor/models/phimoe.py +679 -0
  1084. vllm/model_executor/models/pixtral.py +1345 -0
  1085. vllm/model_executor/models/plamo2.py +978 -0
  1086. vllm/model_executor/models/qwen.py +361 -0
  1087. vllm/model_executor/models/qwen2.py +523 -0
  1088. vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
  1089. vllm/model_executor/models/qwen2_5_vl.py +1481 -0
  1090. vllm/model_executor/models/qwen2_audio.py +489 -0
  1091. vllm/model_executor/models/qwen2_moe.py +558 -0
  1092. vllm/model_executor/models/qwen2_rm.py +122 -0
  1093. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1094. vllm/model_executor/models/qwen3.py +341 -0
  1095. vllm/model_executor/models/qwen3_moe.py +692 -0
  1096. vllm/model_executor/models/qwen3_next.py +1266 -0
  1097. vllm/model_executor/models/qwen3_next_mtp.py +281 -0
  1098. vllm/model_executor/models/qwen3_vl.py +1613 -0
  1099. vllm/model_executor/models/qwen3_vl_moe.py +358 -0
  1100. vllm/model_executor/models/qwen_vl.py +795 -0
  1101. vllm/model_executor/models/radio.py +576 -0
  1102. vllm/model_executor/models/registry.py +990 -0
  1103. vllm/model_executor/models/roberta.py +252 -0
  1104. vllm/model_executor/models/rvl.py +103 -0
  1105. vllm/model_executor/models/seed_oss.py +485 -0
  1106. vllm/model_executor/models/siglip.py +540 -0
  1107. vllm/model_executor/models/siglip2navit.py +689 -0
  1108. vllm/model_executor/models/skyworkr1v.py +911 -0
  1109. vllm/model_executor/models/smolvlm.py +44 -0
  1110. vllm/model_executor/models/solar.py +504 -0
  1111. vllm/model_executor/models/stablelm.py +341 -0
  1112. vllm/model_executor/models/starcoder2.py +354 -0
  1113. vllm/model_executor/models/step3_text.py +510 -0
  1114. vllm/model_executor/models/step3_vl.py +1072 -0
  1115. vllm/model_executor/models/swin.py +475 -0
  1116. vllm/model_executor/models/tarsier.py +639 -0
  1117. vllm/model_executor/models/telechat2.py +151 -0
  1118. vllm/model_executor/models/teleflm.py +79 -0
  1119. vllm/model_executor/models/terratorch.py +294 -0
  1120. vllm/model_executor/models/transformers.py +948 -0
  1121. vllm/model_executor/models/ultravox.py +654 -0
  1122. vllm/model_executor/models/utils.py +808 -0
  1123. vllm/model_executor/models/vision.py +404 -0
  1124. vllm/model_executor/models/voxtral.py +786 -0
  1125. vllm/model_executor/models/whisper.py +963 -0
  1126. vllm/model_executor/models/zamba2.py +960 -0
  1127. vllm/model_executor/parameter.py +620 -0
  1128. vllm/model_executor/utils.py +86 -0
  1129. vllm/model_executor/warmup/__init__.py +0 -0
  1130. vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
  1131. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1132. vllm/multimodal/__init__.py +33 -0
  1133. vllm/multimodal/audio.py +116 -0
  1134. vllm/multimodal/base.py +27 -0
  1135. vllm/multimodal/cache.py +697 -0
  1136. vllm/multimodal/evs.py +273 -0
  1137. vllm/multimodal/hasher.py +102 -0
  1138. vllm/multimodal/image.py +130 -0
  1139. vllm/multimodal/inputs.py +987 -0
  1140. vllm/multimodal/parse.py +511 -0
  1141. vllm/multimodal/processing.py +2148 -0
  1142. vllm/multimodal/profiling.py +284 -0
  1143. vllm/multimodal/registry.py +345 -0
  1144. vllm/multimodal/utils.py +503 -0
  1145. vllm/multimodal/video.py +319 -0
  1146. vllm/outputs.py +324 -0
  1147. vllm/platforms/__init__.py +263 -0
  1148. vllm/platforms/cpu.py +340 -0
  1149. vllm/platforms/cuda.py +668 -0
  1150. vllm/platforms/interface.py +620 -0
  1151. vllm/platforms/rocm.py +497 -0
  1152. vllm/platforms/tpu.py +233 -0
  1153. vllm/platforms/xpu.py +243 -0
  1154. vllm/plugins/__init__.py +72 -0
  1155. vllm/plugins/io_processors/__init__.py +68 -0
  1156. vllm/plugins/io_processors/interface.py +67 -0
  1157. vllm/plugins/lora_resolvers/README.md +16 -0
  1158. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1159. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1160. vllm/pooling_params.py +191 -0
  1161. vllm/profiler/__init__.py +0 -0
  1162. vllm/profiler/layerwise_profile.py +375 -0
  1163. vllm/profiler/utils.py +148 -0
  1164. vllm/py.typed +2 -0
  1165. vllm/ray/__init__.py +0 -0
  1166. vllm/ray/lazy_utils.py +22 -0
  1167. vllm/ray/ray_env.py +72 -0
  1168. vllm/reasoning/__init__.py +29 -0
  1169. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1170. vllm/reasoning/basic_parsers.py +156 -0
  1171. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1172. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1173. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1174. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1175. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1176. vllm/reasoning/mistral_reasoning_parser.py +56 -0
  1177. vllm/reasoning/qwen3_reasoning_parser.py +72 -0
  1178. vllm/reasoning/seedoss_reasoning_parser.py +28 -0
  1179. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1180. vllm/sampling_params.py +593 -0
  1181. vllm/scalar_type.py +349 -0
  1182. vllm/scripts.py +15 -0
  1183. vllm/sequence.py +103 -0
  1184. vllm/tasks.py +11 -0
  1185. vllm/test_utils.py +129 -0
  1186. vllm/third_party/__init__.py +0 -0
  1187. vllm/third_party/pynvml.py +6140 -0
  1188. vllm/tracing.py +136 -0
  1189. vllm/transformers_utils/__init__.py +24 -0
  1190. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1191. vllm/transformers_utils/chat_templates/registry.py +70 -0
  1192. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1193. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1194. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1195. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1196. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1197. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1198. vllm/transformers_utils/config.py +1102 -0
  1199. vllm/transformers_utils/config_parser_base.py +20 -0
  1200. vllm/transformers_utils/configs/__init__.py +63 -0
  1201. vllm/transformers_utils/configs/arctic.py +207 -0
  1202. vllm/transformers_utils/configs/chatglm.py +72 -0
  1203. vllm/transformers_utils/configs/deepseek_v3.py +101 -0
  1204. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1205. vllm/transformers_utils/configs/dotsocr.py +69 -0
  1206. vllm/transformers_utils/configs/eagle.py +84 -0
  1207. vllm/transformers_utils/configs/falcon.py +90 -0
  1208. vllm/transformers_utils/configs/jais.py +237 -0
  1209. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1210. vllm/transformers_utils/configs/medusa.py +63 -0
  1211. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1212. vllm/transformers_utils/configs/mistral.py +165 -0
  1213. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1214. vllm/transformers_utils/configs/moonvit.py +33 -0
  1215. vllm/transformers_utils/configs/nemotron.py +205 -0
  1216. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1217. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1218. vllm/transformers_utils/configs/olmo3.py +80 -0
  1219. vllm/transformers_utils/configs/ovis.py +176 -0
  1220. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1221. vllm/transformers_utils/configs/radio.py +91 -0
  1222. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1223. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1224. vllm/transformers_utils/configs/speculators/base.py +111 -0
  1225. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1226. vllm/transformers_utils/configs/ultravox.py +116 -0
  1227. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1228. vllm/transformers_utils/dynamic_module.py +60 -0
  1229. vllm/transformers_utils/processor.py +299 -0
  1230. vllm/transformers_utils/processors/__init__.py +16 -0
  1231. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1232. vllm/transformers_utils/processors/ovis.py +420 -0
  1233. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1234. vllm/transformers_utils/runai_utils.py +104 -0
  1235. vllm/transformers_utils/s3_utils.py +93 -0
  1236. vllm/transformers_utils/tokenizer.py +292 -0
  1237. vllm/transformers_utils/tokenizer_base.py +154 -0
  1238. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1239. vllm/transformers_utils/tokenizers/mistral.py +521 -0
  1240. vllm/transformers_utils/utils.py +108 -0
  1241. vllm/triton_utils/__init__.py +16 -0
  1242. vllm/triton_utils/importing.py +96 -0
  1243. vllm/usage/__init__.py +0 -0
  1244. vllm/usage/usage_lib.py +259 -0
  1245. vllm/utils/__init__.py +3566 -0
  1246. vllm/utils/deep_gemm.py +319 -0
  1247. vllm/utils/flashinfer.py +443 -0
  1248. vllm/utils/jsontree.py +178 -0
  1249. vllm/utils/tensor_schema.py +235 -0
  1250. vllm/v1/__init__.py +0 -0
  1251. vllm/v1/attention/__init__.py +0 -0
  1252. vllm/v1/attention/backends/__init__.py +0 -0
  1253. vllm/v1/attention/backends/cpu_attn.py +919 -0
  1254. vllm/v1/attention/backends/flash_attn.py +795 -0
  1255. vllm/v1/attention/backends/flashinfer.py +1181 -0
  1256. vllm/v1/attention/backends/flex_attention.py +861 -0
  1257. vllm/v1/attention/backends/gdn_attn.py +332 -0
  1258. vllm/v1/attention/backends/linear_attn.py +67 -0
  1259. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1260. vllm/v1/attention/backends/mamba2_attn.py +232 -0
  1261. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1262. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1263. vllm/v1/attention/backends/mla/common.py +1783 -0
  1264. vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
  1265. vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
  1266. vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
  1267. vllm/v1/attention/backends/mla/flashmla.py +203 -0
  1268. vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
  1269. vllm/v1/attention/backends/mla/indexer.py +342 -0
  1270. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1271. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1272. vllm/v1/attention/backends/pallas.py +409 -0
  1273. vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
  1274. vllm/v1/attention/backends/rocm_attn.py +426 -0
  1275. vllm/v1/attention/backends/short_conv_attn.py +94 -0
  1276. vllm/v1/attention/backends/tree_attn.py +451 -0
  1277. vllm/v1/attention/backends/triton_attn.py +361 -0
  1278. vllm/v1/attention/backends/utils.py +990 -0
  1279. vllm/v1/attention/backends/xformers.py +438 -0
  1280. vllm/v1/core/__init__.py +0 -0
  1281. vllm/v1/core/block_pool.py +416 -0
  1282. vllm/v1/core/encoder_cache_manager.py +333 -0
  1283. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1284. vllm/v1/core/kv_cache_manager.py +399 -0
  1285. vllm/v1/core/kv_cache_utils.py +1291 -0
  1286. vllm/v1/core/sched/__init__.py +0 -0
  1287. vllm/v1/core/sched/async_scheduler.py +47 -0
  1288. vllm/v1/core/sched/interface.py +158 -0
  1289. vllm/v1/core/sched/output.py +166 -0
  1290. vllm/v1/core/sched/request_queue.py +224 -0
  1291. vllm/v1/core/sched/scheduler.py +1296 -0
  1292. vllm/v1/core/sched/utils.py +69 -0
  1293. vllm/v1/core/single_type_kv_cache_manager.py +671 -0
  1294. vllm/v1/cudagraph_dispatcher.py +125 -0
  1295. vllm/v1/engine/__init__.py +203 -0
  1296. vllm/v1/engine/async_llm.py +742 -0
  1297. vllm/v1/engine/coordinator.py +357 -0
  1298. vllm/v1/engine/core.py +1235 -0
  1299. vllm/v1/engine/core_client.py +1334 -0
  1300. vllm/v1/engine/detokenizer.py +349 -0
  1301. vllm/v1/engine/exceptions.py +17 -0
  1302. vllm/v1/engine/llm_engine.py +370 -0
  1303. vllm/v1/engine/logprobs.py +201 -0
  1304. vllm/v1/engine/output_processor.py +576 -0
  1305. vllm/v1/engine/parallel_sampling.py +133 -0
  1306. vllm/v1/engine/processor.py +545 -0
  1307. vllm/v1/engine/utils.py +860 -0
  1308. vllm/v1/executor/__init__.py +0 -0
  1309. vllm/v1/executor/abstract.py +137 -0
  1310. vllm/v1/executor/multiproc_executor.py +726 -0
  1311. vllm/v1/executor/ray_distributed_executor.py +108 -0
  1312. vllm/v1/executor/utils.py +23 -0
  1313. vllm/v1/kv_cache_interface.py +375 -0
  1314. vllm/v1/kv_offload/__init__.py +0 -0
  1315. vllm/v1/kv_offload/abstract.py +165 -0
  1316. vllm/v1/kv_offload/backend.py +96 -0
  1317. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1318. vllm/v1/kv_offload/backends/cpu.py +61 -0
  1319. vllm/v1/kv_offload/cpu.py +75 -0
  1320. vllm/v1/kv_offload/factory.py +56 -0
  1321. vllm/v1/kv_offload/lru_manager.py +132 -0
  1322. vllm/v1/kv_offload/mediums.py +39 -0
  1323. vllm/v1/kv_offload/spec.py +61 -0
  1324. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1325. vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
  1326. vllm/v1/kv_offload/worker/worker.py +142 -0
  1327. vllm/v1/metrics/__init__.py +0 -0
  1328. vllm/v1/metrics/loggers.py +741 -0
  1329. vllm/v1/metrics/prometheus.py +82 -0
  1330. vllm/v1/metrics/ray_wrappers.py +152 -0
  1331. vllm/v1/metrics/reader.py +246 -0
  1332. vllm/v1/metrics/stats.py +257 -0
  1333. vllm/v1/outputs.py +161 -0
  1334. vllm/v1/pool/__init__.py +0 -0
  1335. vllm/v1/pool/metadata.py +77 -0
  1336. vllm/v1/request.py +241 -0
  1337. vllm/v1/sample/__init__.py +0 -0
  1338. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1339. vllm/v1/sample/logits_processor/builtin.py +275 -0
  1340. vllm/v1/sample/logits_processor/interface.py +97 -0
  1341. vllm/v1/sample/logits_processor/state.py +161 -0
  1342. vllm/v1/sample/metadata.py +43 -0
  1343. vllm/v1/sample/ops/__init__.py +0 -0
  1344. vllm/v1/sample/ops/bad_words.py +39 -0
  1345. vllm/v1/sample/ops/logprobs.py +26 -0
  1346. vllm/v1/sample/ops/penalties.py +43 -0
  1347. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1348. vllm/v1/sample/rejection_sampler.py +623 -0
  1349. vllm/v1/sample/sampler.py +285 -0
  1350. vllm/v1/sample/tpu/__init__.py +0 -0
  1351. vllm/v1/sample/tpu/metadata.py +124 -0
  1352. vllm/v1/sample/tpu/sampler.py +213 -0
  1353. vllm/v1/serial_utils.py +423 -0
  1354. vllm/v1/spec_decode/__init__.py +0 -0
  1355. vllm/v1/spec_decode/eagle.py +1011 -0
  1356. vllm/v1/spec_decode/medusa.py +66 -0
  1357. vllm/v1/spec_decode/metadata.py +62 -0
  1358. vllm/v1/spec_decode/metrics.py +211 -0
  1359. vllm/v1/spec_decode/ngram_proposer.py +276 -0
  1360. vllm/v1/spec_decode/utils.py +14 -0
  1361. vllm/v1/structured_output/__init__.py +295 -0
  1362. vllm/v1/structured_output/backend_guidance.py +245 -0
  1363. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1364. vllm/v1/structured_output/backend_outlines.py +320 -0
  1365. vllm/v1/structured_output/backend_types.py +134 -0
  1366. vllm/v1/structured_output/backend_xgrammar.py +327 -0
  1367. vllm/v1/structured_output/request.py +86 -0
  1368. vllm/v1/structured_output/utils.py +454 -0
  1369. vllm/v1/utils.py +396 -0
  1370. vllm/v1/worker/__init__.py +0 -0
  1371. vllm/v1/worker/block_table.py +210 -0
  1372. vllm/v1/worker/cpu_model_runner.py +175 -0
  1373. vllm/v1/worker/cpu_worker.py +156 -0
  1374. vllm/v1/worker/gpu_input_batch.py +863 -0
  1375. vllm/v1/worker/gpu_model_runner.py +4160 -0
  1376. vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
  1377. vllm/v1/worker/gpu_worker.py +710 -0
  1378. vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
  1379. vllm/v1/worker/lora_model_runner_mixin.py +183 -0
  1380. vllm/v1/worker/tpu_input_batch.py +587 -0
  1381. vllm/v1/worker/tpu_model_runner.py +1946 -0
  1382. vllm/v1/worker/tpu_worker.py +346 -0
  1383. vllm/v1/worker/ubatch_splitting.py +192 -0
  1384. vllm/v1/worker/ubatch_utils.py +27 -0
  1385. vllm/v1/worker/ubatching.py +224 -0
  1386. vllm/v1/worker/utils.py +344 -0
  1387. vllm/v1/worker/worker_base.py +65 -0
  1388. vllm/v1/worker/xpu_model_runner.py +57 -0
  1389. vllm/v1/worker/xpu_worker.py +179 -0
  1390. vllm/version.py +41 -0
  1391. vllm/vllm_flash_attn/.gitkeep +0 -0
  1392. vllm/worker/__init__.py +0 -0
  1393. vllm/worker/worker_base.py +279 -0
  1394. vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
  1395. vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
  1396. vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
  1397. vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
  1398. vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1670 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ # Adapted from
5
+ # https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
6
+ # Copyright 2024 The Qwen team.
7
+ # Copyright 2023 The vLLM team.
8
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
9
+ #
10
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
11
+ # and OPT implementations in this library. It has been modified from its
12
+ # original forms to accommodate minor architectural differences compared
13
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
14
+ #
15
+ # Licensed under the Apache License, Version 2.0 (the "License");
16
+ # you may not use this file except in compliance with the License.
17
+ # You may obtain a copy of the License at
18
+ #
19
+ # http://www.apache.org/licenses/LICENSE-2.0
20
+ #
21
+ # Unless required by applicable law or agreed to in writing, software
22
+ # distributed under the License is distributed on an "AS IS" BASIS,
23
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
24
+ # See the License for the specific language governing permissions and
25
+ # limitations under the License.
26
+ """Inference-only Qwen2-VL model compatible with HuggingFace weights."""
27
+ from collections.abc import Iterable, Mapping, Sequence
28
+ from functools import partial
29
+ from typing import Annotated, Any, Callable, Literal, Optional, Union
30
+
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.nn.functional as F
34
+ from einops import rearrange, repeat
35
+ from transformers import AutoConfig, BatchFeature, PretrainedConfig
36
+ from transformers.models.qwen2_vl import (Qwen2VLImageProcessor,
37
+ Qwen2VLProcessor)
38
+ from transformers.models.qwen2_vl.configuration_qwen2_vl import (
39
+ Qwen2VLConfig, Qwen2VLVisionConfig)
40
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
41
+ from transformers.models.qwen2_vl.video_processing_qwen2_vl import (
42
+ Qwen2VLVideoProcessor)
43
+
44
+ from vllm.attention.layer import check_upstream_fa_availability
45
+ from vllm.config import VllmConfig
46
+ from vllm.distributed import parallel_state, tensor_model_parallel_all_gather
47
+ from vllm.distributed import utils as dist_utils
48
+ from vllm.logger import init_logger
49
+ from vllm.model_executor.layers.activation import QuickGELU
50
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
51
+ RowParallelLinear)
52
+ from vllm.model_executor.layers.quantization import QuantizationConfig
53
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
54
+ from vllm.model_executor.models.module_mapping import MultiModelKeys
55
+ from vllm.multimodal import MULTIMODAL_REGISTRY
56
+ from vllm.multimodal.inputs import (ImageItem, ModalityData,
57
+ MultiModalDataDict, MultiModalFieldConfig,
58
+ MultiModalKwargsItems, VideoItem)
59
+ from vllm.multimodal.parse import (DictEmbeddingItems, ImageSize,
60
+ ModalityDataItems, MultiModalDataItems,
61
+ MultiModalDataParser)
62
+ from vllm.multimodal.processing import (BaseMultiModalProcessor,
63
+ BaseProcessingInfo, PromptReplacement,
64
+ PromptUpdate)
65
+ from vllm.multimodal.profiling import BaseDummyInputsBuilder
66
+ from vllm.platforms import _Backend, current_platform
67
+ from vllm.sequence import IntermediateTensors
68
+ from vllm.transformers_utils.config import uses_mrope
69
+ from vllm.transformers_utils.tokenizer import AnyTokenizer
70
+ from vllm.utils.tensor_schema import TensorSchema, TensorShape
71
+
72
+ from .interfaces import (MultiModalEmbeddings, SupportsLoRA, SupportsMRoPE,
73
+ SupportsMultiModal, SupportsPP)
74
+ from .utils import (AutoWeightsLoader, WeightsMapper,
75
+ init_vllm_registered_model, maybe_prefix,
76
+ merge_multimodal_embeddings)
77
+ from .vision import get_vit_attn_backend, run_dp_sharded_mrope_vision_model
78
+
79
+ logger = init_logger(__name__)
80
+
81
+ # For profile run
82
+ _MAX_FRAMES_PER_VIDEO = 14
83
+
84
+ # === Vision Inputs === #
85
+
86
+
87
+ class Qwen2VLImagePixelInputs(TensorSchema):
88
+ """
89
+ Dimensions:
90
+ - np: The total number of patches over each image over each prompt in
91
+ the batch
92
+ - ni: Number of images
93
+ - cps: Number of channels * patch_size * patch_size
94
+
95
+ Historical context:
96
+ - pixel_values shape: (num_patches, num_channels * patch_size *
97
+ patch_size)
98
+ - image_grid_thw shape: (num_images, 3) in (grid_t, grid_h, grid_w)
99
+ format
100
+ """
101
+ type: Literal["pixel_values"]
102
+
103
+ pixel_values: Annotated[
104
+ torch.Tensor,
105
+ TensorShape("np", "cps"),
106
+ ]
107
+
108
+ image_grid_thw: Annotated[
109
+ torch.Tensor,
110
+ TensorShape("ni", 3),
111
+ ]
112
+
113
+
114
+ class Qwen2VLImageEmbeddingInputs(TensorSchema):
115
+ """
116
+ Dimensions:
117
+ - nf: Number of image features
118
+ - hs: Hidden size
119
+ - ni: Number of images
120
+
121
+ Historical context:
122
+ - image_embeds shape: (num_image_features, hidden_size)
123
+ - num_image_features varies based on the number and resolution of the
124
+ images.
125
+ - hidden_size must match the hidden size of language model backbone.
126
+ - image_grid_thw shape: (num_images, 3) in (grid_t, grid_h, grid_w)
127
+ format
128
+ """
129
+ type: Literal["image_embeds"]
130
+
131
+ image_embeds: Annotated[
132
+ torch.Tensor,
133
+ TensorShape("nf", "hs"),
134
+ ]
135
+
136
+ image_grid_thw: Annotated[
137
+ torch.Tensor,
138
+ TensorShape("ni", 3),
139
+ ]
140
+
141
+
142
+ Qwen2VLImageInputs = Union[Qwen2VLImagePixelInputs,
143
+ Qwen2VLImageEmbeddingInputs]
144
+
145
+
146
+ class Qwen2VLVideoPixelInputs(TensorSchema):
147
+ """
148
+ Dimensions:
149
+ - np: The total number of patches over each video over each prompt in
150
+ the batch
151
+ - ctps: Number of channels * temporal_patch_size * patch_size *
152
+ patch_size
153
+ - nv: Number of videos
154
+
155
+ Historical context:
156
+ - pixel_values_videos shape: (num_patches, num_channels *
157
+ temporal_patch_size * patch_size * patch_size)
158
+ - video_grid_thw shape: (num_videos, 3) in (grid_t, grid_h, grid_w)
159
+ format
160
+ """
161
+ type: Literal["pixel_values_videos"]
162
+
163
+ pixel_values_videos: Annotated[
164
+ torch.Tensor,
165
+ TensorShape("np", "ctps"),
166
+ ]
167
+
168
+ video_grid_thw: Annotated[
169
+ torch.Tensor,
170
+ TensorShape("nv", 3),
171
+ ]
172
+
173
+
174
+ class Qwen2VLVideoEmbeddingInputs(TensorSchema):
175
+ """
176
+ Dimensions:
177
+ - nf: Number of video features
178
+ - hs: Hidden size
179
+ - nv: Number of videos
180
+
181
+ Historical context:
182
+ - video_embeds shape: (num_video_features, hidden_size)
183
+ - num_video_features varies based on the number and resolution of the
184
+ videos.
185
+ - hidden_size must match the hidden size of language model backbone.
186
+ - video_grid_thw shape: (num_videos, 3) in (grid_t, grid_h, grid_w)
187
+ format
188
+ """
189
+ type: Literal["video_embeds"]
190
+
191
+ video_embeds: Annotated[
192
+ torch.Tensor,
193
+ TensorShape("nf", "hs"),
194
+ ]
195
+
196
+ video_grid_thw: Annotated[
197
+ torch.Tensor,
198
+ TensorShape("nv", 3),
199
+ ]
200
+
201
+
202
+ Qwen2VLVideoInputs = Union[Qwen2VLVideoPixelInputs,
203
+ Qwen2VLVideoEmbeddingInputs]
204
+
205
+ # === Vision Encoder === #
206
+
207
+
208
+ class Qwen2VisionMLP(nn.Module):
209
+
210
+ def __init__(
211
+ self,
212
+ in_features: int,
213
+ hidden_features: int,
214
+ act_layer: type[nn.Module] = QuickGELU,
215
+ quant_config: Optional[QuantizationConfig] = None,
216
+ prefix: str = "",
217
+ use_data_parallel: bool = False,
218
+ ):
219
+ super().__init__()
220
+ self.fc1 = ColumnParallelLinear(in_features,
221
+ hidden_features,
222
+ quant_config=quant_config,
223
+ prefix=f"{prefix}.fc1",
224
+ disable_tp=use_data_parallel)
225
+ self.act = act_layer()
226
+ self.fc2 = RowParallelLinear(hidden_features,
227
+ in_features,
228
+ quant_config=quant_config,
229
+ prefix=f"{prefix}.fc2",
230
+ disable_tp=use_data_parallel)
231
+
232
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
233
+ x_parallel, _ = self.fc1(x)
234
+ x_parallel = self.act(x_parallel)
235
+ x, _ = self.fc2(x_parallel)
236
+ return x
237
+
238
+
239
+ def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
240
+ if not interleaved:
241
+ x1, x2 = x.chunk(2, dim=-1)
242
+ return torch.cat((-x2, x1), dim=-1)
243
+ else:
244
+ x1, x2 = x[..., ::2], x[..., 1::2]
245
+ return rearrange(torch.stack((-x2, x1), dim=-1),
246
+ "... d two -> ... (d two)",
247
+ two=2)
248
+
249
+
250
+ def apply_rotary_emb_torch(x: torch.Tensor,
251
+ cos: torch.Tensor,
252
+ sin: torch.Tensor,
253
+ interleaved: bool = False) -> torch.Tensor:
254
+ """
255
+ x: (batch_size, seqlen, nheads, headdim)
256
+ cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
257
+ """
258
+ ro_dim = cos.shape[-1] * 2
259
+ assert ro_dim <= x.shape[-1]
260
+ cos = repeat(
261
+ cos,
262
+ "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
263
+ sin = repeat(
264
+ sin,
265
+ "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
266
+ return torch.cat(
267
+ [
268
+ x[..., :ro_dim] * cos +
269
+ rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]
270
+ ],
271
+ dim=-1,
272
+ )
273
+
274
+
275
+ def apply_rotary_pos_emb_vision(t: torch.Tensor,
276
+ freqs: torch.Tensor) -> torch.Tensor:
277
+ t_ = t.float()
278
+ cos = freqs.cos()
279
+ sin = freqs.sin()
280
+ apply_rotary_emb = apply_rotary_emb_torch
281
+ if current_platform.is_cuda():
282
+ from vllm.vllm_flash_attn.layers.rotary import apply_rotary_emb
283
+ output = apply_rotary_emb(t_, cos, sin).type_as(t)
284
+ return output
285
+
286
+
287
+ class Qwen2VisionAttention(nn.Module):
288
+
289
+ def __init__(
290
+ self,
291
+ embed_dim: int,
292
+ num_heads: int,
293
+ projection_size: int,
294
+ quant_config: Optional[QuantizationConfig] = None,
295
+ prefix: str = "",
296
+ use_data_parallel: bool = False,
297
+ ) -> None:
298
+ super().__init__()
299
+ # Per attention head and per partition values.
300
+ self.tp_size = (1 if use_data_parallel else
301
+ parallel_state.get_tensor_model_parallel_world_size())
302
+ self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
303
+ self.hidden_size_per_attention_head = dist_utils.divide(
304
+ projection_size, num_heads)
305
+ self.num_attention_heads_per_partition = dist_utils.divide(
306
+ num_heads, self.tp_size)
307
+
308
+ self.qkv = ColumnParallelLinear(input_size=embed_dim,
309
+ output_size=3 * projection_size,
310
+ quant_config=quant_config,
311
+ prefix=f"{prefix}.qkv",
312
+ disable_tp=use_data_parallel)
313
+ self.proj = RowParallelLinear(input_size=projection_size,
314
+ output_size=embed_dim,
315
+ quant_config=quant_config,
316
+ prefix=f"{prefix}.proj",
317
+ disable_tp=use_data_parallel)
318
+
319
+ # Detect attention implementation.
320
+ self.attn_backend = get_vit_attn_backend(
321
+ head_size=self.hidden_size_per_attention_head,
322
+ dtype=torch.get_default_dtype())
323
+ self.use_upstream_fa = False
324
+ if self.attn_backend != _Backend.FLASH_ATTN and \
325
+ check_upstream_fa_availability(
326
+ torch.get_default_dtype()):
327
+ self.attn_backend = _Backend.FLASH_ATTN
328
+ self.use_upstream_fa = True
329
+
330
+ if self.attn_backend not in {
331
+ _Backend.FLASH_ATTN, _Backend.TORCH_SDPA, _Backend.XFORMERS,
332
+ _Backend.ROCM_AITER_FA
333
+ }:
334
+ raise RuntimeError(
335
+ f"Qwen2-VL does not support {self.attn_backend} backend now.")
336
+ self.is_flash_attn_backend = self.attn_backend in {
337
+ _Backend.FLASH_ATTN, _Backend.ROCM_AITER_FA
338
+ }
339
+
340
+ def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
341
+ # [s, b, 3 * head * head_dim]
342
+ seq_len, bs, _ = qkv.shape
343
+ if self.tp_size > 1:
344
+ qkv = tensor_model_parallel_all_gather(qkv)
345
+
346
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
347
+ q, k, v = qkv.chunk(3, dim=2)
348
+
349
+ # 3 * [s, b, head * head_dim]
350
+ if self.tp_size > 1:
351
+ splitter = partial(dist_utils.split_tensor_along_last_dim,
352
+ num_partitions=self.tp_size)
353
+ q = splitter(q)[self.tp_rank]
354
+ k = splitter(k)[self.tp_rank]
355
+ v = splitter(v)[self.tp_rank]
356
+
357
+ # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
358
+ new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
359
+ self.hidden_size_per_attention_head)
360
+ q, k, v = (x.view(*new_shape) for x in (q, k, v))
361
+ return q, k, v
362
+
363
+ def forward(
364
+ self,
365
+ x: torch.Tensor,
366
+ cu_seqlens: torch.Tensor,
367
+ rotary_pos_emb: torch.Tensor,
368
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
369
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
370
+ ) -> torch.Tensor:
371
+
372
+ # [s, b, c] --> [s, b, 3 * head * head_dim]
373
+ x, _ = self.qkv(x)
374
+
375
+ # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
376
+ q, k, v = self.split_qkv(x)
377
+ batch_size = q.shape[1]
378
+
379
+ q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
380
+ for x in (q, k, v))
381
+ if rotary_pos_emb is not None:
382
+ # [2 * b, s, heads, head_dim]
383
+ qk_concat = torch.cat([q, k], dim=0)
384
+ qk_rotated = apply_rotary_pos_emb_vision(qk_concat, rotary_pos_emb)
385
+ q, k = torch.chunk(qk_rotated, 2, dim=0)
386
+
387
+ if self.is_flash_attn_backend:
388
+ if self.attn_backend == _Backend.ROCM_AITER_FA:
389
+ from aiter import flash_attn_varlen_func
390
+ else:
391
+ if self.use_upstream_fa:
392
+ from flash_attn import flash_attn_varlen_func
393
+ else:
394
+ from vllm.vllm_flash_attn import flash_attn_varlen_func
395
+
396
+ q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
397
+
398
+ output = flash_attn_varlen_func(q,
399
+ k,
400
+ v,
401
+ cu_seqlens_q=cu_seqlens,
402
+ cu_seqlens_k=cu_seqlens,
403
+ max_seqlen_q=max_seqlen,
404
+ max_seqlen_k=max_seqlen,
405
+ dropout_p=0.0,
406
+ causal=False)
407
+
408
+ context_layer = rearrange(output,
409
+ "(b s) h d -> s b (h d)",
410
+ b=batch_size).contiguous()
411
+ elif self.attn_backend == _Backend.TORCH_SDPA:
412
+ # Execute attention entry by entry for speed & less VRAM.
413
+ outputs = []
414
+ for i in range(1, len(cu_seqlens)):
415
+ start_idx = cu_seqlens[i - 1]
416
+ end_idx = cu_seqlens[i]
417
+ q_i = q[:, start_idx:end_idx]
418
+ k_i = k[:, start_idx:end_idx]
419
+ v_i = v[:, start_idx:end_idx]
420
+ q_i, k_i, v_i = (rearrange(x, "b s h d -> b h s d")
421
+ for x in [q_i, k_i, v_i])
422
+ output_i = F.scaled_dot_product_attention(q_i,
423
+ k_i,
424
+ v_i,
425
+ dropout_p=0.0)
426
+ output_i = rearrange(output_i, "b h s d -> b s h d ")
427
+ outputs.append(output_i)
428
+ context_layer = torch.cat(outputs, dim=1)
429
+ context_layer = rearrange(context_layer,
430
+ "b s h d -> s b (h d)").contiguous()
431
+ elif self.attn_backend == _Backend.XFORMERS:
432
+ from xformers import ops as xops
433
+ from xformers.ops.fmha.attn_bias import BlockDiagonalMask
434
+
435
+ attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
436
+ kv_seqlen=None,
437
+ device=q.device)
438
+
439
+ context_layer = xops.memory_efficient_attention_forward(
440
+ q, k, v, attn_bias=attn_bias, p=0, scale=None)
441
+ context_layer = rearrange(context_layer,
442
+ "b s h d -> s b (h d)").contiguous()
443
+
444
+ output, _ = self.proj(context_layer)
445
+ return output
446
+
447
+
448
+ class Qwen2VisionBlock(nn.Module):
449
+
450
+ def __init__(
451
+ self,
452
+ dim: int,
453
+ num_heads: int,
454
+ mlp_ratio: float,
455
+ act_layer: type[nn.Module] = QuickGELU,
456
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
457
+ quant_config: Optional[QuantizationConfig] = None,
458
+ prefix: str = "",
459
+ use_data_parallel: bool = False,
460
+ ) -> None:
461
+ super().__init__()
462
+ if norm_layer is None:
463
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
464
+ self.norm1 = norm_layer(dim)
465
+ self.norm2 = norm_layer(dim)
466
+ mlp_hidden_dim = int(dim * mlp_ratio)
467
+
468
+ self.attn = Qwen2VisionAttention(embed_dim=dim,
469
+ num_heads=num_heads,
470
+ projection_size=dim,
471
+ quant_config=quant_config,
472
+ prefix=f"{prefix}.attn",
473
+ use_data_parallel=use_data_parallel)
474
+ self.mlp = Qwen2VisionMLP(dim,
475
+ mlp_hidden_dim,
476
+ act_layer=act_layer,
477
+ quant_config=quant_config,
478
+ prefix=f"{prefix}.mlp",
479
+ use_data_parallel=use_data_parallel)
480
+
481
+ def forward(
482
+ self,
483
+ x: torch.Tensor,
484
+ cu_seqlens: torch.Tensor,
485
+ rotary_pos_emb: torch.Tensor,
486
+ max_seqlen: Optional[int] = None, # Only used for Flash Attention
487
+ seqlens: Optional[list[int]] = None, # Only used for xFormers
488
+ ) -> torch.Tensor:
489
+ x = x + self.attn(
490
+ self.norm1(x),
491
+ cu_seqlens=cu_seqlens,
492
+ rotary_pos_emb=rotary_pos_emb,
493
+ max_seqlen=max_seqlen,
494
+ seqlens=seqlens,
495
+ )
496
+
497
+ x = x + self.mlp(self.norm2(x))
498
+ return x
499
+
500
+
501
+ class Qwen2VisionPatchEmbed(nn.Module):
502
+
503
+ def __init__(
504
+ self,
505
+ patch_size: int = 14,
506
+ temporal_patch_size: int = 2,
507
+ in_channels: int = 3,
508
+ embed_dim: int = 1152,
509
+ ) -> None:
510
+ super().__init__()
511
+ self.patch_size = patch_size
512
+ self.temporal_patch_size = temporal_patch_size
513
+ self.embed_dim = embed_dim
514
+
515
+ kernel_size = (temporal_patch_size, patch_size, patch_size)
516
+ self.proj = nn.Conv3d(in_channels,
517
+ embed_dim,
518
+ kernel_size=kernel_size,
519
+ stride=kernel_size,
520
+ bias=False)
521
+
522
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
523
+ L, C = x.shape
524
+ x = x.view(L, -1, self.temporal_patch_size, self.patch_size,
525
+ self.patch_size)
526
+ x = self.proj(x).view(L, self.embed_dim)
527
+ return x
528
+
529
+
530
+ class Qwen2VisionPatchMerger(nn.Module):
531
+
532
+ def __init__(
533
+ self,
534
+ d_model: int,
535
+ context_dim: int,
536
+ norm_layer: Optional[Callable[[int], nn.Module]] = None,
537
+ spatial_merge_size: int = 2,
538
+ quant_config: Optional[QuantizationConfig] = None,
539
+ prefix: str = "",
540
+ use_data_parallel: bool = False,
541
+ ) -> None:
542
+ super().__init__()
543
+ self.hidden_size = context_dim * (spatial_merge_size**2)
544
+ if norm_layer is None:
545
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
546
+ self.ln_q = norm_layer(context_dim)
547
+ self.mlp = nn.ModuleList([
548
+ ColumnParallelLinear(self.hidden_size,
549
+ self.hidden_size,
550
+ bias=True,
551
+ quant_config=quant_config,
552
+ prefix=f"{prefix}.mlp.0",
553
+ disable_tp=use_data_parallel),
554
+ nn.GELU(),
555
+ RowParallelLinear(self.hidden_size,
556
+ d_model,
557
+ bias=True,
558
+ quant_config=quant_config,
559
+ prefix=f"{prefix}.mlp.2",
560
+ disable_tp=use_data_parallel),
561
+ ])
562
+
563
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
564
+ x = self.ln_q(x)
565
+ x = x.view(-1, self.hidden_size)
566
+
567
+ mlp_fc1, mlp_act, mlp_fc2 = self.mlp
568
+ x_parallel, _ = mlp_fc1(x)
569
+ x_parallel = mlp_act(x_parallel)
570
+ out, _ = mlp_fc2(x_parallel)
571
+ return out
572
+
573
+
574
+ class Qwen2VisionRotaryEmbedding(nn.Module):
575
+
576
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
577
+ super().__init__()
578
+ self.dim = dim
579
+ self.theta = theta
580
+ inv_freq = 1.0 / (theta
581
+ **(torch.arange(0, dim, 2, dtype=torch.float) / dim))
582
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
583
+ self._seq_len_cached = 0
584
+ self._freqs_cached = None
585
+
586
+ def update_freqs_cache(self, seqlen: int) -> None:
587
+ if seqlen > self._seq_len_cached:
588
+ seqlen *= 2
589
+ self._seq_len_cached = seqlen
590
+ self.inv_freq = 1.0 / (self.theta**(torch.arange(
591
+ 0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device)
592
+ / self.dim))
593
+ seq = torch.arange(seqlen,
594
+ device=self.inv_freq.device,
595
+ dtype=self.inv_freq.dtype)
596
+ freqs = torch.outer(seq, self.inv_freq)
597
+ self._freqs_cached = freqs
598
+
599
+ def forward(self, seqlen: int) -> torch.Tensor:
600
+ self.update_freqs_cache(seqlen)
601
+ return self._freqs_cached[:seqlen]
602
+
603
+
604
+ class Qwen2VisionTransformer(nn.Module):
605
+
606
+ def __init__(
607
+ self,
608
+ vision_config: Qwen2VLVisionConfig,
609
+ norm_eps: float = 1e-6,
610
+ quant_config: Optional[QuantizationConfig] = None,
611
+ prefix: str = "",
612
+ use_data_parallel: bool = False,
613
+ ) -> None:
614
+ super().__init__()
615
+
616
+ patch_size = vision_config.patch_size
617
+ temporal_patch_size = vision_config.temporal_patch_size
618
+ spatial_merge_size = vision_config.spatial_merge_size
619
+ in_channels = vision_config.in_channels
620
+ hidden_size = vision_config.hidden_size
621
+ embed_dim = vision_config.embed_dim
622
+ depth = vision_config.depth
623
+ num_heads = vision_config.num_heads
624
+ mlp_ratio = vision_config.mlp_ratio
625
+
626
+ self.use_data_parallel = use_data_parallel
627
+ self.out_hidden_size = vision_config.hidden_size
628
+
629
+ self.spatial_merge_size = spatial_merge_size
630
+ self.num_heads = num_heads
631
+ self.embed_dim = embed_dim
632
+
633
+ self.patch_embed = Qwen2VisionPatchEmbed(
634
+ patch_size=patch_size,
635
+ temporal_patch_size=temporal_patch_size,
636
+ in_channels=in_channels,
637
+ embed_dim=embed_dim,
638
+ )
639
+
640
+ norm_layer = partial(nn.LayerNorm, eps=norm_eps)
641
+ head_dim = embed_dim // num_heads
642
+ self.rotary_pos_emb = Qwen2VisionRotaryEmbedding(head_dim // 2)
643
+
644
+ self.blocks = nn.ModuleList([
645
+ Qwen2VisionBlock(dim=embed_dim,
646
+ num_heads=num_heads,
647
+ mlp_ratio=mlp_ratio,
648
+ norm_layer=norm_layer,
649
+ quant_config=quant_config,
650
+ prefix=f"{prefix}.blocks.{layer_idx}",
651
+ use_data_parallel=use_data_parallel)
652
+ for layer_idx in range(depth)
653
+ ])
654
+ self.merger = Qwen2VisionPatchMerger(
655
+ d_model=hidden_size,
656
+ context_dim=embed_dim,
657
+ norm_layer=norm_layer,
658
+ quant_config=quant_config,
659
+ prefix=f"{prefix}.merger",
660
+ use_data_parallel=use_data_parallel,
661
+ )
662
+ self.attn_backend = get_vit_attn_backend(
663
+ head_size=head_dim, dtype=torch.get_default_dtype())
664
+ if self.attn_backend != _Backend.FLASH_ATTN and \
665
+ check_upstream_fa_availability(
666
+ torch.get_default_dtype()):
667
+ self.attn_backend = _Backend.FLASH_ATTN
668
+
669
+ @property
670
+ def dtype(self) -> torch.dtype:
671
+ return self.patch_embed.proj.weight.dtype
672
+
673
+ @property
674
+ def device(self) -> torch.device:
675
+ return self.patch_embed.proj.weight.device
676
+
677
+ def rot_pos_emb(self, grid_thw: list[list[int]]) -> torch.Tensor:
678
+ pos_ids = []
679
+ max_grid_size = 0
680
+ for t, h, w in grid_thw:
681
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
682
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
683
+ hpos_ids = hpos_ids.reshape(
684
+ h // self.spatial_merge_size,
685
+ self.spatial_merge_size,
686
+ w // self.spatial_merge_size,
687
+ self.spatial_merge_size,
688
+ ).permute(0, 2, 1, 3).flatten()
689
+ wpos_ids = wpos_ids.reshape(
690
+ h // self.spatial_merge_size,
691
+ self.spatial_merge_size,
692
+ w // self.spatial_merge_size,
693
+ self.spatial_merge_size,
694
+ ).permute(0, 2, 1, 3).flatten()
695
+ pos_ids.append(
696
+ torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
697
+ max_grid_size = max(max_grid_size, h, w)
698
+ pos_ids = torch.cat(pos_ids, dim=0)
699
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
700
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
701
+ return rotary_pos_emb
702
+
703
+ def compute_attn_mask_seqlen(
704
+ self, cu_seqlens: torch.Tensor
705
+ ) -> tuple[Optional[int], Optional[list[int]]]:
706
+ max_seqlen, seqlens = None, None
707
+ if (self.attn_backend == _Backend.FLASH_ATTN
708
+ or self.attn_backend == _Backend.ROCM_AITER_FA):
709
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
710
+ elif self.attn_backend == _Backend.XFORMERS:
711
+ seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
712
+ return max_seqlen, seqlens
713
+
714
+ def forward(
715
+ self,
716
+ x: torch.Tensor,
717
+ grid_thw: list[list[int]],
718
+ ) -> torch.Tensor:
719
+ # patchify
720
+ x = x.to(device=self.device, dtype=self.dtype)
721
+ x = self.patch_embed(x)
722
+
723
+ # compute position embedding
724
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
725
+
726
+ # compute cu_seqlens
727
+ grid_thw_ = torch.tensor(grid_thw)
728
+ cu_seqlens = torch.repeat_interleave(grid_thw_[:, 1] * grid_thw_[:, 2],
729
+ grid_thw_[:, 0]).cumsum(
730
+ dim=0, dtype=torch.int32)
731
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
732
+
733
+ # transformers
734
+ x = x.unsqueeze(1)
735
+
736
+ # pre-compute seqlens for attn mask to reduce cuMemcpy operations
737
+ max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
738
+ for blk in self.blocks:
739
+ x = blk(
740
+ x,
741
+ cu_seqlens=cu_seqlens,
742
+ rotary_pos_emb=rotary_pos_emb,
743
+ max_seqlen=max_seqlen,
744
+ seqlens=seqlens,
745
+ )
746
+
747
+ # adapter
748
+ x = self.merger(x)
749
+
750
+ return x
751
+
752
+ def load_weights(self, weights: Iterable[tuple[str,
753
+ torch.Tensor]]) -> set[str]:
754
+ stacked_params_mapping = [
755
+ # (param_name, shard_name, shard_id)
756
+ ("qkv_proj", "q_proj", "q"),
757
+ ("qkv_proj", "k_proj", "k"),
758
+ ("qkv_proj", "v_proj", "v"),
759
+ ]
760
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
761
+ loaded_params: set[str] = set()
762
+
763
+ for name, loaded_weight in weights:
764
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
765
+ if weight_name not in name:
766
+ continue
767
+ name = name.replace(weight_name, param_name)
768
+
769
+ param = params_dict[name]
770
+ weight_loader = param.weight_loader
771
+ weight_loader(param, loaded_weight, shard_id)
772
+ break
773
+ else:
774
+ param = params_dict[name]
775
+ weight_loader = getattr(param, "weight_loader",
776
+ default_weight_loader)
777
+ weight_loader(param, loaded_weight)
778
+ loaded_params.add(name)
779
+ return loaded_params
780
+
781
+
782
+ def _create_qwen2vl_field_factory(
783
+ spatial_merge_size: int
784
+ ) -> Callable[
785
+ [Mapping[str, torch.Tensor]],
786
+ Mapping[str, MultiModalFieldConfig],
787
+ ]:
788
+
789
+ def _qwen2vl_field_config(hf_inputs: Mapping[str, torch.Tensor]):
790
+ image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
791
+ image_pixel_grid_sizes = image_grid_thw.prod(-1)
792
+ image_embed_grid_sizes = (image_pixel_grid_sizes //
793
+ spatial_merge_size // spatial_merge_size)
794
+
795
+ video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
796
+ video_grid_sizes = video_grid_thw.prod(-1)
797
+ video_embed_grid_sizes = (video_grid_sizes // spatial_merge_size //
798
+ spatial_merge_size)
799
+
800
+ return dict(
801
+ pixel_values=MultiModalFieldConfig.flat_from_sizes(
802
+ "image", image_pixel_grid_sizes),
803
+ image_embeds=MultiModalFieldConfig.flat_from_sizes(
804
+ "image", image_embed_grid_sizes),
805
+ image_grid_thw=MultiModalFieldConfig.batched("image"),
806
+ pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
807
+ "video", video_grid_sizes),
808
+ video_embeds=MultiModalFieldConfig.flat_from_sizes(
809
+ "video", video_embed_grid_sizes),
810
+ video_grid_thw=MultiModalFieldConfig.batched("video"),
811
+ )
812
+
813
+ return _qwen2vl_field_config
814
+
815
+
816
+ class Qwen2VLMultiModalDataParser(MultiModalDataParser):
817
+
818
+ def __init__(self, spatial_merge_size: int, *args, **kwargs):
819
+ self._spatial_merge_size = spatial_merge_size
820
+ super().__init__(*args, **kwargs)
821
+
822
+ def _parse_image_data(
823
+ self,
824
+ data: Union[dict[str, torch.Tensor], ModalityData[ImageItem]],
825
+ ) -> Optional[ModalityDataItems[Any, Any]]:
826
+ if isinstance(data, dict):
827
+ return DictEmbeddingItems(
828
+ data,
829
+ modality="image",
830
+ required_fields={"image_embeds", "image_grid_thw"},
831
+ fields_factory=_create_qwen2vl_field_factory(
832
+ self._spatial_merge_size),
833
+ )
834
+
835
+ return super()._parse_image_data(data)
836
+
837
+ def _parse_video_data(
838
+ self,
839
+ data: Union[dict[str, torch.Tensor], ModalityData[VideoItem]],
840
+ ) -> Optional[ModalityDataItems[Any, Any]]:
841
+ if isinstance(data, dict):
842
+ return DictEmbeddingItems(
843
+ data,
844
+ modality="video",
845
+ required_fields={"video_embeds", "video_grid_thw"},
846
+ fields_factory=_create_qwen2vl_field_factory(
847
+ self._spatial_merge_size),
848
+ )
849
+
850
+ return super()._parse_video_data(data)
851
+
852
+
853
+ class Qwen2VLProcessingInfo(BaseProcessingInfo):
854
+
855
+ def get_hf_config(self):
856
+ return self.ctx.get_hf_config(Qwen2VLConfig)
857
+
858
+ def get_hf_processor(self, **kwargs: object) -> Qwen2VLProcessor:
859
+ return self.ctx.get_hf_processor(
860
+ Qwen2VLProcessor,
861
+ use_fast=kwargs.pop("use_fast", True),
862
+ **kwargs,
863
+ )
864
+
865
+ def get_image_processor(self, **kwargs: object) -> Qwen2VLImageProcessor:
866
+ return self.get_hf_processor(**kwargs).image_processor
867
+
868
+ def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
869
+ return {"image": None, "video": None}
870
+
871
+ def get_mm_max_tokens_per_item(
872
+ self,
873
+ seq_len: int,
874
+ mm_counts: Mapping[str, int],
875
+ ) -> Mapping[str, int]:
876
+ max_image_tokens = self.get_max_image_tokens()
877
+ max_video_tokens = self.get_max_video_tokens(seq_len, mm_counts)
878
+ return {"image": max_image_tokens, "video": max_video_tokens}
879
+
880
+ def _get_vision_info(
881
+ self,
882
+ *,
883
+ image_width: int,
884
+ image_height: int,
885
+ num_frames: int = 1,
886
+ do_resize: bool = True,
887
+ image_processor: Optional[Qwen2VLImageProcessor],
888
+ ) -> tuple[ImageSize, int]:
889
+ if image_processor is None:
890
+ image_processor = self.get_image_processor()
891
+
892
+ hf_config = self.get_hf_config()
893
+ vision_config = hf_config.vision_config
894
+ patch_size = vision_config.patch_size
895
+ merge_size = vision_config.spatial_merge_size
896
+ temporal_patch_size = vision_config.temporal_patch_size
897
+
898
+ if do_resize:
899
+ resized_height, resized_width = smart_resize(
900
+ height=image_height,
901
+ width=image_width,
902
+ factor=patch_size * merge_size,
903
+ min_pixels=image_processor.min_pixels,
904
+ max_pixels=image_processor.max_pixels,
905
+ )
906
+ preprocessed_size = ImageSize(width=resized_width,
907
+ height=resized_height)
908
+ else:
909
+ preprocessed_size = ImageSize(width=image_width,
910
+ height=image_height)
911
+
912
+ # NOTE: Frames are padded to be divisible by `temporal_patch_size`
913
+ # https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
914
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
915
+
916
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
917
+ grid_h = preprocessed_size.height // patch_size
918
+ grid_w = preprocessed_size.width // patch_size
919
+
920
+ num_patches = grid_t * grid_h * grid_w
921
+ num_vision_tokens = num_patches // (merge_size**2)
922
+
923
+ return preprocessed_size, num_vision_tokens
924
+
925
+ def get_num_image_tokens(
926
+ self,
927
+ *,
928
+ image_width: int,
929
+ image_height: int,
930
+ image_processor: Optional[Qwen2VLImageProcessor],
931
+ ) -> int:
932
+ _, num_image_tokens = self._get_vision_info(
933
+ image_width=image_width,
934
+ image_height=image_height,
935
+ num_frames=1,
936
+ image_processor=image_processor,
937
+ )
938
+ return num_image_tokens
939
+
940
+ def get_num_video_tokens(
941
+ self,
942
+ *,
943
+ image_width: int,
944
+ image_height: int,
945
+ num_frames: int,
946
+ image_processor: Optional[Qwen2VLImageProcessor],
947
+ ) -> int:
948
+ _, num_video_tokens = self._get_vision_info(
949
+ image_width=image_width,
950
+ image_height=image_height,
951
+ num_frames=num_frames,
952
+ image_processor=image_processor,
953
+ )
954
+ return num_video_tokens
955
+
956
+ def get_image_size_with_most_features(self) -> ImageSize:
957
+ max_image_size, _ = self._get_vision_info(
958
+ image_width=9999999,
959
+ image_height=9999999,
960
+ num_frames=1,
961
+ image_processor=None,
962
+ )
963
+ return max_image_size
964
+
965
+ def get_max_image_tokens(self) -> int:
966
+ target_width, target_height = self.get_image_size_with_most_features()
967
+
968
+ return self.get_num_image_tokens(
969
+ image_width=target_width,
970
+ image_height=target_height,
971
+ image_processor=None,
972
+ )
973
+
974
+ def _get_max_video_frames(self,
975
+ max_tokens: int,
976
+ start_num_frames: int = 1) -> int:
977
+ target_width, target_height = self.get_image_size_with_most_features()
978
+
979
+ num_frames = start_num_frames
980
+
981
+ while True:
982
+ next_num_frames = num_frames + 1
983
+ next_max_tokens = self.get_num_video_tokens(
984
+ image_width=target_width,
985
+ image_height=target_height,
986
+ num_frames=next_num_frames,
987
+ image_processor=None,
988
+ )
989
+
990
+ if next_max_tokens > max_tokens:
991
+ break
992
+
993
+ num_frames = next_num_frames
994
+
995
+ return num_frames
996
+
997
+ def get_num_frames_with_most_features(
998
+ self,
999
+ seq_len: int,
1000
+ mm_counts: Mapping[str, int],
1001
+ max_frames_per_video: int = _MAX_FRAMES_PER_VIDEO,
1002
+ ) -> int:
1003
+ max_videos = mm_counts.get("video", 0)
1004
+
1005
+ max_total_frames = self._get_max_video_frames(seq_len)
1006
+ max_frames_per_video = min(max_total_frames // max(max_videos, 1),
1007
+ max_frames_per_video)
1008
+
1009
+ return max(max_frames_per_video, 1)
1010
+
1011
+ def get_max_video_tokens(
1012
+ self,
1013
+ seq_len: int,
1014
+ mm_counts: Mapping[str, int],
1015
+ ) -> int:
1016
+ target_width, target_height = self.get_image_size_with_most_features()
1017
+
1018
+ return self.get_num_video_tokens(
1019
+ image_width=target_width,
1020
+ image_height=target_height,
1021
+ num_frames=self.get_num_frames_with_most_features(
1022
+ seq_len, mm_counts),
1023
+ image_processor=None,
1024
+ )
1025
+
1026
+
1027
+ class Qwen2VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen2VLProcessingInfo]):
1028
+
1029
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
1030
+ num_images = mm_counts.get("image", 0)
1031
+ num_videos = mm_counts.get("video", 0)
1032
+
1033
+ hf_processor = self.info.get_hf_processor()
1034
+ image_token: str = hf_processor.image_token
1035
+ video_token: str = hf_processor.video_token
1036
+
1037
+ return image_token * num_images + video_token * num_videos
1038
+
1039
+ def get_dummy_mm_data(
1040
+ self,
1041
+ seq_len: int,
1042
+ mm_counts: Mapping[str, int],
1043
+ ) -> MultiModalDataDict:
1044
+ num_images = mm_counts.get("image", 0)
1045
+ num_videos = mm_counts.get("video", 0)
1046
+
1047
+ target_width, target_height = \
1048
+ self.info.get_image_size_with_most_features()
1049
+ target_num_frames = \
1050
+ self.info.get_num_frames_with_most_features(seq_len, mm_counts)
1051
+
1052
+ return {
1053
+ "image":
1054
+ self._get_dummy_images(width=target_width,
1055
+ height=target_height,
1056
+ num_images=num_images),
1057
+ "video":
1058
+ self._get_dummy_videos(
1059
+ width=target_width,
1060
+ height=target_height,
1061
+ num_frames=target_num_frames,
1062
+ num_videos=num_videos,
1063
+ )
1064
+ }
1065
+
1066
+
1067
+ class Qwen2VLMultiModalProcessor(BaseMultiModalProcessor[Qwen2VLProcessingInfo]
1068
+ ):
1069
+
1070
+ def _get_data_parser(self) -> MultiModalDataParser:
1071
+ return Qwen2VLMultiModalDataParser(
1072
+ self.info.get_hf_config().vision_config.spatial_merge_size)
1073
+
1074
+ def _get_prompt_updates(
1075
+ self,
1076
+ mm_items: MultiModalDataItems,
1077
+ hf_processor_mm_kwargs: Mapping[str, Any],
1078
+ out_mm_kwargs: MultiModalKwargsItems,
1079
+ ) -> Sequence[PromptUpdate]:
1080
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
1081
+ image_processor = self.info.get_image_processor(
1082
+ **hf_processor_mm_kwargs)
1083
+ tokenizer = self.info.get_tokenizer()
1084
+ vocab = tokenizer.get_vocab()
1085
+
1086
+ placeholder = {
1087
+ "image": vocab[hf_processor.image_token],
1088
+ "video": vocab[hf_processor.video_token],
1089
+ }
1090
+
1091
+ merge_length = image_processor.merge_size**2
1092
+
1093
+ def get_replacement_qwen2vl(item_idx: int, modality: str):
1094
+ out_item = out_mm_kwargs[modality][item_idx]
1095
+ grid_thw = out_item[f"{modality}_grid_thw"].data
1096
+ assert isinstance(grid_thw, torch.Tensor)
1097
+
1098
+ num_tokens = int(grid_thw.prod()) // merge_length
1099
+ return [placeholder[modality]] * num_tokens
1100
+
1101
+ return [
1102
+ PromptReplacement(
1103
+ modality=modality,
1104
+ target=[placeholder[modality]],
1105
+ replacement=partial(get_replacement_qwen2vl,
1106
+ modality=modality),
1107
+ ) for modality in ("image", "video")
1108
+ ]
1109
+
1110
+ def _get_mm_fields_config(
1111
+ self,
1112
+ hf_inputs: BatchFeature,
1113
+ hf_processor_mm_kwargs: Mapping[str, object],
1114
+ ) -> Mapping[str, MultiModalFieldConfig]:
1115
+ return _create_qwen2vl_field_factory(
1116
+ self.info.get_hf_config().vision_config.spatial_merge_size)(
1117
+ hf_inputs)
1118
+
1119
+
1120
+ @MULTIMODAL_REGISTRY.register_processor(Qwen2VLMultiModalProcessor,
1121
+ info=Qwen2VLProcessingInfo,
1122
+ dummy_inputs=Qwen2VLDummyInputsBuilder)
1123
+ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
1124
+ SupportsLoRA, SupportsPP, SupportsMRoPE):
1125
+
1126
+ # To ensure correct weight loading and mapping.
1127
+ hf_to_vllm_mapper = WeightsMapper(
1128
+ orig_to_new_prefix={
1129
+ # mapping for new names in checkpoint saved after transformers v4.52
1130
+ "model.language_model.": "language_model.model.",
1131
+ "model.visual.": "visual.",
1132
+ # mapping for original checkpoint
1133
+ "lm_head.": "language_model.lm_head.",
1134
+ "model.": "language_model.model.",
1135
+ })
1136
+
1137
+ supports_encoder_tp_data = True
1138
+
1139
+ def get_mrope_input_positions(
1140
+ self,
1141
+ input_tokens: list[int],
1142
+ hf_config: PretrainedConfig,
1143
+ image_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
1144
+ video_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
1145
+ second_per_grid_ts: Optional[list[float]] = None,
1146
+ context_len: int = 0,
1147
+ seq_len: Optional[int] = None,
1148
+ audio_feature_lengths: Optional[torch.Tensor] = None,
1149
+ use_audio_in_video: bool = False,
1150
+ ) -> tuple[torch.Tensor, int]:
1151
+ """Get M-RoPE input positions for Qwen2-VL model."""
1152
+ if image_grid_thw is None:
1153
+ image_grid_thw = []
1154
+ if video_grid_thw is None:
1155
+ video_grid_thw = []
1156
+ if second_per_grid_ts is None:
1157
+ second_per_grid_ts = []
1158
+
1159
+ image_token_id = hf_config.image_token_id
1160
+ video_token_id = hf_config.video_token_id
1161
+ vision_start_token_id = hf_config.vision_start_token_id
1162
+ spatial_merge_size = hf_config.vision_config.spatial_merge_size
1163
+ tokens_per_second = getattr(hf_config.vision_config,
1164
+ "tokens_per_second", 1.0)
1165
+
1166
+ input_tokens_tensor = torch.tensor(input_tokens)
1167
+ vision_start_indices = torch.argwhere(
1168
+ input_tokens_tensor == vision_start_token_id).squeeze(1)
1169
+ vision_tokens = input_tokens_tensor[vision_start_indices + 1]
1170
+ image_nums = (vision_tokens == image_token_id).sum()
1171
+ video_nums = (vision_tokens == video_token_id).sum()
1172
+ llm_pos_ids_list: list = []
1173
+
1174
+ st = 0
1175
+ remain_images, remain_videos = image_nums, video_nums
1176
+
1177
+ image_index, video_index = 0, 0
1178
+ for _ in range(image_nums + video_nums):
1179
+ video_second_per_grid_t = 0.0
1180
+ if remain_images > 0:
1181
+ try:
1182
+ ed_image = input_tokens.index(image_token_id, st)
1183
+ except ValueError:
1184
+ ed_image = len(input_tokens) + 1
1185
+ else:
1186
+ ed_image = len(input_tokens) + 1
1187
+ if remain_videos > 0:
1188
+ try:
1189
+ ed_video = input_tokens.index(video_token_id, st)
1190
+ except ValueError:
1191
+ ed_video = len(input_tokens) + 1
1192
+ else:
1193
+ ed_video = len(input_tokens) + 1
1194
+ if ed_image < ed_video:
1195
+ t, h, w = (
1196
+ image_grid_thw[image_index][0],
1197
+ image_grid_thw[image_index][1],
1198
+ image_grid_thw[image_index][2],
1199
+ )
1200
+ image_index += 1
1201
+ remain_images -= 1
1202
+ ed = ed_image
1203
+ else:
1204
+ t, h, w = (
1205
+ video_grid_thw[video_index][0],
1206
+ video_grid_thw[video_index][1],
1207
+ video_grid_thw[video_index][2],
1208
+ )
1209
+ video_second_per_grid_t = 1.0
1210
+ if second_per_grid_ts:
1211
+ video_second_per_grid_t = second_per_grid_ts[video_index]
1212
+ video_index += 1
1213
+ remain_videos -= 1
1214
+ ed = ed_video
1215
+
1216
+ llm_grid_t, llm_grid_h, llm_grid_w = \
1217
+ t, h // spatial_merge_size, w // spatial_merge_size
1218
+ text_len = ed - st
1219
+
1220
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(
1221
+ llm_pos_ids_list) > 0 else 0
1222
+ llm_pos_ids_list.append(
1223
+ torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
1224
+
1225
+ t_index = (torch.arange(llm_grid_t).view(-1, 1).expand(
1226
+ -1, llm_grid_h * llm_grid_w) * video_second_per_grid_t *
1227
+ tokens_per_second).long().flatten()
1228
+
1229
+ h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
1230
+ llm_grid_t, -1, llm_grid_w).flatten()
1231
+ w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
1232
+ llm_grid_t, llm_grid_h, -1).flatten()
1233
+ llm_pos_ids_list.append(
1234
+ torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
1235
+ st = ed + llm_grid_t * llm_grid_h * llm_grid_w
1236
+
1237
+ if st < len(input_tokens):
1238
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(
1239
+ llm_pos_ids_list) > 0 else 0
1240
+ text_len = len(input_tokens) - st
1241
+ llm_pos_ids_list.append(
1242
+ torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
1243
+
1244
+ llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
1245
+ mrope_position_delta = (llm_positions.max() + 1 -
1246
+ len(input_tokens)).item()
1247
+ llm_positions = llm_positions[:, context_len:seq_len]
1248
+
1249
+ return llm_positions, mrope_position_delta
1250
+
1251
+ @classmethod
1252
+ def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
1253
+ if modality.startswith("image"):
1254
+ return "<|vision_start|><|image_pad|><|vision_end|>"
1255
+ if modality.startswith("video"):
1256
+ return "<|vision_start|><|video_pad|><|vision_end|>"
1257
+
1258
+ raise ValueError("Only image or video modality is supported")
1259
+
1260
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1261
+ super().__init__()
1262
+ config: Qwen2VLConfig = vllm_config.model_config.hf_config
1263
+ quant_config = vllm_config.quant_config
1264
+ multimodal_config = vllm_config.model_config.multimodal_config
1265
+
1266
+ self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
1267
+ self.config = config
1268
+ self.multimodal_config = multimodal_config
1269
+
1270
+ if multimodal_config.get_limit_per_prompt("image") or \
1271
+ multimodal_config.get_limit_per_prompt("video"):
1272
+ self.visual = Qwen2VisionTransformer(
1273
+ config.vision_config,
1274
+ norm_eps=getattr(config, "rms_norm_eps", 1e-6),
1275
+ quant_config=quant_config,
1276
+ prefix=maybe_prefix(prefix, "visual"),
1277
+ use_data_parallel=self.use_data_parallel,
1278
+ )
1279
+ else:
1280
+ self.visual = None
1281
+
1282
+ self.language_model = init_vllm_registered_model(
1283
+ vllm_config=vllm_config,
1284
+ prefix=maybe_prefix(prefix, "language_model"),
1285
+ architectures=["Qwen2ForCausalLM"],
1286
+ )
1287
+
1288
+ self.make_empty_intermediate_tensors = (
1289
+ self.language_model.make_empty_intermediate_tensors)
1290
+
1291
+ def _validate_and_reshape_mm_tensor(self, mm_input: object,
1292
+ name: str) -> torch.Tensor:
1293
+ if not isinstance(mm_input, (torch.Tensor, list)):
1294
+ raise ValueError(f"Incorrect type of {name}. "
1295
+ f"Got type: {type(mm_input)}")
1296
+ if isinstance(mm_input, torch.Tensor):
1297
+ if mm_input.ndim == 2:
1298
+ return mm_input
1299
+ if mm_input.ndim != 3:
1300
+ raise ValueError(f"{name} should be 2D or batched 3D tensor. "
1301
+ f"Got ndim: {mm_input.ndim} "
1302
+ f"(shape={mm_input.shape})")
1303
+ return mm_input.reshape(-1, mm_input.shape[-1])
1304
+ else:
1305
+ return torch.concat(mm_input)
1306
+
1307
+ def _parse_and_validate_image_input(
1308
+ self, **kwargs: object) -> Optional[Qwen2VLImageInputs]:
1309
+ pixel_values = kwargs.pop("pixel_values", None)
1310
+ image_embeds = kwargs.pop("image_embeds", None)
1311
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
1312
+
1313
+ if pixel_values is None and image_embeds is None:
1314
+ return None
1315
+
1316
+ if pixel_values is not None:
1317
+ pixel_values = self._validate_and_reshape_mm_tensor(
1318
+ pixel_values, "image pixel values")
1319
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1320
+ image_grid_thw, "image grid_thw")
1321
+
1322
+ return Qwen2VLImagePixelInputs(type="pixel_values",
1323
+ pixel_values=pixel_values,
1324
+ image_grid_thw=image_grid_thw)
1325
+
1326
+ if image_embeds is not None:
1327
+ image_embeds = self._validate_and_reshape_mm_tensor(
1328
+ image_embeds, "image embeds")
1329
+ image_grid_thw = self._validate_and_reshape_mm_tensor(
1330
+ image_grid_thw, "image grid_thw")
1331
+
1332
+ return Qwen2VLImageEmbeddingInputs(type="image_embeds",
1333
+ image_embeds=image_embeds,
1334
+ image_grid_thw=image_grid_thw)
1335
+
1336
+ def _parse_and_validate_video_input(
1337
+ self, **kwargs: object) -> Optional[Qwen2VLVideoInputs]:
1338
+ pixel_values_videos = kwargs.pop("pixel_values_videos", None)
1339
+ video_embeds = kwargs.pop("video_embeds", None)
1340
+ video_grid_thw = kwargs.pop("video_grid_thw", None)
1341
+
1342
+ if pixel_values_videos is None and video_embeds is None:
1343
+ return None
1344
+
1345
+ if pixel_values_videos is not None:
1346
+ pixel_values_videos = self._validate_and_reshape_mm_tensor(
1347
+ pixel_values_videos, "video pixel values")
1348
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1349
+ video_grid_thw, "video grid_thw")
1350
+
1351
+ return Qwen2VLVideoPixelInputs(
1352
+ type="pixel_values_videos",
1353
+ pixel_values_videos=pixel_values_videos,
1354
+ video_grid_thw=video_grid_thw,
1355
+ )
1356
+
1357
+ if video_embeds is not None:
1358
+ video_embeds = self._validate_and_reshape_mm_tensor(
1359
+ video_embeds, "video embeds")
1360
+ video_grid_thw = self._validate_and_reshape_mm_tensor(
1361
+ video_grid_thw, "video grid_thw")
1362
+
1363
+ return Qwen2VLVideoEmbeddingInputs(type="video_embeds",
1364
+ video_embeds=video_embeds,
1365
+ video_grid_thw=video_grid_thw)
1366
+
1367
+ def _process_image_input(
1368
+ self, image_input: Qwen2VLImageInputs) -> tuple[torch.Tensor, ...]:
1369
+
1370
+ grid_thw = image_input["image_grid_thw"]
1371
+ assert grid_thw.ndim == 2
1372
+ grid_thw_list = grid_thw.tolist()
1373
+
1374
+ if image_input["type"] == "image_embeds":
1375
+ image_embeds = image_input["image_embeds"]
1376
+ else:
1377
+ pixel_values = image_input["pixel_values"]
1378
+
1379
+ if self.use_data_parallel:
1380
+ return run_dp_sharded_mrope_vision_model(self.visual,
1381
+ pixel_values,
1382
+ grid_thw_list,
1383
+ rope_type="rope_3d")
1384
+ else:
1385
+ image_embeds = self.visual(pixel_values,
1386
+ grid_thw=grid_thw_list)
1387
+
1388
+ # Split concatenated embeddings for each image item.
1389
+ merge_size = self.visual.spatial_merge_size
1390
+ sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
1391
+ (merge_size * merge_size)).tolist()
1392
+
1393
+ return image_embeds.split(sizes)
1394
+
1395
+ def _process_video_input(
1396
+ self, video_input: Qwen2VLVideoInputs) -> tuple[torch.Tensor, ...]:
1397
+
1398
+ grid_thw = video_input["video_grid_thw"]
1399
+ assert grid_thw.ndim == 2
1400
+ grid_thw_list = grid_thw.tolist()
1401
+
1402
+ if video_input["type"] == "video_embeds":
1403
+ video_embeds = video_input["video_embeds"]
1404
+ else:
1405
+ pixel_values_videos = video_input["pixel_values_videos"]
1406
+ if self.use_data_parallel:
1407
+ return run_dp_sharded_mrope_vision_model(self.visual,
1408
+ pixel_values_videos,
1409
+ grid_thw_list,
1410
+ rope_type="rope_3d")
1411
+ else:
1412
+ video_embeds = self.visual(pixel_values_videos,
1413
+ grid_thw=grid_thw_list)
1414
+
1415
+ # Split concatenated embeddings for each video item.
1416
+ merge_size = self.visual.spatial_merge_size
1417
+ sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) //
1418
+ (merge_size * merge_size)).tolist()
1419
+
1420
+ return video_embeds.split(sizes)
1421
+
1422
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
1423
+ modalities = {}
1424
+
1425
+ # Preserve the order of modalities if there are multiple of them
1426
+ # from the order of kwargs.
1427
+ for input_key in kwargs:
1428
+ if input_key in ("pixel_values",
1429
+ "image_embeds") and "images" not in modalities:
1430
+ modalities["images"] = self._parse_and_validate_image_input(
1431
+ **kwargs)
1432
+ if input_key in ("pixel_values_videos",
1433
+ "video_embeds") and "videos" not in modalities:
1434
+ modalities["videos"] = self._parse_and_validate_video_input(
1435
+ **kwargs)
1436
+
1437
+ return modalities
1438
+
1439
+ def get_language_model(self) -> torch.nn.Module:
1440
+ return self.language_model
1441
+
1442
+ def get_multimodal_embeddings(self,
1443
+ **kwargs: object) -> MultiModalEmbeddings:
1444
+
1445
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
1446
+ if not modalities:
1447
+ return []
1448
+
1449
+ # The result multimodal_embeddings is tuple of tensors, with each
1450
+ # tensor correspoending to a multimodal data item (image or video).
1451
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
1452
+
1453
+ # NOTE: It is important to iterate over the keys in this dictionary
1454
+ # to preserve the order of the modalities.
1455
+ for modality in modalities:
1456
+ if modality == "images":
1457
+ image_input = modalities["images"]
1458
+ vision_embeddings = self._process_image_input(image_input)
1459
+ multimodal_embeddings += vision_embeddings
1460
+ if modality == "videos":
1461
+ video_input = modalities["videos"]
1462
+ video_embeddings = self._process_video_input(video_input)
1463
+ multimodal_embeddings += video_embeddings
1464
+
1465
+ return multimodal_embeddings
1466
+
1467
+ def get_input_embeddings(
1468
+ self,
1469
+ input_ids: torch.Tensor,
1470
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
1471
+ ) -> torch.Tensor:
1472
+ inputs_embeds = self.language_model.get_input_embeddings(input_ids)
1473
+ if multimodal_embeddings is not None \
1474
+ and len(multimodal_embeddings) != 0:
1475
+ inputs_embeds = merge_multimodal_embeddings(
1476
+ input_ids, inputs_embeds, multimodal_embeddings,
1477
+ [self.config.image_token_id, self.config.video_token_id])
1478
+ return inputs_embeds
1479
+
1480
+ def get_input_embeddings_v0(
1481
+ self,
1482
+ input_ids: torch.Tensor,
1483
+ image_input: Optional[Qwen2VLImagePixelInputs] = None,
1484
+ video_input: Optional[Qwen2VLVideoPixelInputs] = None,
1485
+ ) -> torch.Tensor:
1486
+ inputs_embeds = self.get_input_embeddings(input_ids)
1487
+ if image_input is not None:
1488
+ image_embeds = self._process_image_input(image_input)
1489
+ inputs_embeds = merge_multimodal_embeddings(
1490
+ input_ids,
1491
+ inputs_embeds,
1492
+ image_embeds,
1493
+ placeholder_token_id=self.config.image_token_id,
1494
+ )
1495
+
1496
+ if video_input is not None:
1497
+ video_embeds = self._process_video_input(video_input)
1498
+ inputs_embeds = merge_multimodal_embeddings(
1499
+ input_ids,
1500
+ inputs_embeds,
1501
+ video_embeds,
1502
+ placeholder_token_id=self.config.video_token_id,
1503
+ )
1504
+ return inputs_embeds
1505
+
1506
+ def forward(
1507
+ self,
1508
+ input_ids: torch.Tensor,
1509
+ positions: torch.Tensor,
1510
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1511
+ inputs_embeds: Optional[torch.Tensor] = None,
1512
+ **kwargs: object,
1513
+ ) -> Union[torch.Tensor, IntermediateTensors]:
1514
+ """Run forward pass for Qwen2-VL.
1515
+
1516
+ Args:
1517
+ input_ids: Flattened (concatenated) input_ids corresponding to a
1518
+ batch.
1519
+ positions: Flattened (concatenated) position ids corresponding to a
1520
+ batch.
1521
+ **NOTE**: If mrope is enabled (default setting for Qwen2-VL
1522
+ opensource models), the shape will be `(3, seq_len)`,
1523
+ otherwise it will be `(seq_len,)`.
1524
+ intermediate_tensors: Intermediate tensors from prior forward pass.
1525
+ inputs_embeds: Optional tensor of input embeddings.
1526
+ """
1527
+
1528
+ if intermediate_tensors is not None:
1529
+ inputs_embeds = None
1530
+
1531
+ # NOTE: In v1, inputs_embeds is always generated at model runner from
1532
+ # `get_multimodal_embeddings` and `get_input_embeddings`, this
1533
+ # condition is only for v0 compatibility.
1534
+ elif inputs_embeds is None:
1535
+ image_input = self._parse_and_validate_image_input(**kwargs)
1536
+ video_input = self._parse_and_validate_video_input(**kwargs)
1537
+
1538
+ if image_input is None and video_input is None:
1539
+ inputs_embeds = None
1540
+ else:
1541
+ if uses_mrope(self.config):
1542
+ assert positions.ndim == 2 and positions.size(0) == 3, (
1543
+ "multimodal section rotary embedding requires "
1544
+ f"(3, seq_len) positions, but got {positions.size()}")
1545
+ inputs_embeds = self.get_input_embeddings_v0(
1546
+ input_ids,
1547
+ image_input=image_input,
1548
+ video_input=video_input)
1549
+ input_ids = None
1550
+
1551
+ hidden_states = self.language_model.model(
1552
+ input_ids=input_ids,
1553
+ positions=positions,
1554
+ intermediate_tensors=intermediate_tensors,
1555
+ inputs_embeds=inputs_embeds,
1556
+ )
1557
+ return hidden_states
1558
+
1559
+ def compute_logits(
1560
+ self,
1561
+ hidden_states: torch.Tensor,
1562
+ ) -> Optional[torch.Tensor]:
1563
+ return self.language_model.compute_logits(hidden_states)
1564
+
1565
+ def load_weights(self, weights: Iterable[tuple[str,
1566
+ torch.Tensor]]) -> set[str]:
1567
+
1568
+ skip_prefixes = []
1569
+ if self.visual is None:
1570
+ skip_prefixes.extend(["visual."])
1571
+ loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
1572
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
1573
+
1574
+ def get_mm_mapping(self) -> MultiModelKeys:
1575
+ """
1576
+ Get the module prefix in multimodal models
1577
+ """
1578
+ return MultiModelKeys.from_string_field(
1579
+ language_model="language_model",
1580
+ connector="visual.merger.",
1581
+ tower_model="visual.",
1582
+ )
1583
+
1584
+
1585
+ class Tarsier2MultiModalProcessor(Qwen2VLMultiModalProcessor):
1586
+ pass
1587
+
1588
+
1589
+ class Tarsier2ImageProcessor(Qwen2VLImageProcessor):
1590
+
1591
+ def __init__(
1592
+ self,
1593
+ size: Optional[dict[str, int]] = None,
1594
+ **kwargs,
1595
+ ) -> None:
1596
+ if size is not None and "min_pixels" in size and "max_pixels" in size:
1597
+ # Remap if Tarsier2-specific format is provided
1598
+ remapped_size = {
1599
+ "shortest_edge": size["min_pixels"],
1600
+ "longest_edge": size["max_pixels"]
1601
+ }
1602
+ super().__init__(size=remapped_size, **kwargs)
1603
+ else:
1604
+ super().__init__(size=size, **kwargs)
1605
+
1606
+
1607
+ class Tarsier2Processor(Qwen2VLProcessor):
1608
+
1609
+ def __init__(
1610
+ self,
1611
+ vision_config: dict,
1612
+ tokenizer: AnyTokenizer,
1613
+ **kwargs,
1614
+ ):
1615
+ self.image_processor = Tarsier2ImageProcessor(**vision_config)
1616
+ super().__init__(
1617
+ image_processor=self.image_processor,
1618
+ tokenizer=tokenizer,
1619
+ video_processor=Qwen2VLVideoProcessor(**vision_config),
1620
+ chat_template=None,
1621
+ **kwargs)
1622
+
1623
+
1624
+ class Tarsier2ProcessingInfo(Qwen2VLProcessingInfo):
1625
+
1626
+ def get_hf_config(self) -> Qwen2VLConfig:
1627
+ model_path = self.ctx.model_config.model
1628
+ original_config = AutoConfig.from_pretrained(model_path)
1629
+ config_dict = original_config.to_dict()
1630
+ correct_config = Qwen2VLConfig.from_dict(config_dict)
1631
+
1632
+ return correct_config
1633
+
1634
+ def get_hf_processor(self, **kwargs: object) -> Tarsier2Processor:
1635
+ return Tarsier2Processor(
1636
+ vision_config=self.ctx.get_hf_image_processor_config(),
1637
+ tokenizer=self.get_tokenizer(),
1638
+ **kwargs,
1639
+ )
1640
+
1641
+ def get_image_processor(self) -> Tarsier2ImageProcessor:
1642
+ return Tarsier2ImageProcessor(
1643
+ **self.ctx.get_hf_image_processor_config())
1644
+
1645
+
1646
+ @MULTIMODAL_REGISTRY.register_processor(Tarsier2MultiModalProcessor,
1647
+ info=Tarsier2ProcessingInfo,
1648
+ dummy_inputs=Qwen2VLDummyInputsBuilder)
1649
+ class Tarsier2ForConditionalGeneration(Qwen2VLForConditionalGeneration):
1650
+ hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
1651
+ "vision_tower.": "visual.",
1652
+ })
1653
+
1654
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
1655
+ # Tarsier2 uses llava as model_type, which will create a Qwen2VLConfig
1656
+ # as text_config, we need to reconstruct Qwen2VLConfig from LlavaConfig.
1657
+ config = vllm_config.model_config.hf_config
1658
+ qwen2vl_config = config.text_config
1659
+ qwen2vl_config.architectures = config.architectures
1660
+ vllm_config.model_config.hf_config = qwen2vl_config
1661
+ super().__init__(vllm_config=vllm_config, prefix=prefix)
1662
+
1663
+ def load_weights(self, weights: Iterable[tuple[str,
1664
+ torch.Tensor]]) -> set[str]:
1665
+
1666
+ skip_prefixes = []
1667
+ if self.visual is None:
1668
+ skip_prefixes.extend(["visual."])
1669
+ loader = AutoWeightsLoader(self, skip_prefixes=skip_prefixes)
1670
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)