vllm-cpu 0.11.0.post2__cp312-cp312-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1398) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +220 -0
  3. vllm/_bc_linter.py +59 -0
  4. vllm/_custom_ops.py +2044 -0
  5. vllm/_ipex_ops.py +393 -0
  6. vllm/_version.py +34 -0
  7. vllm/assets/__init__.py +0 -0
  8. vllm/assets/audio.py +45 -0
  9. vllm/assets/base.py +41 -0
  10. vllm/assets/image.py +50 -0
  11. vllm/assets/video.py +145 -0
  12. vllm/attention/__init__.py +15 -0
  13. vllm/attention/backends/__init__.py +0 -0
  14. vllm/attention/backends/abstract.py +204 -0
  15. vllm/attention/backends/utils.py +33 -0
  16. vllm/attention/layer.py +645 -0
  17. vllm/attention/layers/__init__.py +0 -0
  18. vllm/attention/layers/chunked_local_attention.py +93 -0
  19. vllm/attention/layers/cross_attention.py +162 -0
  20. vllm/attention/layers/encoder_only_attention.py +86 -0
  21. vllm/attention/ops/__init__.py +0 -0
  22. vllm/attention/ops/chunked_prefill_paged_decode.py +405 -0
  23. vllm/attention/ops/common.py +345 -0
  24. vllm/attention/ops/flashmla.py +192 -0
  25. vllm/attention/ops/merge_attn_states.py +43 -0
  26. vllm/attention/ops/paged_attn.py +262 -0
  27. vllm/attention/ops/pallas_kv_cache_update.py +124 -0
  28. vllm/attention/ops/prefix_prefill.py +928 -0
  29. vllm/attention/ops/rocm_aiter_mla.py +104 -0
  30. vllm/attention/ops/rocm_aiter_paged_attn.py +102 -0
  31. vllm/attention/ops/triton_decode_attention.py +691 -0
  32. vllm/attention/ops/triton_flash_attention.py +984 -0
  33. vllm/attention/ops/triton_merge_attn_states.py +97 -0
  34. vllm/attention/ops/triton_reshape_and_cache_flash.py +175 -0
  35. vllm/attention/ops/triton_unified_attention.py +894 -0
  36. vllm/attention/selector.py +245 -0
  37. vllm/attention/utils/__init__.py +0 -0
  38. vllm/attention/utils/fa_utils.py +85 -0
  39. vllm/attention/utils/kv_sharing_utils.py +33 -0
  40. vllm/beam_search.py +87 -0
  41. vllm/benchmarks/__init__.py +0 -0
  42. vllm/benchmarks/datasets.py +2723 -0
  43. vllm/benchmarks/latency.py +170 -0
  44. vllm/benchmarks/lib/__init__.py +3 -0
  45. vllm/benchmarks/lib/endpoint_request_func.py +533 -0
  46. vllm/benchmarks/lib/ready_checker.py +73 -0
  47. vllm/benchmarks/lib/utils.py +80 -0
  48. vllm/benchmarks/serve.py +1358 -0
  49. vllm/benchmarks/throughput.py +696 -0
  50. vllm/collect_env.py +823 -0
  51. vllm/compilation/__init__.py +0 -0
  52. vllm/compilation/activation_quant_fusion.py +189 -0
  53. vllm/compilation/backends.py +650 -0
  54. vllm/compilation/base_static_graph.py +56 -0
  55. vllm/compilation/collective_fusion.py +1188 -0
  56. vllm/compilation/compiler_interface.py +573 -0
  57. vllm/compilation/counter.py +47 -0
  58. vllm/compilation/cuda_graph.py +199 -0
  59. vllm/compilation/cuda_piecewise_backend.py +117 -0
  60. vllm/compilation/decorators.py +400 -0
  61. vllm/compilation/fix_functionalization.py +205 -0
  62. vllm/compilation/fusion.py +383 -0
  63. vllm/compilation/fusion_attn.py +295 -0
  64. vllm/compilation/fx_utils.py +84 -0
  65. vllm/compilation/inductor_pass.py +136 -0
  66. vllm/compilation/monitor.py +57 -0
  67. vllm/compilation/noop_elimination.py +158 -0
  68. vllm/compilation/pass_manager.py +125 -0
  69. vllm/compilation/post_cleanup.py +20 -0
  70. vllm/compilation/sequence_parallelism.py +478 -0
  71. vllm/compilation/torch25_custom_graph_pass.py +42 -0
  72. vllm/compilation/vllm_inductor_pass.py +156 -0
  73. vllm/compilation/wrapper.py +136 -0
  74. vllm/config/__init__.py +814 -0
  75. vllm/config/cache.py +220 -0
  76. vllm/config/compilation.py +673 -0
  77. vllm/config/device.py +74 -0
  78. vllm/config/kv_events.py +50 -0
  79. vllm/config/kv_transfer.py +111 -0
  80. vllm/config/load.py +113 -0
  81. vllm/config/lora.py +132 -0
  82. vllm/config/model.py +1912 -0
  83. vllm/config/multimodal.py +129 -0
  84. vllm/config/observability.py +99 -0
  85. vllm/config/parallel.py +524 -0
  86. vllm/config/pooler.py +97 -0
  87. vllm/config/scheduler.py +287 -0
  88. vllm/config/speculative.py +568 -0
  89. vllm/config/speech_to_text.py +39 -0
  90. vllm/config/structured_outputs.py +64 -0
  91. vllm/config/utils.py +145 -0
  92. vllm/connections.py +186 -0
  93. vllm/device_allocator/__init__.py +0 -0
  94. vllm/device_allocator/cumem.py +311 -0
  95. vllm/distributed/__init__.py +6 -0
  96. vllm/distributed/communication_op.py +41 -0
  97. vllm/distributed/device_communicators/__init__.py +0 -0
  98. vllm/distributed/device_communicators/all2all.py +440 -0
  99. vllm/distributed/device_communicators/all_reduce_utils.py +317 -0
  100. vllm/distributed/device_communicators/base_device_communicator.py +295 -0
  101. vllm/distributed/device_communicators/cpu_communicator.py +201 -0
  102. vllm/distributed/device_communicators/cuda_communicator.py +323 -0
  103. vllm/distributed/device_communicators/cuda_wrapper.py +180 -0
  104. vllm/distributed/device_communicators/custom_all_reduce.py +311 -0
  105. vllm/distributed/device_communicators/mnnvl_compat.py +28 -0
  106. vllm/distributed/device_communicators/pynccl.py +340 -0
  107. vllm/distributed/device_communicators/pynccl_allocator.py +186 -0
  108. vllm/distributed/device_communicators/pynccl_wrapper.py +416 -0
  109. vllm/distributed/device_communicators/quick_all_reduce.py +278 -0
  110. vllm/distributed/device_communicators/ray_communicator.py +258 -0
  111. vllm/distributed/device_communicators/shm_broadcast.py +589 -0
  112. vllm/distributed/device_communicators/shm_object_storage.py +635 -0
  113. vllm/distributed/device_communicators/symm_mem.py +136 -0
  114. vllm/distributed/device_communicators/tpu_communicator.py +102 -0
  115. vllm/distributed/device_communicators/xpu_communicator.py +94 -0
  116. vllm/distributed/eplb/__init__.py +8 -0
  117. vllm/distributed/eplb/eplb_state.py +620 -0
  118. vllm/distributed/eplb/rebalance_algo.py +239 -0
  119. vllm/distributed/eplb/rebalance_execute.py +424 -0
  120. vllm/distributed/kv_events.py +362 -0
  121. vllm/distributed/kv_transfer/README.md +29 -0
  122. vllm/distributed/kv_transfer/__init__.py +13 -0
  123. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  124. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  125. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  126. vllm/distributed/kv_transfer/kv_connector/factory.py +113 -0
  127. vllm/distributed/kv_transfer/kv_connector/utils.py +261 -0
  128. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +6 -0
  129. vllm/distributed/kv_transfer/kv_connector/v1/base.py +388 -0
  130. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +168 -0
  131. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +100 -0
  132. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +328 -0
  133. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +1473 -0
  134. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +485 -0
  135. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  136. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +488 -0
  137. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +550 -0
  138. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +267 -0
  139. vllm/distributed/kv_transfer/kv_connector/v1/shared_storage_connector.py +418 -0
  140. vllm/distributed/kv_transfer/kv_lookup_buffer/__init__.py +0 -0
  141. vllm/distributed/kv_transfer/kv_lookup_buffer/base.py +175 -0
  142. vllm/distributed/kv_transfer/kv_lookup_buffer/mooncake_store.py +161 -0
  143. vllm/distributed/kv_transfer/kv_lookup_buffer/simple_buffer.py +237 -0
  144. vllm/distributed/kv_transfer/kv_pipe/__init__.py +0 -0
  145. vllm/distributed/kv_transfer/kv_pipe/base.py +67 -0
  146. vllm/distributed/kv_transfer/kv_pipe/mooncake_pipe.py +290 -0
  147. vllm/distributed/kv_transfer/kv_pipe/pynccl_pipe.py +280 -0
  148. vllm/distributed/kv_transfer/kv_transfer_state.py +73 -0
  149. vllm/distributed/parallel_state.py +1532 -0
  150. vllm/distributed/tpu_distributed_utils.py +178 -0
  151. vllm/distributed/utils.py +536 -0
  152. vllm/engine/__init__.py +0 -0
  153. vllm/engine/arg_utils.py +1778 -0
  154. vllm/engine/async_llm_engine.py +6 -0
  155. vllm/engine/llm_engine.py +6 -0
  156. vllm/engine/metrics.py +577 -0
  157. vllm/engine/metrics_types.py +84 -0
  158. vllm/engine/protocol.py +333 -0
  159. vllm/entrypoints/__init__.py +0 -0
  160. vllm/entrypoints/api_server.py +178 -0
  161. vllm/entrypoints/chat_utils.py +1705 -0
  162. vllm/entrypoints/cli/__init__.py +12 -0
  163. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  164. vllm/entrypoints/cli/benchmark/base.py +25 -0
  165. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  166. vllm/entrypoints/cli/benchmark/main.py +55 -0
  167. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  168. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  169. vllm/entrypoints/cli/collect_env.py +36 -0
  170. vllm/entrypoints/cli/main.py +60 -0
  171. vllm/entrypoints/cli/openai.py +233 -0
  172. vllm/entrypoints/cli/run_batch.py +67 -0
  173. vllm/entrypoints/cli/serve.py +232 -0
  174. vllm/entrypoints/cli/types.py +29 -0
  175. vllm/entrypoints/constants.py +10 -0
  176. vllm/entrypoints/context.py +481 -0
  177. vllm/entrypoints/harmony_utils.py +436 -0
  178. vllm/entrypoints/launcher.py +164 -0
  179. vllm/entrypoints/llm.py +1629 -0
  180. vllm/entrypoints/logger.py +79 -0
  181. vllm/entrypoints/openai/__init__.py +0 -0
  182. vllm/entrypoints/openai/api_server.py +1953 -0
  183. vllm/entrypoints/openai/cli_args.py +288 -0
  184. vllm/entrypoints/openai/logits_processors.py +90 -0
  185. vllm/entrypoints/openai/protocol.py +2757 -0
  186. vllm/entrypoints/openai/run_batch.py +491 -0
  187. vllm/entrypoints/openai/serving_chat.py +1597 -0
  188. vllm/entrypoints/openai/serving_classification.py +173 -0
  189. vllm/entrypoints/openai/serving_completion.py +692 -0
  190. vllm/entrypoints/openai/serving_embedding.py +631 -0
  191. vllm/entrypoints/openai/serving_engine.py +992 -0
  192. vllm/entrypoints/openai/serving_models.py +288 -0
  193. vllm/entrypoints/openai/serving_pooling.py +276 -0
  194. vllm/entrypoints/openai/serving_responses.py +1709 -0
  195. vllm/entrypoints/openai/serving_score.py +479 -0
  196. vllm/entrypoints/openai/serving_tokenization.py +196 -0
  197. vllm/entrypoints/openai/serving_transcription.py +136 -0
  198. vllm/entrypoints/openai/speech_to_text.py +388 -0
  199. vllm/entrypoints/openai/tool_parsers/__init__.py +55 -0
  200. vllm/entrypoints/openai/tool_parsers/abstract_tool_parser.py +164 -0
  201. vllm/entrypoints/openai/tool_parsers/deepseekv31_tool_parser.py +367 -0
  202. vllm/entrypoints/openai/tool_parsers/deepseekv3_tool_parser.py +370 -0
  203. vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py +185 -0
  204. vllm/entrypoints/openai/tool_parsers/granite_20b_fc_tool_parser.py +259 -0
  205. vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py +237 -0
  206. vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +455 -0
  207. vllm/entrypoints/openai/tool_parsers/hunyuan_a13b_tool_parser.py +372 -0
  208. vllm/entrypoints/openai/tool_parsers/internlm2_tool_parser.py +216 -0
  209. vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py +308 -0
  210. vllm/entrypoints/openai/tool_parsers/kimi_k2_tool_parser.py +377 -0
  211. vllm/entrypoints/openai/tool_parsers/llama4_pythonic_tool_parser.py +316 -0
  212. vllm/entrypoints/openai/tool_parsers/llama_tool_parser.py +269 -0
  213. vllm/entrypoints/openai/tool_parsers/longcat_tool_parser.py +39 -0
  214. vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py +816 -0
  215. vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +369 -0
  216. vllm/entrypoints/openai/tool_parsers/openai_tool_parser.py +93 -0
  217. vllm/entrypoints/openai/tool_parsers/phi4mini_tool_parser.py +112 -0
  218. vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py +308 -0
  219. vllm/entrypoints/openai/tool_parsers/qwen3coder_tool_parser.py +707 -0
  220. vllm/entrypoints/openai/tool_parsers/qwen3xml_tool_parser.py +1137 -0
  221. vllm/entrypoints/openai/tool_parsers/seed_oss_tool_parser.py +679 -0
  222. vllm/entrypoints/openai/tool_parsers/step3_tool_parser.py +296 -0
  223. vllm/entrypoints/openai/tool_parsers/utils.py +124 -0
  224. vllm/entrypoints/openai/tool_parsers/xlam_tool_parser.py +524 -0
  225. vllm/entrypoints/renderer.py +395 -0
  226. vllm/entrypoints/score_utils.py +232 -0
  227. vllm/entrypoints/ssl.py +75 -0
  228. vllm/entrypoints/tool.py +139 -0
  229. vllm/entrypoints/tool_server.py +206 -0
  230. vllm/entrypoints/utils.py +233 -0
  231. vllm/env_override.py +23 -0
  232. vllm/envs.py +1590 -0
  233. vllm/executor/__init__.py +0 -0
  234. vllm/executor/executor_base.py +381 -0
  235. vllm/executor/msgspec_utils.py +35 -0
  236. vllm/executor/ray_distributed_executor.py +699 -0
  237. vllm/executor/ray_utils.py +410 -0
  238. vllm/executor/uniproc_executor.py +176 -0
  239. vllm/forward_context.py +402 -0
  240. vllm/inputs/__init__.py +30 -0
  241. vllm/inputs/data.py +356 -0
  242. vllm/inputs/parse.py +151 -0
  243. vllm/inputs/preprocess.py +664 -0
  244. vllm/logger.py +229 -0
  245. vllm/logging_utils/__init__.py +10 -0
  246. vllm/logging_utils/dump_input.py +81 -0
  247. vllm/logging_utils/formatter.py +79 -0
  248. vllm/logging_utils/log_time.py +32 -0
  249. vllm/logits_process.py +119 -0
  250. vllm/logprobs.py +28 -0
  251. vllm/lora/__init__.py +0 -0
  252. vllm/lora/layers/__init__.py +34 -0
  253. vllm/lora/layers/base.py +69 -0
  254. vllm/lora/layers/base_linear.py +185 -0
  255. vllm/lora/layers/column_parallel_linear.py +609 -0
  256. vllm/lora/layers/logits_processor.py +247 -0
  257. vllm/lora/layers/qkv_x_parallel_linear.py +8 -0
  258. vllm/lora/layers/replicated_linear.py +60 -0
  259. vllm/lora/layers/row_parallel_linear.py +196 -0
  260. vllm/lora/layers/utils.py +65 -0
  261. vllm/lora/layers/vocal_parallel_embedding.py +174 -0
  262. vllm/lora/lora_weights.py +199 -0
  263. vllm/lora/models.py +816 -0
  264. vllm/lora/ops/__init__.py +0 -0
  265. vllm/lora/ops/ipex_ops/__init__.py +7 -0
  266. vllm/lora/ops/ipex_ops/lora_ops.py +44 -0
  267. vllm/lora/ops/torch_ops/__init__.py +16 -0
  268. vllm/lora/ops/torch_ops/lora_ops.py +119 -0
  269. vllm/lora/ops/triton_ops/__init__.py +12 -0
  270. vllm/lora/ops/triton_ops/kernel_utils.py +243 -0
  271. vllm/lora/ops/triton_ops/lora_expand_op.py +289 -0
  272. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +148 -0
  273. vllm/lora/ops/triton_ops/lora_shrink_op.py +243 -0
  274. vllm/lora/ops/triton_ops/utils.py +126 -0
  275. vllm/lora/ops/xla_ops/__init__.py +7 -0
  276. vllm/lora/ops/xla_ops/lora_ops.py +144 -0
  277. vllm/lora/peft_helper.py +127 -0
  278. vllm/lora/punica_wrapper/__init__.py +10 -0
  279. vllm/lora/punica_wrapper/punica_base.py +458 -0
  280. vllm/lora/punica_wrapper/punica_cpu.py +349 -0
  281. vllm/lora/punica_wrapper/punica_gpu.py +272 -0
  282. vllm/lora/punica_wrapper/punica_selector.py +20 -0
  283. vllm/lora/punica_wrapper/punica_tpu.py +391 -0
  284. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  285. vllm/lora/punica_wrapper/utils.py +136 -0
  286. vllm/lora/request.py +97 -0
  287. vllm/lora/resolver.py +85 -0
  288. vllm/lora/utils.py +246 -0
  289. vllm/lora/worker_manager.py +267 -0
  290. vllm/model_executor/__init__.py +12 -0
  291. vllm/model_executor/custom_op.py +194 -0
  292. vllm/model_executor/layers/__init__.py +0 -0
  293. vllm/model_executor/layers/activation.py +575 -0
  294. vllm/model_executor/layers/attention_layer_base.py +23 -0
  295. vllm/model_executor/layers/fla/__init__.py +8 -0
  296. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  297. vllm/model_executor/layers/fla/ops/chunk.py +225 -0
  298. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +290 -0
  299. vllm/model_executor/layers/fla/ops/chunk_o.py +177 -0
  300. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +140 -0
  301. vllm/model_executor/layers/fla/ops/cumsum.py +226 -0
  302. vllm/model_executor/layers/fla/ops/fused_recurrent.py +366 -0
  303. vllm/model_executor/layers/fla/ops/index.py +39 -0
  304. vllm/model_executor/layers/fla/ops/l2norm.py +143 -0
  305. vllm/model_executor/layers/fla/ops/layernorm_guard.py +337 -0
  306. vllm/model_executor/layers/fla/ops/op.py +39 -0
  307. vllm/model_executor/layers/fla/ops/solve_tril.py +365 -0
  308. vllm/model_executor/layers/fla/ops/utils.py +180 -0
  309. vllm/model_executor/layers/fla/ops/wy_fast.py +114 -0
  310. vllm/model_executor/layers/fused_moe/__init__.py +89 -0
  311. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +322 -0
  312. vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py +141 -0
  313. vllm/model_executor/layers/fused_moe/config.py +804 -0
  314. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  315. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  316. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  317. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  318. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  319. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +218 -0
  320. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  321. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  322. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  323. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  324. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  325. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  326. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  327. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  328. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  329. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  330. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  331. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  332. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  333. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  334. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  335. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  336. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  337. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  338. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  339. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  340. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  341. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  342. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  343. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  344. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  345. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  346. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  347. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  348. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  349. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  350. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  351. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  352. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  353. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  354. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  355. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  356. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  357. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  358. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  359. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  360. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  361. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  362. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  363. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  545. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +300 -0
  546. vllm/model_executor/layers/fused_moe/cutlass_moe.py +957 -0
  547. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +362 -0
  548. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +413 -0
  549. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +361 -0
  550. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +274 -0
  551. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +268 -0
  552. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +300 -0
  553. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +184 -0
  554. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +993 -0
  555. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +239 -0
  556. vllm/model_executor/layers/fused_moe/fused_moe.py +1890 -0
  557. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +307 -0
  558. vllm/model_executor/layers/fused_moe/layer.py +2195 -0
  559. vllm/model_executor/layers/fused_moe/modular_kernel.py +1038 -0
  560. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +87 -0
  561. vllm/model_executor/layers/fused_moe/moe_pallas.py +80 -0
  562. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +205 -0
  563. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  564. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +341 -0
  565. vllm/model_executor/layers/fused_moe/prepare_finalize.py +70 -0
  566. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +424 -0
  567. vllm/model_executor/layers/fused_moe/routing_simulator.py +291 -0
  568. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +146 -0
  569. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +143 -0
  570. vllm/model_executor/layers/fused_moe/trtllm_moe.py +191 -0
  571. vllm/model_executor/layers/fused_moe/utils.py +274 -0
  572. vllm/model_executor/layers/layernorm.py +395 -0
  573. vllm/model_executor/layers/lightning_attn.py +661 -0
  574. vllm/model_executor/layers/linear.py +1603 -0
  575. vllm/model_executor/layers/logits_processor.py +106 -0
  576. vllm/model_executor/layers/mamba/__init__.py +0 -0
  577. vllm/model_executor/layers/mamba/abstract.py +42 -0
  578. vllm/model_executor/layers/mamba/linear_attn.py +403 -0
  579. vllm/model_executor/layers/mamba/mamba_mixer.py +466 -0
  580. vllm/model_executor/layers/mamba/mamba_mixer2.py +764 -0
  581. vllm/model_executor/layers/mamba/mamba_utils.py +186 -0
  582. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  583. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1092 -0
  584. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +168 -0
  585. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +414 -0
  586. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +242 -0
  587. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +527 -0
  588. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +724 -0
  589. vllm/model_executor/layers/mamba/ops/ssd_combined.py +238 -0
  590. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +200 -0
  591. vllm/model_executor/layers/mamba/short_conv.py +253 -0
  592. vllm/model_executor/layers/mla.py +173 -0
  593. vllm/model_executor/layers/pooler.py +719 -0
  594. vllm/model_executor/layers/quantization/__init__.py +157 -0
  595. vllm/model_executor/layers/quantization/auto_round.py +388 -0
  596. vllm/model_executor/layers/quantization/awq.py +228 -0
  597. vllm/model_executor/layers/quantization/awq_marlin.py +554 -0
  598. vllm/model_executor/layers/quantization/awq_triton.py +320 -0
  599. vllm/model_executor/layers/quantization/base_config.py +170 -0
  600. vllm/model_executor/layers/quantization/bitblas.py +464 -0
  601. vllm/model_executor/layers/quantization/bitsandbytes.py +627 -0
  602. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +0 -0
  603. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +797 -0
  604. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2074 -0
  605. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +27 -0
  606. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +366 -0
  607. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  608. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +160 -0
  609. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +105 -0
  610. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +185 -0
  611. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +169 -0
  612. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +135 -0
  613. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +121 -0
  614. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +157 -0
  615. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +111 -0
  616. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +201 -0
  617. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  618. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +238 -0
  619. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +153 -0
  620. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  621. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +46 -0
  622. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  623. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +206 -0
  624. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  625. vllm/model_executor/layers/quantization/deepspeedfp.py +196 -0
  626. vllm/model_executor/layers/quantization/experts_int8.py +223 -0
  627. vllm/model_executor/layers/quantization/fbgemm_fp8.py +172 -0
  628. vllm/model_executor/layers/quantization/fp8.py +1098 -0
  629. vllm/model_executor/layers/quantization/gguf.py +599 -0
  630. vllm/model_executor/layers/quantization/gptq.py +340 -0
  631. vllm/model_executor/layers/quantization/gptq_bitblas.py +448 -0
  632. vllm/model_executor/layers/quantization/gptq_marlin.py +751 -0
  633. vllm/model_executor/layers/quantization/gptq_marlin_24.py +297 -0
  634. vllm/model_executor/layers/quantization/hqq_marlin.py +333 -0
  635. vllm/model_executor/layers/quantization/inc.py +61 -0
  636. vllm/model_executor/layers/quantization/input_quant_fp8.py +156 -0
  637. vllm/model_executor/layers/quantization/ipex_quant.py +415 -0
  638. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  639. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +91 -0
  640. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +93 -0
  641. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +116 -0
  642. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +302 -0
  643. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +92 -0
  644. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +117 -0
  645. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +92 -0
  646. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +143 -0
  647. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +144 -0
  648. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +139 -0
  649. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +67 -0
  650. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +89 -0
  651. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +161 -0
  652. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +206 -0
  653. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +137 -0
  654. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +41 -0
  655. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +104 -0
  656. vllm/model_executor/layers/quantization/kv_cache.py +143 -0
  657. vllm/model_executor/layers/quantization/modelopt.py +1596 -0
  658. vllm/model_executor/layers/quantization/moe_wna16.py +484 -0
  659. vllm/model_executor/layers/quantization/mxfp4.py +988 -0
  660. vllm/model_executor/layers/quantization/petit.py +306 -0
  661. vllm/model_executor/layers/quantization/ptpc_fp8.py +129 -0
  662. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  663. vllm/model_executor/layers/quantization/quark/quark.py +432 -0
  664. vllm/model_executor/layers/quantization/quark/quark_moe.py +561 -0
  665. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  666. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  667. vllm/model_executor/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +239 -0
  668. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +163 -0
  669. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +122 -0
  670. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  671. vllm/model_executor/layers/quantization/rtn.py +466 -0
  672. vllm/model_executor/layers/quantization/schema.py +86 -0
  673. vllm/model_executor/layers/quantization/torchao.py +214 -0
  674. vllm/model_executor/layers/quantization/tpu_int8.py +125 -0
  675. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  676. vllm/model_executor/layers/quantization/utils/allspark_utils.py +52 -0
  677. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +210 -0
  678. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  679. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  680. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  681. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  682. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  683. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  684. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  685. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  686. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  687. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  688. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  689. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  690. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  691. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  692. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  693. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  694. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  695. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  696. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  697. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  698. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  699. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  700. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  701. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  702. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  703. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  704. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  705. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  706. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  707. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  708. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  709. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  710. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  711. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  712. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  713. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  714. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  715. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  716. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  717. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  718. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  719. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  720. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  721. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  722. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  723. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  724. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  725. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  726. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  727. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  728. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  729. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  730. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  731. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  732. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  733. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  734. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  735. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  736. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  737. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  738. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  739. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  740. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  741. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  742. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  743. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  744. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  745. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  746. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  747. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  748. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  749. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  750. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  751. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  752. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  753. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  754. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  755. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  756. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  757. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  758. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  759. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  760. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  761. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  762. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  763. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  764. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  765. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  766. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  767. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  768. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  769. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  770. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  771. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  772. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  773. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  774. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  775. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  776. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  777. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  778. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  779. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  780. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  781. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  889. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +79 -0
  890. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +248 -0
  891. vllm/model_executor/layers/quantization/utils/fp8_utils.py +949 -0
  892. vllm/model_executor/layers/quantization/utils/gptq_utils.py +146 -0
  893. vllm/model_executor/layers/quantization/utils/int8_utils.py +492 -0
  894. vllm/model_executor/layers/quantization/utils/layer_utils.py +40 -0
  895. vllm/model_executor/layers/quantization/utils/machete_utils.py +50 -0
  896. vllm/model_executor/layers/quantization/utils/marlin_utils.py +479 -0
  897. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +396 -0
  898. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +345 -0
  899. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +165 -0
  900. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +464 -0
  901. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +141 -0
  902. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +20 -0
  903. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +137 -0
  904. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +59 -0
  905. vllm/model_executor/layers/quantization/utils/petit_utils.py +122 -0
  906. vllm/model_executor/layers/quantization/utils/quant_utils.py +641 -0
  907. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +458 -0
  908. vllm/model_executor/layers/resampler.py +270 -0
  909. vllm/model_executor/layers/rotary_embedding/__init__.py +204 -0
  910. vllm/model_executor/layers/rotary_embedding/base.py +177 -0
  911. vllm/model_executor/layers/rotary_embedding/common.py +150 -0
  912. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +138 -0
  913. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +197 -0
  914. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +41 -0
  915. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +67 -0
  916. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +80 -0
  917. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  918. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  919. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +81 -0
  920. vllm/model_executor/layers/rotary_embedding/mrope.py +1321 -0
  921. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +42 -0
  922. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +129 -0
  923. vllm/model_executor/layers/rotary_embedding/rocm_aiter_rope_ops.py +86 -0
  924. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +68 -0
  925. vllm/model_executor/layers/shared_fused_moe/__init__.py +6 -0
  926. vllm/model_executor/layers/shared_fused_moe/shared_fused_moe.py +56 -0
  927. vllm/model_executor/layers/utils.py +195 -0
  928. vllm/model_executor/layers/vocab_parallel_embedding.py +487 -0
  929. vllm/model_executor/model_loader/__init__.py +138 -0
  930. vllm/model_executor/model_loader/base_loader.py +52 -0
  931. vllm/model_executor/model_loader/bitsandbytes_loader.py +788 -0
  932. vllm/model_executor/model_loader/default_loader.py +277 -0
  933. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  934. vllm/model_executor/model_loader/gguf_loader.py +155 -0
  935. vllm/model_executor/model_loader/runai_streamer_loader.py +104 -0
  936. vllm/model_executor/model_loader/sharded_state_loader.py +199 -0
  937. vllm/model_executor/model_loader/tensorizer.py +738 -0
  938. vllm/model_executor/model_loader/tensorizer_loader.py +143 -0
  939. vllm/model_executor/model_loader/tpu.py +114 -0
  940. vllm/model_executor/model_loader/utils.py +292 -0
  941. vllm/model_executor/model_loader/weight_utils.py +990 -0
  942. vllm/model_executor/models/__init__.py +33 -0
  943. vllm/model_executor/models/adapters.py +542 -0
  944. vllm/model_executor/models/aimv2.py +246 -0
  945. vllm/model_executor/models/apertus.py +579 -0
  946. vllm/model_executor/models/arcee.py +422 -0
  947. vllm/model_executor/models/arctic.py +558 -0
  948. vllm/model_executor/models/aria.py +650 -0
  949. vllm/model_executor/models/aya_vision.py +468 -0
  950. vllm/model_executor/models/baichuan.py +474 -0
  951. vllm/model_executor/models/bailing_moe.py +642 -0
  952. vllm/model_executor/models/bamba.py +514 -0
  953. vllm/model_executor/models/bert.py +665 -0
  954. vllm/model_executor/models/bert_with_rope.py +687 -0
  955. vllm/model_executor/models/blip.py +339 -0
  956. vllm/model_executor/models/blip2.py +712 -0
  957. vllm/model_executor/models/bloom.py +374 -0
  958. vllm/model_executor/models/chameleon.py +1139 -0
  959. vllm/model_executor/models/chatglm.py +476 -0
  960. vllm/model_executor/models/clip.py +407 -0
  961. vllm/model_executor/models/cohere2_vision.py +481 -0
  962. vllm/model_executor/models/commandr.py +465 -0
  963. vllm/model_executor/models/config.py +445 -0
  964. vllm/model_executor/models/dbrx.py +471 -0
  965. vllm/model_executor/models/deepseek.py +497 -0
  966. vllm/model_executor/models/deepseek_eagle.py +240 -0
  967. vllm/model_executor/models/deepseek_mtp.py +289 -0
  968. vllm/model_executor/models/deepseek_v2.py +1444 -0
  969. vllm/model_executor/models/deepseek_vl2.py +658 -0
  970. vllm/model_executor/models/dots1.py +546 -0
  971. vllm/model_executor/models/dots_ocr.py +873 -0
  972. vllm/model_executor/models/ernie45.py +43 -0
  973. vllm/model_executor/models/ernie45_moe.py +607 -0
  974. vllm/model_executor/models/ernie45_vl.py +1527 -0
  975. vllm/model_executor/models/ernie45_vl_moe.py +727 -0
  976. vllm/model_executor/models/ernie_mtp.py +268 -0
  977. vllm/model_executor/models/exaone.py +550 -0
  978. vllm/model_executor/models/exaone4.py +533 -0
  979. vllm/model_executor/models/fairseq2_llama.py +154 -0
  980. vllm/model_executor/models/falcon.py +509 -0
  981. vllm/model_executor/models/falcon_h1.py +674 -0
  982. vllm/model_executor/models/fuyu.py +399 -0
  983. vllm/model_executor/models/gemma.py +425 -0
  984. vllm/model_executor/models/gemma2.py +422 -0
  985. vllm/model_executor/models/gemma3.py +555 -0
  986. vllm/model_executor/models/gemma3_mm.py +721 -0
  987. vllm/model_executor/models/gemma3n.py +1113 -0
  988. vllm/model_executor/models/gemma3n_mm.py +761 -0
  989. vllm/model_executor/models/glm.py +23 -0
  990. vllm/model_executor/models/glm4.py +304 -0
  991. vllm/model_executor/models/glm4_1v.py +1690 -0
  992. vllm/model_executor/models/glm4_moe.py +727 -0
  993. vllm/model_executor/models/glm4_moe_mtp.py +301 -0
  994. vllm/model_executor/models/glm4v.py +654 -0
  995. vllm/model_executor/models/gpt2.py +380 -0
  996. vllm/model_executor/models/gpt_bigcode.py +344 -0
  997. vllm/model_executor/models/gpt_j.py +339 -0
  998. vllm/model_executor/models/gpt_neox.py +330 -0
  999. vllm/model_executor/models/gpt_oss.py +712 -0
  1000. vllm/model_executor/models/granite.py +489 -0
  1001. vllm/model_executor/models/granite_speech.py +794 -0
  1002. vllm/model_executor/models/granitemoe.py +550 -0
  1003. vllm/model_executor/models/granitemoehybrid.py +614 -0
  1004. vllm/model_executor/models/granitemoeshared.py +332 -0
  1005. vllm/model_executor/models/gritlm.py +262 -0
  1006. vllm/model_executor/models/grok1.py +547 -0
  1007. vllm/model_executor/models/h2ovl.py +536 -0
  1008. vllm/model_executor/models/hunyuan_v1.py +1042 -0
  1009. vllm/model_executor/models/hyperclovax_vision.py +1192 -0
  1010. vllm/model_executor/models/idefics2_vision_model.py +417 -0
  1011. vllm/model_executor/models/idefics3.py +756 -0
  1012. vllm/model_executor/models/interfaces.py +959 -0
  1013. vllm/model_executor/models/interfaces_base.py +192 -0
  1014. vllm/model_executor/models/intern_vit.py +441 -0
  1015. vllm/model_executor/models/internlm2.py +450 -0
  1016. vllm/model_executor/models/internlm2_ve.py +148 -0
  1017. vllm/model_executor/models/interns1.py +838 -0
  1018. vllm/model_executor/models/interns1_vit.py +418 -0
  1019. vllm/model_executor/models/internvl.py +1423 -0
  1020. vllm/model_executor/models/jais.py +373 -0
  1021. vllm/model_executor/models/jamba.py +591 -0
  1022. vllm/model_executor/models/jina_vl.py +144 -0
  1023. vllm/model_executor/models/keye.py +1680 -0
  1024. vllm/model_executor/models/keye_vl1_5.py +602 -0
  1025. vllm/model_executor/models/kimi_vl.py +618 -0
  1026. vllm/model_executor/models/lfm2.py +548 -0
  1027. vllm/model_executor/models/llama.py +669 -0
  1028. vllm/model_executor/models/llama4.py +746 -0
  1029. vllm/model_executor/models/llama4_eagle.py +239 -0
  1030. vllm/model_executor/models/llama_eagle.py +179 -0
  1031. vllm/model_executor/models/llama_eagle3.py +296 -0
  1032. vllm/model_executor/models/llava.py +870 -0
  1033. vllm/model_executor/models/llava_next.py +571 -0
  1034. vllm/model_executor/models/llava_next_video.py +476 -0
  1035. vllm/model_executor/models/llava_onevision.py +942 -0
  1036. vllm/model_executor/models/longcat_flash.py +715 -0
  1037. vllm/model_executor/models/longcat_flash_mtp.py +352 -0
  1038. vllm/model_executor/models/mamba.py +275 -0
  1039. vllm/model_executor/models/mamba2.py +291 -0
  1040. vllm/model_executor/models/medusa.py +169 -0
  1041. vllm/model_executor/models/midashenglm.py +792 -0
  1042. vllm/model_executor/models/mimo.py +188 -0
  1043. vllm/model_executor/models/mimo_mtp.py +280 -0
  1044. vllm/model_executor/models/minicpm.py +631 -0
  1045. vllm/model_executor/models/minicpm3.py +230 -0
  1046. vllm/model_executor/models/minicpm_eagle.py +389 -0
  1047. vllm/model_executor/models/minicpmo.py +770 -0
  1048. vllm/model_executor/models/minicpmv.py +1784 -0
  1049. vllm/model_executor/models/minimax_text_01.py +986 -0
  1050. vllm/model_executor/models/minimax_vl_01.py +426 -0
  1051. vllm/model_executor/models/mistral3.py +628 -0
  1052. vllm/model_executor/models/mixtral.py +606 -0
  1053. vllm/model_executor/models/mllama4.py +1076 -0
  1054. vllm/model_executor/models/mlp_speculator.py +206 -0
  1055. vllm/model_executor/models/modernbert.py +374 -0
  1056. vllm/model_executor/models/module_mapping.py +72 -0
  1057. vllm/model_executor/models/molmo.py +1567 -0
  1058. vllm/model_executor/models/moonvit.py +673 -0
  1059. vllm/model_executor/models/motif.py +345 -0
  1060. vllm/model_executor/models/mpt.py +329 -0
  1061. vllm/model_executor/models/nano_nemotron_vl.py +1394 -0
  1062. vllm/model_executor/models/nemotron.py +507 -0
  1063. vllm/model_executor/models/nemotron_h.py +565 -0
  1064. vllm/model_executor/models/nemotron_nas.py +481 -0
  1065. vllm/model_executor/models/nemotron_vl.py +652 -0
  1066. vllm/model_executor/models/nvlm_d.py +203 -0
  1067. vllm/model_executor/models/olmo.py +404 -0
  1068. vllm/model_executor/models/olmo2.py +439 -0
  1069. vllm/model_executor/models/olmoe.py +483 -0
  1070. vllm/model_executor/models/opt.py +412 -0
  1071. vllm/model_executor/models/orion.py +348 -0
  1072. vllm/model_executor/models/ovis.py +559 -0
  1073. vllm/model_executor/models/ovis2_5.py +642 -0
  1074. vllm/model_executor/models/paligemma.py +411 -0
  1075. vllm/model_executor/models/persimmon.py +343 -0
  1076. vllm/model_executor/models/phi.py +356 -0
  1077. vllm/model_executor/models/phi3.py +19 -0
  1078. vllm/model_executor/models/phi3v.py +698 -0
  1079. vllm/model_executor/models/phi4_multimodal.py +1475 -0
  1080. vllm/model_executor/models/phi4mm.py +1279 -0
  1081. vllm/model_executor/models/phi4mm_audio.py +1254 -0
  1082. vllm/model_executor/models/phi4mm_utils.py +1875 -0
  1083. vllm/model_executor/models/phimoe.py +679 -0
  1084. vllm/model_executor/models/pixtral.py +1345 -0
  1085. vllm/model_executor/models/plamo2.py +978 -0
  1086. vllm/model_executor/models/qwen.py +361 -0
  1087. vllm/model_executor/models/qwen2.py +523 -0
  1088. vllm/model_executor/models/qwen2_5_omni_thinker.py +984 -0
  1089. vllm/model_executor/models/qwen2_5_vl.py +1481 -0
  1090. vllm/model_executor/models/qwen2_audio.py +489 -0
  1091. vllm/model_executor/models/qwen2_moe.py +558 -0
  1092. vllm/model_executor/models/qwen2_rm.py +122 -0
  1093. vllm/model_executor/models/qwen2_vl.py +1670 -0
  1094. vllm/model_executor/models/qwen3.py +341 -0
  1095. vllm/model_executor/models/qwen3_moe.py +692 -0
  1096. vllm/model_executor/models/qwen3_next.py +1266 -0
  1097. vllm/model_executor/models/qwen3_next_mtp.py +281 -0
  1098. vllm/model_executor/models/qwen3_vl.py +1613 -0
  1099. vllm/model_executor/models/qwen3_vl_moe.py +358 -0
  1100. vllm/model_executor/models/qwen_vl.py +795 -0
  1101. vllm/model_executor/models/radio.py +576 -0
  1102. vllm/model_executor/models/registry.py +990 -0
  1103. vllm/model_executor/models/roberta.py +252 -0
  1104. vllm/model_executor/models/rvl.py +103 -0
  1105. vllm/model_executor/models/seed_oss.py +485 -0
  1106. vllm/model_executor/models/siglip.py +540 -0
  1107. vllm/model_executor/models/siglip2navit.py +689 -0
  1108. vllm/model_executor/models/skyworkr1v.py +911 -0
  1109. vllm/model_executor/models/smolvlm.py +44 -0
  1110. vllm/model_executor/models/solar.py +504 -0
  1111. vllm/model_executor/models/stablelm.py +341 -0
  1112. vllm/model_executor/models/starcoder2.py +354 -0
  1113. vllm/model_executor/models/step3_text.py +510 -0
  1114. vllm/model_executor/models/step3_vl.py +1072 -0
  1115. vllm/model_executor/models/swin.py +475 -0
  1116. vllm/model_executor/models/tarsier.py +639 -0
  1117. vllm/model_executor/models/telechat2.py +151 -0
  1118. vllm/model_executor/models/teleflm.py +79 -0
  1119. vllm/model_executor/models/terratorch.py +294 -0
  1120. vllm/model_executor/models/transformers.py +948 -0
  1121. vllm/model_executor/models/ultravox.py +654 -0
  1122. vllm/model_executor/models/utils.py +808 -0
  1123. vllm/model_executor/models/vision.py +404 -0
  1124. vllm/model_executor/models/voxtral.py +786 -0
  1125. vllm/model_executor/models/whisper.py +963 -0
  1126. vllm/model_executor/models/zamba2.py +960 -0
  1127. vllm/model_executor/parameter.py +620 -0
  1128. vllm/model_executor/utils.py +86 -0
  1129. vllm/model_executor/warmup/__init__.py +0 -0
  1130. vllm/model_executor/warmup/deep_gemm_warmup.py +230 -0
  1131. vllm/model_executor/warmup/kernel_warmup.py +83 -0
  1132. vllm/multimodal/__init__.py +33 -0
  1133. vllm/multimodal/audio.py +116 -0
  1134. vllm/multimodal/base.py +27 -0
  1135. vllm/multimodal/cache.py +697 -0
  1136. vllm/multimodal/evs.py +273 -0
  1137. vllm/multimodal/hasher.py +102 -0
  1138. vllm/multimodal/image.py +130 -0
  1139. vllm/multimodal/inputs.py +987 -0
  1140. vllm/multimodal/parse.py +511 -0
  1141. vllm/multimodal/processing.py +2148 -0
  1142. vllm/multimodal/profiling.py +284 -0
  1143. vllm/multimodal/registry.py +345 -0
  1144. vllm/multimodal/utils.py +503 -0
  1145. vllm/multimodal/video.py +319 -0
  1146. vllm/outputs.py +324 -0
  1147. vllm/platforms/__init__.py +263 -0
  1148. vllm/platforms/cpu.py +340 -0
  1149. vllm/platforms/cuda.py +668 -0
  1150. vllm/platforms/interface.py +620 -0
  1151. vllm/platforms/rocm.py +497 -0
  1152. vllm/platforms/tpu.py +233 -0
  1153. vllm/platforms/xpu.py +243 -0
  1154. vllm/plugins/__init__.py +72 -0
  1155. vllm/plugins/io_processors/__init__.py +68 -0
  1156. vllm/plugins/io_processors/interface.py +67 -0
  1157. vllm/plugins/lora_resolvers/README.md +16 -0
  1158. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1159. vllm/plugins/lora_resolvers/filesystem_resolver.py +50 -0
  1160. vllm/pooling_params.py +191 -0
  1161. vllm/profiler/__init__.py +0 -0
  1162. vllm/profiler/layerwise_profile.py +375 -0
  1163. vllm/profiler/utils.py +148 -0
  1164. vllm/py.typed +2 -0
  1165. vllm/ray/__init__.py +0 -0
  1166. vllm/ray/lazy_utils.py +22 -0
  1167. vllm/ray/ray_env.py +72 -0
  1168. vllm/reasoning/__init__.py +29 -0
  1169. vllm/reasoning/abs_reasoning_parsers.py +202 -0
  1170. vllm/reasoning/basic_parsers.py +156 -0
  1171. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1172. vllm/reasoning/glm4_moe_reasoning_parser.py +151 -0
  1173. vllm/reasoning/gptoss_reasoning_parser.py +87 -0
  1174. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1175. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +245 -0
  1176. vllm/reasoning/mistral_reasoning_parser.py +56 -0
  1177. vllm/reasoning/qwen3_reasoning_parser.py +72 -0
  1178. vllm/reasoning/seedoss_reasoning_parser.py +28 -0
  1179. vllm/reasoning/step3_reasoning_parser.py +109 -0
  1180. vllm/sampling_params.py +593 -0
  1181. vllm/scalar_type.py +349 -0
  1182. vllm/scripts.py +15 -0
  1183. vllm/sequence.py +103 -0
  1184. vllm/tasks.py +11 -0
  1185. vllm/test_utils.py +129 -0
  1186. vllm/third_party/__init__.py +0 -0
  1187. vllm/third_party/pynvml.py +6140 -0
  1188. vllm/tracing.py +136 -0
  1189. vllm/transformers_utils/__init__.py +24 -0
  1190. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1191. vllm/transformers_utils/chat_templates/registry.py +70 -0
  1192. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1193. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1194. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1195. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1196. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1197. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1198. vllm/transformers_utils/config.py +1102 -0
  1199. vllm/transformers_utils/config_parser_base.py +20 -0
  1200. vllm/transformers_utils/configs/__init__.py +63 -0
  1201. vllm/transformers_utils/configs/arctic.py +207 -0
  1202. vllm/transformers_utils/configs/chatglm.py +72 -0
  1203. vllm/transformers_utils/configs/deepseek_v3.py +101 -0
  1204. vllm/transformers_utils/configs/deepseek_vl2.py +216 -0
  1205. vllm/transformers_utils/configs/dotsocr.py +69 -0
  1206. vllm/transformers_utils/configs/eagle.py +84 -0
  1207. vllm/transformers_utils/configs/falcon.py +90 -0
  1208. vllm/transformers_utils/configs/jais.py +237 -0
  1209. vllm/transformers_utils/configs/kimi_vl.py +37 -0
  1210. vllm/transformers_utils/configs/medusa.py +63 -0
  1211. vllm/transformers_utils/configs/midashenglm.py +101 -0
  1212. vllm/transformers_utils/configs/mistral.py +165 -0
  1213. vllm/transformers_utils/configs/mlp_speculator.py +68 -0
  1214. vllm/transformers_utils/configs/moonvit.py +33 -0
  1215. vllm/transformers_utils/configs/nemotron.py +205 -0
  1216. vllm/transformers_utils/configs/nemotron_h.py +259 -0
  1217. vllm/transformers_utils/configs/nemotron_vl.py +56 -0
  1218. vllm/transformers_utils/configs/olmo3.py +80 -0
  1219. vllm/transformers_utils/configs/ovis.py +176 -0
  1220. vllm/transformers_utils/configs/qwen3_next.py +275 -0
  1221. vllm/transformers_utils/configs/radio.py +91 -0
  1222. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1223. vllm/transformers_utils/configs/speculators/algos.py +32 -0
  1224. vllm/transformers_utils/configs/speculators/base.py +111 -0
  1225. vllm/transformers_utils/configs/step3_vl.py +123 -0
  1226. vllm/transformers_utils/configs/ultravox.py +116 -0
  1227. vllm/transformers_utils/detokenizer_utils.py +199 -0
  1228. vllm/transformers_utils/dynamic_module.py +60 -0
  1229. vllm/transformers_utils/processor.py +299 -0
  1230. vllm/transformers_utils/processors/__init__.py +16 -0
  1231. vllm/transformers_utils/processors/deepseek_vl2.py +362 -0
  1232. vllm/transformers_utils/processors/ovis.py +420 -0
  1233. vllm/transformers_utils/processors/ovis2_5.py +458 -0
  1234. vllm/transformers_utils/runai_utils.py +104 -0
  1235. vllm/transformers_utils/s3_utils.py +93 -0
  1236. vllm/transformers_utils/tokenizer.py +292 -0
  1237. vllm/transformers_utils/tokenizer_base.py +154 -0
  1238. vllm/transformers_utils/tokenizers/__init__.py +10 -0
  1239. vllm/transformers_utils/tokenizers/mistral.py +521 -0
  1240. vllm/transformers_utils/utils.py +108 -0
  1241. vllm/triton_utils/__init__.py +16 -0
  1242. vllm/triton_utils/importing.py +96 -0
  1243. vllm/usage/__init__.py +0 -0
  1244. vllm/usage/usage_lib.py +259 -0
  1245. vllm/utils/__init__.py +3566 -0
  1246. vllm/utils/deep_gemm.py +319 -0
  1247. vllm/utils/flashinfer.py +443 -0
  1248. vllm/utils/jsontree.py +178 -0
  1249. vllm/utils/tensor_schema.py +235 -0
  1250. vllm/v1/__init__.py +0 -0
  1251. vllm/v1/attention/__init__.py +0 -0
  1252. vllm/v1/attention/backends/__init__.py +0 -0
  1253. vllm/v1/attention/backends/cpu_attn.py +919 -0
  1254. vllm/v1/attention/backends/flash_attn.py +795 -0
  1255. vllm/v1/attention/backends/flashinfer.py +1181 -0
  1256. vllm/v1/attention/backends/flex_attention.py +861 -0
  1257. vllm/v1/attention/backends/gdn_attn.py +332 -0
  1258. vllm/v1/attention/backends/linear_attn.py +67 -0
  1259. vllm/v1/attention/backends/mamba1_attn.py +81 -0
  1260. vllm/v1/attention/backends/mamba2_attn.py +232 -0
  1261. vllm/v1/attention/backends/mamba_attn.py +52 -0
  1262. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1263. vllm/v1/attention/backends/mla/common.py +1783 -0
  1264. vllm/v1/attention/backends/mla/cutlass_mla.py +248 -0
  1265. vllm/v1/attention/backends/mla/flashattn_mla.py +271 -0
  1266. vllm/v1/attention/backends/mla/flashinfer_mla.py +114 -0
  1267. vllm/v1/attention/backends/mla/flashmla.py +203 -0
  1268. vllm/v1/attention/backends/mla/flashmla_sparse.py +544 -0
  1269. vllm/v1/attention/backends/mla/indexer.py +342 -0
  1270. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +255 -0
  1271. vllm/v1/attention/backends/mla/triton_mla.py +177 -0
  1272. vllm/v1/attention/backends/pallas.py +409 -0
  1273. vllm/v1/attention/backends/rocm_aiter_fa.py +549 -0
  1274. vllm/v1/attention/backends/rocm_attn.py +426 -0
  1275. vllm/v1/attention/backends/short_conv_attn.py +94 -0
  1276. vllm/v1/attention/backends/tree_attn.py +451 -0
  1277. vllm/v1/attention/backends/triton_attn.py +361 -0
  1278. vllm/v1/attention/backends/utils.py +990 -0
  1279. vllm/v1/attention/backends/xformers.py +438 -0
  1280. vllm/v1/core/__init__.py +0 -0
  1281. vllm/v1/core/block_pool.py +416 -0
  1282. vllm/v1/core/encoder_cache_manager.py +333 -0
  1283. vllm/v1/core/kv_cache_coordinator.py +440 -0
  1284. vllm/v1/core/kv_cache_manager.py +399 -0
  1285. vllm/v1/core/kv_cache_utils.py +1291 -0
  1286. vllm/v1/core/sched/__init__.py +0 -0
  1287. vllm/v1/core/sched/async_scheduler.py +47 -0
  1288. vllm/v1/core/sched/interface.py +158 -0
  1289. vllm/v1/core/sched/output.py +166 -0
  1290. vllm/v1/core/sched/request_queue.py +224 -0
  1291. vllm/v1/core/sched/scheduler.py +1296 -0
  1292. vllm/v1/core/sched/utils.py +69 -0
  1293. vllm/v1/core/single_type_kv_cache_manager.py +671 -0
  1294. vllm/v1/cudagraph_dispatcher.py +125 -0
  1295. vllm/v1/engine/__init__.py +203 -0
  1296. vllm/v1/engine/async_llm.py +742 -0
  1297. vllm/v1/engine/coordinator.py +357 -0
  1298. vllm/v1/engine/core.py +1235 -0
  1299. vllm/v1/engine/core_client.py +1334 -0
  1300. vllm/v1/engine/detokenizer.py +349 -0
  1301. vllm/v1/engine/exceptions.py +17 -0
  1302. vllm/v1/engine/llm_engine.py +370 -0
  1303. vllm/v1/engine/logprobs.py +201 -0
  1304. vllm/v1/engine/output_processor.py +576 -0
  1305. vllm/v1/engine/parallel_sampling.py +133 -0
  1306. vllm/v1/engine/processor.py +545 -0
  1307. vllm/v1/engine/utils.py +860 -0
  1308. vllm/v1/executor/__init__.py +0 -0
  1309. vllm/v1/executor/abstract.py +137 -0
  1310. vllm/v1/executor/multiproc_executor.py +726 -0
  1311. vllm/v1/executor/ray_distributed_executor.py +108 -0
  1312. vllm/v1/executor/utils.py +23 -0
  1313. vllm/v1/kv_cache_interface.py +375 -0
  1314. vllm/v1/kv_offload/__init__.py +0 -0
  1315. vllm/v1/kv_offload/abstract.py +165 -0
  1316. vllm/v1/kv_offload/backend.py +96 -0
  1317. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1318. vllm/v1/kv_offload/backends/cpu.py +61 -0
  1319. vllm/v1/kv_offload/cpu.py +75 -0
  1320. vllm/v1/kv_offload/factory.py +56 -0
  1321. vllm/v1/kv_offload/lru_manager.py +132 -0
  1322. vllm/v1/kv_offload/mediums.py +39 -0
  1323. vllm/v1/kv_offload/spec.py +61 -0
  1324. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1325. vllm/v1/kv_offload/worker/cpu_gpu.py +171 -0
  1326. vllm/v1/kv_offload/worker/worker.py +142 -0
  1327. vllm/v1/metrics/__init__.py +0 -0
  1328. vllm/v1/metrics/loggers.py +741 -0
  1329. vllm/v1/metrics/prometheus.py +82 -0
  1330. vllm/v1/metrics/ray_wrappers.py +152 -0
  1331. vllm/v1/metrics/reader.py +246 -0
  1332. vllm/v1/metrics/stats.py +257 -0
  1333. vllm/v1/outputs.py +161 -0
  1334. vllm/v1/pool/__init__.py +0 -0
  1335. vllm/v1/pool/metadata.py +77 -0
  1336. vllm/v1/request.py +241 -0
  1337. vllm/v1/sample/__init__.py +0 -0
  1338. vllm/v1/sample/logits_processor/__init__.py +294 -0
  1339. vllm/v1/sample/logits_processor/builtin.py +275 -0
  1340. vllm/v1/sample/logits_processor/interface.py +97 -0
  1341. vllm/v1/sample/logits_processor/state.py +161 -0
  1342. vllm/v1/sample/metadata.py +43 -0
  1343. vllm/v1/sample/ops/__init__.py +0 -0
  1344. vllm/v1/sample/ops/bad_words.py +39 -0
  1345. vllm/v1/sample/ops/logprobs.py +26 -0
  1346. vllm/v1/sample/ops/penalties.py +43 -0
  1347. vllm/v1/sample/ops/topk_topp_sampler.py +292 -0
  1348. vllm/v1/sample/rejection_sampler.py +623 -0
  1349. vllm/v1/sample/sampler.py +285 -0
  1350. vllm/v1/sample/tpu/__init__.py +0 -0
  1351. vllm/v1/sample/tpu/metadata.py +124 -0
  1352. vllm/v1/sample/tpu/sampler.py +213 -0
  1353. vllm/v1/serial_utils.py +423 -0
  1354. vllm/v1/spec_decode/__init__.py +0 -0
  1355. vllm/v1/spec_decode/eagle.py +1011 -0
  1356. vllm/v1/spec_decode/medusa.py +66 -0
  1357. vllm/v1/spec_decode/metadata.py +62 -0
  1358. vllm/v1/spec_decode/metrics.py +211 -0
  1359. vllm/v1/spec_decode/ngram_proposer.py +276 -0
  1360. vllm/v1/spec_decode/utils.py +14 -0
  1361. vllm/v1/structured_output/__init__.py +295 -0
  1362. vllm/v1/structured_output/backend_guidance.py +245 -0
  1363. vllm/v1/structured_output/backend_lm_format_enforcer.py +167 -0
  1364. vllm/v1/structured_output/backend_outlines.py +320 -0
  1365. vllm/v1/structured_output/backend_types.py +134 -0
  1366. vllm/v1/structured_output/backend_xgrammar.py +327 -0
  1367. vllm/v1/structured_output/request.py +86 -0
  1368. vllm/v1/structured_output/utils.py +454 -0
  1369. vllm/v1/utils.py +396 -0
  1370. vllm/v1/worker/__init__.py +0 -0
  1371. vllm/v1/worker/block_table.py +210 -0
  1372. vllm/v1/worker/cpu_model_runner.py +175 -0
  1373. vllm/v1/worker/cpu_worker.py +156 -0
  1374. vllm/v1/worker/gpu_input_batch.py +863 -0
  1375. vllm/v1/worker/gpu_model_runner.py +4160 -0
  1376. vllm/v1/worker/gpu_ubatch_wrapper.py +399 -0
  1377. vllm/v1/worker/gpu_worker.py +710 -0
  1378. vllm/v1/worker/kv_connector_model_runner_mixin.py +132 -0
  1379. vllm/v1/worker/lora_model_runner_mixin.py +183 -0
  1380. vllm/v1/worker/tpu_input_batch.py +587 -0
  1381. vllm/v1/worker/tpu_model_runner.py +1946 -0
  1382. vllm/v1/worker/tpu_worker.py +346 -0
  1383. vllm/v1/worker/ubatch_splitting.py +192 -0
  1384. vllm/v1/worker/ubatch_utils.py +27 -0
  1385. vllm/v1/worker/ubatching.py +224 -0
  1386. vllm/v1/worker/utils.py +344 -0
  1387. vllm/v1/worker/worker_base.py +65 -0
  1388. vllm/v1/worker/xpu_model_runner.py +57 -0
  1389. vllm/v1/worker/xpu_worker.py +179 -0
  1390. vllm/version.py +41 -0
  1391. vllm/vllm_flash_attn/.gitkeep +0 -0
  1392. vllm/worker/__init__.py +0 -0
  1393. vllm/worker/worker_base.py +279 -0
  1394. vllm_cpu-0.11.0.post2.dist-info/METADATA +348 -0
  1395. vllm_cpu-0.11.0.post2.dist-info/RECORD +1398 -0
  1396. vllm_cpu-0.11.0.post2.dist-info/WHEEL +5 -0
  1397. vllm_cpu-0.11.0.post2.dist-info/entry_points.txt +5 -0
  1398. vllm_cpu-0.11.0.post2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,4160 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import gc
5
+ import itertools
6
+ import time
7
+ from collections import defaultdict
8
+ from collections.abc import Iterator
9
+ from contextlib import contextmanager
10
+ from copy import deepcopy
11
+ from typing import TYPE_CHECKING, Any, NamedTuple, Optional, Union, cast
12
+
13
+ import numpy as np
14
+ import torch
15
+ import torch.distributed
16
+ import torch.nn as nn
17
+ from tqdm import tqdm
18
+ from typing_extensions import TypeAlias
19
+
20
+ import vllm.envs as envs
21
+ from vllm.attention import Attention, AttentionType
22
+ from vllm.attention.backends.abstract import AttentionBackend
23
+ from vllm.attention.layers.chunked_local_attention import ChunkedLocalAttention
24
+ from vllm.compilation.counter import compilation_counter
25
+ from vllm.compilation.cuda_graph import CUDAGraphWrapper
26
+ from vllm.compilation.monitor import set_cudagraph_capturing_enabled
27
+ from vllm.config import (CompilationLevel, CUDAGraphMode, VllmConfig,
28
+ get_layers_from_vllm_config, update_config)
29
+ from vllm.distributed.eplb.eplb_state import EplbState
30
+ from vllm.distributed.kv_transfer import (get_kv_transfer_group,
31
+ has_kv_transfer_group)
32
+ from vllm.distributed.kv_transfer.kv_connector.utils import copy_kv_blocks
33
+ from vllm.distributed.parallel_state import (
34
+ get_pp_group, get_tp_group, graph_capture, is_global_first_rank,
35
+ prepare_communication_buffer_for_model)
36
+ from vllm.forward_context import (BatchDescriptor, DPMetadata,
37
+ set_forward_context)
38
+ from vllm.logger import init_logger
39
+ from vllm.model_executor.layers.attention_layer_base import AttentionLayerBase
40
+ from vllm.model_executor.layers.mamba.abstract import MambaBase
41
+ from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
42
+ from vllm.model_executor.model_loader import TensorizerLoader, get_model_loader
43
+ from vllm.model_executor.models.deepseek_v2 import DeepseekV32IndexerCache
44
+ # yapf conflicts with isort for this block
45
+ # yapf: disable
46
+ from vllm.model_executor.models.interfaces import (SupportsMultiModal,
47
+ is_mixture_of_experts,
48
+ supports_eagle3,
49
+ supports_mrope,
50
+ supports_multimodal_pruning,
51
+ supports_transcription)
52
+ # yapf: enable
53
+ from vllm.model_executor.models.interfaces_base import (
54
+ VllmModelForPooling, is_pooling_model, is_text_generation_model)
55
+ from vllm.multimodal import MULTIMODAL_REGISTRY
56
+ from vllm.multimodal.inputs import (BatchedTensorInputs, MultiModalKwargsItem,
57
+ PlaceholderRange)
58
+ from vllm.multimodal.utils import group_mm_kwargs_by_modality
59
+ from vllm.pooling_params import PoolingParams
60
+ from vllm.sampling_params import SamplingType
61
+ from vllm.sequence import IntermediateTensors
62
+ from vllm.tasks import GenerationTask, PoolingTask, SupportedTask
63
+ from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler,
64
+ GiB_bytes, cdiv, check_use_alibi, get_dtype_size,
65
+ is_pin_memory_available,
66
+ length_from_prompt_token_ids_or_embeds, round_up,
67
+ supports_dynamo)
68
+ from vllm.utils.jsontree import json_map_leaves
69
+ from vllm.v1.attention.backends.flash_attn import AttentionMetadata
70
+ from vllm.v1.attention.backends.gdn_attn import GDNAttentionMetadataBuilder
71
+ from vllm.v1.attention.backends.utils import (
72
+ AttentionCGSupport, AttentionMetadataBuilder, CommonAttentionMetadata,
73
+ create_fast_prefill_custom_backend,
74
+ reorder_batch_to_split_decodes_and_prefills, split_attn_metadata)
75
+ from vllm.v1.cudagraph_dispatcher import CudagraphDispatcher
76
+ # yapf conflicts with isort for this block
77
+ # yapf: disable
78
+ from vllm.v1.kv_cache_interface import (AttentionSpec,
79
+ ChunkedLocalAttentionSpec,
80
+ CrossAttentionSpec,
81
+ EncoderOnlyAttentionSpec,
82
+ FullAttentionSpec, KVCacheConfig,
83
+ KVCacheGroupSpec, KVCacheSpec,
84
+ MambaSpec, MLAAttentionSpec,
85
+ SlidingWindowSpec,
86
+ UniformTypeKVCacheSpecs)
87
+ # yapf: enable
88
+ from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, AsyncModelRunnerOutput,
89
+ DraftTokenIds, LogprobsLists, LogprobsTensors,
90
+ ModelRunnerOutput, PoolerOutput, SamplerOutput)
91
+ from vllm.v1.pool.metadata import PoolingMetadata
92
+ from vllm.v1.sample.logits_processor import LogitsProcessors, build_logitsprocs
93
+ from vllm.v1.sample.metadata import SamplingMetadata
94
+ from vllm.v1.sample.rejection_sampler import RejectionSampler
95
+ from vllm.v1.sample.sampler import Sampler
96
+ from vllm.v1.spec_decode.eagle import EagleProposer
97
+ from vllm.v1.spec_decode.medusa import MedusaProposer
98
+ from vllm.v1.spec_decode.metadata import SpecDecodeMetadata
99
+ from vllm.v1.spec_decode.ngram_proposer import NgramProposer
100
+ from vllm.v1.structured_output.utils import apply_grammar_bitmask
101
+ from vllm.v1.utils import CpuGpuBuffer, record_function_or_nullcontext
102
+ from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
103
+ from vllm.v1.worker.gpu_ubatch_wrapper import UBatchWrapper
104
+ from vllm.v1.worker.kv_connector_model_runner_mixin import (
105
+ KVConnectorModelRunnerMixin)
106
+ from vllm.v1.worker.lora_model_runner_mixin import LoRAModelRunnerMixin
107
+ from vllm.v1.worker.ubatch_splitting import (check_ubatch_thresholds,
108
+ ubatch_split)
109
+ from vllm.v1.worker.ubatch_utils import UBatchSlice, UBatchSlices
110
+ from vllm.v1.worker.utils import is_residual_scattered_for_sp
111
+
112
+ from .utils import (AttentionGroup, MultiModalBudget,
113
+ add_kv_sharing_layers_to_kv_cache_groups, bind_kv_cache,
114
+ gather_mm_placeholders, sanity_check_mm_encoder_outputs,
115
+ scatter_mm_placeholders)
116
+
117
+ if TYPE_CHECKING:
118
+ from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
119
+ from vllm.v1.core.sched.output import SchedulerOutput
120
+
121
+ logger = init_logger(__name__)
122
+
123
+ AttnMetadataDict: TypeAlias = dict[str, AttentionMetadata]
124
+ # list when ubatching is enabled
125
+ PerLayerAttnMetadata: TypeAlias = Union[list[AttnMetadataDict],
126
+ AttnMetadataDict]
127
+
128
+
129
+ # Wrapper for ModelRunnerOutput to support overlapped execution.
130
+ class AsyncGPUModelRunnerOutput(AsyncModelRunnerOutput):
131
+
132
+ def __init__(
133
+ self,
134
+ model_runner_output: ModelRunnerOutput,
135
+ sampled_token_ids: torch.Tensor,
136
+ invalid_req_indices: list[int],
137
+ async_output_copy_stream: torch.cuda.Stream,
138
+ ):
139
+ self._model_runner_output = model_runner_output
140
+ self._invalid_req_indices = invalid_req_indices
141
+
142
+ # Event on the copy stream so we can synchronize the non-blocking copy.
143
+ self._async_copy_ready_event = torch.cuda.Event()
144
+
145
+ # Keep a reference to the device tensor to avoid it being
146
+ # deallocated until we finish copying it to the host.
147
+ self._sampled_token_ids = sampled_token_ids
148
+
149
+ # Initiate the copy on a separate stream, but do not synchronize it.
150
+ default_stream = torch.cuda.current_stream()
151
+ with torch.cuda.stream(async_output_copy_stream):
152
+ async_output_copy_stream.wait_stream(default_stream)
153
+ self._sampled_token_ids_cpu = self._sampled_token_ids.to(
154
+ 'cpu', non_blocking=True)
155
+ self._async_copy_ready_event.record()
156
+
157
+ def get_output(self) -> ModelRunnerOutput:
158
+ """Copy the device tensors to the host and return a ModelRunnerOutput.
159
+
160
+ This function blocks until the copy is finished.
161
+ """
162
+ self._async_copy_ready_event.synchronize()
163
+
164
+ # Release the device tensor once the copy has completed
165
+ del self._sampled_token_ids
166
+
167
+ valid_sampled_token_ids = self._sampled_token_ids_cpu.tolist()
168
+ for i in self._invalid_req_indices:
169
+ valid_sampled_token_ids[i].clear()
170
+
171
+ output = self._model_runner_output
172
+ output.sampled_token_ids = valid_sampled_token_ids
173
+ return output
174
+
175
+
176
+ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
177
+
178
+ def __init__(
179
+ self,
180
+ vllm_config: VllmConfig,
181
+ device: torch.device,
182
+ ):
183
+ self.vllm_config = vllm_config
184
+ self.model_config = vllm_config.model_config
185
+ self.cache_config = vllm_config.cache_config
186
+ self.compilation_config = vllm_config.compilation_config
187
+ self.lora_config = vllm_config.lora_config
188
+ self.load_config = vllm_config.load_config
189
+ self.parallel_config = vllm_config.parallel_config
190
+ self.scheduler_config = vllm_config.scheduler_config
191
+ self.speculative_config = vllm_config.speculative_config
192
+ self.observability_config = vllm_config.observability_config
193
+
194
+ from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
195
+ set_cpu_offload_max_bytes(
196
+ int(self.cache_config.cpu_offload_gb * 1024**3))
197
+
198
+ model_config = self.model_config
199
+ cache_config = self.cache_config
200
+ scheduler_config = self.scheduler_config
201
+ parallel_config = self.parallel_config
202
+ self.device = device
203
+ self.pin_memory = is_pin_memory_available()
204
+ self.dtype = self.model_config.dtype
205
+ if cache_config.cache_dtype == "auto":
206
+ self.kv_cache_dtype = self.dtype
207
+ else:
208
+ self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
209
+ cache_config.cache_dtype]
210
+
211
+ self.is_pooling_model = (model_config.runner_type == 'pooling')
212
+ self.enable_prompt_embeds = model_config.enable_prompt_embeds
213
+ self.is_multimodal_raw_input_only_model = (
214
+ model_config.is_multimodal_raw_input_only_model)
215
+ # This will be overridden in load_model()
216
+ self.is_multimodal_pruning_enabled = False
217
+ self.max_model_len = model_config.max_model_len
218
+ self.dcp_world_size = self.parallel_config.decode_context_parallel_size
219
+ self.max_num_tokens = scheduler_config.max_num_batched_tokens
220
+ self.max_num_reqs = scheduler_config.max_num_seqs
221
+
222
+ # Broadcast PP output for external_launcher (torchrun)
223
+ # to make sure we are synced across pp ranks
224
+ # TODO: Support overlapping mirco-batches
225
+ # https://github.com/vllm-project/vllm/issues/18019
226
+ self.broadcast_pp_output = (
227
+ self.parallel_config.distributed_executor_backend
228
+ == "external_launcher" and len(get_pp_group().ranks) > 0)
229
+
230
+ # Model-related.
231
+ self.num_query_heads = model_config.get_num_attention_heads(
232
+ parallel_config)
233
+ self.hidden_size = model_config.get_hidden_size()
234
+ self.attention_chunk_size = model_config.attention_chunk_size
235
+ # Only relevant for models using ALiBi (e.g, MPT)
236
+ self.use_alibi = check_use_alibi(model_config)
237
+
238
+ self.cascade_attn_enabled = not self.model_config.disable_cascade_attn
239
+
240
+ # Multi-modal data support
241
+ self.mm_registry = MULTIMODAL_REGISTRY
242
+ self.uses_mrope = model_config.uses_mrope
243
+ self.supports_mm_inputs = self.mm_registry.supports_multimodal_inputs(
244
+ model_config)
245
+
246
+ if self.model_config.is_encoder_decoder:
247
+ # Maximum length of the encoder input, only for encoder-decoder
248
+ # models.
249
+ self.max_encoder_len = scheduler_config.\
250
+ max_num_encoder_input_tokens
251
+ else:
252
+ self.max_encoder_len = 0
253
+
254
+ # Sampler
255
+ self.sampler = Sampler(logprobs_mode=self.model_config.logprobs_mode)
256
+
257
+ self.eplb_state: Optional[EplbState] = None
258
+ """
259
+ State of the expert parallelism load balancer.
260
+
261
+ Will be lazily initialized when the model is loaded.
262
+ """
263
+
264
+ # Lazy initializations
265
+ # self.model: nn.Module # Set after load_model
266
+ # Initialize in initialize_kv_cache
267
+ self.kv_caches: list[torch.Tensor] = []
268
+ # indexes: [kv_cache_group_id][attn_group]
269
+ self.attn_groups: list[list[AttentionGroup]] = []
270
+ # self.kv_cache_config: KVCacheConfig
271
+
272
+ # mm_hash -> encoder_output
273
+ self.encoder_cache: dict[str, torch.Tensor] = {}
274
+
275
+ self.use_aux_hidden_state_outputs = False
276
+ # Set up speculative decoding.
277
+ # NOTE(Jiayi): currently we put the entire draft model on
278
+ # the last PP rank. This is not ideal if there are many
279
+ # layers in the draft model.
280
+ if self.speculative_config and get_pp_group().is_last_rank:
281
+ if self.speculative_config.method == "ngram":
282
+ self.drafter = NgramProposer(self.vllm_config)
283
+ elif self.speculative_config.use_eagle():
284
+ self.drafter = EagleProposer(self.vllm_config, self.device,
285
+ self) # type: ignore
286
+ if self.speculative_config.method == "eagle3":
287
+ self.use_aux_hidden_state_outputs = True
288
+ elif self.speculative_config.method == "medusa":
289
+ self.drafter = MedusaProposer(
290
+ vllm_config=self.vllm_config,
291
+ device=self.device) # type: ignore
292
+ else:
293
+ raise ValueError("Unknown speculative decoding method: "
294
+ f"{self.speculative_config.method}")
295
+ self.rejection_sampler = RejectionSampler()
296
+
297
+ # Request states.
298
+ self.requests: dict[str, CachedRequestState] = {}
299
+ self.comm_stream = torch.cuda.Stream()
300
+
301
+ # Input Batch
302
+ # NOTE(Chen): Ideally, we should initialize the input batch inside
303
+ # `initialize_kv_cache` based on the kv cache config. However, as in
304
+ # https://github.com/vllm-project/vllm/pull/18298, due to some unknown
305
+ # reasons, we have to initialize the input batch before `load_model`,
306
+ # quantization + weight offloading will fail otherwise. As a temporary
307
+ # solution, we initialize the input batch here, and re-initialize it
308
+ # in `initialize_kv_cache` if the block_sizes here is different from
309
+ # the block_sizes in the kv cache config.
310
+ self.input_batch = InputBatch(
311
+ max_num_reqs=self.max_num_reqs,
312
+ # We need to use the encoder length for encoder-decoer
313
+ # because of KV cache for cross-attention.
314
+ max_model_len=max(self.max_model_len, self.max_encoder_len),
315
+ max_num_batched_tokens=self.max_num_tokens,
316
+ device=self.device,
317
+ pin_memory=self.pin_memory,
318
+ vocab_size=self.model_config.get_vocab_size(),
319
+ block_sizes=[self.cache_config.block_size],
320
+ is_spec_decode=bool(self.vllm_config.speculative_config),
321
+ logitsprocs=build_logitsprocs(
322
+ self.vllm_config, self.device, self.pin_memory,
323
+ self.is_pooling_model,
324
+ self.vllm_config.model_config.logits_processors),
325
+ is_pooling_model=self.is_pooling_model,
326
+ )
327
+
328
+ self.use_async_scheduling = self.scheduler_config.async_scheduling
329
+ self.async_output_copy_stream = torch.cuda.Stream() if \
330
+ self.use_async_scheduling else None
331
+
332
+ # TODO(woosuk): Provide an option to tune the max cudagraph batch size.
333
+ # The convention is different.
334
+ # self.cudagraph_batch_sizes sorts in ascending order.
335
+ # The batch sizes in the config are in descending order.
336
+ if self.compilation_config.cudagraph_capture_sizes and \
337
+ self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE:
338
+ self.cudagraph_batch_sizes = list(
339
+ reversed(self.compilation_config.cudagraph_capture_sizes))
340
+
341
+ # Cache the device properties.
342
+ self._init_device_properties()
343
+
344
+ # Persistent buffers for CUDA graphs.
345
+ self.input_ids = self._make_buffer(self.max_num_tokens,
346
+ dtype=torch.int32)
347
+ self.positions = self._make_buffer(self.max_num_tokens,
348
+ dtype=torch.int64)
349
+ self.query_start_loc = self._make_buffer(self.max_num_reqs + 1,
350
+ dtype=torch.int32)
351
+ self.seq_lens = self._make_buffer(self.max_num_reqs, dtype=torch.int32)
352
+ # Because inputs_embeds may be bfloat16 and we don't need a numpy
353
+ # version of this tensor, avoid a RuntimeError by not creating a
354
+ # numpy buffer.
355
+ self.inputs_embeds = self._make_buffer(self.max_num_tokens,
356
+ self.hidden_size,
357
+ dtype=self.dtype,
358
+ numpy=False)
359
+ self.is_token_ids = self._make_buffer(self.max_num_tokens,
360
+ dtype=torch.bool)
361
+ self.discard_request_indices = self._make_buffer(self.max_num_reqs,
362
+ dtype=torch.int64)
363
+ self.num_discarded_requests = 0
364
+
365
+ self.num_decode_draft_tokens = self._make_buffer(self.max_num_reqs,
366
+ dtype=torch.int32)
367
+ self.num_accepted_tokens = self._make_buffer(self.max_num_reqs,
368
+ dtype=torch.int64)
369
+
370
+ # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
371
+ if self.uses_mrope:
372
+ # NOTE: `mrope_positions` is implemented with one additional dummy
373
+ # position on purpose to make it non-contiguous so that it can work
374
+ # with torch compile.
375
+ # See detailed explanation in https://github.com/vllm-project/vllm/pull/12128#discussion_r1926431923
376
+
377
+ # NOTE: When M-RoPE is enabled, position ids are 3D regardless of
378
+ # the modality of inputs. For text-only inputs, each dimension has
379
+ # identical position IDs, making M-RoPE functionally equivalent to
380
+ # 1D-RoPE.
381
+ # See page 5 of https://arxiv.org/abs/2409.12191
382
+ self.mrope_positions = self._make_buffer(
383
+ (3, self.max_num_tokens + 1), dtype=torch.int64)
384
+
385
+ # CUDA event to synchronize use of reused CPU tensors between steps
386
+ # when async scheduling is enabled.
387
+ self.prepare_inputs_event: Optional[torch.cuda.Event] = None
388
+ if self.use_async_scheduling:
389
+ self.prepare_inputs_event = torch.cuda.Event()
390
+ # Start in a completed state.
391
+ self.prepare_inputs_event.record(torch.cuda.default_stream())
392
+
393
+ # None in the first PP rank. The rest are set after load_model.
394
+ self.intermediate_tensors: Optional[IntermediateTensors] = None
395
+
396
+ # OPTIMIZATION: Cache the tensors rather than creating them every step.
397
+ # Keep in int64 to avoid overflow with long context
398
+ self.arange_np = np.arange(max(self.max_num_reqs + 1,
399
+ self.max_model_len,
400
+ self.max_num_tokens),
401
+ dtype=np.int64)
402
+
403
+ # Layer pairings for cross-layer KV sharing.
404
+ # If an Attention layer `layer_name` is in the keys of this dict, it
405
+ # means this layer will perform attention using the keys and values
406
+ # from the KV cache of `shared_kv_cache_layers[layer_name]`.
407
+ self.shared_kv_cache_layers: dict[str, str] = {}
408
+ self.kv_sharing_fast_prefill_eligible_layers: set[str] = set()
409
+
410
+ self.kv_sharing_fast_prefill_logits_indices = None
411
+ if self.cache_config.kv_sharing_fast_prefill:
412
+ self.kv_sharing_fast_prefill_logits_indices = torch.zeros(
413
+ self.max_num_tokens, dtype=torch.int32, device=self.device)
414
+
415
+ self.uniform_decode_query_len = 1 if not self.speculative_config else \
416
+ 1 + self.speculative_config.num_speculative_tokens
417
+
418
+ # Cudagraph dispatcher for runtime cudagraph dispatching.
419
+ self.cudagraph_dispatcher = CudagraphDispatcher(self.vllm_config)
420
+
421
+ self.mm_budget = MultiModalBudget(
422
+ self.model_config,
423
+ self.scheduler_config,
424
+ self.mm_registry,
425
+ ) if self.supports_mm_inputs else None
426
+
427
+ self.reorder_batch_threshold: Optional[int] = None
428
+
429
+ # Attention layers that are only in the KVCacheConfig of the runner
430
+ # (e.g., KV sharing, encoder-only attention), but not in the
431
+ # KVCacheConfig of the scheduler.
432
+ self.runner_only_attn_layers: set[str] = set()
433
+
434
+ # Cached outputs.
435
+ self._draft_token_ids: Optional[Union[list[list[int]],
436
+ torch.Tensor]] = None
437
+ self.transfer_event = torch.cuda.Event()
438
+ self.sampled_token_ids_pinned_cpu = torch.empty(
439
+ (self.max_model_len, 1),
440
+ dtype=torch.int64,
441
+ device="cpu",
442
+ pin_memory=self.pin_memory)
443
+
444
+ def _make_buffer(self,
445
+ *size: Union[int, torch.SymInt],
446
+ dtype: torch.dtype,
447
+ numpy: bool = True) -> CpuGpuBuffer:
448
+ return CpuGpuBuffer(*size,
449
+ dtype=dtype,
450
+ device=self.device,
451
+ pin_memory=self.pin_memory,
452
+ with_numpy=numpy)
453
+
454
+ def _init_model_kwargs(self, num_tokens: int):
455
+ model_kwargs = dict[str, Any]()
456
+
457
+ if not self.is_pooling_model:
458
+ return model_kwargs
459
+
460
+ num_reqs = self.input_batch.num_reqs
461
+ pooling_params = self.input_batch.get_pooling_params()
462
+
463
+ token_type_id_requests = dict[int, Any]()
464
+ for i, param in enumerate(pooling_params):
465
+ if param.extra_kwargs is not None and \
466
+ (token_types := param.extra_kwargs.get(
467
+ "compressed_token_type_ids")) is not None:
468
+ token_type_id_requests[i] = token_types
469
+
470
+ if len(token_type_id_requests) == 0:
471
+ return model_kwargs
472
+
473
+ seq_lens = self.seq_lens.gpu[:num_reqs]
474
+ token_type_ids = []
475
+
476
+ for i in range(num_reqs):
477
+ pos = token_type_id_requests.get(i, seq_lens[i])
478
+ ids = (torch.arange(seq_lens[i]) >= pos).int()
479
+ token_type_ids.append(ids)
480
+
481
+ model_kwargs["token_type_ids"] = torch.concat(token_type_ids).to(
482
+ device=self.device)
483
+ return model_kwargs
484
+
485
+ def _may_reorder_batch(self, scheduler_output: "SchedulerOutput") -> None:
486
+ """
487
+ Update the order of requests in the batch based on the attention
488
+ backend's needs. For example, some attention backends (namely MLA) may
489
+ want to separate requests based on if the attention computation will be
490
+ compute-bound or memory-bound.
491
+
492
+ Args:
493
+ scheduler_output: The scheduler output.
494
+ """
495
+ # Attention free models have zero kv_cache_goups, however models
496
+ # like Mamba are also attention free but use the kv_cache for
497
+ # keeping its internal state. This is why we check the number
498
+ # of kv_cache groups instead of solely checking
499
+ # for self.model_config.is_attention_free.
500
+ if len(self.kv_cache_config.kv_cache_groups) == 0:
501
+ return
502
+
503
+ if self.reorder_batch_threshold is not None:
504
+ # NOTE(lucas): currently no backend supports the custom masking
505
+ # required for DCP with q_len > 1, so we assert here. Remove this
506
+ # assert once the custom mask is support is added to FA3.
507
+ if self.dcp_world_size > 1:
508
+ assert self.reorder_batch_threshold == 1, \
509
+ "DCP not support reorder_batch_threshold > 1 now."
510
+ reorder_batch_to_split_decodes_and_prefills(
511
+ self.input_batch,
512
+ scheduler_output,
513
+ decode_threshold=self.reorder_batch_threshold)
514
+
515
+ # Note: used for model runner override.
516
+ def _init_device_properties(self) -> None:
517
+ """Initialize attributes from torch.cuda.get_device_properties
518
+ """
519
+ self.device_properties = torch.cuda.get_device_properties(self.device)
520
+ self.num_sms = self.device_properties.multi_processor_count
521
+
522
+ # Note: used for model runner override.
523
+ def _sync_device(self) -> None:
524
+ torch.cuda.synchronize()
525
+
526
+ def _update_states(self, scheduler_output: "SchedulerOutput") -> None:
527
+ """Update the cached states and the persistent batch with the scheduler
528
+ output.
529
+
530
+ The updated states are used by the `_prepare_inputs` function to create
531
+ the input GPU tensors for the model.
532
+
533
+ The SamplingMetadata is updated and copied to the GPU if there is a
534
+ new/resumed/paused/finished request in the batch.
535
+ """
536
+ # Remove finished requests from the cached states.
537
+ for req_id in scheduler_output.finished_req_ids:
538
+ self.requests.pop(req_id, None)
539
+ # Remove the finished requests from the persistent batch.
540
+ # NOTE(woosuk): There could be an edge case where finished_req_ids and
541
+ # scheduled_req_ids overlap. This happens when a request is aborted and
542
+ # then resubmitted with the same ID. In this case, we treat them as two
543
+ # distinct requests - clearing the cached states for the first request
544
+ # and handling the second as a new request.
545
+ for req_id in scheduler_output.finished_req_ids:
546
+ self.input_batch.remove_request(req_id)
547
+
548
+ # Free the cached encoder outputs.
549
+ for mm_hash in scheduler_output.free_encoder_mm_hashes:
550
+ self.encoder_cache.pop(mm_hash, None)
551
+
552
+ # Remove the unscheduled requests from the persistent batch.
553
+ # NOTE(woosuk): The unscheduled requests are either preempted requests
554
+ # or running requests that are not scheduled in this step. We remove
555
+ # them from the persistent batch but keep their cached states since
556
+ # they will be scheduled again sometime in the future.
557
+ scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
558
+ cached_req_ids = self.input_batch.req_id_to_index.keys()
559
+ unscheduled_req_ids = cached_req_ids - scheduled_req_ids
560
+ # NOTE(woosuk): The persistent batch optimization assumes that
561
+ # consecutive batches contain mostly the same requests. If batches
562
+ # have low request overlap (e.g., alternating between two distinct
563
+ # sets of requests), this optimization becomes very inefficient.
564
+ for req_id in unscheduled_req_ids:
565
+ self.input_batch.remove_request(req_id)
566
+
567
+ reqs_to_add: list[CachedRequestState] = []
568
+ # Add new requests to the cached states.
569
+ for new_req_data in scheduler_output.scheduled_new_reqs:
570
+ req_id = new_req_data.req_id
571
+ sampling_params = new_req_data.sampling_params
572
+ pooling_params = new_req_data.pooling_params
573
+
574
+ if sampling_params and \
575
+ sampling_params.sampling_type == SamplingType.RANDOM_SEED:
576
+ generator = torch.Generator(device=self.device)
577
+ generator.manual_seed(sampling_params.seed)
578
+ else:
579
+ generator = None
580
+
581
+ if self.is_pooling_model:
582
+ assert pooling_params is not None
583
+ task = pooling_params.task
584
+ assert task is not None, "You did not set `task` in the API"
585
+
586
+ model = cast(VllmModelForPooling, self.get_model())
587
+ to_update = model.pooler.get_pooling_updates(task)
588
+ to_update.apply(pooling_params)
589
+
590
+ req_state = CachedRequestState(
591
+ req_id=req_id,
592
+ prompt_token_ids=new_req_data.prompt_token_ids,
593
+ prompt_embeds=new_req_data.prompt_embeds,
594
+ mm_features=new_req_data.mm_features,
595
+ sampling_params=sampling_params,
596
+ pooling_params=pooling_params,
597
+ generator=generator,
598
+ block_ids=new_req_data.block_ids,
599
+ num_computed_tokens=new_req_data.num_computed_tokens,
600
+ output_token_ids=[],
601
+ lora_request=new_req_data.lora_request,
602
+ )
603
+ self.requests[req_id] = req_state
604
+
605
+ # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
606
+ if self.uses_mrope:
607
+ self._init_mrope_positions(req_state)
608
+
609
+ reqs_to_add.append(req_state)
610
+
611
+ # Update the states of the running/resumed requests.
612
+ is_last_rank = get_pp_group().is_last_rank
613
+ req_data = scheduler_output.scheduled_cached_reqs
614
+ for i, req_id in enumerate(req_data.req_ids):
615
+ req_state = self.requests[req_id]
616
+ num_computed_tokens = req_data.num_computed_tokens[i]
617
+ new_block_ids = req_data.new_block_ids[i]
618
+ resumed_from_preemption = req_data.resumed_from_preemption[i]
619
+
620
+ # Update the cached states.
621
+ req_state.num_computed_tokens = num_computed_tokens
622
+
623
+ if not is_last_rank:
624
+ # When using PP, the scheduler sends the sampled tokens back,
625
+ # because there's no direct communication between the first-
626
+ # stage worker and the last-stage worker.
627
+ new_token_ids = req_data.new_token_ids[i]
628
+ # Add the sampled token(s) from the previous step (if any).
629
+ # This doesn't include "unverified" tokens like spec tokens.
630
+ num_new_tokens = (num_computed_tokens + len(new_token_ids) -
631
+ req_state.num_tokens)
632
+ if num_new_tokens == 1:
633
+ # Avoid slicing list in most common case.
634
+ req_state.output_token_ids.append(new_token_ids[-1])
635
+ elif num_new_tokens > 0:
636
+ req_state.output_token_ids.extend(
637
+ new_token_ids[-num_new_tokens:])
638
+
639
+ # Update the block IDs.
640
+ if not resumed_from_preemption:
641
+ if new_block_ids is not None:
642
+ # Append the new blocks to the existing block IDs.
643
+ for block_ids, new_ids in zip(req_state.block_ids,
644
+ new_block_ids):
645
+ block_ids.extend(new_ids)
646
+ else:
647
+ assert new_block_ids is not None
648
+ # The request is resumed from preemption.
649
+ # Replace the existing block IDs with the new ones.
650
+ req_state.block_ids = new_block_ids
651
+
652
+ req_index = self.input_batch.req_id_to_index.get(req_id)
653
+ if req_index is None:
654
+ # The request is not in the persistent batch.
655
+ # The request was either preempted and resumed later, or was not
656
+ # scheduled in the previous step and needs to be added again.
657
+ reqs_to_add.append(req_state)
658
+ continue
659
+
660
+ # Update the persistent batch.
661
+ self.input_batch.num_computed_tokens_cpu[req_index] = (
662
+ num_computed_tokens)
663
+ if new_block_ids is not None:
664
+ self.input_batch.block_table.append_row(
665
+ new_block_ids, req_index)
666
+
667
+ # For the last rank, we don't need to update the token_ids_cpu
668
+ # because the sampled tokens are already cached.
669
+ if not is_last_rank:
670
+ # Add new_token_ids to token_ids_cpu.
671
+ start_token_index = num_computed_tokens
672
+ end_token_index = num_computed_tokens + len(new_token_ids)
673
+ self.input_batch.token_ids_cpu[
674
+ req_index,
675
+ start_token_index:end_token_index] = new_token_ids
676
+ self.input_batch.num_tokens_no_spec[
677
+ req_index] = end_token_index
678
+ self.input_batch.num_tokens[req_index] = end_token_index
679
+
680
+ # Add spec_token_ids to token_ids_cpu.
681
+ spec_token_ids = (
682
+ scheduler_output.scheduled_spec_decode_tokens.get(req_id, ()))
683
+ if spec_token_ids:
684
+ num_spec_tokens = len(spec_token_ids)
685
+ start_index = self.input_batch.num_tokens_no_spec[req_index]
686
+ end_token_index = start_index + num_spec_tokens
687
+ self.input_batch.token_ids_cpu[
688
+ req_index, start_index:end_token_index] = spec_token_ids
689
+ # NOTE(woosuk): `num_tokens` here may include spec tokens.
690
+ self.input_batch.num_tokens[req_index] += num_spec_tokens
691
+
692
+ # Add the new or resumed requests to the persistent batch.
693
+ # The smaller empty indices are filled first.
694
+ for request in reqs_to_add:
695
+ self.input_batch.add_request(request)
696
+
697
+ # Condense the batched states if there are gaps left by removed requests
698
+ self.input_batch.condense()
699
+ # Allow attention backend to reorder the batch, potentially
700
+ self._may_reorder_batch(scheduler_output)
701
+ # Refresh batch metadata with any pending updates.
702
+ self.input_batch.refresh_metadata()
703
+
704
+ def _update_states_after_model_execute(
705
+ self, output_token_ids: torch.Tensor) -> None:
706
+ """Update the cached states after model execution.
707
+
708
+ This is used for MTP/EAGLE for hybrid models, as in linear attention,
709
+ only the last token's state is kept. In MTP/EAGLE, for draft tokens
710
+ the state are kept util we decide how many tokens are accepted for
711
+ each sequence, and a shifting is done during the next iteration
712
+ based on the number of accepted tokens.
713
+ """
714
+ if not self.model_config.is_hybrid or not self.speculative_config:
715
+ return
716
+
717
+ # Find the number of accepted tokens for each sequence.
718
+ num_accepted_tokens = (torch.cat(
719
+ [
720
+ output_token_ids,
721
+ torch.full((output_token_ids.size(0), 1),
722
+ -1,
723
+ device=output_token_ids.device),
724
+ ],
725
+ dim=1) == -1).int().argmax(-1).cpu().numpy()
726
+ for i, num_tokens in enumerate(num_accepted_tokens):
727
+ self.input_batch.num_accepted_tokens_cpu[i] = num_tokens
728
+
729
+ def _init_mrope_positions(self, req_state: CachedRequestState):
730
+ image_grid_thw = []
731
+ video_grid_thw = []
732
+ second_per_grid_ts = []
733
+ audio_feature_lengths = []
734
+ use_audio_in_video = False
735
+ for mm_feature in req_state.mm_features:
736
+ mm_item = mm_feature.data
737
+ if mm_item is None:
738
+ continue
739
+ mm_input = mm_item.get_data()
740
+ if (t := mm_input.get("image_grid_thw")) is not None:
741
+ image_grid_thw.append(t.tolist())
742
+ if (t := mm_input.get("video_grid_thw")) is not None:
743
+ video_grid_thw.append(t.tolist())
744
+ if (t := mm_input.get("second_per_grid_ts")) is not None:
745
+ second_per_grid_ts.append(t)
746
+ if (t := mm_input.get("audio_feature_lengths")) is not None:
747
+ audio_feature_lengths.append(t)
748
+ if mm_input.get("use_audio_in_video") is True:
749
+ use_audio_in_video = True
750
+
751
+ if supports_mrope(self.model):
752
+ req_state.mrope_positions, req_state.mrope_position_delta = \
753
+ self.model.get_mrope_input_positions(
754
+ req_state.prompt_token_ids,
755
+ hf_config=self.model_config.hf_config,
756
+ image_grid_thw=image_grid_thw,
757
+ video_grid_thw=video_grid_thw,
758
+ second_per_grid_ts=second_per_grid_ts,
759
+ audio_feature_lengths=audio_feature_lengths,
760
+ use_audio_in_video=use_audio_in_video,
761
+ )
762
+ else:
763
+ req_state.mrope_positions, req_state.mrope_position_delta = \
764
+ MRotaryEmbedding.get_input_positions_tensor(
765
+ req_state.prompt_token_ids,
766
+ hf_config=self.model_config.hf_config,
767
+ image_grid_thw=image_grid_thw,
768
+ video_grid_thw=video_grid_thw,
769
+ second_per_grid_ts=second_per_grid_ts,
770
+ audio_feature_lengths=audio_feature_lengths,
771
+ use_audio_in_video=use_audio_in_video,
772
+ )
773
+
774
+ def _extract_mm_kwargs(
775
+ self,
776
+ scheduler_output: "SchedulerOutput",
777
+ ) -> BatchedTensorInputs:
778
+ if not scheduler_output or not self.is_multimodal_raw_input_only_model:
779
+ return {}
780
+
781
+ mm_kwargs = list[MultiModalKwargsItem]()
782
+ for req in scheduler_output.scheduled_new_reqs:
783
+ for feature in req.mm_features:
784
+ if feature.data is not None:
785
+ mm_kwargs.append(feature.data)
786
+
787
+ # Input all modalities at once
788
+ model = cast(SupportsMultiModal, self.model)
789
+ mm_kwargs_combined: BatchedTensorInputs = {}
790
+ for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
791
+ mm_kwargs,
792
+ device=self.device,
793
+ pin_memory=self.pin_memory,
794
+ merge_by_field_config=model.merge_by_field_config,
795
+ ):
796
+ mm_kwargs_combined.update(mm_kwargs_group)
797
+
798
+ return mm_kwargs_combined
799
+
800
+ def _dummy_mm_kwargs(self, num_seqs: int) -> BatchedTensorInputs:
801
+ if not self.is_multimodal_raw_input_only_model:
802
+ return {}
803
+
804
+ mm_budget = self.mm_budget
805
+ assert mm_budget is not None
806
+
807
+ dummy_modality = mm_budget.get_modality_with_max_tokens()
808
+ return self._get_mm_dummy_batch(dummy_modality, num_seqs)
809
+
810
+ def _get_cumsum_and_arange(
811
+ self,
812
+ num_tokens: np.ndarray,
813
+ cumsum_dtype: Optional[np.dtype] = None,
814
+ ) -> tuple[np.ndarray, np.ndarray]:
815
+ """Get the cumulative sum and batched arange of the given array.
816
+ # E.g., [2, 5, 3] -> ([2, 7, 10], [0, 1, 0, 1, 2, 3, 4, 0, 1, 2])
817
+ # Equivalent to but faster than:
818
+ # np.concatenate([np.arange(n) for n in num_tokens])
819
+ """
820
+ # Step 1. [2, 5, 3] -> [2, 7, 10]
821
+ cu_num_tokens = np.cumsum(num_tokens, dtype=cumsum_dtype)
822
+ total_num_tokens = cu_num_tokens[-1]
823
+ # Step 2. [2, 7, 10] -> [0, 0, 2, 2, 2, 2, 2, 7, 7, 7]
824
+ cumsums_offsets = np.repeat(cu_num_tokens - num_tokens, num_tokens)
825
+ # Step 3. [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
826
+ arange = self.arange_np[:total_num_tokens] - cumsums_offsets
827
+
828
+ return cu_num_tokens, arange
829
+
830
+ def _prepare_input_ids(self, total_num_scheduled_tokens: int,
831
+ cu_num_tokens: np.ndarray) -> None:
832
+ """Prepare the input IDs for the current batch.
833
+
834
+ Carefully handles the `prev_sampled_token_ids` which can be cached
835
+ from the previous engine iteration, in which case those tokens on the
836
+ GPU need to be copied into the corresponding slots into input_ids."""
837
+
838
+ if self.input_batch.prev_sampled_token_ids is None:
839
+ # Normal scheduling case
840
+ self.input_ids.copy_to_gpu(total_num_scheduled_tokens)
841
+ if self.enable_prompt_embeds:
842
+ self.inputs_embeds.copy_to_gpu(total_num_scheduled_tokens)
843
+ self.is_token_ids.copy_to_gpu(total_num_scheduled_tokens)
844
+ return
845
+
846
+ # Async scheduling case, where some decode requests from the previous
847
+ # iteration won't have entries in input_ids_cpu and need to be copied
848
+ # on the GPU from prev_sampled_token_ids.
849
+ prev_req_id_to_index = self.input_batch.prev_req_id_to_index
850
+ assert prev_req_id_to_index is not None
851
+ flattened_indices = []
852
+ prev_common_req_indices = []
853
+ indices_match = True
854
+ max_flattened_index = -1
855
+ for req_id, cur_index in self.input_batch.req_id_to_index.items():
856
+ if (prev_index := prev_req_id_to_index.get(req_id)) is not None:
857
+ prev_common_req_indices.append(prev_index)
858
+ # We need to compute the flattened input_ids index of the
859
+ # last token in each common request.
860
+ flattened_index = cu_num_tokens[cur_index].item() - 1
861
+ flattened_indices.append(flattened_index)
862
+ indices_match &= (prev_index == flattened_index)
863
+ max_flattened_index = max(max_flattened_index, flattened_index)
864
+ num_commmon_tokens = len(flattened_indices)
865
+ if num_commmon_tokens < total_num_scheduled_tokens:
866
+ # If not all requests are decodes from the last iteration,
867
+ # We need to copy the input_ids_cpu to the GPU first.
868
+ self.input_ids.copy_to_gpu(total_num_scheduled_tokens)
869
+ if self.enable_prompt_embeds:
870
+ self.inputs_embeds.copy_to_gpu(total_num_scheduled_tokens)
871
+ self.is_token_ids.copy_to_gpu(total_num_scheduled_tokens)
872
+ if num_commmon_tokens == 0:
873
+ # No requests in common with the previous iteration
874
+ # So input_ids_cpu will have all the input ids.
875
+ return
876
+ if indices_match and max_flattened_index == (num_commmon_tokens - 1):
877
+ # Common-case optimization: the batch is unchanged
878
+ # and no reordering happened.
879
+ # The indices are both the same permutation of 0..N-1 so
880
+ # we can copy directly using a single slice.
881
+ self.input_ids.gpu[:num_commmon_tokens].copy_(
882
+ self.input_batch.prev_sampled_token_ids[:num_commmon_tokens,
883
+ 0],
884
+ non_blocking=True)
885
+ if self.enable_prompt_embeds:
886
+ self.is_token_ids.gpu[:num_commmon_tokens] = True
887
+ return
888
+ # Upload the index tensors asynchronously
889
+ # so the scatter can be non-blocking.
890
+ input_ids_index_tensor = torch.tensor(flattened_indices,
891
+ dtype=torch.int64,
892
+ pin_memory=self.pin_memory).to(
893
+ self.device,
894
+ non_blocking=True)
895
+ prev_common_req_indices_tensor = torch.tensor(
896
+ prev_common_req_indices,
897
+ dtype=torch.int64,
898
+ pin_memory=self.pin_memory).to(self.device, non_blocking=True)
899
+ self.input_ids.gpu.scatter_(
900
+ dim=0,
901
+ index=input_ids_index_tensor,
902
+ src=self.input_batch.prev_sampled_token_ids[
903
+ prev_common_req_indices_tensor, 0])
904
+
905
+ def _get_encoder_seq_lens(
906
+ self,
907
+ scheduler_output: "SchedulerOutput",
908
+ kv_cache_spec: KVCacheSpec,
909
+ num_reqs: int,
910
+ ) -> Optional[np.ndarray]:
911
+ if not isinstance(kv_cache_spec, CrossAttentionSpec):
912
+ return None
913
+
914
+ # Build encoder_seq_lens array mapping request indices to
915
+ # encoder lengths for inputs scheduled in this batch
916
+ encoder_seq_lens = np.zeros(num_reqs, dtype=np.int32)
917
+ for req_id in scheduler_output.scheduled_encoder_inputs:
918
+ req_index = self.input_batch.req_id_to_index[req_id]
919
+ encoder_seq_lens[req_index] = self.max_encoder_len
920
+
921
+ return encoder_seq_lens
922
+
923
+ def _prepare_inputs(
924
+ self, scheduler_output: "SchedulerOutput"
925
+ ) -> tuple[PerLayerAttnMetadata, torch.Tensor,
926
+ Optional[SpecDecodeMetadata], np.ndarray,
927
+ Optional[CommonAttentionMetadata], int, Optional[UBatchSlices],
928
+ Optional[torch.Tensor]]:
929
+ """
930
+ :return: tuple[
931
+ attn_metadata: layer-to-attention_metadata mapping,
932
+ logits_indices, spec_decode_metadata
933
+ ]
934
+ """
935
+ total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
936
+ assert total_num_scheduled_tokens > 0
937
+ num_reqs = self.input_batch.num_reqs
938
+ assert num_reqs > 0
939
+
940
+ # OPTIMIZATION: Start copying the block table first.
941
+ # This way, we can overlap the copy with the following CPU operations.
942
+ self.input_batch.block_table.commit_block_table(num_reqs)
943
+
944
+ # Get the number of scheduled tokens for each request.
945
+ req_ids = self.input_batch.req_ids
946
+ tokens = [scheduler_output.num_scheduled_tokens[i] for i in req_ids]
947
+ num_scheduled_tokens = np.array(tokens, dtype=np.int32)
948
+ max_num_scheduled_tokens = max(tokens)
949
+
950
+ # Get request indices.
951
+ # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
952
+ req_indices = np.repeat(self.arange_np[:num_reqs],
953
+ num_scheduled_tokens)
954
+
955
+ # cu_num_tokens: [2, 5, 3] -> [2, 7, 10]
956
+ # arange: [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
957
+ cu_num_tokens, arange = self._get_cumsum_and_arange(
958
+ num_scheduled_tokens)
959
+
960
+ # Get positions.
961
+ positions_np = self.positions.np[:total_num_scheduled_tokens]
962
+ np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
963
+ arange,
964
+ out=positions_np)
965
+
966
+ # Calculate M-RoPE positions.
967
+ # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
968
+ if self.uses_mrope:
969
+ self._calc_mrope_positions(scheduler_output)
970
+
971
+ # Get token indices.
972
+ # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
973
+ # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
974
+ # where M is the max_model_len.
975
+ token_indices = (positions_np +
976
+ req_indices * self.input_batch.token_ids_cpu.shape[1])
977
+ token_indices_tensor = torch.from_numpy(token_indices)
978
+
979
+ # NOTE(woosuk): We use torch.index_select instead of np.take here
980
+ # because torch.index_select is much faster than np.take for large
981
+ # tensors.
982
+ torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
983
+ 0,
984
+ token_indices_tensor,
985
+ out=self.input_ids.cpu[:total_num_scheduled_tokens])
986
+ if self.enable_prompt_embeds:
987
+ is_token_ids = self.input_batch.is_token_ids.flatten()
988
+ torch.index_select(
989
+ is_token_ids,
990
+ 0,
991
+ token_indices_tensor,
992
+ out=self.is_token_ids.cpu[:total_num_scheduled_tokens])
993
+
994
+ # Because we did not pre-allocate a massive prompt_embeds CPU tensor on
995
+ # the InputBatch, we need to fill in the prompt embeds into the expected
996
+ # spots in the GpuModelRunner's pre-allocated prompt_embeds tensor.
997
+ if self.input_batch.req_prompt_embeds:
998
+ output_idx = 0
999
+ for req_idx in range(num_reqs):
1000
+ num_sched = num_scheduled_tokens[req_idx]
1001
+
1002
+ # Skip if this request doesn't have embeddings
1003
+ if req_idx not in self.input_batch.req_prompt_embeds:
1004
+ output_idx += num_sched
1005
+ continue
1006
+
1007
+ # Skip if no tokens scheduled
1008
+ if num_sched <= 0:
1009
+ output_idx += num_sched
1010
+ continue
1011
+
1012
+ req_embeds = self.input_batch.req_prompt_embeds[req_idx]
1013
+ start_pos = self.input_batch.num_computed_tokens_cpu[req_idx]
1014
+
1015
+ # Skip if trying to read beyond available embeddings
1016
+ if start_pos >= req_embeds.shape[0]:
1017
+ output_idx += num_sched
1018
+ continue
1019
+
1020
+ # Copy available embeddings
1021
+ end_pos = start_pos + num_sched
1022
+ actual_end = min(end_pos, req_embeds.shape[0])
1023
+ actual_num_sched = actual_end - start_pos
1024
+
1025
+ if actual_num_sched > 0:
1026
+ self.inputs_embeds.cpu[output_idx:output_idx +
1027
+ actual_num_sched].copy_(
1028
+ req_embeds[start_pos:actual_end]
1029
+ )
1030
+
1031
+ output_idx += num_sched
1032
+
1033
+ self.input_batch.block_table.compute_slot_mapping(
1034
+ req_indices, positions_np)
1035
+ self.input_batch.block_table.commit_slot_mapping(
1036
+ total_num_scheduled_tokens)
1037
+
1038
+ # Prepare the attention metadata.
1039
+ self.query_start_loc.np[0] = 0
1040
+ self.query_start_loc.np[1:num_reqs + 1] = cu_num_tokens
1041
+ # Note: pad query_start_loc to be non-decreasing, as kernels
1042
+ # like FlashAttention requires that
1043
+ self.query_start_loc.np[num_reqs + 1:].fill(cu_num_tokens[-1])
1044
+ self.query_start_loc.copy_to_gpu()
1045
+ query_start_loc = self.query_start_loc.gpu[:num_reqs + 1]
1046
+
1047
+ num_tokens_unpadded = scheduler_output.total_num_scheduled_tokens
1048
+ num_tokens_padded = num_tokens_unpadded + self.get_local_padding(
1049
+ num_tokens_unpadded)
1050
+ uniform_decode = \
1051
+ (max_num_scheduled_tokens == self.uniform_decode_query_len) and \
1052
+ (total_num_scheduled_tokens == num_reqs * max_num_scheduled_tokens)
1053
+ ubatch_slices, num_tokens_after_padding = \
1054
+ ubatch_split(num_scheduled_tokens,
1055
+ num_tokens_unpadded,
1056
+ num_tokens_padded,
1057
+ uniform_decode=uniform_decode,
1058
+ vllm_config=self.vllm_config)
1059
+
1060
+ self.seq_lens.np[:num_reqs] = (
1061
+ self.input_batch.num_computed_tokens_cpu[:num_reqs] +
1062
+ num_scheduled_tokens)
1063
+ # Fill unused with 0 for full cuda graph mode.
1064
+ self.seq_lens.np[num_reqs:].fill(0)
1065
+ self.seq_lens.copy_to_gpu()
1066
+ seq_lens = self.seq_lens.gpu[:num_reqs]
1067
+ max_seq_len = self.seq_lens.np[:num_reqs].max().item()
1068
+
1069
+ num_tokens = [
1070
+ self.requests[r].num_tokens for r in self.input_batch.req_ids
1071
+ ]
1072
+ num_tokens_np = np.array(num_tokens, dtype=np.int32)
1073
+
1074
+ # Record the index of requests that should not be sampled,
1075
+ # so that we could clear the sampled tokens before returning
1076
+ discard_requests_mask = self.seq_lens.np[:num_reqs] < num_tokens_np
1077
+ discard_request_indices = np.nonzero(discard_requests_mask)[0]
1078
+ self.num_discarded_requests = len(discard_request_indices)
1079
+ self.discard_request_indices.np[:self.num_discarded_requests] = (
1080
+ discard_request_indices)
1081
+
1082
+ self.discard_request_indices.copy_to_gpu(self.num_discarded_requests)
1083
+
1084
+ # Copy the tensors to the GPU.
1085
+ self._prepare_input_ids(total_num_scheduled_tokens, cu_num_tokens)
1086
+
1087
+ if self.uses_mrope:
1088
+ # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
1089
+ self.mrope_positions.gpu[:, :total_num_scheduled_tokens].copy_(
1090
+ self.mrope_positions.cpu[:, :total_num_scheduled_tokens],
1091
+ non_blocking=True)
1092
+ else:
1093
+ # Common case (1D positions)
1094
+ self.positions.copy_to_gpu(total_num_scheduled_tokens)
1095
+
1096
+ use_spec_decode = len(
1097
+ scheduler_output.scheduled_spec_decode_tokens) > 0
1098
+ if not use_spec_decode:
1099
+ # NOTE(woosuk): Due to chunked prefills, the batch may contain
1100
+ # partial requests. While we should not sample any token
1101
+ # from these partial requests, we do so for simplicity.
1102
+ # We will ignore the sampled tokens from the partial requests.
1103
+ # TODO: Support prompt logprobs.
1104
+ logits_indices = query_start_loc[1:] - 1
1105
+ num_draft_tokens = None
1106
+ spec_decode_metadata = None
1107
+ else:
1108
+ # Get the number of draft tokens for each request.
1109
+ # Iterate over the dictionary rather than all requests since not all
1110
+ # requests have draft tokens.
1111
+ num_draft_tokens = np.zeros(num_reqs, dtype=np.int32)
1112
+ # For chunked prefills, use -1 as mask rather than 0, as guided
1113
+ # decoding may rollback speculative tokens.
1114
+ num_decode_draft_tokens = np.full(num_reqs, -1, dtype=np.int32)
1115
+ for req_id, draft_token_ids in (
1116
+ scheduler_output.scheduled_spec_decode_tokens.items()):
1117
+ req_idx = self.input_batch.req_id_to_index[req_id]
1118
+ num_draft_tokens[req_idx] = len(draft_token_ids)
1119
+ num_decode_draft_tokens[req_idx] = (len(draft_token_ids) if (
1120
+ self.input_batch.num_computed_tokens_cpu[req_idx]
1121
+ >= self.input_batch.num_prompt_tokens[req_idx]) else -1)
1122
+ spec_decode_metadata = self._calc_spec_decode_metadata(
1123
+ num_draft_tokens, cu_num_tokens)
1124
+ logits_indices = spec_decode_metadata.logits_indices
1125
+
1126
+ # For DECODE only cuda graph of some attention backends (e.g., GDN).
1127
+ self.num_decode_draft_tokens.np[:
1128
+ num_reqs] = num_decode_draft_tokens
1129
+ self.num_decode_draft_tokens.np[num_reqs:].fill(-1)
1130
+ self.num_decode_draft_tokens.copy_to_gpu()
1131
+
1132
+ logits_indices_padded = None
1133
+ if self.cache_config.kv_sharing_fast_prefill:
1134
+ logits_indices_padded = self._prepare_kv_sharing_fast_prefill(
1135
+ logits_indices)
1136
+
1137
+ attn_metadata: PerLayerAttnMetadata = {}
1138
+ if ubatch_slices is not None:
1139
+ attn_metadata = [dict() for _ in range(len(ubatch_slices))]
1140
+
1141
+ # Used in the below loop.
1142
+ query_start_loc_cpu = self.query_start_loc.cpu[:num_reqs + 1]
1143
+ seq_lens_cpu = self.seq_lens.cpu[:num_reqs]
1144
+ num_computed_tokens_cpu = (
1145
+ self.input_batch.num_computed_tokens_cpu_tensor[:num_reqs])
1146
+ spec_decode_common_attn_metadata = None
1147
+ if use_spec_decode:
1148
+ self.num_accepted_tokens.np[:num_reqs] = (
1149
+ self.input_batch.num_accepted_tokens_cpu[:num_reqs])
1150
+ self.num_accepted_tokens.np[num_reqs:].fill(1)
1151
+ self.num_accepted_tokens.copy_to_gpu()
1152
+
1153
+ # Prepare the attention metadata for each KV cache group and make layers
1154
+ # in the same group share the same metadata.
1155
+ for kv_cache_group_id, kv_cache_group_spec in enumerate(
1156
+ self.kv_cache_config.kv_cache_groups):
1157
+ encoder_seq_lens = self._get_encoder_seq_lens(
1158
+ scheduler_output, kv_cache_group_spec.kv_cache_spec, num_reqs)
1159
+
1160
+ if isinstance(kv_cache_group_spec.kv_cache_spec,
1161
+ EncoderOnlyAttentionSpec):
1162
+ # Encoder-only layers do not have KV cache, so we need to
1163
+ # create a dummy block table and slot mapping for them.
1164
+ blk_table_tensor = torch.zeros(
1165
+ (num_reqs, 1),
1166
+ dtype=torch.int32,
1167
+ device=self.device,
1168
+ )
1169
+ slot_mapping = torch.zeros(
1170
+ (total_num_scheduled_tokens, ),
1171
+ dtype=torch.int64,
1172
+ device=self.device,
1173
+ )
1174
+ num_common_prefix_blocks = 0
1175
+ else:
1176
+ blk_table = self.input_batch.block_table[kv_cache_group_id]
1177
+ blk_table_tensor = blk_table.get_device_tensor(num_reqs)
1178
+ slot_mapping = blk_table.slot_mapping.gpu[:
1179
+ total_num_scheduled_tokens]
1180
+
1181
+ # Fill unused with -1. Needed for reshape_and_cache in full cuda
1182
+ # graph mode.
1183
+ blk_table.slot_mapping.gpu[total_num_scheduled_tokens:].fill_(
1184
+ -1)
1185
+ num_common_prefix_blocks = (
1186
+ scheduler_output.
1187
+ num_common_prefix_blocks[kv_cache_group_id])
1188
+
1189
+ common_attn_metadata = CommonAttentionMetadata(
1190
+ query_start_loc=query_start_loc,
1191
+ query_start_loc_cpu=query_start_loc_cpu,
1192
+ seq_lens=seq_lens,
1193
+ seq_lens_cpu=seq_lens_cpu,
1194
+ num_computed_tokens_cpu=num_computed_tokens_cpu,
1195
+ num_reqs=num_reqs,
1196
+ num_actual_tokens=total_num_scheduled_tokens,
1197
+ max_query_len=max_num_scheduled_tokens,
1198
+ max_seq_len=max_seq_len,
1199
+ block_table_tensor=blk_table_tensor,
1200
+ slot_mapping=slot_mapping,
1201
+ logits_indices_padded=logits_indices_padded,
1202
+ num_logits_indices=logits_indices.size(0),
1203
+ causal=True,
1204
+ encoder_seq_lens=encoder_seq_lens,
1205
+ )
1206
+
1207
+ if (self.speculative_config
1208
+ and spec_decode_common_attn_metadata is None):
1209
+ if isinstance(self.drafter, EagleProposer):
1210
+ if (self.drafter.attn_layer_names[0]
1211
+ in kv_cache_group_spec.layer_names):
1212
+ spec_decode_common_attn_metadata = common_attn_metadata
1213
+ else:
1214
+ spec_decode_common_attn_metadata = common_attn_metadata
1215
+
1216
+ for attn_group in self.attn_groups[kv_cache_group_id]:
1217
+ # Prepare for cascade attention if enabled & beneficial.
1218
+ common_prefix_len = 0
1219
+ builder = attn_group.get_metadata_builder()
1220
+ if self.cascade_attn_enabled:
1221
+ common_prefix_len = self._compute_cascade_attn_prefix_len(
1222
+ num_scheduled_tokens,
1223
+ num_common_prefix_blocks,
1224
+ attn_group.kv_cache_spec,
1225
+ builder,
1226
+ )
1227
+
1228
+ extra_attn_metadata_args = {}
1229
+ if use_spec_decode and isinstance(builder,
1230
+ GDNAttentionMetadataBuilder):
1231
+ extra_attn_metadata_args = dict(
1232
+ num_accepted_tokens=self.num_accepted_tokens.
1233
+ gpu[:num_reqs],
1234
+ num_decode_draft_tokens_cpu=self.
1235
+ num_decode_draft_tokens.cpu[:num_reqs],
1236
+ )
1237
+
1238
+ if ubatch_slices is not None:
1239
+ common_attn_metadata_list = split_attn_metadata(
1240
+ ubatch_slices, common_attn_metadata)
1241
+ for ubid, common_attn_metadata in enumerate(
1242
+ common_attn_metadata_list):
1243
+ attn_metadata_i = (attn_group.get_metadata_builder(
1244
+ ubatch_id=ubid).build(
1245
+ common_prefix_len=common_prefix_len,
1246
+ common_attn_metadata=common_attn_metadata))
1247
+ for layer_name in kv_cache_group_spec.layer_names:
1248
+ assert type(attn_metadata) is list
1249
+ attn_metadata[ubid][layer_name] = attn_metadata_i
1250
+ else:
1251
+ assert isinstance(attn_metadata, dict)
1252
+ attn_metadata_i = builder.build(
1253
+ common_prefix_len=common_prefix_len,
1254
+ common_attn_metadata=common_attn_metadata,
1255
+ **extra_attn_metadata_args)
1256
+ for layer_name in attn_group.layer_names:
1257
+ attn_metadata[layer_name] = attn_metadata_i
1258
+
1259
+ # Hot-Swap lora model
1260
+ if self.lora_config:
1261
+ self.set_active_loras(self.input_batch, num_scheduled_tokens)
1262
+
1263
+ return (attn_metadata, logits_indices, spec_decode_metadata,
1264
+ num_scheduled_tokens, spec_decode_common_attn_metadata,
1265
+ max_num_scheduled_tokens, ubatch_slices,
1266
+ num_tokens_after_padding)
1267
+
1268
+ def _compute_cascade_attn_prefix_len(
1269
+ self,
1270
+ num_scheduled_tokens: np.ndarray,
1271
+ num_common_prefix_blocks: int,
1272
+ kv_cache_spec: KVCacheSpec,
1273
+ attn_metadata_builder: AttentionMetadataBuilder,
1274
+ ) -> int:
1275
+ """Compute the length of the common prefix for cascade attention.
1276
+
1277
+ NOTE(woosuk): The common prefix length returned by this function
1278
+ represents the length used specifically for cascade attention, not the
1279
+ actual number of tokens shared between requests. When cascade attention
1280
+ is disabled (use_cascade=False), this function returns 0 even if
1281
+ requests share common tokens. Additionally, the common prefix length is
1282
+ truncated to a multiple of the block size and may be further truncated
1283
+ due to implementation details explained below.
1284
+
1285
+ Args:
1286
+ num_scheduled_tokens: Number of tokens scheduled per request.
1287
+ num_common_prefix_blocks: Number of shared KV cache blocks.
1288
+
1289
+ Returns:
1290
+ int: Length of common prefix in tokens.
1291
+ """
1292
+ common_prefix_len = num_common_prefix_blocks * kv_cache_spec.block_size
1293
+ if common_prefix_len == 0:
1294
+ # Common case.
1295
+ return 0
1296
+
1297
+ # NOTE(woosuk): Cascade attention uses two attention kernels: one
1298
+ # for the common prefix and the other for the rest. For the first
1299
+ # kernel, we concatenate all the query tokens (possibly from
1300
+ # different requests) and treat them as if they are from the same
1301
+ # request. Then, we use bi-directional attention to process the
1302
+ # common prefix in the KV cache. Importantly, this means that the
1303
+ # first kernel does not do any masking.
1304
+
1305
+ # Consider the following example:
1306
+ # Request 1's input query: [D, E, X]
1307
+ # Request 1's kv cache: [A, B, C, D, E, X]
1308
+ # Request 1's num_computed_tokens: 3 (i.e., [A, B, C])
1309
+ # Request 2's input query: [E, Y]
1310
+ # Request 2's kv cache: [A, B, C, D, E, Y]
1311
+ # Request 2's num_computed_tokens: 4 (i.e., [A, B, C, D])
1312
+
1313
+ # If we use [A, B, C, D, E] as the common prefix, then the
1314
+ # first kernel will compute the bi-directional attention between
1315
+ # input query [D, E, X, E, Y] and common prefix [A, B, C, D, E].
1316
+ # However, this is wrong because D in Request 1 should not attend to
1317
+ # E in the common prefix (i.e., we need masking).
1318
+ # To avoid this, [A, B, C, D] should be the common prefix.
1319
+ # That is, the common prefix should be capped by the minimum
1320
+ # num_computed_tokens among the requests, and plus one to include
1321
+ # the first token of the query.
1322
+
1323
+ # In practice, we use [A, B, C] as the common prefix, instead of
1324
+ # [A, B, C, D] (i.e., the common prefix is capped by the minimum
1325
+ # num_computed_tokens, without plus one).
1326
+ # This is because of an implementation detail: We want to always
1327
+ # use two kernels for cascade attention. Let's imagine:
1328
+ # Request 3's input query: [D]
1329
+ # Request 3's kv cache: [A, B, C, D]
1330
+ # Request 3's num_computed_tokens: 3 (i.e., [A, B, C])
1331
+ # If we use [A, B, C, D] as the common prefix for Request 1-3,
1332
+ # then Request 3 will be processed only by the first kernel,
1333
+ # and the second kernel will get an empty input. While this is not
1334
+ # a fundamental problem, our current implementation does not support
1335
+ # this case.
1336
+ num_reqs = len(num_scheduled_tokens)
1337
+ common_prefix_len = min(
1338
+ common_prefix_len,
1339
+ self.input_batch.num_computed_tokens_cpu[:num_reqs].min())
1340
+ # common_prefix_len should be a multiple of the block size.
1341
+ common_prefix_len = (common_prefix_len // kv_cache_spec.block_size *
1342
+ kv_cache_spec.block_size)
1343
+ use_sliding_window = (isinstance(kv_cache_spec, SlidingWindowSpec) or
1344
+ (isinstance(kv_cache_spec, FullAttentionSpec)
1345
+ and kv_cache_spec.sliding_window is not None))
1346
+ use_local_attention = (
1347
+ isinstance(kv_cache_spec, ChunkedLocalAttentionSpec)
1348
+ or (isinstance(kv_cache_spec, FullAttentionSpec)
1349
+ and kv_cache_spec.attention_chunk_size is not None))
1350
+ assert isinstance(kv_cache_spec, AttentionSpec)
1351
+ use_cascade = attn_metadata_builder.use_cascade_attention(
1352
+ common_prefix_len=common_prefix_len,
1353
+ query_lens=num_scheduled_tokens,
1354
+ num_query_heads=self.num_query_heads,
1355
+ num_kv_heads=kv_cache_spec.num_kv_heads,
1356
+ use_alibi=self.use_alibi,
1357
+ use_sliding_window=use_sliding_window,
1358
+ use_local_attention=use_local_attention,
1359
+ num_sms=self.num_sms,
1360
+ )
1361
+ return common_prefix_len if use_cascade else 0
1362
+
1363
+ def _calc_mrope_positions(self, scheduler_output: "SchedulerOutput"):
1364
+ mrope_pos_ptr = 0
1365
+ for index, req_id in enumerate(self.input_batch.req_ids):
1366
+ req = self.requests[req_id]
1367
+ assert req.mrope_positions is not None
1368
+
1369
+ num_computed_tokens = \
1370
+ self.input_batch.num_computed_tokens_cpu[index]
1371
+ num_scheduled_tokens = \
1372
+ scheduler_output.num_scheduled_tokens[req_id]
1373
+ num_prompt_tokens = length_from_prompt_token_ids_or_embeds(
1374
+ req.prompt_token_ids, req.prompt_embeds)
1375
+
1376
+ if num_computed_tokens + num_scheduled_tokens > num_prompt_tokens:
1377
+ prompt_part_len = max(0,
1378
+ num_prompt_tokens - num_computed_tokens)
1379
+ completion_part_len = max(
1380
+ 0, num_scheduled_tokens - prompt_part_len)
1381
+ else:
1382
+ prompt_part_len = num_scheduled_tokens
1383
+ completion_part_len = 0
1384
+
1385
+ assert num_scheduled_tokens == prompt_part_len + completion_part_len
1386
+
1387
+ if prompt_part_len > 0:
1388
+ # prompt's mrope_positions are pre-computed
1389
+ dst_start = mrope_pos_ptr
1390
+ dst_end = mrope_pos_ptr + prompt_part_len
1391
+ src_start = num_computed_tokens
1392
+ src_end = num_computed_tokens + prompt_part_len
1393
+
1394
+ self.mrope_positions.cpu[:, dst_start:dst_end] = (
1395
+ req.mrope_positions[:, src_start:src_end])
1396
+ mrope_pos_ptr += prompt_part_len
1397
+
1398
+ if completion_part_len > 0:
1399
+ # compute completion's mrope_positions on-the-fly
1400
+ dst_start = mrope_pos_ptr
1401
+ dst_end = mrope_pos_ptr + completion_part_len
1402
+
1403
+ MRotaryEmbedding.get_next_input_positions_tensor(
1404
+ out=self.mrope_positions.np,
1405
+ out_offset=dst_start,
1406
+ mrope_position_delta=req.mrope_position_delta,
1407
+ context_len=num_computed_tokens + prompt_part_len,
1408
+ num_new_tokens=completion_part_len,
1409
+ )
1410
+
1411
+ mrope_pos_ptr += completion_part_len
1412
+
1413
+ def _calc_spec_decode_metadata(
1414
+ self,
1415
+ num_draft_tokens: np.ndarray,
1416
+ cu_num_scheduled_tokens: np.ndarray,
1417
+ ) -> SpecDecodeMetadata:
1418
+ # Inputs:
1419
+ # cu_num_scheduled_tokens: [ 4, 104, 107, 207, 209]
1420
+ # num_draft_tokens: [ 3, 0, 2, 0, 1]
1421
+ # Outputs:
1422
+ # cu_num_draft_tokens: [ 3, 3, 5, 5, 6]
1423
+ # logits_indices: [ 0, 1, 2, 3, 103, 104, 105, 106,
1424
+ # 206, 207, 208]
1425
+ # target_logits_indices: [ 0, 1, 2, 5, 6, 9]
1426
+ # bonus_logits_indices: [ 3, 4, 7, 8, 10]
1427
+
1428
+ # Compute the logits indices.
1429
+ # [4, 1, 3, 1, 2]
1430
+ num_sampled_tokens = num_draft_tokens + 1
1431
+
1432
+ # Step 1. cu_num_sampled_tokens: [4, 5, 8, 9, 11]
1433
+ # arange: [0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1]
1434
+ cu_num_sampled_tokens, arange = self._get_cumsum_and_arange(
1435
+ num_sampled_tokens, cumsum_dtype=np.int32)
1436
+ # Step 2. [0, 0, 0, 0, 103, 104, 104, 104, 206, 207, 207]
1437
+ logits_indices = np.repeat(
1438
+ cu_num_scheduled_tokens - num_sampled_tokens, num_sampled_tokens)
1439
+ # Step 3. [0, 1, 2, 3, 103, 104, 105, 106, 206, 207, 208]
1440
+ logits_indices += arange
1441
+
1442
+ # Compute the bonus logits indices.
1443
+ bonus_logits_indices = cu_num_sampled_tokens - 1
1444
+
1445
+ # Compute the draft logits indices.
1446
+ # cu_num_draft_tokens: [3, 3, 5, 5, 6]
1447
+ # arange: [0, 1, 2, 0, 1, 0]
1448
+ cu_num_draft_tokens, arange = self._get_cumsum_and_arange(
1449
+ num_draft_tokens, cumsum_dtype=np.int32)
1450
+ # [0, 0, 0, 5, 5, 9]
1451
+ target_logits_indices = np.repeat(
1452
+ cu_num_sampled_tokens - num_sampled_tokens, num_draft_tokens)
1453
+ # [0, 1, 2, 5, 6, 9]
1454
+ target_logits_indices += arange
1455
+
1456
+ # TODO: Optimize the CPU -> GPU copy.
1457
+ cu_num_draft_tokens = torch.from_numpy(cu_num_draft_tokens).to(
1458
+ self.device, non_blocking=True)
1459
+ logits_indices = torch.from_numpy(logits_indices).to(self.device,
1460
+ non_blocking=True)
1461
+ target_logits_indices = torch.from_numpy(target_logits_indices).to(
1462
+ self.device, non_blocking=True)
1463
+ bonus_logits_indices = torch.from_numpy(bonus_logits_indices).to(
1464
+ self.device, non_blocking=True)
1465
+
1466
+ # Compute the draft token ids.
1467
+ # draft_token_indices: [ 1, 2, 3, 105, 106, 208]
1468
+ draft_token_ids = self.input_ids.gpu[logits_indices]
1469
+ draft_token_ids = draft_token_ids[target_logits_indices + 1]
1470
+
1471
+ metadata = SpecDecodeMetadata(
1472
+ draft_token_ids=draft_token_ids,
1473
+ num_draft_tokens=num_draft_tokens.tolist(),
1474
+ cu_num_draft_tokens=cu_num_draft_tokens,
1475
+ target_logits_indices=target_logits_indices,
1476
+ bonus_logits_indices=bonus_logits_indices,
1477
+ logits_indices=logits_indices,
1478
+ )
1479
+ return metadata
1480
+
1481
+ def _prepare_kv_sharing_fast_prefill(
1482
+ self,
1483
+ logits_indices: torch.Tensor,
1484
+ ) -> torch.Tensor:
1485
+ assert self.kv_sharing_fast_prefill_logits_indices is not None
1486
+ num_logits = logits_indices.shape[0]
1487
+ assert num_logits > 0
1488
+ self.kv_sharing_fast_prefill_logits_indices[:num_logits].copy_(
1489
+ logits_indices)
1490
+ # There might have leftover indices in logits_indices[num_logits:]
1491
+ # from previous iterations, whose values may be greater than the
1492
+ # batch size in the current iteration. To ensure indices are always
1493
+ # valid, we fill the padded indices with the last index.
1494
+ self.kv_sharing_fast_prefill_logits_indices[num_logits:].fill_(
1495
+ logits_indices[-1].item())
1496
+ if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
1497
+ and num_logits <= self.cudagraph_batch_sizes[-1]):
1498
+ # Use piecewise CUDA graphs.
1499
+ # Add padding to the batch size.
1500
+ num_logits_padded = self.vllm_config.pad_for_cudagraph(num_logits)
1501
+ else:
1502
+ num_logits_padded = num_logits
1503
+ logits_indices_padded = (
1504
+ self.kv_sharing_fast_prefill_logits_indices[:num_logits_padded])
1505
+ return logits_indices_padded
1506
+
1507
+ def _batch_mm_kwargs_from_scheduler(
1508
+ self,
1509
+ scheduler_output: "SchedulerOutput",
1510
+ ) -> tuple[list[MultiModalKwargsItem], list[tuple[str, PlaceholderRange]]]:
1511
+ """Batch multimodal kwargs from scheduled encoder inputs.
1512
+
1513
+ Args:
1514
+ scheduler_output: The scheduler output containing scheduled encoder
1515
+ inputs.
1516
+
1517
+ Returns:
1518
+ A tuple of (mm_kwargs, req_ids_pos) where:
1519
+ - mm_kwargs: List of multimodal kwargs items to be batched
1520
+ - mm_hashes_pos: List of (mm_hash, position_info) tuples
1521
+ """
1522
+ scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
1523
+ if not scheduled_encoder_inputs:
1524
+ return [], []
1525
+ # Batch the multi-modal inputs.
1526
+ mm_kwargs = list[MultiModalKwargsItem]()
1527
+ # list of tuple (mm_hash, position_info)
1528
+ mm_hashes_pos = list[tuple[str, PlaceholderRange]]()
1529
+ for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
1530
+ req_state = self.requests[req_id]
1531
+
1532
+ for mm_input_id in encoder_input_ids:
1533
+ mm_feature = req_state.mm_features[mm_input_id]
1534
+ mm_hash = mm_feature.identifier
1535
+ mm_kwargs.append(mm_feature.data)
1536
+ mm_hashes_pos.append((mm_hash, mm_feature.mm_position))
1537
+
1538
+ return mm_kwargs, mm_hashes_pos
1539
+
1540
+ def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
1541
+ # Batch the multi-modal inputs using the helper method.
1542
+ mm_kwargs, mm_hashes_pos = self._batch_mm_kwargs_from_scheduler(
1543
+ scheduler_output)
1544
+
1545
+ if not mm_kwargs:
1546
+ return
1547
+
1548
+ # Batch mm inputs as much as we can: if a request in the batch has
1549
+ # multiple modalities or a different modality than the previous one,
1550
+ # we process it separately to preserve item order.
1551
+ # FIXME(ywang96): This is a hacky way to deal with multiple modalities
1552
+ # in the same batch while still being able to benefit from batching
1553
+ # multimodal inputs. The proper solution should be reordering the
1554
+ # encoder outputs.
1555
+ model = cast(SupportsMultiModal, self.model)
1556
+ encoder_outputs = []
1557
+ for modality, num_items, mm_kwargs_group in group_mm_kwargs_by_modality(
1558
+ mm_kwargs,
1559
+ device=self.device,
1560
+ pin_memory=self.pin_memory,
1561
+ merge_by_field_config=model.merge_by_field_config,
1562
+ ):
1563
+ # (ekhvedchenia): Temporary hack to limit peak memory usage when
1564
+ # processing multimodal data.This solves the issue with scheduler
1565
+ # putting too many video samples into a single batch. Scheduler
1566
+ # uses pruned vision tokens count to compare it versus compute
1567
+ # budget which is incorrect (Either input media size or non-pruned
1568
+ # output vision tokens count should be considered)
1569
+ curr_group_outputs = []
1570
+
1571
+ if self.is_multimodal_pruning_enabled and modality == "video":
1572
+ micro_batch_size = 1
1573
+ for i in range(0, num_items, micro_batch_size):
1574
+ micro_batch_mm_inputs = dict(
1575
+ (k, v[i:i + micro_batch_size])
1576
+ for k, v in mm_kwargs_group.items())
1577
+
1578
+ micro_batch_outputs = model.get_multimodal_embeddings(
1579
+ **micro_batch_mm_inputs)
1580
+
1581
+ curr_group_outputs.extend(micro_batch_outputs)
1582
+ else:
1583
+ # Run the encoder.
1584
+ # `curr_group_outputs` is either of the following:
1585
+ # 1. A tensor of shape (num_items, feature_size, hidden_size)
1586
+ # in case feature_size is fixed across all multimodal items.
1587
+ # 2. A list or tuple (length: num_items) of tensors,
1588
+ # each of shape (feature_size, hidden_size) in case the feature
1589
+ # size is dynamic depending on the input multimodal items.
1590
+ curr_group_outputs = model.get_multimodal_embeddings(
1591
+ **mm_kwargs_group)
1592
+
1593
+ sanity_check_mm_encoder_outputs(
1594
+ curr_group_outputs,
1595
+ expected_num_items=num_items,
1596
+ )
1597
+ encoder_outputs.extend(curr_group_outputs)
1598
+
1599
+ # Cache the encoder outputs by mm_hash
1600
+ for (mm_hash, pos_info), output in zip(mm_hashes_pos, encoder_outputs):
1601
+ self.encoder_cache[mm_hash] = scatter_mm_placeholders(
1602
+ output,
1603
+ is_embed=pos_info.is_embed,
1604
+ )
1605
+
1606
+ def _gather_mm_embeddings(
1607
+ self,
1608
+ scheduler_output: "SchedulerOutput",
1609
+ shift_computed_tokens: int = 0,
1610
+ ) -> list[torch.Tensor]:
1611
+ should_sync_mrope_positions = False
1612
+ mm_embeds: list[torch.Tensor] = []
1613
+ for req_id in self.input_batch.req_ids:
1614
+ mm_embeds_req: list[torch.Tensor] = []
1615
+
1616
+ num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
1617
+ req_id]
1618
+ req_state = self.requests[req_id]
1619
+ num_computed_tokens = \
1620
+ req_state.num_computed_tokens + shift_computed_tokens
1621
+ for mm_feature in req_state.mm_features:
1622
+ pos_info = mm_feature.mm_position
1623
+ start_pos = pos_info.offset
1624
+ num_encoder_tokens = pos_info.length
1625
+
1626
+ # The encoder output is needed if the two ranges overlap:
1627
+ # [num_computed_tokens,
1628
+ # num_computed_tokens + num_scheduled_tokens) and
1629
+ # [start_pos, start_pos + num_encoder_tokens)
1630
+ if start_pos >= num_computed_tokens + num_scheduled_tokens:
1631
+ # The encoder output is not needed in this step.
1632
+ break
1633
+ if start_pos + num_encoder_tokens <= num_computed_tokens:
1634
+ # The encoder output is already processed and stored
1635
+ # in the decoder's KV cache.
1636
+ continue
1637
+
1638
+ start_idx = max(num_computed_tokens - start_pos, 0)
1639
+ end_idx = min(
1640
+ num_computed_tokens - start_pos + num_scheduled_tokens,
1641
+ num_encoder_tokens,
1642
+ )
1643
+ assert start_idx < end_idx
1644
+
1645
+ mm_hash = mm_feature.identifier
1646
+ encoder_output = self.encoder_cache.get(mm_hash, None)
1647
+ assert encoder_output is not None,\
1648
+ f"Encoder cache miss for {mm_hash}."
1649
+
1650
+ if (is_embed := pos_info.is_embed) is not None:
1651
+ is_embed = is_embed[start_idx:end_idx]
1652
+
1653
+ mm_embeds_item = gather_mm_placeholders(
1654
+ encoder_output[start_idx:end_idx],
1655
+ is_embed=is_embed,
1656
+ )
1657
+ mm_embeds_req.append(mm_embeds_item)
1658
+
1659
+ if self.is_multimodal_pruning_enabled and self.uses_mrope:
1660
+ should_sync_mrope_positions = True
1661
+ mm_embeds_req, new_mrope_positions, new_delta = (
1662
+ self.model.recompute_mrope_positions(
1663
+ input_ids=req_state.prompt_token_ids,
1664
+ multimodal_embeddings=mm_embeds_req,
1665
+ mrope_positions=req_state.mrope_positions,
1666
+ num_computed_tokens=req_state.num_computed_tokens,
1667
+ ))
1668
+ assert req_state.mrope_positions is not None
1669
+ req_state.mrope_positions.copy_(new_mrope_positions)
1670
+ req_state.mrope_position_delta = new_delta
1671
+
1672
+ mm_embeds.extend(mm_embeds_req)
1673
+
1674
+ if should_sync_mrope_positions:
1675
+ self._calc_mrope_positions(scheduler_output)
1676
+ self.mrope_positions.copy_to_gpu(
1677
+ scheduler_output.total_num_scheduled_tokens)
1678
+
1679
+ return mm_embeds
1680
+
1681
+ def _extract_encoder_inputs(
1682
+ self,
1683
+ scheduler_output: "SchedulerOutput",
1684
+ ) -> dict[str, torch.Tensor]:
1685
+ """Extract encoder inputs for encoder-decoder models.
1686
+
1687
+ This method extracts multimodal input features from scheduled encoder
1688
+ inputs and formats them for the encoder-decoder model forward pass.
1689
+ """
1690
+ # Batch the multi-modal inputs using the helper method.
1691
+ mm_kwargs, _ = self._batch_mm_kwargs_from_scheduler(scheduler_output)
1692
+
1693
+ if not mm_kwargs:
1694
+ return {}
1695
+
1696
+ # Group MM kwargs by modality and extract features
1697
+ model = cast(SupportsMultiModal, self.model)
1698
+ encoder_features = {}
1699
+ for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
1700
+ mm_kwargs,
1701
+ device=self.device,
1702
+ pin_memory=self.pin_memory,
1703
+ merge_by_field_config=model.merge_by_field_config,
1704
+ ):
1705
+ # Add the grouped features to encoder_features dict
1706
+ # This allows the model to receive them as kwargs (e.g.,
1707
+ # input_features=...)
1708
+ encoder_features.update(mm_kwargs_group)
1709
+
1710
+ return encoder_features
1711
+
1712
+ def get_model(self) -> nn.Module:
1713
+ # get raw model out of the cudagraph wrapper.
1714
+ if isinstance(self.model, (CUDAGraphWrapper, UBatchWrapper)):
1715
+ return self.model.unwrap()
1716
+ return self.model
1717
+
1718
+ def get_supported_generation_tasks(self) -> list[GenerationTask]:
1719
+ model = self.get_model()
1720
+ supported_tasks = list[GenerationTask]()
1721
+
1722
+ if is_text_generation_model(model):
1723
+ supported_tasks.append("generate")
1724
+
1725
+ if supports_transcription(model):
1726
+ if model.supports_transcription_only:
1727
+ return ["transcription"]
1728
+
1729
+ supported_tasks.append("transcription")
1730
+
1731
+ return supported_tasks
1732
+
1733
+ def get_supported_pooling_tasks(self) -> list[PoolingTask]:
1734
+ model = self.get_model()
1735
+ if not is_pooling_model(model):
1736
+ return []
1737
+
1738
+ supported_tasks = list(model.pooler.get_supported_tasks())
1739
+
1740
+ if (self.scheduler_config.chunked_prefill_enabled
1741
+ and "encode" in supported_tasks):
1742
+ supported_tasks.remove("encode")
1743
+
1744
+ logger.debug_once("Chunked prefill is not supported with "
1745
+ "encode task which using ALL pooling. "
1746
+ "Please turn off chunked prefill by "
1747
+ "`--no-enable-chunked-prefill` before using it.")
1748
+
1749
+ if "score" in supported_tasks:
1750
+ num_labels = getattr(self.model_config.hf_config, "num_labels", 0)
1751
+ if num_labels != 1:
1752
+ supported_tasks.remove("score")
1753
+ logger.debug_once(
1754
+ "Score API is only enabled for num_labels == 1.")
1755
+
1756
+ return supported_tasks
1757
+
1758
+ def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
1759
+ tasks = list[SupportedTask]()
1760
+
1761
+ if self.model_config.runner_type == "generate":
1762
+ tasks.extend(self.get_supported_generation_tasks())
1763
+ if self.model_config.runner_type == "pooling":
1764
+ tasks.extend(self.get_supported_pooling_tasks())
1765
+
1766
+ return tuple(tasks)
1767
+
1768
+ def sync_and_slice_intermediate_tensors(
1769
+ self, num_tokens: int, intermediate_tensors: IntermediateTensors,
1770
+ sync_self: bool) -> IntermediateTensors:
1771
+
1772
+ assert self.intermediate_tensors is not None
1773
+
1774
+ tp = self.vllm_config.parallel_config.tensor_parallel_size
1775
+ is_rs = is_residual_scattered_for_sp(self.vllm_config, num_tokens)
1776
+
1777
+ # When sequence parallelism is enabled, the "residual" tensor is sharded
1778
+ # across tensor parallel ranks, so each rank only needs its own slice.
1779
+ if sync_self:
1780
+ assert intermediate_tensors is not None
1781
+ for k, v in intermediate_tensors.items():
1782
+ is_scattered = k == "residual" and is_rs
1783
+ copy_len = num_tokens // tp if is_scattered else \
1784
+ num_tokens
1785
+ self.intermediate_tensors[k][:copy_len].copy_(
1786
+ v[:copy_len], non_blocking=True)
1787
+
1788
+ return IntermediateTensors({
1789
+ k:
1790
+ v[:num_tokens //
1791
+ tp] if k == "residual" and is_rs else v[:num_tokens]
1792
+ for k, v in self.intermediate_tensors.items()
1793
+ })
1794
+
1795
+ def eplb_step(self,
1796
+ is_dummy: bool = False,
1797
+ is_profile: bool = False) -> None:
1798
+ """
1799
+ Step for the EPLB (Expert Parallelism Load Balancing) state.
1800
+ """
1801
+ if not self.parallel_config.enable_eplb:
1802
+ return
1803
+
1804
+ assert self.eplb_state is not None
1805
+ model = self.get_model()
1806
+ assert is_mixture_of_experts(model)
1807
+ self.eplb_state.step(
1808
+ model,
1809
+ is_dummy,
1810
+ is_profile,
1811
+ log_stats=self.parallel_config.eplb_config.log_balancedness,
1812
+ )
1813
+
1814
+ def get_dp_padding(self,
1815
+ num_tokens: int) -> tuple[int, Optional[torch.Tensor]]:
1816
+ """
1817
+ Determines the total number of tokens that each rank will run.
1818
+ All ranks will be padded out so that they run with the same number
1819
+ of tokens
1820
+
1821
+ Returns: tuple[
1822
+ num_pad_tokens: The number of tokens that will be added to the batch
1823
+ num_tokens_after_padding: A tensor containing the total number of
1824
+ tokens for each DP rank including padding.
1825
+ ]
1826
+ """
1827
+ dp_size = self.vllm_config.parallel_config.data_parallel_size
1828
+ dp_rank = self.vllm_config.parallel_config.data_parallel_rank
1829
+
1830
+ # For DP: Don't pad when setting enforce_eager.
1831
+ # This lets us set enforce_eager on the prefiller in a P/D setup and
1832
+ # still use CUDA graphs (enabled by this padding) on the decoder.
1833
+ #
1834
+ # TODO(tms) : There are many cases where padding is enabled for
1835
+ # prefills, causing unnecessary and excessive padding of activations.
1836
+
1837
+ if dp_size == 1 or self.vllm_config.model_config.enforce_eager:
1838
+ # Early exit.
1839
+ return 0, None
1840
+
1841
+ num_tokens_across_dp = DPMetadata.num_tokens_across_dp(
1842
+ num_tokens, dp_size, dp_rank)
1843
+ max_tokens_across_dp_cpu = torch.max(num_tokens_across_dp).item()
1844
+ num_tokens_after_padding = torch.tensor([max_tokens_across_dp_cpu] *
1845
+ dp_size,
1846
+ device="cpu",
1847
+ dtype=torch.int32)
1848
+ return max_tokens_across_dp_cpu - num_tokens, num_tokens_after_padding
1849
+
1850
+ def get_local_padding(self, num_tokens_unpadded: int) -> int:
1851
+
1852
+ num_tokens_padded = num_tokens_unpadded
1853
+
1854
+ if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
1855
+ and num_tokens_unpadded <= self.cudagraph_batch_sizes[-1]):
1856
+ # Use piecewise CUDA graphs.
1857
+ # Add padding to the batch size.
1858
+ num_tokens_padded = self.vllm_config.pad_for_cudagraph(
1859
+ num_tokens_unpadded)
1860
+ else:
1861
+ # Eager mode.
1862
+ # Pad tokens to multiple of tensor_parallel_size when
1863
+ # enabled collective fusion for SP
1864
+ tp_size = self.vllm_config.parallel_config.tensor_parallel_size
1865
+ if self.vllm_config.compilation_config.pass_config. \
1866
+ enable_sequence_parallelism and tp_size > 1:
1867
+ num_tokens_padded = round_up(num_tokens_unpadded, tp_size)
1868
+
1869
+ num_pad_tokens = num_tokens_padded - num_tokens_unpadded
1870
+ return num_pad_tokens
1871
+
1872
+ # This is where the second ubatch is adjusted to account for the padding.
1873
+ # Should be called after attention metadata creation. This just pads
1874
+ # the second ubatch slice out to the total number of tokens
1875
+ # (num_tokens + padding)
1876
+ def pad_out_ubatch_slice(self, ubatch_slices: UBatchSlices,
1877
+ num_total_tokens: int):
1878
+ padded_second_ubatch_slice = slice(ubatch_slices[1].token_slice.start,
1879
+ num_total_tokens)
1880
+ ubatch_slices[1] = UBatchSlice(padded_second_ubatch_slice,
1881
+ padded_second_ubatch_slice)
1882
+
1883
+ def _pool(
1884
+ self,
1885
+ hidden_states: torch.Tensor,
1886
+ num_scheduled_tokens: int,
1887
+ num_scheduled_tokens_np: np.ndarray,
1888
+ ) -> ModelRunnerOutput:
1889
+ assert self.input_batch.num_reqs ==\
1890
+ len(self.input_batch.pooling_params), \
1891
+ "Either all or none of the requests in" \
1892
+ " a batch must be pooling request"
1893
+
1894
+ hidden_states = hidden_states[:num_scheduled_tokens]
1895
+ pooling_metadata = self.input_batch.get_pooling_metadata()
1896
+ pooling_metadata.build_pooling_cursor(num_scheduled_tokens_np.tolist(),
1897
+ device=hidden_states.device)
1898
+ seq_lens_cpu = self.seq_lens.cpu[:self.input_batch.num_reqs]
1899
+
1900
+ model = cast(VllmModelForPooling, self.model)
1901
+ raw_pooler_output: PoolerOutput = model.pooler(
1902
+ hidden_states=hidden_states,
1903
+ pooling_metadata=pooling_metadata,
1904
+ )
1905
+ raw_pooler_output = json_map_leaves(
1906
+ lambda x: x.to("cpu", non_blocking=True),
1907
+ raw_pooler_output,
1908
+ )
1909
+ self._sync_device()
1910
+
1911
+ pooler_output: list[Optional[torch.Tensor]] = []
1912
+ for raw_output, seq_len, prompt_len in zip(
1913
+ raw_pooler_output, seq_lens_cpu, pooling_metadata.prompt_lens):
1914
+
1915
+ output = raw_output if seq_len == prompt_len else None
1916
+ pooler_output.append(output)
1917
+
1918
+ return ModelRunnerOutput(
1919
+ req_ids=self.input_batch.req_ids,
1920
+ req_id_to_index=self.input_batch.req_id_to_index,
1921
+ sampled_token_ids=[],
1922
+ logprobs=None,
1923
+ prompt_logprobs_dict={},
1924
+ pooler_output=pooler_output,
1925
+ )
1926
+
1927
+ def _get_num_input_tokens(self, num_scheduled_tokens: int) -> int:
1928
+ if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
1929
+ and not envs.VLLM_DISABLE_PAD_FOR_CUDAGRAPH
1930
+ and hasattr(self, "cudagraph_batch_sizes")
1931
+ and self.cudagraph_batch_sizes
1932
+ and num_scheduled_tokens <= self.cudagraph_batch_sizes[-1]):
1933
+ # Use CUDA graphs.
1934
+ # Add padding to the batch size.
1935
+ return self.vllm_config.pad_for_cudagraph(num_scheduled_tokens)
1936
+
1937
+ # Eager mode.
1938
+ # Pad tokens to multiple of tensor_parallel_size when
1939
+ # enabled collective fusion for SP
1940
+ tp_size = self.vllm_config.parallel_config.tensor_parallel_size
1941
+ if (self.compilation_config.pass_config.enable_sequence_parallelism
1942
+ and tp_size > 1):
1943
+ return round_up(num_scheduled_tokens, tp_size)
1944
+ return num_scheduled_tokens
1945
+
1946
+ def _preprocess(
1947
+ self,
1948
+ scheduler_output: "SchedulerOutput",
1949
+ intermediate_tensors: Optional[IntermediateTensors] = None,
1950
+ ubatch_slices: Optional[UBatchSlices] = None,
1951
+ num_tokens_after_padding: Optional[torch.Tensor] = None,
1952
+ ) -> tuple[int, int, Optional[torch.Tensor], Optional[torch.Tensor],
1953
+ Optional[torch.Tensor], torch.Tensor,
1954
+ Optional[IntermediateTensors], dict[str, Any]]:
1955
+
1956
+ num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
1957
+ if ubatch_slices:
1958
+ assert num_tokens_after_padding is not None
1959
+ num_input_tokens = int(num_tokens_after_padding[0].item() * 2)
1960
+ self.pad_out_ubatch_slice(ubatch_slices, num_input_tokens)
1961
+ elif ubatch_slices is None:
1962
+ num_input_tokens = self._get_num_input_tokens(num_scheduled_tokens)
1963
+ num_pad, num_tokens_after_padding = self.get_dp_padding(
1964
+ num_input_tokens)
1965
+ num_input_tokens += num_pad
1966
+
1967
+ # _prepare_inputs may reorder the batch, so we must gather multi
1968
+ # modal outputs after that to ensure the correct order
1969
+ if (self.supports_mm_inputs and get_pp_group().is_first_rank
1970
+ and not self.model_config.is_encoder_decoder):
1971
+ # Run the multimodal encoder if any.
1972
+ self._execute_mm_encoder(scheduler_output)
1973
+ mm_embeds = self._gather_mm_embeddings(scheduler_output)
1974
+
1975
+ # NOTE(woosuk): To unify token ids and soft tokens (vision
1976
+ # embeddings), we always use embeddings (rather than token ids)
1977
+ # as input to the multimodal model, even when the input is text.
1978
+ inputs_embeds_scheduled = self.model.get_input_embeddings(
1979
+ input_ids=self.input_ids.gpu[:num_scheduled_tokens],
1980
+ multimodal_embeddings=mm_embeds or None,
1981
+ )
1982
+
1983
+ # TODO(woosuk): Avoid the copy. Optimize.
1984
+ self.inputs_embeds.gpu[:num_scheduled_tokens].copy_(
1985
+ inputs_embeds_scheduled)
1986
+
1987
+ input_ids = None
1988
+ inputs_embeds = self.inputs_embeds.gpu[:num_input_tokens]
1989
+ model_kwargs = {
1990
+ **self._init_model_kwargs(num_scheduled_tokens),
1991
+ **self._extract_mm_kwargs(scheduler_output),
1992
+ }
1993
+ elif self.enable_prompt_embeds and get_pp_group().is_first_rank:
1994
+ # Get the input embeddings for the tokens that are not input embeds,
1995
+ # then put them into the appropriate positions.
1996
+ # TODO(qthequartermasterman): Since even when prompt embeds are
1997
+ # enabled, (a) not all requests will use prompt embeds, and (b)
1998
+ # after the initial prompt is processed, the rest of the generated
1999
+ # tokens will be token ids, it is not desirable to have the
2000
+ # embedding layer outside of the CUDA graph all the time. The v0
2001
+ # engine avoids this by "double compiling" the CUDA graph, once
2002
+ # with input_ids and again with inputs_embeds, for all num_tokens.
2003
+ # If a batch only has token ids, then including the embedding layer
2004
+ # in the CUDA graph will be more performant (like in the else case
2005
+ # below).
2006
+ token_ids_idx = self.is_token_ids.gpu[:num_scheduled_tokens] \
2007
+ .nonzero(as_tuple=False) \
2008
+ .squeeze(1)
2009
+ # Some tokens ids may need to become embeds
2010
+ if token_ids_idx.numel() > 0:
2011
+ token_ids = self.input_ids.gpu[token_ids_idx]
2012
+ tokens_to_embeds = self.model.get_input_embeddings(
2013
+ input_ids=token_ids)
2014
+ self.inputs_embeds.gpu[token_ids_idx] = tokens_to_embeds
2015
+
2016
+ inputs_embeds = self.inputs_embeds.gpu[:num_input_tokens]
2017
+ model_kwargs = self._init_model_kwargs(num_input_tokens)
2018
+ input_ids = None
2019
+ else:
2020
+ # For text-only models, we use token ids as input.
2021
+ # While it is possible to use embeddings as input just like the
2022
+ # multimodal models, it is not desirable for performance since
2023
+ # then the embedding layer is not included in the CUDA graph.
2024
+ input_ids = self.input_ids.gpu[:num_input_tokens]
2025
+ inputs_embeds = None
2026
+ model_kwargs = self._init_model_kwargs(num_input_tokens)
2027
+ if self.uses_mrope:
2028
+ positions = self.mrope_positions.gpu[:, :num_input_tokens]
2029
+ else:
2030
+ positions = self.positions.gpu[:num_input_tokens]
2031
+
2032
+ if get_pp_group().is_first_rank:
2033
+ intermediate_tensors = None
2034
+ else:
2035
+ intermediate_tensors = self.sync_and_slice_intermediate_tensors(
2036
+ num_input_tokens, intermediate_tensors, True)
2037
+
2038
+ if (self.model_config.is_encoder_decoder
2039
+ and scheduler_output.scheduled_encoder_inputs):
2040
+ encoder_inputs = self._extract_encoder_inputs(scheduler_output)
2041
+ model_kwargs.update(encoder_inputs)
2042
+
2043
+ return (
2044
+ num_scheduled_tokens,
2045
+ num_input_tokens,
2046
+ num_tokens_after_padding,
2047
+ input_ids,
2048
+ inputs_embeds,
2049
+ positions,
2050
+ intermediate_tensors,
2051
+ model_kwargs,
2052
+ )
2053
+
2054
+ def _sample(
2055
+ self, logits: Optional[torch.Tensor],
2056
+ spec_decode_metadata: Optional[SpecDecodeMetadata]
2057
+ ) -> SamplerOutput:
2058
+ # Sample the next token and get logprobs if needed.
2059
+ sampling_metadata = self.input_batch.sampling_metadata
2060
+ if spec_decode_metadata is None:
2061
+ sampler_output = self.sampler(
2062
+ logits=logits,
2063
+ sampling_metadata=sampling_metadata,
2064
+ )
2065
+ else:
2066
+ # When indexing with a tensor (bonus_logits_indices), PyTorch
2067
+ # creates a new tensor with separate storage from the original
2068
+ # logits tensor. This means any in-place operations on bonus_logits
2069
+ # won't affect the original logits tensor.
2070
+ assert logits is not None
2071
+ bonus_logits = logits[spec_decode_metadata.bonus_logits_indices]
2072
+ sampler_output = self.sampler(
2073
+ logits=bonus_logits,
2074
+ sampling_metadata=sampling_metadata,
2075
+ )
2076
+ bonus_token_ids = sampler_output.sampled_token_ids
2077
+
2078
+ # Just like `bonus_logits`, `target_logits` is a new tensor with
2079
+ # separate storage from the original `logits` tensor. Therefore,
2080
+ # it is safe to update `target_logits` in place.
2081
+ target_logits = logits[spec_decode_metadata.target_logits_indices]
2082
+ output_token_ids = self.rejection_sampler(
2083
+ spec_decode_metadata,
2084
+ None, # draft_probs
2085
+ target_logits,
2086
+ bonus_token_ids,
2087
+ sampling_metadata,
2088
+ )
2089
+ sampler_output.sampled_token_ids = output_token_ids
2090
+ self._update_states_after_model_execute(output_token_ids)
2091
+
2092
+ return sampler_output
2093
+
2094
+ def _bookkeeping_sync(
2095
+ self, scheduler_output: "SchedulerOutput",
2096
+ sampler_output: SamplerOutput, logits: Optional[torch.Tensor],
2097
+ hidden_states: torch.Tensor, num_scheduled_tokens: int
2098
+ ) -> tuple[
2099
+ dict[str, int],
2100
+ Optional[LogprobsLists],
2101
+ list[list[int]],
2102
+ dict[str, Optional[LogprobsTensors]],
2103
+ list[str],
2104
+ dict[str, int],
2105
+ list[int],
2106
+ ]:
2107
+ num_nans_in_logits = {}
2108
+ if envs.VLLM_COMPUTE_NANS_IN_LOGITS:
2109
+ num_nans_in_logits = self._get_nans_in_logits(logits)
2110
+
2111
+ discard_sampled_tokens_req_indices = \
2112
+ self.discard_request_indices.np[:self.num_discarded_requests]
2113
+ for i in discard_sampled_tokens_req_indices:
2114
+ gen = self.input_batch.generators.get(int(i))
2115
+ if gen is not None:
2116
+ gen.set_offset(gen.get_offset() - 4)
2117
+
2118
+ # Copy some objects so they don't get modified after returning.
2119
+ # This is important when using async scheduling.
2120
+ req_ids_output_copy = self.input_batch.req_ids.copy()
2121
+ req_id_to_index_output_copy = \
2122
+ self.input_batch.req_id_to_index.copy()
2123
+
2124
+ # NOTE: GPU -> CPU Sync happens here.
2125
+ # Move as many CPU operations as possible before this sync point.
2126
+ logprobs_tensors = sampler_output.logprobs_tensors
2127
+ logprobs_lists = logprobs_tensors.tolists() \
2128
+ if logprobs_tensors is not None else None
2129
+
2130
+ # Compute prompt logprobs if needed.
2131
+ prompt_logprobs_dict = self._get_prompt_logprobs_dict(
2132
+ hidden_states[:num_scheduled_tokens],
2133
+ scheduler_output.num_scheduled_tokens,
2134
+ )
2135
+
2136
+ num_sampled_tokens = sampler_output.sampled_token_ids.shape[0]
2137
+ sampled_token_ids = sampler_output.sampled_token_ids
2138
+ invalid_req_indices = []
2139
+ if not self.use_async_scheduling:
2140
+ # Get the valid generated tokens.
2141
+ max_gen_len = sampled_token_ids.shape[-1]
2142
+ if max_gen_len == 1:
2143
+ # No spec decode tokens.
2144
+ valid_sampled_token_ids = self._to_list(sampled_token_ids)
2145
+ else:
2146
+ # Includes spec decode tokens.
2147
+ valid_sampled_token_ids = self.rejection_sampler.parse_output(
2148
+ sampled_token_ids,
2149
+ self.input_batch.vocab_size,
2150
+ )
2151
+ # Mask out the sampled tokens that should not be sampled.
2152
+ for i in discard_sampled_tokens_req_indices:
2153
+ valid_sampled_token_ids[int(i)].clear()
2154
+ else:
2155
+ valid_sampled_token_ids = []
2156
+ invalid_req_indices = discard_sampled_tokens_req_indices.tolist()
2157
+ invalid_req_indices_set = set(invalid_req_indices)
2158
+ assert sampled_token_ids.shape[-1] == 1
2159
+
2160
+ # Cache the sampled tokens on the GPU and avoid CPU sync.
2161
+ # These will be copied into input_ids in the next step
2162
+ # when preparing inputs.
2163
+ self.input_batch.prev_sampled_token_ids = \
2164
+ sampled_token_ids
2165
+ self.input_batch.prev_sampled_token_ids_invalid_indices = \
2166
+ invalid_req_indices_set
2167
+ self.input_batch.prev_req_id_to_index = {
2168
+ req_id: i
2169
+ for i, req_id in enumerate(self.input_batch.req_ids)
2170
+ if i not in invalid_req_indices_set
2171
+ }
2172
+
2173
+ # Cache the sampled tokens in the model runner, so that the scheduler
2174
+ # doesn't need to send them back.
2175
+ # NOTE(woosuk): As an exception, when using PP, the scheduler sends
2176
+ # the sampled tokens back, because there's no direct communication
2177
+ # between the first-stage worker and the last-stage worker.
2178
+ req_ids = self.input_batch.req_ids
2179
+ for req_idx in range(num_sampled_tokens):
2180
+ if self.use_async_scheduling:
2181
+ sampled_ids = [-1] if \
2182
+ req_idx not in invalid_req_indices_set else None
2183
+ else:
2184
+ sampled_ids = valid_sampled_token_ids[req_idx]
2185
+ if not sampled_ids:
2186
+ continue
2187
+
2188
+ start_idx = self.input_batch.num_tokens_no_spec[req_idx]
2189
+ end_idx = start_idx + len(sampled_ids)
2190
+ assert end_idx <= self.max_model_len, (
2191
+ "Sampled token IDs exceed the max model length. "
2192
+ f"Total number of tokens: {end_idx} > max_model_len: "
2193
+ f"{self.max_model_len}")
2194
+
2195
+ self.input_batch.token_ids_cpu[req_idx,
2196
+ start_idx:end_idx] = sampled_ids
2197
+ self.input_batch.is_token_ids[req_idx, start_idx:end_idx] = True
2198
+ self.input_batch.num_tokens_no_spec[req_idx] = end_idx
2199
+ self.input_batch.num_tokens[req_idx] = end_idx
2200
+
2201
+ req_id = req_ids[req_idx]
2202
+ req_state = self.requests[req_id]
2203
+ req_state.output_token_ids.extend(sampled_ids)
2204
+
2205
+ return (
2206
+ num_nans_in_logits,
2207
+ logprobs_lists,
2208
+ valid_sampled_token_ids,
2209
+ prompt_logprobs_dict,
2210
+ req_ids_output_copy,
2211
+ req_id_to_index_output_copy,
2212
+ invalid_req_indices,
2213
+ )
2214
+
2215
+ @contextmanager
2216
+ def synchronize_input_prep(self):
2217
+ if self.prepare_inputs_event is None:
2218
+ yield
2219
+ return
2220
+
2221
+ # Ensure prior step has finished with reused CPU tensors.
2222
+ # This is required in the async scheduling case because
2223
+ # the CPU->GPU transfer happens async.
2224
+ self.prepare_inputs_event.synchronize()
2225
+ try:
2226
+ yield
2227
+ finally:
2228
+ self.prepare_inputs_event.record()
2229
+
2230
+ @torch.inference_mode()
2231
+ def execute_model(
2232
+ self,
2233
+ scheduler_output: "SchedulerOutput",
2234
+ intermediate_tensors: Optional[IntermediateTensors] = None,
2235
+ ) -> Union[ModelRunnerOutput, AsyncModelRunnerOutput, IntermediateTensors]:
2236
+ with record_function_or_nullcontext("Preprocess"):
2237
+ with self.synchronize_input_prep():
2238
+ # Update persistent batch states.
2239
+ self._update_states(scheduler_output)
2240
+
2241
+ if not scheduler_output.total_num_scheduled_tokens:
2242
+ if not has_kv_transfer_group():
2243
+ # Return empty ModelRunnerOutput if no work to do.
2244
+ return EMPTY_MODEL_RUNNER_OUTPUT
2245
+ return self.kv_connector_no_forward(
2246
+ scheduler_output, self.vllm_config)
2247
+ if self.cache_config.kv_sharing_fast_prefill:
2248
+ assert not self.input_batch.num_prompt_logprobs, (
2249
+ "--kv-sharing-fast-prefill produces incorrect "
2250
+ "logprobs for prompt tokens, tokens, please disable "
2251
+ "it when the requests need prompt logprobs")
2252
+
2253
+ # Prepare the decoder inputs.
2254
+ (attn_metadata, logits_indices, spec_decode_metadata,
2255
+ num_scheduled_tokens_np, spec_decode_common_attn_metadata,
2256
+ max_query_len, ubatch_slices, num_tokens_after_padding
2257
+ ) = self._prepare_inputs(scheduler_output)
2258
+
2259
+ (
2260
+ num_scheduled_tokens,
2261
+ num_input_tokens,
2262
+ num_tokens_across_dp,
2263
+ input_ids,
2264
+ inputs_embeds,
2265
+ positions,
2266
+ intermediate_tensors,
2267
+ model_kwargs,
2268
+ ) = self._preprocess(scheduler_output, intermediate_tensors,
2269
+ ubatch_slices, num_tokens_after_padding)
2270
+
2271
+ uniform_decode = (max_query_len
2272
+ == self.uniform_decode_query_len) and (
2273
+ num_scheduled_tokens
2274
+ == self.input_batch.num_reqs * max_query_len)
2275
+ batch_descriptor = BatchDescriptor(num_tokens=num_input_tokens,
2276
+ uniform_decode=uniform_decode)
2277
+ cudagraph_runtime_mode, batch_descriptor = \
2278
+ self.cudagraph_dispatcher.dispatch(batch_descriptor)
2279
+
2280
+ # This is currently to get around the assert in the DPMetadata
2281
+ # where it wants `num_tokens_across_dp` to align with `num_tokens`
2282
+ if ubatch_slices is not None:
2283
+ num_input_tokens = ubatch_slices[0].num_tokens
2284
+
2285
+ # Run the model.
2286
+ # Use persistent buffers for CUDA graphs.
2287
+ with (set_forward_context(
2288
+ attn_metadata,
2289
+ self.vllm_config,
2290
+ num_tokens=num_input_tokens,
2291
+ num_tokens_across_dp=num_tokens_across_dp,
2292
+ cudagraph_runtime_mode=cudagraph_runtime_mode,
2293
+ batch_descriptor=batch_descriptor,
2294
+ ubatch_slices=ubatch_slices,
2295
+ ), record_function_or_nullcontext("Forward"),
2296
+ self.maybe_get_kv_connector_output(scheduler_output) as
2297
+ kv_connector_output):
2298
+ model_output = self.model(
2299
+ input_ids=input_ids,
2300
+ positions=positions,
2301
+ intermediate_tensors=intermediate_tensors,
2302
+ inputs_embeds=inputs_embeds,
2303
+ **model_kwargs,
2304
+ )
2305
+
2306
+ with record_function_or_nullcontext("Postprocess"):
2307
+ if self.use_aux_hidden_state_outputs:
2308
+ # True when EAGLE 3 is used.
2309
+ hidden_states, aux_hidden_states = model_output
2310
+ else:
2311
+ # Common case.
2312
+ hidden_states = model_output
2313
+ aux_hidden_states = None
2314
+
2315
+ if not self.broadcast_pp_output:
2316
+ # Common case.
2317
+ if not get_pp_group().is_last_rank:
2318
+ # Return the intermediate tensors.
2319
+ assert isinstance(hidden_states, IntermediateTensors)
2320
+ hidden_states.kv_connector_output = kv_connector_output
2321
+ return hidden_states
2322
+
2323
+ if self.is_pooling_model:
2324
+ # Return the pooling output.
2325
+ output = self._pool(hidden_states, num_scheduled_tokens,
2326
+ num_scheduled_tokens_np)
2327
+ output.kv_connector_output = kv_connector_output
2328
+ return output
2329
+
2330
+ sample_hidden_states = hidden_states[logits_indices]
2331
+ logits = self.model.compute_logits(sample_hidden_states)
2332
+ else:
2333
+ # Rare case.
2334
+ assert not self.is_pooling_model
2335
+
2336
+ if not get_pp_group().is_last_rank:
2337
+ all_gather_tensors = {
2338
+ "residual":
2339
+ not is_residual_scattered_for_sp(
2340
+ self.vllm_config, num_input_tokens)
2341
+ }
2342
+ get_pp_group().send_tensor_dict(
2343
+ hidden_states.tensors,
2344
+ all_gather_group=get_tp_group(),
2345
+ all_gather_tensors=all_gather_tensors)
2346
+ logits = None
2347
+ else:
2348
+ sample_hidden_states = hidden_states[logits_indices]
2349
+ logits = self.model.compute_logits(sample_hidden_states)
2350
+
2351
+ model_output_broadcast_data = {}
2352
+ if logits is not None:
2353
+ model_output_broadcast_data["logits"] = logits.contiguous()
2354
+
2355
+ model_output_broadcast_data = get_pp_group(
2356
+ ).broadcast_tensor_dict(model_output_broadcast_data,
2357
+ src=len(get_pp_group().ranks) - 1)
2358
+ assert model_output_broadcast_data is not None
2359
+ logits = model_output_broadcast_data["logits"]
2360
+
2361
+ # Apply structured output bitmasks if present
2362
+ if scheduler_output.grammar_bitmask is not None:
2363
+ apply_grammar_bitmask(scheduler_output, self.input_batch,
2364
+ logits, self.device)
2365
+
2366
+ with record_function_or_nullcontext("Sample"):
2367
+ sampler_output = self._sample(logits, spec_decode_metadata)
2368
+
2369
+ def propose_draft_token_ids(sampled_token_ids):
2370
+ assert spec_decode_common_attn_metadata is not None
2371
+ with record_function_or_nullcontext("Draft"):
2372
+ self._draft_token_ids = self.propose_draft_token_ids(
2373
+ scheduler_output,
2374
+ sampled_token_ids,
2375
+ self.input_batch.sampling_metadata,
2376
+ hidden_states,
2377
+ sample_hidden_states,
2378
+ aux_hidden_states,
2379
+ spec_decode_metadata,
2380
+ spec_decode_common_attn_metadata,
2381
+ )
2382
+
2383
+ use_padded_batch_for_eagle = self.speculative_config and \
2384
+ self.speculative_config.use_eagle() and \
2385
+ not self.speculative_config.disable_padded_drafter_batch
2386
+ effective_drafter_max_model_len = self.max_model_len
2387
+ if effective_drafter_max_model_len is None:
2388
+ effective_drafter_max_model_len = self.model_config.max_model_len
2389
+ if (self.speculative_config
2390
+ and self.speculative_config.draft_model_config is not None
2391
+ and self.speculative_config.draft_model_config.max_model_len
2392
+ is not None):
2393
+ effective_drafter_max_model_len = (
2394
+ self.speculative_config.draft_model_config.max_model_len)
2395
+ input_fits_in_drafter = spec_decode_common_attn_metadata and (
2396
+ spec_decode_common_attn_metadata.seq_lens.max() +
2397
+ self.speculative_config.num_speculative_tokens
2398
+ <= effective_drafter_max_model_len)
2399
+ if use_padded_batch_for_eagle and input_fits_in_drafter:
2400
+ # EAGLE speculative decoding can use the GPU sampled tokens
2401
+ # as inputs, and does not need to wait for bookkeeping to finish.
2402
+ propose_draft_token_ids(sampler_output.sampled_token_ids)
2403
+
2404
+ with record_function_or_nullcontext("Bookkeep"):
2405
+ (
2406
+ num_nans_in_logits,
2407
+ logprobs_lists,
2408
+ valid_sampled_token_ids,
2409
+ prompt_logprobs_dict,
2410
+ req_ids_output_copy,
2411
+ req_id_to_index_output_copy,
2412
+ invalid_req_indices,
2413
+ ) = self._bookkeeping_sync(scheduler_output, sampler_output,
2414
+ logits, hidden_states,
2415
+ num_scheduled_tokens)
2416
+
2417
+ if (self.speculative_config and not use_padded_batch_for_eagle
2418
+ and input_fits_in_drafter):
2419
+ # ngram and other speculative decoding methods use the sampled
2420
+ # tokens on the CPU, so they are run after bookkeeping.
2421
+ propose_draft_token_ids(valid_sampled_token_ids)
2422
+
2423
+ with record_function_or_nullcontext("EPLB"):
2424
+ self.eplb_step()
2425
+
2426
+ output = ModelRunnerOutput(
2427
+ req_ids=req_ids_output_copy,
2428
+ req_id_to_index=req_id_to_index_output_copy,
2429
+ sampled_token_ids=valid_sampled_token_ids,
2430
+ logprobs=logprobs_lists,
2431
+ prompt_logprobs_dict=prompt_logprobs_dict,
2432
+ pooler_output=[],
2433
+ kv_connector_output=kv_connector_output,
2434
+ num_nans_in_logits=num_nans_in_logits,
2435
+ )
2436
+
2437
+ if not self.use_async_scheduling:
2438
+ return output
2439
+
2440
+ return AsyncGPUModelRunnerOutput(
2441
+ model_runner_output=output,
2442
+ sampled_token_ids=sampler_output.sampled_token_ids,
2443
+ invalid_req_indices=invalid_req_indices,
2444
+ async_output_copy_stream=self.async_output_copy_stream,
2445
+ )
2446
+
2447
+ def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
2448
+ if self._draft_token_ids is None:
2449
+ return None
2450
+ req_ids = self.input_batch.req_ids
2451
+ if isinstance(self._draft_token_ids, torch.Tensor):
2452
+ draft_token_ids = self._draft_token_ids.tolist()
2453
+ else:
2454
+ draft_token_ids = self._draft_token_ids
2455
+ self._draft_token_ids = None
2456
+ return DraftTokenIds(req_ids, draft_token_ids)
2457
+
2458
+ def propose_draft_token_ids(
2459
+ self,
2460
+ scheduler_output: "SchedulerOutput",
2461
+ sampled_token_ids: Union[torch.Tensor, list[list[int]]],
2462
+ sampling_metadata: SamplingMetadata,
2463
+ hidden_states: torch.Tensor,
2464
+ sample_hidden_states: torch.Tensor,
2465
+ aux_hidden_states: Optional[list[torch.Tensor]],
2466
+ spec_decode_metadata: Optional[SpecDecodeMetadata],
2467
+ common_attn_metadata: CommonAttentionMetadata,
2468
+ ) -> Union[list[list[int]], torch.Tensor]:
2469
+ num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
2470
+ if self.speculative_config.method == "ngram":
2471
+ assert isinstance(sampled_token_ids, list)
2472
+ assert isinstance(self.drafter, NgramProposer)
2473
+ draft_token_ids = self.drafter.propose(
2474
+ sampled_token_ids, self.input_batch.req_ids,
2475
+ self.input_batch.num_tokens_no_spec,
2476
+ self.input_batch.token_ids_cpu,
2477
+ self.input_batch.spec_decode_unsupported_reqs)
2478
+ elif self.speculative_config.method == "medusa":
2479
+ assert isinstance(sampled_token_ids, list)
2480
+ assert isinstance(self.drafter, MedusaProposer)
2481
+
2482
+ if sample_hidden_states.shape[0] == len(sampled_token_ids):
2483
+ # The input to the target model does not include draft tokens.
2484
+ hidden_states = sample_hidden_states
2485
+ else:
2486
+ indices = []
2487
+ offset = 0
2488
+ assert spec_decode_metadata is not None
2489
+ for num_draft, tokens in zip(
2490
+ spec_decode_metadata.num_draft_tokens,
2491
+ sampled_token_ids):
2492
+ indices.append(offset + len(tokens) - 1)
2493
+ offset += num_draft + 1
2494
+ indices = torch.tensor(indices, device=self.device)
2495
+ hidden_states = sample_hidden_states[indices]
2496
+
2497
+ draft_token_ids = self.drafter.propose(
2498
+ target_hidden_states=hidden_states,
2499
+ sampling_metadata=sampling_metadata,
2500
+ )
2501
+ elif self.speculative_config.use_eagle():
2502
+ assert isinstance(self.drafter, EagleProposer)
2503
+
2504
+ if self.speculative_config.disable_padded_drafter_batch:
2505
+ # When padded-batch is disabled, the sampled_token_ids should be
2506
+ # the cpu-side list[list[int]] of valid sampled tokens for each
2507
+ # request, with invalid requests having empty lists.
2508
+ assert isinstance(sampled_token_ids, list), \
2509
+ "sampled_token_ids should be a python list when" \
2510
+ "padded-batch is disabled."
2511
+ next_token_ids = self.drafter.prepare_next_token_ids_cpu(
2512
+ sampled_token_ids, self.requests, self.input_batch,
2513
+ scheduler_output.num_scheduled_tokens)
2514
+ else:
2515
+ # When using padded-batch, the sampled_token_ids should be
2516
+ # the gpu tensor of sampled tokens for each request, of shape
2517
+ # (num_reqs, num_spec_tokens + 1) with rejected tokens having
2518
+ # value -1.
2519
+ assert isinstance(sampled_token_ids, torch.Tensor), \
2520
+ "sampled_token_ids should be a torch.Tensor when" \
2521
+ "padded-batch is enabled."
2522
+ next_token_ids, valid_sampled_tokens_count = \
2523
+ self.drafter.prepare_next_token_ids_padded(
2524
+ common_attn_metadata,
2525
+ sampled_token_ids,
2526
+ self.requests,
2527
+ self.input_batch,
2528
+ self.discard_request_indices.gpu,
2529
+ self.num_discarded_requests
2530
+ )
2531
+
2532
+ if spec_decode_metadata is None:
2533
+ token_indices_to_sample = None
2534
+ # input_ids can be None for multimodal models.
2535
+ target_token_ids = self.input_ids.gpu[:num_scheduled_tokens]
2536
+ # TODO(woosuk): Support M-RoPE.
2537
+ target_positions = self.positions.gpu[:num_scheduled_tokens]
2538
+ if self.use_aux_hidden_state_outputs:
2539
+ assert aux_hidden_states is not None
2540
+ target_hidden_states = torch.cat(
2541
+ [h[:num_scheduled_tokens] for h in aux_hidden_states],
2542
+ dim=-1)
2543
+ else:
2544
+ target_hidden_states = hidden_states[:num_scheduled_tokens]
2545
+ else:
2546
+ if self.speculative_config.disable_padded_drafter_batch:
2547
+ token_indices_to_sample = None
2548
+ common_attn_metadata, token_indices =\
2549
+ self.drafter.prepare_inputs(
2550
+ common_attn_metadata,
2551
+ sampled_token_ids,
2552
+ spec_decode_metadata.num_draft_tokens)
2553
+ else:
2554
+ common_attn_metadata, token_indices, \
2555
+ token_indices_to_sample =\
2556
+ self.drafter.prepare_inputs_padded(
2557
+ common_attn_metadata,
2558
+ spec_decode_metadata,
2559
+ valid_sampled_tokens_count)
2560
+
2561
+ target_token_ids = self.input_ids.gpu[token_indices]
2562
+ # TODO(woosuk): Support M-RoPE.
2563
+ target_positions = self.positions.gpu[token_indices]
2564
+ if self.use_aux_hidden_state_outputs:
2565
+ assert aux_hidden_states is not None
2566
+ target_hidden_states = torch.cat(
2567
+ [h[token_indices] for h in aux_hidden_states], dim=-1)
2568
+ else:
2569
+ target_hidden_states = hidden_states[token_indices]
2570
+ mm_embeds = None
2571
+ if self.supports_mm_inputs:
2572
+ mm_embeds = self._gather_mm_embeddings(scheduler_output,
2573
+ shift_computed_tokens=1)
2574
+
2575
+ draft_token_ids = self.drafter.propose(
2576
+ target_token_ids=target_token_ids,
2577
+ target_positions=target_positions,
2578
+ target_hidden_states=target_hidden_states,
2579
+ next_token_ids=next_token_ids,
2580
+ last_token_indices=token_indices_to_sample,
2581
+ sampling_metadata=sampling_metadata,
2582
+ common_attn_metadata=common_attn_metadata,
2583
+ mm_embeds=mm_embeds,
2584
+ )
2585
+ return draft_token_ids
2586
+
2587
+ def update_config(self, overrides: dict[str, Any]) -> None:
2588
+ allowed_config_names = {"load_config", "model_config"}
2589
+ for config_name, config_overrides in overrides.items():
2590
+ assert config_name in allowed_config_names, \
2591
+ f"Config `{config_name}` not supported. " \
2592
+ f"Allowed configs: {allowed_config_names}"
2593
+ config = getattr(self, config_name)
2594
+ new_config = update_config(config, config_overrides)
2595
+ setattr(self, config_name, new_config)
2596
+
2597
+ def load_model(self, eep_scale_up: bool = False) -> None:
2598
+ """
2599
+ Args:
2600
+ eep_scale_up: the model loading is for elastic EP scale up.
2601
+ """
2602
+ logger.info("Starting to load model %s...", self.model_config.model)
2603
+ if eep_scale_up:
2604
+ from vllm.distributed.parallel_state import get_ep_group
2605
+ num_local_physical_experts = torch.empty(1,
2606
+ dtype=torch.int32,
2607
+ device="cpu")
2608
+ torch.distributed.broadcast(num_local_physical_experts,
2609
+ group=get_ep_group().cpu_group,
2610
+ group_src=0)
2611
+ num_local_physical_experts = int(num_local_physical_experts.item())
2612
+ new_ep_size = get_ep_group().world_size
2613
+ global_expert_load, old_global_expert_indices = (
2614
+ EplbState.recv_state())
2615
+ num_logical_experts = global_expert_load.shape[1]
2616
+ self.parallel_config.eplb_config.num_redundant_experts = (
2617
+ num_local_physical_experts * new_ep_size - num_logical_experts)
2618
+ assert old_global_expert_indices.shape[
2619
+ 1] % num_local_physical_experts == 0
2620
+ old_ep_size = old_global_expert_indices.shape[
2621
+ 1] // num_local_physical_experts
2622
+ rank_mapping = {
2623
+ old_ep_rank: old_ep_rank
2624
+ for old_ep_rank in range(old_ep_size)
2625
+ }
2626
+ else:
2627
+ global_expert_load = None
2628
+ old_global_expert_indices = None
2629
+ rank_mapping = None
2630
+
2631
+ with DeviceMemoryProfiler() as m:
2632
+ time_before_load = time.perf_counter()
2633
+ model_loader = get_model_loader(self.load_config)
2634
+ logger.info("Loading model from scratch...")
2635
+ self.model = model_loader.load_model(
2636
+ vllm_config=self.vllm_config, model_config=self.model_config)
2637
+ if self.lora_config:
2638
+ self.model = self.load_lora_model(self.model, self.vllm_config,
2639
+ self.device)
2640
+ if hasattr(self, "drafter"):
2641
+ logger.info("Loading drafter model...")
2642
+ self.drafter.load_model(self.model)
2643
+ if self.use_aux_hidden_state_outputs:
2644
+ if supports_eagle3(self.model):
2645
+ self.model.set_aux_hidden_state_layers(
2646
+ self.model.get_eagle3_aux_hidden_state_layers())
2647
+ else:
2648
+ raise RuntimeError(
2649
+ "Model does not support EAGLE3 interface but "
2650
+ "aux_hidden_state_outputs was requested")
2651
+ time_after_load = time.perf_counter()
2652
+ self.model_memory_usage = m.consumed_memory
2653
+ logger.info("Model loading took %.4f GiB and %.6f seconds",
2654
+ self.model_memory_usage / GiB_bytes,
2655
+ time_after_load - time_before_load)
2656
+ prepare_communication_buffer_for_model(self.model)
2657
+
2658
+ self.is_multimodal_pruning_enabled = (supports_multimodal_pruning(
2659
+ self.model) and self.model_config.multimodal_config.
2660
+ is_multimodal_pruning_enabled())
2661
+
2662
+ if is_mixture_of_experts(
2663
+ self.model) and self.parallel_config.enable_eplb:
2664
+ logger.info("EPLB is enabled for model %s.",
2665
+ self.model_config.model)
2666
+ self.eplb_state = EplbState.build(
2667
+ self.model,
2668
+ self.device,
2669
+ self.parallel_config,
2670
+ global_expert_load,
2671
+ old_global_expert_indices,
2672
+ rank_mapping,
2673
+ )
2674
+
2675
+ if (
2676
+ self.vllm_config.compilation_config.level == \
2677
+ CompilationLevel.DYNAMO_AS_IS and supports_dynamo()
2678
+ ):
2679
+ backend = self.vllm_config.compilation_config.init_backend(
2680
+ self.vllm_config)
2681
+ compilation_counter.dynamo_as_is_count += 1
2682
+ self.model.compile(fullgraph=True, backend=backend)
2683
+ return
2684
+ # for other compilation levels, cudagraph behavior is controlled by
2685
+ # CudagraphWraper and CudagraphDispatcher of vllm.
2686
+
2687
+ # wrap the model with full cudagraph wrapper if needed.
2688
+ if self.compilation_config.cudagraph_mode.has_full_cudagraphs() \
2689
+ and not self.parallel_config.enable_dbo:
2690
+ self.model = CUDAGraphWrapper(self.model,
2691
+ self.vllm_config,
2692
+ runtime_mode=CUDAGraphMode.FULL)
2693
+ elif self.parallel_config.enable_dbo:
2694
+ if self.compilation_config.cudagraph_mode.has_full_cudagraphs():
2695
+ self.model = UBatchWrapper(self.model, self.vllm_config,
2696
+ CUDAGraphMode.FULL, self.device)
2697
+ else:
2698
+ self.model = UBatchWrapper(self.model, self.vllm_config,
2699
+ CUDAGraphMode.NONE, self.device)
2700
+
2701
+ def reload_weights(self) -> None:
2702
+ assert getattr(self, "model", None) is not None, \
2703
+ "Cannot reload weights before model is loaded."
2704
+ model_loader = get_model_loader(self.load_config)
2705
+ logger.info("Reloading weights inplace...")
2706
+ model = self.get_model()
2707
+ model_loader.load_weights(model, model_config=self.model_config)
2708
+
2709
+ def save_tensorized_model(
2710
+ self,
2711
+ tensorizer_config: "TensorizerConfig",
2712
+ ) -> None:
2713
+ model = self.get_model()
2714
+ TensorizerLoader.save_model(
2715
+ model,
2716
+ tensorizer_config=tensorizer_config,
2717
+ model_config=self.model_config,
2718
+ )
2719
+
2720
+ def _get_prompt_logprobs_dict(
2721
+ self,
2722
+ hidden_states: torch.Tensor,
2723
+ num_scheduled_tokens: dict[str, int],
2724
+ ) -> dict[str, Optional[LogprobsTensors]]:
2725
+ num_prompt_logprobs_dict = self.input_batch.num_prompt_logprobs
2726
+ if not num_prompt_logprobs_dict:
2727
+ return {}
2728
+
2729
+ in_progress_dict = self.input_batch.in_progress_prompt_logprobs_cpu
2730
+ prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}
2731
+
2732
+ # Since prompt logprobs are a rare feature, prioritize simple,
2733
+ # maintainable loop over optimal performance.
2734
+ completed_prefill_reqs = []
2735
+ for req_id, num_prompt_logprobs in num_prompt_logprobs_dict.items():
2736
+ num_tokens = num_scheduled_tokens[req_id]
2737
+
2738
+ # Get metadata for this request.
2739
+ request = self.requests[req_id]
2740
+ if request.prompt_token_ids is None:
2741
+ # Prompt logprobs is incompatible with prompt embeddings
2742
+ continue
2743
+
2744
+ num_prompt_tokens = len(request.prompt_token_ids)
2745
+ prompt_token_ids = torch.tensor(request.prompt_token_ids).to(
2746
+ self.device, non_blocking=True)
2747
+
2748
+ # Set up target LogprobsTensors object.
2749
+ logprobs_tensors = in_progress_dict.get(req_id)
2750
+ if not logprobs_tensors:
2751
+ # Create empty logprobs CPU tensors for the entire prompt.
2752
+ # If chunked, we'll copy in slice by slice.
2753
+ logprobs_tensors = LogprobsTensors.empty_cpu(
2754
+ num_prompt_tokens - 1, num_prompt_logprobs + 1)
2755
+ in_progress_dict[req_id] = logprobs_tensors
2756
+
2757
+ # Determine number of logits to retrieve.
2758
+ start_idx = request.num_computed_tokens
2759
+ start_tok = start_idx + 1
2760
+ num_remaining_tokens = num_prompt_tokens - start_tok
2761
+ if num_tokens <= num_remaining_tokens:
2762
+ # This is a chunk, more tokens remain.
2763
+ # In the == case, there are no more prompt logprobs to produce
2764
+ # but we want to defer returning them to the next step where we
2765
+ # have new generated tokens to return.
2766
+ num_logits = num_tokens
2767
+ else:
2768
+ # This is the last chunk of prompt tokens to return.
2769
+ num_logits = num_remaining_tokens
2770
+ completed_prefill_reqs.append(req_id)
2771
+ prompt_logprobs_dict[req_id] = logprobs_tensors
2772
+
2773
+ if num_logits <= 0:
2774
+ # This can happen for the final chunk if we prefilled exactly
2775
+ # (num_prompt_tokens - 1) tokens for this request in the prior
2776
+ # step. There are no more prompt logprobs to produce.
2777
+ continue
2778
+
2779
+ # Get the logits corresponding to this req's prompt tokens.
2780
+ # If this is a partial request (i.e. chunked prefill),
2781
+ # then there is prompt logprob generated for each index.
2782
+ req_idx = self.input_batch.req_id_to_index[req_id]
2783
+ offset = self.query_start_loc.np[req_idx].item()
2784
+ prompt_hidden_states = hidden_states[offset:offset + num_logits]
2785
+ logits = self.model.compute_logits(prompt_hidden_states)
2786
+
2787
+ # Get the "target" tokens for each index. For prompt at index i,
2788
+ # the token at prompt index i+1 is the "sampled" token we want
2789
+ # to gather the logprob for.
2790
+ tgt_token_ids = prompt_token_ids[start_tok:start_tok + num_logits]
2791
+
2792
+ # Compute prompt logprobs.
2793
+ logprobs = self.sampler.compute_logprobs(logits)
2794
+ token_ids, logprobs, ranks = self.sampler.gather_logprobs(
2795
+ logprobs, num_prompt_logprobs, tgt_token_ids)
2796
+
2797
+ # Transfer GPU->CPU async.
2798
+ chunk_slice = slice(start_idx, start_idx + num_logits)
2799
+ logprobs_tensors.logprob_token_ids[chunk_slice].copy_(
2800
+ token_ids, non_blocking=True)
2801
+ logprobs_tensors.logprobs[chunk_slice].copy_(logprobs,
2802
+ non_blocking=True)
2803
+ logprobs_tensors.selected_token_ranks[chunk_slice].copy_(
2804
+ ranks, non_blocking=True)
2805
+
2806
+ # Remove requests that have completed prefill from the batch
2807
+ # num_prompt_logprobs_dict.
2808
+ for req_id in completed_prefill_reqs:
2809
+ del num_prompt_logprobs_dict[req_id]
2810
+ del in_progress_dict[req_id]
2811
+
2812
+ # Must synchronize the non-blocking GPU->CPU transfers.
2813
+ if prompt_logprobs_dict:
2814
+ self._sync_device()
2815
+
2816
+ return prompt_logprobs_dict
2817
+
2818
+ def _get_nans_in_logits(
2819
+ self,
2820
+ logits: Optional[torch.Tensor],
2821
+ ) -> dict[str, int]:
2822
+ try:
2823
+ if logits is None:
2824
+ return {req_id: 0 for req_id in self.input_batch.req_ids}
2825
+
2826
+ num_nans_in_logits = {}
2827
+ num_nans_for_index = logits.isnan().sum(dim=-1).cpu().numpy()
2828
+ for req_id in self.input_batch.req_ids:
2829
+ req_index = self.input_batch.req_id_to_index[req_id]
2830
+ num_nans_in_logits[req_id] = (
2831
+ int(num_nans_for_index[req_index])
2832
+ if num_nans_for_index is not None
2833
+ and req_index < logits.shape[0] else 0)
2834
+ return num_nans_in_logits
2835
+ except IndexError:
2836
+ return {}
2837
+
2838
+ @contextmanager
2839
+ def maybe_randomize_inputs(self, input_ids: torch.Tensor):
2840
+ """
2841
+ Randomize input_ids if VLLM_RANDOMIZE_DP_DUMMY_INPUTS is set.
2842
+ This is to help balance expert-selection
2843
+ - during profile_run
2844
+ - during DP rank dummy run
2845
+ """
2846
+ dp_size = self.vllm_config.parallel_config.data_parallel_size
2847
+ randomize_inputs = envs.VLLM_RANDOMIZE_DP_DUMMY_INPUTS and dp_size > 1
2848
+ if not randomize_inputs:
2849
+ yield
2850
+ else:
2851
+ import functools
2852
+
2853
+ @functools.cache
2854
+ def rand_input_ids() -> torch.Tensor:
2855
+ return torch.randint_like(
2856
+ self.input_ids.gpu,
2857
+ low=0,
2858
+ high=self.model_config.get_vocab_size(),
2859
+ dtype=input_ids.dtype)
2860
+
2861
+ logger.debug_once("Randomizing dummy data for DP Rank")
2862
+ input_ids.copy_(rand_input_ids()[:input_ids.size(0)],
2863
+ non_blocking=True)
2864
+ yield
2865
+ input_ids.fill_(0)
2866
+
2867
+ def _get_mm_dummy_batch(
2868
+ self,
2869
+ modality: str,
2870
+ max_items_per_batch: int,
2871
+ ) -> BatchedTensorInputs:
2872
+ """Dummy data for profiling and precompiling multimodal models."""
2873
+ assert self.mm_budget is not None
2874
+
2875
+ dummy_decoder_data = self.mm_registry.get_decoder_dummy_data(
2876
+ model_config=self.model_config,
2877
+ seq_len=self.max_model_len,
2878
+ mm_counts={modality: 1},
2879
+ cache=self.mm_budget.cache,
2880
+ )
2881
+ dummy_mm_data = dummy_decoder_data.multi_modal_data
2882
+
2883
+ # Result in the maximum GPU consumption of the model
2884
+ dummy_mm_item = dummy_mm_data[modality][0]
2885
+ dummy_mm_items = [dummy_mm_item] * max_items_per_batch
2886
+
2887
+ model = cast(SupportsMultiModal, self.model)
2888
+ return next(mm_kwargs_group
2889
+ for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
2890
+ dummy_mm_items,
2891
+ device=self.device,
2892
+ pin_memory=self.pin_memory,
2893
+ merge_by_field_config=model.merge_by_field_config,
2894
+ ))
2895
+
2896
+ @torch.inference_mode()
2897
+ def _dummy_run(
2898
+ self,
2899
+ num_tokens: int,
2900
+ cudagraph_runtime_mode: Optional[CUDAGraphMode] = None,
2901
+ force_attention: bool = False,
2902
+ uniform_decode: bool = False,
2903
+ allow_microbatching: bool = True,
2904
+ skip_eplb: bool = False,
2905
+ is_profile: bool = False,
2906
+ create_mixed_batch: bool = False,
2907
+ remove_lora: bool = True,
2908
+ ) -> tuple[torch.Tensor, torch.Tensor]:
2909
+ """
2910
+ Run a dummy forward pass to warm up/profile run or capture the
2911
+ CUDA graph for the model.
2912
+
2913
+ Args:
2914
+ num_tokens: Number of tokens to run the dummy forward pass.
2915
+ cudagraph_runtime_mode: used to control the behavior.
2916
+ - if not set will determine the cudagraph mode based on using
2917
+ the self.cudagraph_dispatcher.
2918
+ - CUDAGraphMode.NONE: No cudagraph, for warm up and profile run
2919
+ - CUDAGraphMode.PIECEWISE: Piecewise cudagraph.
2920
+ - CUDAGraphMode.FULL: Full cudagraph, attention metadata is
2921
+ needed.
2922
+ force_attention: If True, always create attention metadata. Used to
2923
+ warm up attention backend when mode is NONE.
2924
+ uniform_decode: If True, the batch is a uniform decode batch.
2925
+ skip_eplb: If True, skip EPLB state update.
2926
+ is_profile: If True, this is a profile run.
2927
+ create_mixed_batch: If True, create a mixed batch with both decode
2928
+ (1 token) and prefill (multiple tokens) requests.
2929
+ remove_lora: If False, dummy LoRAs are not destroyed after the run
2930
+ """
2931
+ assert cudagraph_runtime_mode is None or cudagraph_runtime_mode in {
2932
+ CUDAGraphMode.NONE, CUDAGraphMode.PIECEWISE, CUDAGraphMode.FULL
2933
+ }
2934
+
2935
+ # If cudagraph_mode.decode_mode() == FULL and
2936
+ # cudagraph_mode.separate_routine(). This means that we are using
2937
+ # different graphs and/or modes for mixed prefill-decode batches vs.
2938
+ # uniform decode batches. A uniform decode batch means that all
2939
+ # requests have identical query length, except a potential virtual
2940
+ # request (shorter) in the batch account for padding.
2941
+ # Uniform decode batch could either be common pure decode, where
2942
+ # max_query_len == 1, or speculative decode, where
2943
+ # max_query_len == 1 + num_spec_decode_tokens.
2944
+
2945
+ # When setting max_query_len = 1, we switch to and capture the optimized
2946
+ # routine of FA2 for pure decode, i.e., Flashdecode + an optimization
2947
+ # for GQA/MQA.
2948
+ max_query_len = self.uniform_decode_query_len if uniform_decode else \
2949
+ num_tokens
2950
+
2951
+ # Set num_scheduled_tokens based on num_tokens and max_num_seqs
2952
+ # for dummy run with LoRA so that the num_reqs collectively
2953
+ # has num_tokens in total.
2954
+ assert num_tokens <= self.scheduler_config.max_num_batched_tokens
2955
+ max_num_reqs = self.scheduler_config.max_num_seqs
2956
+ if create_mixed_batch:
2957
+ assert not uniform_decode
2958
+ # Create mixed batch:
2959
+ # first half decode tokens, second half one prefill
2960
+ num_decode_tokens = num_tokens // 2
2961
+ num_prefill_tokens = num_tokens - num_decode_tokens
2962
+ num_reqs = num_decode_tokens + 1
2963
+
2964
+ # Create decode requests (1 token each) followed by prefill request
2965
+ num_scheduled_tokens_list = [1] * num_decode_tokens + [
2966
+ num_prefill_tokens
2967
+ ]
2968
+ # Note: Overriding max_query_len to be the prefill tokens
2969
+ max_query_len = num_prefill_tokens
2970
+ elif uniform_decode:
2971
+ assert not create_mixed_batch
2972
+ num_reqs = cdiv(num_tokens, max_query_len)
2973
+ num_scheduled_tokens_list = [max_query_len] * num_reqs
2974
+ if num_tokens % max_query_len != 0:
2975
+ num_scheduled_tokens_list[-1] = num_tokens % max_query_len
2976
+ else:
2977
+ num_reqs = min(num_tokens, max_num_reqs)
2978
+ min_tokens_per_req = num_tokens // num_reqs
2979
+ num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
2980
+ num_scheduled_tokens_list[-1] += num_tokens % num_reqs
2981
+
2982
+ assert sum(num_scheduled_tokens_list) == num_tokens
2983
+ assert len(num_scheduled_tokens_list) == num_reqs
2984
+ num_scheduled_tokens = np.array(num_scheduled_tokens_list,
2985
+ dtype=np.int32)
2986
+ total_num_scheduled_tokens = int(num_scheduled_tokens.sum())
2987
+
2988
+ ubatch_slices = None
2989
+ num_tokens_after_padding = None
2990
+
2991
+ # We currently only microbatch if the number of tokens is
2992
+ # over a certain threshold.
2993
+ if self.parallel_config.enable_dbo and allow_microbatching:
2994
+ ubatch_slices, ubatch_num_tokens_after_padding = ubatch_split(
2995
+ num_scheduled_tokens,
2996
+ total_num_scheduled_tokens,
2997
+ total_num_scheduled_tokens,
2998
+ uniform_decode=uniform_decode,
2999
+ vllm_config=self.vllm_config,
3000
+ )
3001
+ # Currently when DBO is enabled `ubatch_split` returns
3002
+ # the num_tokens_after_padding for a single ubatch, but we have 2
3003
+ # TODO(sage,lucas): this is cruft that should be addressed in the
3004
+ # padding refactor.
3005
+ if ubatch_num_tokens_after_padding is not None:
3006
+ num_tokens_after_padding = ubatch_num_tokens_after_padding * 2
3007
+
3008
+ # If we failed to microbatch, currently need to resynchronize
3009
+ # TODO(lucas,sage): we should be able to avoid this second sync by
3010
+ # refactoring `get_dp_padding_ubatch` and `get_dp_padding` into
3011
+ # a single `coordinate_batch_across_dp` function.
3012
+ if num_tokens_after_padding is None:
3013
+ num_pad, num_tokens_across_dp = self.get_dp_padding(num_tokens)
3014
+ num_tokens_after_padding = num_tokens + num_pad
3015
+ else:
3016
+ num_tokens_across_dp = num_tokens_after_padding
3017
+ num_tokens_after_padding = int(num_tokens_after_padding[0].item())
3018
+
3019
+ attn_metadata: Optional[PerLayerAttnMetadata] = None
3020
+
3021
+ # If force_attention is True, we always capture attention. Otherwise,
3022
+ # it only happens for cudagraph_runtime_mode=FULL.
3023
+ if force_attention or cudagraph_runtime_mode == CUDAGraphMode.FULL:
3024
+ attn_metadata = {}
3025
+ if ubatch_slices is not None:
3026
+ attn_metadata = [dict() for _ in range(len(ubatch_slices))]
3027
+
3028
+ if create_mixed_batch:
3029
+ # In the mixed batch mode (used for FI warmup), we use
3030
+ # shorter sequence lengths to run faster.
3031
+ # TODO(luka) better system for describing dummy batches
3032
+ seq_lens = [1] * num_decode_tokens + [num_prefill_tokens + 1]
3033
+ else:
3034
+ seq_lens = max_query_len
3035
+ self.seq_lens.np[:num_reqs] = seq_lens
3036
+ self.seq_lens.np[num_reqs:] = 0
3037
+ self.seq_lens.copy_to_gpu()
3038
+
3039
+ cum_num_tokens, _ = self._get_cumsum_and_arange(
3040
+ num_scheduled_tokens)
3041
+ self.query_start_loc.np[1:num_reqs + 1] = cum_num_tokens
3042
+ self.query_start_loc.copy_to_gpu()
3043
+
3044
+ for kv_cache_group_id, kv_cache_group_spec in enumerate(
3045
+ self.kv_cache_config.kv_cache_groups):
3046
+ common_attn_metadata = CommonAttentionMetadata(
3047
+ query_start_loc=self.query_start_loc.gpu[:num_reqs + 1],
3048
+ query_start_loc_cpu=self.query_start_loc.cpu[:num_reqs +
3049
+ 1],
3050
+ seq_lens=self.seq_lens.gpu[:num_reqs],
3051
+ seq_lens_cpu=self.seq_lens.cpu[:num_reqs],
3052
+ num_computed_tokens_cpu=self.input_batch.
3053
+ num_computed_tokens_cpu_tensor[:num_reqs],
3054
+ num_reqs=num_reqs,
3055
+ num_actual_tokens=num_tokens,
3056
+ max_query_len=max_query_len,
3057
+ max_seq_len=self.max_model_len,
3058
+ block_table_tensor=self.input_batch.
3059
+ block_table[kv_cache_group_id].get_device_tensor(num_reqs),
3060
+ slot_mapping=self.input_batch.block_table[
3061
+ kv_cache_group_id].slot_mapping.gpu[:num_tokens],
3062
+ causal=True)
3063
+ for attn_group in self.attn_groups[kv_cache_group_id]:
3064
+ if ubatch_slices is not None:
3065
+ common_attn_metadata_list = split_attn_metadata(
3066
+ ubatch_slices, common_attn_metadata)
3067
+ for ubid, common_attn_metadata in enumerate(
3068
+ common_attn_metadata_list):
3069
+ assert common_attn_metadata.max_query_len == 1
3070
+ attn_metadata_i = (attn_group\
3071
+ .get_metadata_builder(ubatch_id=ubid)\
3072
+ .build_for_cudagraph_capture(common_attn_metadata))
3073
+ for layer_name in attn_group.layer_names:
3074
+ assert type(attn_metadata) is list
3075
+ attn_metadata[ubid][
3076
+ layer_name] = attn_metadata_i
3077
+ else:
3078
+ assert type(attn_metadata) is dict
3079
+ attn_metadata_i = attn_group.get_metadata_builder()\
3080
+ .build_for_cudagraph_capture(common_attn_metadata)
3081
+ for layer_name in attn_group.layer_names:
3082
+ attn_metadata[layer_name] = attn_metadata_i
3083
+
3084
+ with self.maybe_dummy_run_with_lora(self.lora_config,
3085
+ num_scheduled_tokens, remove_lora):
3086
+ model_kwargs = self._init_model_kwargs(num_tokens)
3087
+ if (self.supports_mm_inputs
3088
+ and not self.model_config.is_encoder_decoder):
3089
+ input_ids = None
3090
+ inputs_embeds = self.inputs_embeds.gpu[:num_tokens]
3091
+ model_kwargs = {
3092
+ **model_kwargs,
3093
+ **self._dummy_mm_kwargs(num_reqs),
3094
+ }
3095
+ elif self.enable_prompt_embeds:
3096
+ input_ids = None
3097
+ inputs_embeds = self.inputs_embeds.gpu[:num_tokens]
3098
+ model_kwargs = self._init_model_kwargs(num_tokens)
3099
+ else:
3100
+ input_ids = self.input_ids.gpu[:num_tokens]
3101
+ inputs_embeds = None
3102
+
3103
+ if self.uses_mrope:
3104
+ positions = self.mrope_positions.gpu[:, :num_tokens]
3105
+ else:
3106
+ positions = self.positions.gpu[:num_tokens]
3107
+
3108
+ if get_pp_group().is_first_rank:
3109
+ intermediate_tensors = None
3110
+ else:
3111
+ if self.intermediate_tensors is None:
3112
+ self.intermediate_tensors = (
3113
+ self.model.make_empty_intermediate_tensors(
3114
+ batch_size=self.max_num_tokens,
3115
+ dtype=self.model_config.dtype,
3116
+ device=self.device))
3117
+
3118
+ intermediate_tensors = self.sync_and_slice_intermediate_tensors(
3119
+ num_tokens, None, False)
3120
+
3121
+ # filter out the valid batch descriptor
3122
+ _cg_mode, batch_descriptor = self.cudagraph_dispatcher.dispatch(
3123
+ BatchDescriptor(num_tokens=num_tokens_after_padding,
3124
+ uniform_decode=uniform_decode)) \
3125
+ if not is_profile else (CUDAGraphMode.NONE, None)
3126
+ if cudagraph_runtime_mode is not None:
3127
+ # we allow forcing NONE when the dispatcher disagrees to support
3128
+ # warm ups for cudagraph capture
3129
+ assert cudagraph_runtime_mode == CUDAGraphMode.NONE or \
3130
+ cudagraph_runtime_mode == _cg_mode, (
3131
+ f"Cudagraph runtime mode mismatch at dummy_run. "
3132
+ f"Expected {_cg_mode}, but got {cudagraph_runtime_mode}.")
3133
+ else:
3134
+ cudagraph_runtime_mode = _cg_mode
3135
+
3136
+ if ubatch_slices is not None:
3137
+ # Adjust values to reflect a single ubatch.
3138
+ # TODO(sage,lucas): this is cruft that should be addressed in
3139
+ # the padding refactor.
3140
+ num_tokens_after_padding = ubatch_slices[0].num_tokens
3141
+ if num_tokens_across_dp is not None:
3142
+ num_tokens_across_dp[:] = num_tokens_after_padding
3143
+
3144
+ with self.maybe_randomize_inputs(input_ids), set_forward_context(
3145
+ attn_metadata,
3146
+ self.vllm_config,
3147
+ num_tokens=num_tokens_after_padding,
3148
+ num_tokens_across_dp=num_tokens_across_dp,
3149
+ cudagraph_runtime_mode=cudagraph_runtime_mode,
3150
+ batch_descriptor=batch_descriptor,
3151
+ ubatch_slices=ubatch_slices):
3152
+ outputs = self.model(
3153
+ input_ids=input_ids,
3154
+ positions=positions,
3155
+ intermediate_tensors=intermediate_tensors,
3156
+ inputs_embeds=inputs_embeds,
3157
+ **model_kwargs,
3158
+ )
3159
+
3160
+ if self.use_aux_hidden_state_outputs:
3161
+ hidden_states, _ = outputs
3162
+ else:
3163
+ hidden_states = outputs
3164
+
3165
+ if self.speculative_config and self.speculative_config.use_eagle():
3166
+ assert isinstance(self.drafter, EagleProposer)
3167
+ self.drafter.dummy_run(num_tokens)
3168
+
3169
+ # This is necessary to avoid blocking DP.
3170
+ # For dummy runs, we typically skip EPLB since we don't have any real
3171
+ # requests to process.
3172
+ # However, in DP settings, there may be cases when some DP ranks do
3173
+ # not have any requests to process, so they're executing dummy batches.
3174
+ # In such cases, we still have to trigger EPLB to make sure
3175
+ # ranks execute the rearrangement in synchronization.
3176
+ if not skip_eplb:
3177
+ self.eplb_step(is_dummy=True, is_profile=is_profile)
3178
+
3179
+ logit_indices = np.cumsum(num_scheduled_tokens) - 1
3180
+ return hidden_states, hidden_states[logit_indices]
3181
+
3182
+ @torch.inference_mode()
3183
+ def _dummy_sampler_run(
3184
+ self,
3185
+ hidden_states: torch.Tensor,
3186
+ ) -> torch.Tensor:
3187
+ # The dummy hidden states may contain special values,
3188
+ # like `inf` or `nan`.
3189
+ # To avoid breaking the sampler, we use a random tensor here instead.
3190
+ hidden_states = torch.rand_like(hidden_states)
3191
+
3192
+ logits = self.model.compute_logits(hidden_states)
3193
+ num_reqs = logits.size(0)
3194
+
3195
+ dummy_tensors = lambda v: torch.full(
3196
+ (num_reqs, ), v, device=self.device)
3197
+
3198
+ dummy_metadata = SamplingMetadata(
3199
+ temperature=dummy_tensors(0.5),
3200
+ all_greedy=False,
3201
+ all_random=False,
3202
+ top_p=dummy_tensors(0.9),
3203
+ top_k=dummy_tensors(logits.size(1) - 1),
3204
+ generators={},
3205
+ max_num_logprobs=None,
3206
+ no_penalties=True,
3207
+ prompt_token_ids=None,
3208
+ frequency_penalties=dummy_tensors(0.1),
3209
+ presence_penalties=dummy_tensors(0.1),
3210
+ repetition_penalties=dummy_tensors(0.1),
3211
+ output_token_ids=[[] for _ in range(num_reqs)],
3212
+ allowed_token_ids_mask=None,
3213
+ bad_words_token_ids={},
3214
+ logitsprocs=LogitsProcessors(),
3215
+ )
3216
+ try:
3217
+ sampler_output = self.sampler(logits=logits,
3218
+ sampling_metadata=dummy_metadata)
3219
+ except RuntimeError as e:
3220
+ if 'out of memory' in str(e):
3221
+ raise RuntimeError(
3222
+ "CUDA out of memory occurred when warming up sampler with "
3223
+ f"{num_reqs} dummy requests. Please try lowering "
3224
+ "`max_num_seqs` or `gpu_memory_utilization` when "
3225
+ "initializing the engine.") from e
3226
+ else:
3227
+ raise e
3228
+ if self.speculative_config:
3229
+ draft_token_ids = [[0] for _ in range(num_reqs)]
3230
+ dummy_spec_decode_metadata = SpecDecodeMetadata.make_dummy(
3231
+ draft_token_ids, self.device)
3232
+
3233
+ num_tokens = sum(len(ids) for ids in draft_token_ids)
3234
+ # draft_probs = torch.randn(
3235
+ # num_tokens, logits.shape[-1], device=self.device,
3236
+ # dtype=logits.dtype)
3237
+ draft_probs = None
3238
+ target_logits = torch.randn(num_tokens,
3239
+ logits.shape[-1],
3240
+ device=self.device,
3241
+ dtype=logits.dtype)
3242
+ # NOTE(woosuk): Here, we should use int32 because the sampler uses
3243
+ # int32 for bonus_token_ids. If the dtype mismatches, re-compilation
3244
+ # will occur at runtime.
3245
+ bonus_token_ids = torch.zeros(num_reqs,
3246
+ device=self.device,
3247
+ dtype=torch.int32)
3248
+ self.rejection_sampler(
3249
+ dummy_spec_decode_metadata,
3250
+ draft_probs,
3251
+ target_logits,
3252
+ bonus_token_ids,
3253
+ dummy_metadata,
3254
+ )
3255
+ return sampler_output
3256
+
3257
+ def _dummy_pooler_run_task(
3258
+ self,
3259
+ hidden_states: torch.Tensor,
3260
+ task: PoolingTask,
3261
+ ) -> PoolerOutput:
3262
+ num_tokens = hidden_states.shape[0]
3263
+ max_num_reqs = self.scheduler_config.max_num_seqs
3264
+ num_reqs = min(num_tokens, max_num_reqs)
3265
+ min_tokens_per_req = num_tokens // num_reqs
3266
+ num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
3267
+ num_scheduled_tokens_list[-1] += num_tokens % num_reqs
3268
+ assert sum(num_scheduled_tokens_list) == num_tokens
3269
+ assert len(num_scheduled_tokens_list) == num_reqs
3270
+
3271
+ req_num_tokens = num_tokens // num_reqs
3272
+
3273
+ dummy_prompt_lens = torch.tensor(
3274
+ num_scheduled_tokens_list,
3275
+ device="cpu",
3276
+ )
3277
+ dummy_token_ids = torch.zeros((num_reqs, req_num_tokens),
3278
+ dtype=torch.int32,
3279
+ device=self.device)
3280
+
3281
+ model = cast(VllmModelForPooling, self.get_model())
3282
+ dummy_pooling_params = PoolingParams(task=task)
3283
+ dummy_pooling_params.verify(task=task, model_config=self.model_config)
3284
+ to_update = model.pooler.get_pooling_updates(task)
3285
+ to_update.apply(dummy_pooling_params)
3286
+
3287
+ dummy_metadata = PoolingMetadata(
3288
+ prompt_lens=dummy_prompt_lens,
3289
+ prompt_token_ids=dummy_token_ids,
3290
+ pooling_params=[dummy_pooling_params] * num_reqs,
3291
+ )
3292
+
3293
+ dummy_metadata.build_pooling_cursor(num_scheduled_tokens_list,
3294
+ device=hidden_states.device)
3295
+
3296
+ try:
3297
+ return model.pooler(hidden_states=hidden_states,
3298
+ pooling_metadata=dummy_metadata)
3299
+ except RuntimeError as e:
3300
+ if 'out of memory' in str(e):
3301
+ raise RuntimeError(
3302
+ "CUDA out of memory occurred when warming up pooler "
3303
+ f"({task=}) with {num_reqs} dummy requests. Please try "
3304
+ "lowering `max_num_seqs` or `gpu_memory_utilization` when "
3305
+ "initializing the engine.") from e
3306
+ else:
3307
+ raise e
3308
+
3309
+ @torch.inference_mode()
3310
+ def _dummy_pooler_run(
3311
+ self,
3312
+ hidden_states: torch.Tensor,
3313
+ ) -> PoolerOutput:
3314
+ # Find the task that has the largest output for subsequent steps
3315
+ output_size = dict[PoolingTask, float]()
3316
+ for task in self.get_supported_pooling_tasks():
3317
+ # Run a full batch with each task to ensure none of them OOMs
3318
+ output = self._dummy_pooler_run_task(hidden_states, task)
3319
+ output_size[task] = sum(o.nbytes for o in output)
3320
+ del output # Allow GC
3321
+
3322
+ max_task = max(output_size.items(), key=lambda x: x[1])[0]
3323
+ return self._dummy_pooler_run_task(hidden_states, max_task)
3324
+
3325
+ def profile_run(self) -> None:
3326
+ # Profile with multimodal encoder & encoder cache.
3327
+ if self.supports_mm_inputs:
3328
+ if self.model_config.multimodal_config.skip_mm_profiling:
3329
+ logger.info(
3330
+ "Skipping memory profiling for multimodal encoder and "
3331
+ "encoder cache.")
3332
+ else:
3333
+ mm_budget = self.mm_budget
3334
+ assert mm_budget is not None
3335
+
3336
+ if (encoder_budget := mm_budget.get_encoder_budget()) > 0:
3337
+ # NOTE: Currently model is profiled with a single non-text
3338
+ # modality with the max possible input tokens even when
3339
+ # it supports multiple.
3340
+ dummy_modality = mm_budget.get_modality_with_max_tokens()
3341
+ max_mm_items_per_batch = mm_budget \
3342
+ .max_items_per_batch_by_modality[dummy_modality]
3343
+
3344
+ logger.info(
3345
+ "Encoder cache will be initialized with a budget of "
3346
+ "%s tokens, and profiled with %s %s items of the "
3347
+ "maximum feature size.",
3348
+ encoder_budget,
3349
+ max_mm_items_per_batch,
3350
+ dummy_modality,
3351
+ )
3352
+
3353
+ # Create dummy batch of multimodal inputs.
3354
+ batched_dummy_mm_inputs = self._get_mm_dummy_batch(
3355
+ dummy_modality,
3356
+ max_mm_items_per_batch,
3357
+ )
3358
+
3359
+ # Run multimodal encoder.
3360
+ dummy_encoder_outputs = \
3361
+ self.model.get_multimodal_embeddings(
3362
+ **batched_dummy_mm_inputs)
3363
+
3364
+ sanity_check_mm_encoder_outputs(
3365
+ dummy_encoder_outputs,
3366
+ expected_num_items=max_mm_items_per_batch,
3367
+ )
3368
+
3369
+ # NOTE: This happens when encoder cache needs to store
3370
+ # the embeddings that encoder outputs are scattered onto.
3371
+ # In this case we create dummy embeddings of size
3372
+ # (encode_budget, hidden_size) and scatter encoder
3373
+ # output into it.
3374
+ encoder_output_shape = dummy_encoder_outputs[0].shape
3375
+ if encoder_output_shape[0] < encoder_budget:
3376
+ expanded_outputs = []
3377
+ for output in dummy_encoder_outputs:
3378
+ expanded = output.new_zeros(
3379
+ (encoder_budget, encoder_output_shape[-1]))
3380
+ num_tokens = output.shape[0]
3381
+ expanded[:num_tokens].copy_(output)
3382
+ expanded_outputs.append(expanded)
3383
+
3384
+ dummy_encoder_outputs = expanded_outputs
3385
+
3386
+ # Cache the dummy encoder outputs.
3387
+ self.encoder_cache["tmp"] = dict(
3388
+ enumerate(dummy_encoder_outputs))
3389
+
3390
+ # Add `is_profile` here to pre-allocate communication buffers
3391
+ hidden_states, last_hidden_states \
3392
+ = self._dummy_run(self.max_num_tokens, is_profile=True)
3393
+ if get_pp_group().is_last_rank:
3394
+ if self.is_pooling_model:
3395
+ output = self._dummy_pooler_run(hidden_states)
3396
+ else:
3397
+ output = self._dummy_sampler_run(last_hidden_states)
3398
+ else:
3399
+ output = None
3400
+ self._sync_device()
3401
+ del hidden_states, output
3402
+ self.encoder_cache.clear()
3403
+ gc.collect()
3404
+
3405
+ def capture_model(self) -> int:
3406
+ if self.compilation_config.cudagraph_mode == CUDAGraphMode.NONE:
3407
+ logger.warning(
3408
+ "Skipping CUDA graph capture. To turn on CUDA graph capture, "
3409
+ "ensure `cudagraph_mode` was not manually set to `NONE`")
3410
+ return 0
3411
+ else:
3412
+ self.initialize_cudagraph_capture()
3413
+
3414
+ compilation_counter.num_gpu_runner_capture_triggers += 1
3415
+
3416
+ start_time = time.perf_counter()
3417
+ start_free_gpu_memory = torch.cuda.mem_get_info()[0]
3418
+
3419
+ @contextmanager
3420
+ def freeze_gc():
3421
+ # Optimize garbage collection during CUDA graph capture.
3422
+ # Clean up, then freeze all remaining objects from being included
3423
+ # in future collections.
3424
+ gc.collect()
3425
+ should_freeze = not envs.VLLM_ENABLE_CUDAGRAPH_GC
3426
+ if should_freeze:
3427
+ gc.freeze()
3428
+ try:
3429
+ yield
3430
+ finally:
3431
+ if should_freeze:
3432
+ gc.unfreeze()
3433
+ gc.collect()
3434
+
3435
+ # Trigger CUDA graph capture for specific shapes.
3436
+ # Capture the large shapes first so that the smaller shapes
3437
+ # can reuse the memory pool allocated for the large shapes.
3438
+ set_cudagraph_capturing_enabled(True)
3439
+ with freeze_gc(), graph_capture(device=self.device):
3440
+ cudagraph_mode = self.compilation_config.cudagraph_mode
3441
+ assert cudagraph_mode is not None
3442
+ if cudagraph_mode.mixed_mode() != CUDAGraphMode.NONE:
3443
+ cudagraph_runtime_mode = cudagraph_mode.mixed_mode()
3444
+
3445
+ compilation_cases = list(reversed(self.cudagraph_batch_sizes))
3446
+ self._capture_cudagraphs(
3447
+ compilation_cases,
3448
+ cudagraph_runtime_mode=cudagraph_runtime_mode,
3449
+ uniform_decode=False)
3450
+
3451
+ # Capture full cudagraph for uniform decode batches if we
3452
+ # don't already have full mixed prefill-decode cudagraphs.
3453
+ if cudagraph_mode.decode_mode() == CUDAGraphMode.FULL and \
3454
+ cudagraph_mode.separate_routine():
3455
+ max_num_tokens = self.scheduler_config.max_num_seqs * \
3456
+ self.uniform_decode_query_len
3457
+ decode_cudagraph_batch_sizes = [
3458
+ x for x in self.cudagraph_batch_sizes if
3459
+ x <= max_num_tokens and x >= self.uniform_decode_query_len
3460
+ ]
3461
+ compilation_cases_decode = list(
3462
+ reversed(decode_cudagraph_batch_sizes))
3463
+ self._capture_cudagraphs(
3464
+ compilation_cases=compilation_cases_decode,
3465
+ cudagraph_runtime_mode=CUDAGraphMode.FULL,
3466
+ uniform_decode=True)
3467
+
3468
+ # Disable cudagraph capturing globally, so any unexpected cudagraph
3469
+ # capturing will be detected and raise an error after here.
3470
+ # Note: We don't put it into graph_capture context manager because
3471
+ # we may do lazy capturing in future that still allows capturing
3472
+ # after here.
3473
+ set_cudagraph_capturing_enabled(False)
3474
+
3475
+ end_time = time.perf_counter()
3476
+ end_free_gpu_memory = torch.cuda.mem_get_info()[0]
3477
+ elapsed_time = end_time - start_time
3478
+ cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
3479
+ # This usually takes 5~20 seconds.
3480
+ logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
3481
+ elapsed_time, cuda_graph_size / (1 << 30))
3482
+ return cuda_graph_size
3483
+
3484
+ def _capture_cudagraphs(self, compilation_cases: list[int],
3485
+ cudagraph_runtime_mode: CUDAGraphMode,
3486
+ uniform_decode: bool):
3487
+ assert cudagraph_runtime_mode != CUDAGraphMode.NONE and \
3488
+ cudagraph_runtime_mode in [CUDAGraphMode.FULL,
3489
+ CUDAGraphMode.PIECEWISE]
3490
+
3491
+ # Only rank 0 should print progress bar during capture
3492
+ if is_global_first_rank():
3493
+ compilation_cases = tqdm(
3494
+ compilation_cases,
3495
+ disable=not self.load_config.use_tqdm_on_load,
3496
+ desc="Capturing CUDA graphs ({}, {})".format(
3497
+ "decode" if uniform_decode else "mixed prefill-decode",
3498
+ cudagraph_runtime_mode.name))
3499
+
3500
+ # We skip EPLB here since we don't want to record dummy metrics
3501
+ for num_tokens in compilation_cases:
3502
+ # We currently only capture ubatched graphs when its a FULL
3503
+ # cudagraph, a uniform decode batch, and the number of tokens
3504
+ # is above the threshold. Otherwise we just capture a non-ubatched
3505
+ # version of the graph
3506
+ allow_microbatching = self.parallel_config.enable_dbo \
3507
+ and cudagraph_runtime_mode == CUDAGraphMode.FULL \
3508
+ and uniform_decode \
3509
+ and check_ubatch_thresholds(
3510
+ config=self.vllm_config.parallel_config,
3511
+ num_tokens=num_tokens,
3512
+ uniform_decode=uniform_decode,
3513
+ )
3514
+
3515
+ for _ in range(self.compilation_config.cudagraph_num_of_warmups):
3516
+ # Use CUDAGraphRuntimeStyle.NONE (default) for warmup.
3517
+ # But be careful, warm up with `NONE`is orthogonal to
3518
+ # if we want to warm up attention or not. This is
3519
+ # different from the case where `FULL` implies capture
3520
+ # attention while `PIECEWISE` implies no attention.
3521
+ force_attention = (
3522
+ cudagraph_runtime_mode == CUDAGraphMode.FULL)
3523
+ self._dummy_run(num_tokens,
3524
+ cudagraph_runtime_mode=CUDAGraphMode.NONE,
3525
+ force_attention=force_attention,
3526
+ uniform_decode=uniform_decode,
3527
+ allow_microbatching=allow_microbatching,
3528
+ skip_eplb=True,
3529
+ remove_lora=False)
3530
+ self._dummy_run(num_tokens,
3531
+ cudagraph_runtime_mode=cudagraph_runtime_mode,
3532
+ uniform_decode=uniform_decode,
3533
+ allow_microbatching=allow_microbatching,
3534
+ skip_eplb=True,
3535
+ remove_lora=False)
3536
+ self.maybe_remove_all_loras(self.lora_config)
3537
+
3538
+ def initialize_attn_backend(self, kv_cache_config: KVCacheConfig) -> None:
3539
+ """
3540
+ Initialize the attention backends and attention metadata builders.
3541
+ """
3542
+ assert len(self.attn_groups) == 0, \
3543
+ "Attention backends are already initialized"
3544
+
3545
+ class AttentionGroupKey(NamedTuple):
3546
+ attn_backend: type[AttentionBackend]
3547
+ kv_cache_spec: KVCacheSpec
3548
+
3549
+ def get_attn_backends_for_group(
3550
+ kv_cache_group_spec: KVCacheGroupSpec,
3551
+ ) -> dict[AttentionGroupKey, list[str]]:
3552
+ layers = get_layers_from_vllm_config(
3553
+ self.vllm_config, AttentionLayerBase,
3554
+ kv_cache_group_spec.layer_names)
3555
+ attn_backends = {}
3556
+ attn_backend_layers = defaultdict(list)
3557
+ # Dedupe based on full class name; this is a bit safer than
3558
+ # using the class itself as the key because when we create dynamic
3559
+ # attention backend subclasses (e.g. ChunkedLocalAttention) unless
3560
+ # they are cached correctly, there will be different objects per
3561
+ # layer.
3562
+ for layer_name in kv_cache_group_spec.layer_names:
3563
+ attn_backend = layers[layer_name].get_attn_backend()
3564
+
3565
+ if layer_name in self.kv_sharing_fast_prefill_eligible_layers:
3566
+ attn_backend = create_fast_prefill_custom_backend(
3567
+ "FastPrefill",
3568
+ attn_backend,
3569
+ )
3570
+
3571
+ full_cls_name = attn_backend.full_cls_name()
3572
+ layer_kv_cache_spec = kv_cache_group_spec.kv_cache_spec
3573
+ if isinstance(layer_kv_cache_spec, UniformTypeKVCacheSpecs):
3574
+ layer_kv_cache_spec = layer_kv_cache_spec.kv_cache_specs[
3575
+ layer_name]
3576
+ key = (full_cls_name, layer_kv_cache_spec)
3577
+ attn_backends[key] = AttentionGroupKey(attn_backend,
3578
+ layer_kv_cache_spec)
3579
+ attn_backend_layers[key].append(layer_name)
3580
+ return {
3581
+ attn_backends[k]: v
3582
+ for k, v in attn_backend_layers.items()
3583
+ }
3584
+
3585
+ def create_attn_groups(
3586
+ attn_backends_map: dict[AttentionGroupKey, list[str]],
3587
+ ) -> list[AttentionGroup]:
3588
+ attn_groups: list[AttentionGroup] = []
3589
+ for (attn_backend,
3590
+ kv_cache_spec), layer_names in attn_backends_map.items():
3591
+ attn_group = AttentionGroup.create_with_metadata_builders(
3592
+ attn_backend,
3593
+ layer_names,
3594
+ kv_cache_spec,
3595
+ self.vllm_config,
3596
+ self.device,
3597
+ num_metadata_builders=1
3598
+ if not self.parallel_config.enable_dbo else 2,
3599
+ )
3600
+
3601
+ attn_groups.append(attn_group)
3602
+ return attn_groups
3603
+
3604
+ for kv_cache_group_spec in kv_cache_config.kv_cache_groups:
3605
+ attn_backends = get_attn_backends_for_group(kv_cache_group_spec)
3606
+ self.attn_groups.append(create_attn_groups(attn_backends))
3607
+
3608
+ # Calculate reorder batch threshold (if needed)
3609
+ self.calculate_reorder_batch_threshold()
3610
+
3611
+ def initialize_cudagraph_capture(self) -> None:
3612
+ min_cg_support = AttentionCGSupport.ALWAYS
3613
+ min_cg_builder_name = None
3614
+
3615
+ for attn_group in self._attn_group_iterator():
3616
+ builder = attn_group.get_metadata_builder()
3617
+ if builder.cudagraph_support.value < min_cg_support.value:
3618
+ min_cg_support = builder.cudagraph_support
3619
+ min_cg_builder_name = builder.__class__.__name__
3620
+ # Flexible resolve the cudagraph mode
3621
+ cudagraph_mode = self.compilation_config.cudagraph_mode
3622
+ # check cudagraph for mixed batch is supported
3623
+ if cudagraph_mode.mixed_mode() == CUDAGraphMode.FULL \
3624
+ and min_cg_support != AttentionCGSupport.ALWAYS:
3625
+ msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported "
3626
+ f"with {min_cg_builder_name} backend (support: "
3627
+ f"{min_cg_support})")
3628
+ if min_cg_support == AttentionCGSupport.NEVER:
3629
+ # if not supported any full cudagraphs, just raise it.
3630
+ msg += "; please try cudagraph_mode=PIECEWISE, and "\
3631
+ "make sure compilation level is piecewise"
3632
+ raise ValueError(msg)
3633
+
3634
+ # attempt to resolve the full cudagraph related mode
3635
+ if self.compilation_config.splitting_ops_contain_attention():
3636
+ msg += "; setting cudagraph_mode=FULL_AND_PIECEWISE"
3637
+ cudagraph_mode = self.compilation_config.cudagraph_mode = \
3638
+ CUDAGraphMode.FULL_AND_PIECEWISE
3639
+ else:
3640
+ msg += "; setting cudagraph_mode=FULL_DECODE_ONLY"
3641
+ cudagraph_mode = self.compilation_config.cudagraph_mode = \
3642
+ CUDAGraphMode.FULL_DECODE_ONLY
3643
+ logger.warning(msg)
3644
+
3645
+ # check that if we are doing decode full-cudagraphs it is supported
3646
+ if (cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
3647
+ and min_cg_support == AttentionCGSupport.NEVER):
3648
+ msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported "
3649
+ f"with {min_cg_builder_name} backend (support: "
3650
+ f"{min_cg_support})")
3651
+ if (self.compilation_config.level == CompilationLevel.PIECEWISE and
3652
+ (self.compilation_config.splitting_ops_contain_attention()
3653
+ or self.compilation_config.use_inductor_graph_partition)):
3654
+ msg += "; setting cudagraph_mode=PIECEWISE because "\
3655
+ "attention is compiled piecewise"
3656
+ cudagraph_mode = self.compilation_config.cudagraph_mode = \
3657
+ CUDAGraphMode.PIECEWISE
3658
+ else:
3659
+ msg += "; setting cudagraph_mode=NONE because "\
3660
+ "attention is not compiled piecewise"
3661
+ cudagraph_mode = self.compilation_config.cudagraph_mode = \
3662
+ CUDAGraphMode.NONE
3663
+ logger.warning(msg)
3664
+
3665
+ # check that if we are doing spec-decode + decode full-cudagraphs it is
3666
+ # supported
3667
+ if (cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
3668
+ and self.uniform_decode_query_len > 1 and min_cg_support.value
3669
+ < AttentionCGSupport.UNIFORM_BATCH.value):
3670
+ msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported"
3671
+ f" with spec-decode for attention backend "
3672
+ f"{min_cg_builder_name} (support: {min_cg_support})")
3673
+ if self.compilation_config.splitting_ops_contain_attention():
3674
+ msg += "; setting cudagraph_mode=PIECEWISE"
3675
+ cudagraph_mode = self.compilation_config.cudagraph_mode = \
3676
+ CUDAGraphMode.PIECEWISE
3677
+ else:
3678
+ msg += "; setting cudagraph_mode=NONE"
3679
+ cudagraph_mode = self.compilation_config.cudagraph_mode = \
3680
+ CUDAGraphMode.NONE
3681
+ logger.warning(msg)
3682
+
3683
+ # double check that we can support full cudagraph if they are requested
3684
+ # even after automatic downgrades
3685
+ if cudagraph_mode.has_full_cudagraphs() \
3686
+ and min_cg_support == AttentionCGSupport.NEVER:
3687
+ raise ValueError(f"CUDAGraphMode.{cudagraph_mode.name} is not "
3688
+ f"supported with {min_cg_builder_name} backend ("
3689
+ f"support:{min_cg_support}) "
3690
+ "; please try cudagraph_mode=PIECEWISE, "
3691
+ "and make sure compilation level is piecewise")
3692
+
3693
+ # Trigger cudagraph dispatching keys initialization here (after
3694
+ # initializing attn backends).
3695
+ self.cudagraph_dispatcher.initialize_cudagraph_keys(
3696
+ self.compilation_config.cudagraph_mode,
3697
+ self.uniform_decode_query_len)
3698
+
3699
+ def calculate_reorder_batch_threshold(self) -> None:
3700
+ """
3701
+ Check that if any backends reorder batches; that the reordering
3702
+ is compatible (e.g., decode threshold is the same)
3703
+ """
3704
+ for group in self._attn_group_iterator():
3705
+ attn_metadata_builder_i = group.get_metadata_builder()
3706
+
3707
+ # check that if any backends reorder batches; that the reordering
3708
+ # is compatible (e.g., decode threshold is the same)
3709
+ reorder_batch_threshold_i = (
3710
+ attn_metadata_builder_i.reorder_batch_threshold)
3711
+ if reorder_batch_threshold_i is not None:
3712
+ if self.reorder_batch_threshold is not None:
3713
+ if reorder_batch_threshold_i != \
3714
+ self.reorder_batch_threshold:
3715
+ raise ValueError(
3716
+ f"Attention backend reorders decodes with "
3717
+ f"threshold {reorder_batch_threshold_i} but other "
3718
+ f"backend uses threshold "
3719
+ f"{self.reorder_batch_threshold}")
3720
+ else:
3721
+ self.reorder_batch_threshold = reorder_batch_threshold_i
3722
+
3723
+ def may_reinitialize_input_batch(self,
3724
+ kv_cache_config: KVCacheConfig) -> None:
3725
+ """
3726
+ Re-initialize the input batch if the block sizes are different from
3727
+ `[self.cache_config.block_size]`. This usually happens when there
3728
+ are multiple KV cache groups.
3729
+
3730
+ Args:
3731
+ kv_cache_config: The KV cache configuration.
3732
+ """
3733
+ block_sizes = [
3734
+ kv_cache_group.kv_cache_spec.block_size
3735
+ for kv_cache_group in kv_cache_config.kv_cache_groups
3736
+ ]
3737
+ if block_sizes != [self.cache_config.block_size]:
3738
+ assert self.cache_config.cpu_offload_gb == 0, (
3739
+ "Cannot re-initialize the input batch when CPU weight "
3740
+ "offloading is enabled. See https://github.com/vllm-project/vllm/pull/18298 " # noqa: E501
3741
+ "for more details.")
3742
+ self.input_batch = InputBatch(
3743
+ max_num_reqs=self.max_num_reqs,
3744
+ max_model_len=max(self.max_model_len, self.max_encoder_len),
3745
+ max_num_batched_tokens=self.max_num_tokens,
3746
+ device=self.device,
3747
+ pin_memory=self.pin_memory,
3748
+ vocab_size=self.model_config.get_vocab_size(),
3749
+ block_sizes=block_sizes,
3750
+ is_spec_decode=bool(self.vllm_config.speculative_config),
3751
+ logitsprocs=self.input_batch.logitsprocs,
3752
+ is_pooling_model=self.is_pooling_model,
3753
+ num_speculative_tokens=(
3754
+ self.vllm_config.speculative_config.num_speculative_tokens
3755
+ if self.vllm_config.speculative_config else 0),
3756
+ )
3757
+
3758
+ def _allocate_kv_cache_tensors(
3759
+ self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
3760
+ """
3761
+ Initializes the KV cache buffer with the correct size. The buffer needs
3762
+ to be reshaped to the desired shape before being used by the models.
3763
+
3764
+ Args:
3765
+ kv_cache_config: The KV cache config
3766
+ Returns:
3767
+ dict[str, torch.Tensor]: A map between layer names to their
3768
+ corresponding memory buffer for KV cache.
3769
+ """
3770
+ kv_cache_raw_tensors: dict[str, torch.Tensor] = {}
3771
+ for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
3772
+ tensor = torch.zeros(kv_cache_tensor.size,
3773
+ dtype=torch.int8,
3774
+ device=self.device)
3775
+ for layer_name in kv_cache_tensor.shared_by:
3776
+ kv_cache_raw_tensors[layer_name] = tensor
3777
+
3778
+ layer_names = set()
3779
+ for group in kv_cache_config.kv_cache_groups:
3780
+ for layer_name in group.layer_names:
3781
+ if layer_name in self.runner_only_attn_layers:
3782
+ continue
3783
+ layer_names.add(layer_name)
3784
+ assert layer_names == set(kv_cache_raw_tensors.keys(
3785
+ )), "Some layers are not correctly initialized"
3786
+ return kv_cache_raw_tensors
3787
+
3788
+ def _attn_group_iterator(self) -> Iterator[AttentionGroup]:
3789
+ return itertools.chain.from_iterable(self.attn_groups)
3790
+
3791
+ def _kv_cache_spec_attn_group_iterator(self) -> Iterator[AttentionGroup]:
3792
+ if not self.kv_cache_config.kv_cache_groups:
3793
+ return
3794
+ for attn_groups in self.attn_groups:
3795
+ yield from attn_groups
3796
+
3797
+ def _reshape_kv_cache_tensors(
3798
+ self,
3799
+ kv_cache_config: KVCacheConfig,
3800
+ kv_cache_raw_tensors: dict[str, torch.Tensor],
3801
+ ) -> dict[str, torch.Tensor]:
3802
+ """
3803
+ Reshape the KV cache tensors to the desired shape and dtype.
3804
+
3805
+ Args:
3806
+ kv_cache_config: The KV cache config
3807
+ kv_cache_raw_tensors: The KV cache buffer of each layer, with
3808
+ correct size but uninitialized shape.
3809
+ Returns:
3810
+ Dict[str, torch.Tensor]: A map between layer names to their
3811
+ corresponding memory buffer for KV cache.
3812
+ """
3813
+ kv_caches: dict[str, torch.Tensor] = {}
3814
+ has_attn, has_mamba = False, False
3815
+ for group in self._kv_cache_spec_attn_group_iterator():
3816
+ kv_cache_spec = group.kv_cache_spec
3817
+ attn_backend = group.backend
3818
+ for layer_name in group.layer_names:
3819
+ if layer_name in self.runner_only_attn_layers:
3820
+ continue
3821
+ raw_tensor = kv_cache_raw_tensors[layer_name]
3822
+ assert raw_tensor.numel() % kv_cache_spec.page_size_bytes == 0
3823
+ num_blocks = (raw_tensor.numel() //
3824
+ kv_cache_spec.page_size_bytes)
3825
+ if isinstance(kv_cache_spec, AttentionSpec):
3826
+ has_attn = True
3827
+ kv_cache_shape = attn_backend.get_kv_cache_shape(
3828
+ num_blocks,
3829
+ kv_cache_spec.block_size,
3830
+ kv_cache_spec.num_kv_heads,
3831
+ kv_cache_spec.head_size,
3832
+ cache_dtype_str=self.cache_config.cache_dtype)
3833
+ dtype = kv_cache_spec.dtype
3834
+ try:
3835
+ kv_cache_stride_order = \
3836
+ attn_backend.get_kv_cache_stride_order()
3837
+ assert len(kv_cache_stride_order) == len(
3838
+ kv_cache_shape)
3839
+ except (AttributeError, NotImplementedError):
3840
+ kv_cache_stride_order = tuple(
3841
+ range(len(kv_cache_shape)))
3842
+ # The allocation respects the backend-defined stride order
3843
+ # to ensure the semantic remains consistent for each
3844
+ # backend. We first obtain the generic kv cache shape and
3845
+ # then permute it according to the stride order which could
3846
+ # result in a non-contiguous tensor.
3847
+ kv_cache_shape = tuple(kv_cache_shape[i]
3848
+ for i in kv_cache_stride_order)
3849
+ # Maintain original KV shape view.
3850
+ inv_order = [
3851
+ kv_cache_stride_order.index(i)
3852
+ for i in range(len(kv_cache_stride_order))
3853
+ ]
3854
+ kv_caches[layer_name] = kv_cache_raw_tensors[
3855
+ layer_name].view(dtype).view(kv_cache_shape).permute(
3856
+ *inv_order)
3857
+ elif isinstance(kv_cache_spec, MambaSpec):
3858
+ has_mamba = True
3859
+ raw_tensor = kv_cache_raw_tensors[layer_name]
3860
+ state_tensors = []
3861
+ storage_offset_bytes = 0
3862
+ for (shape, dtype) in zip(kv_cache_spec.shapes,
3863
+ kv_cache_spec.dtypes):
3864
+ dtype_size = get_dtype_size(dtype)
3865
+ num_element_per_page = (
3866
+ kv_cache_spec.page_size_bytes // dtype_size)
3867
+ target_shape = (num_blocks, *shape)
3868
+ stride = torch.empty(target_shape).stride()
3869
+ target_stride = (num_element_per_page, *stride[1:])
3870
+ assert storage_offset_bytes % dtype_size == 0
3871
+ tensor = torch.as_strided(
3872
+ raw_tensor.view(dtype),
3873
+ size=target_shape,
3874
+ stride=target_stride,
3875
+ storage_offset=storage_offset_bytes // dtype_size,
3876
+ )
3877
+ state_tensors.append(tensor)
3878
+ storage_offset_bytes += stride[0] * dtype_size
3879
+
3880
+ kv_caches[layer_name] = state_tensors
3881
+ else:
3882
+ raise NotImplementedError
3883
+
3884
+ if has_attn and has_mamba:
3885
+ self._update_hybrid_attention_mamba_layout(kv_caches)
3886
+
3887
+ return kv_caches
3888
+
3889
+ def _update_hybrid_attention_mamba_layout(
3890
+ self, kv_caches: dict[str, torch.Tensor]) -> None:
3891
+ """
3892
+ Update the layout of attention layers from (2, num_blocks, ...) to
3893
+ (num_blocks, 2, ...).
3894
+
3895
+ Args:
3896
+ kv_caches: The KV cache buffer of each layer.
3897
+ """
3898
+
3899
+ for group in self._kv_cache_spec_attn_group_iterator():
3900
+ kv_cache_spec = group.kv_cache_spec
3901
+ for layer_name in group.layer_names:
3902
+ kv_cache = kv_caches[layer_name]
3903
+ if (isinstance(kv_cache_spec, AttentionSpec)
3904
+ and kv_cache.shape[0] == 2):
3905
+ assert kv_cache.shape[1] != 2, \
3906
+ "Fail to determine whether the layout is " \
3907
+ "(2, num_blocks, ...) or (num_blocks, 2, ...) for " \
3908
+ f"a tensor of shape {kv_cache.shape}"
3909
+ hidden_size = kv_cache.shape[2:].numel()
3910
+ kv_cache.as_strided_(size=kv_cache.shape,
3911
+ stride=(hidden_size, 2 * hidden_size,
3912
+ *kv_cache.stride()[2:]))
3913
+
3914
+ def initialize_kv_cache_tensors(
3915
+ self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
3916
+ """
3917
+ Initialize the memory buffer for KV cache.
3918
+
3919
+ Args:
3920
+ kv_cache_config: The KV cache config
3921
+ Returns:
3922
+ Dict[str, torch.Tensor]: A map between layer names to their
3923
+ corresponding memory buffer for KV cache.
3924
+ """
3925
+ # Initialize the memory buffer for KV cache
3926
+ kv_cache_raw_tensors = self._allocate_kv_cache_tensors(kv_cache_config)
3927
+ # Change the memory buffer to the desired shape
3928
+ kv_caches = self._reshape_kv_cache_tensors(kv_cache_config,
3929
+ kv_cache_raw_tensors)
3930
+
3931
+ # Set up cross-layer KV cache sharing
3932
+ for layer_name, target_layer_name in self.shared_kv_cache_layers.items(
3933
+ ):
3934
+ logger.debug("%s reuses KV cache of %s", layer_name,
3935
+ target_layer_name)
3936
+ kv_caches[layer_name] = kv_caches[target_layer_name]
3937
+
3938
+ num_attn_module = 2 \
3939
+ if self.model_config.hf_config.model_type == "longcat_flash" else 1
3940
+ bind_kv_cache(kv_caches,
3941
+ self.compilation_config.static_forward_context,
3942
+ self.kv_caches, num_attn_module)
3943
+ return kv_caches
3944
+
3945
+ def maybe_add_kv_sharing_layers_to_kv_cache_groups(
3946
+ self, kv_cache_config: KVCacheConfig) -> None:
3947
+ """
3948
+ Add layers that re-use KV cache to KV cache group of its target layer.
3949
+ Mapping of KV cache tensors happens in `initialize_kv_cache_tensors()`
3950
+ """
3951
+ if not self.shared_kv_cache_layers:
3952
+ # No cross-layer KV sharing, return
3953
+ return
3954
+
3955
+ add_kv_sharing_layers_to_kv_cache_groups(
3956
+ self.shared_kv_cache_layers,
3957
+ kv_cache_config.kv_cache_groups,
3958
+ self.runner_only_attn_layers,
3959
+ )
3960
+
3961
+ if self.cache_config.kv_sharing_fast_prefill:
3962
+ # In You Only Cache Once (https://arxiv.org/abs/2405.05254) or other
3963
+ # similar KV sharing setups, only the layers that generate KV caches
3964
+ # are involved in the prefill phase, enabling prefill to early exit.
3965
+ attn_layers = get_layers_from_vllm_config(self.vllm_config,
3966
+ Attention)
3967
+ for layer_name in reversed(attn_layers):
3968
+ if layer_name in self.shared_kv_cache_layers:
3969
+ self.kv_sharing_fast_prefill_eligible_layers.add(
3970
+ layer_name)
3971
+ else:
3972
+ break
3973
+
3974
+ def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
3975
+ """
3976
+ Initialize KV cache based on `kv_cache_config`.
3977
+ Args:
3978
+ kv_cache_config: Configuration for the KV cache, including the KV
3979
+ cache size of each layer
3980
+ """
3981
+ kv_cache_config = deepcopy(kv_cache_config)
3982
+ self.kv_cache_config = kv_cache_config
3983
+ self.may_reinitialize_input_batch(kv_cache_config)
3984
+ self.may_add_encoder_only_layers_to_kv_cache_config()
3985
+ self.maybe_add_kv_sharing_layers_to_kv_cache_groups(kv_cache_config)
3986
+ self.initialize_attn_backend(kv_cache_config)
3987
+ kv_caches = self.initialize_kv_cache_tensors(kv_cache_config)
3988
+
3989
+ if self.speculative_config and self.speculative_config.use_eagle():
3990
+ assert isinstance(self.drafter, EagleProposer)
3991
+ # validate all draft model layers belong to the same kv cache
3992
+ # group
3993
+ self.drafter.validate_same_kv_cache_group(kv_cache_config)
3994
+
3995
+ if has_kv_transfer_group():
3996
+ get_kv_transfer_group().register_kv_caches(kv_caches)
3997
+ if self.device.type == 'xpu':
3998
+ get_kv_transfer_group().set_host_xfer_buffer_ops(
3999
+ copy_kv_blocks)
4000
+
4001
+ if self.dcp_world_size > 1:
4002
+ layer_names = self.attn_groups[0][0].layer_names
4003
+ layers = get_layers_from_vllm_config(self.vllm_config,
4004
+ AttentionLayerBase,
4005
+ layer_names)
4006
+ for layer in layers.values():
4007
+ assert layer.impl.need_to_return_lse_for_decode, (
4008
+ "DCP requires attention impls to return"
4009
+ " the softmax lse for decode, but the impl "
4010
+ f"{layer.impl.__class__.__name__} "
4011
+ "does not return the softmax lse for decode.")
4012
+
4013
+ def may_add_encoder_only_layers_to_kv_cache_config(self) -> None:
4014
+ """
4015
+ Add encoder-only layers to the KV cache config.
4016
+ """
4017
+ block_size = self.vllm_config.cache_config.block_size
4018
+ encoder_only_attn_specs: dict[AttentionSpec,
4019
+ list[str]] = defaultdict(list)
4020
+ attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
4021
+ for layer_name, attn_module in attn_layers.items():
4022
+ if attn_module.attn_type == AttentionType.ENCODER_ONLY:
4023
+ attn_spec: AttentionSpec = EncoderOnlyAttentionSpec(
4024
+ block_size=block_size,
4025
+ num_kv_heads=attn_module.num_kv_heads,
4026
+ head_size=attn_module.head_size,
4027
+ dtype=self.kv_cache_dtype)
4028
+ encoder_only_attn_specs[attn_spec].append(layer_name)
4029
+ self.runner_only_attn_layers.add(layer_name)
4030
+ if len(encoder_only_attn_specs) > 0:
4031
+ assert len(
4032
+ encoder_only_attn_specs
4033
+ ) == 1, "Only support one encoder-only attention spec now"
4034
+ spec, layer_names = encoder_only_attn_specs.popitem()
4035
+ self.kv_cache_config.kv_cache_groups.append(
4036
+ KVCacheGroupSpec(layer_names=layer_names, kv_cache_spec=spec))
4037
+
4038
+ def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
4039
+ """
4040
+ Generates the KVCacheSpec by parsing the kv cache format from each
4041
+ Attention module in the static forward context.
4042
+ Returns:
4043
+ KVCacheSpec: A dictionary mapping layer names to their KV cache
4044
+ format. Layers that do not need KV cache are not included.
4045
+ """
4046
+
4047
+ block_size = self.vllm_config.cache_config.block_size
4048
+ use_mla = self.vllm_config.model_config.use_mla
4049
+ cache_dtype_str = self.vllm_config.cache_config.cache_dtype
4050
+ kv_cache_spec: dict[str, KVCacheSpec] = {}
4051
+ attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
4052
+ for layer_name, attn_module in attn_layers.items():
4053
+ if (kv_tgt_layer :=
4054
+ attn_module.kv_sharing_target_layer_name) is not None:
4055
+ # The layer doesn't need its own KV cache and will use that of
4056
+ # the target layer. We skip creating a KVCacheSpec for it, so
4057
+ # that KV cache management logic will act as this layer does
4058
+ # not exist, and doesn't allocate KV cache for the layer. This
4059
+ # enables the memory saving of cross-layer kv sharing, allowing
4060
+ # a given amount of memory to accommodate longer context lengths
4061
+ # or enable more requests to be processed simultaneously.
4062
+ self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
4063
+ continue
4064
+
4065
+ # TODO(lucas): move the attention specs into the model layers like
4066
+ # the attention backends
4067
+ if attn_module.attn_type == AttentionType.DECODER:
4068
+ if attn_module.sliding_window is not None:
4069
+ assert not use_mla, "MLA is not supported for sliding" \
4070
+ "window"
4071
+ kv_cache_spec[layer_name] = SlidingWindowSpec(
4072
+ block_size=block_size,
4073
+ num_kv_heads=attn_module.num_kv_heads,
4074
+ head_size=attn_module.head_size,
4075
+ dtype=self.kv_cache_dtype,
4076
+ sliding_window=attn_module.sliding_window)
4077
+ elif use_mla:
4078
+ kv_cache_spec[layer_name] = MLAAttentionSpec(
4079
+ block_size=block_size,
4080
+ num_kv_heads=attn_module.num_kv_heads,
4081
+ head_size=attn_module.head_size,
4082
+ dtype=self.kv_cache_dtype,
4083
+ cache_dtype_str=cache_dtype_str)
4084
+ elif self.attention_chunk_size is not None \
4085
+ and isinstance(attn_module, ChunkedLocalAttention):
4086
+ kv_cache_spec[layer_name] = ChunkedLocalAttentionSpec(
4087
+ block_size=block_size,
4088
+ num_kv_heads=attn_module.num_kv_heads,
4089
+ head_size=attn_module.head_size,
4090
+ dtype=self.kv_cache_dtype,
4091
+ attention_chunk_size=self.attention_chunk_size)
4092
+ else:
4093
+ kv_cache_spec[layer_name] = FullAttentionSpec(
4094
+ block_size=block_size,
4095
+ num_kv_heads=attn_module.num_kv_heads,
4096
+ head_size=attn_module.head_size,
4097
+ dtype=self.kv_cache_dtype)
4098
+ elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
4099
+ kv_cache_spec[layer_name] = CrossAttentionSpec(
4100
+ block_size=block_size,
4101
+ num_kv_heads=attn_module.num_kv_heads,
4102
+ head_size=attn_module.head_size,
4103
+ dtype=self.kv_cache_dtype)
4104
+ elif attn_module.attn_type in (AttentionType.ENCODER,
4105
+ AttentionType.ENCODER_ONLY):
4106
+ # encoder-only attention does not need KV cache.
4107
+ continue
4108
+ else:
4109
+ raise ValueError(
4110
+ f"Unknown attention type: {attn_module.attn_type}")
4111
+
4112
+ mamba_layers = get_layers_from_vllm_config(self.vllm_config, MambaBase)
4113
+ if len(mamba_layers) > 0:
4114
+ if (self.vllm_config.speculative_config is not None
4115
+ and self.vllm_config.model_config.hf_config.model_type
4116
+ not in ["qwen3_next"]):
4117
+ raise NotImplementedError(
4118
+ "Mamba with speculative decoding is not supported yet.")
4119
+ if self.vllm_config.cache_config.enable_prefix_caching:
4120
+ raise NotImplementedError(
4121
+ "Prefix caching is not supported for Mamba yet.")
4122
+ max_model_len = self.vllm_config.model_config.max_model_len
4123
+
4124
+ page_size_padded = (
4125
+ self.vllm_config.cache_config.mamba_page_size_padded)
4126
+
4127
+ # Set block_size to max_model_len, so that mamba model will always
4128
+ # have only one block in the KV cache.
4129
+ for layer_name, mamba_module in mamba_layers.items():
4130
+ kv_cache_spec[layer_name] = MambaSpec(
4131
+ shapes=mamba_module.get_state_shape(),
4132
+ dtypes=mamba_module.get_state_dtype(),
4133
+ block_size=max_model_len,
4134
+ page_size_padded=page_size_padded,
4135
+ mamba_type=mamba_module.mamba_type,
4136
+ num_speculative_blocks=(
4137
+ self.speculative_config.num_speculative_tokens
4138
+ if self.speculative_config else 0),
4139
+ )
4140
+ ds_indexer_layers = get_layers_from_vllm_config(
4141
+ self.vllm_config, DeepseekV32IndexerCache)
4142
+ for layer_name, ds_indexer_module in ds_indexer_layers.items():
4143
+ kv_cache_spec[layer_name] = ds_indexer_module.get_kv_cache_spec()
4144
+
4145
+ return kv_cache_spec
4146
+
4147
+ def _to_list(self, sampled_token_ids: torch.Tensor) -> list[list[int]]:
4148
+ # This is a short term mitigation for issue mentioned in
4149
+ # https://github.com/vllm-project/vllm/issues/22754.
4150
+ # `tolist` would trigger a cuda wise stream sync, which
4151
+ # would block other copy ops from other cuda streams.
4152
+ # A cuda event sync would avoid such a situation. Since
4153
+ # this is in the critical path of every single model
4154
+ # forward loop, this has caused perf issue for a disagg
4155
+ # setup.
4156
+ pinned = self.sampled_token_ids_pinned_cpu[:sampled_token_ids.shape[0]]
4157
+ pinned.copy_(sampled_token_ids, non_blocking=True)
4158
+ self.transfer_event.record()
4159
+ self.transfer_event.synchronize()
4160
+ return pinned.tolist()