snappy 3.2__cp311-cp311-macosx_10_12_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-311-darwin.so +0 -0
- snappy/SnapPy.cpython-311-darwin.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-311-darwin.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-311-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +5 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,168 @@
|
|
1
|
+
from ...sage_helper import _within_sage, sage_method
|
2
|
+
from ...math_basics import prod
|
3
|
+
|
4
|
+
from ...geometric_structure.cusp_neighborhood.complex_cusp_cross_section import ComplexCuspCrossSection
|
5
|
+
from ...snap import peripheral
|
6
|
+
from ...snap.t3mlite import simplex
|
7
|
+
|
8
|
+
if _within_sage:
|
9
|
+
from sage.symbolic.constants import pi
|
10
|
+
from ...sage_helper import I, xgcd
|
11
|
+
|
12
|
+
from .. import hyperbolicity
|
13
|
+
|
14
|
+
from .adjust_torsion import *
|
15
|
+
from .compute_ptolemys import *
|
16
|
+
|
17
|
+
__all__ = ['verified_complex_volume_closed_torsion']
|
18
|
+
|
19
|
+
def _compute_holonomy(manifold, shapes):
|
20
|
+
"""
|
21
|
+
Computes the holonomy for the peripheral curves for the given 1-cusped
|
22
|
+
manifold and shape intervals.
|
23
|
+
"""
|
24
|
+
|
25
|
+
# Compute z', z''
|
26
|
+
zp = [ (1 / (1 - z)) for z in shapes ]
|
27
|
+
zpp = [ ((z - 1) / z) for z in shapes ]
|
28
|
+
|
29
|
+
# A list
|
30
|
+
# log(z_0) log(z'_0) log(z''_0) log(z_1) log(z'_1) log (z''_1) ...
|
31
|
+
cross_ratios = [ z for triple in zip(shapes, zp, zpp) for z in triple ]
|
32
|
+
|
33
|
+
# Unfill to get both the meridian and longitude gluing equation
|
34
|
+
trig = manifold.without_hyperbolic_structure()
|
35
|
+
trig.dehn_fill((0,0))
|
36
|
+
peripheral_eqns = trig.gluing_equations()[-2:]
|
37
|
+
|
38
|
+
return [ prod([l ** expo for l, expo in zip(cross_ratios, eqn)])
|
39
|
+
for eqn in peripheral_eqns ]
|
40
|
+
|
41
|
+
|
42
|
+
@sage_method
|
43
|
+
def zero_lifted_holonomy(manifold, m, l, f):
|
44
|
+
"""
|
45
|
+
Given a closed manifold and any log of the holonomy of the meridian and
|
46
|
+
longitude, adjust logs by multiplies of f pi i such that the peripheral
|
47
|
+
curves goes to 0.
|
48
|
+
"""
|
49
|
+
|
50
|
+
CIF = m.parent()
|
51
|
+
RIF = CIF.real_field()
|
52
|
+
multiple_of_pi = RIF(f*pi)
|
53
|
+
|
54
|
+
# (m_fill, l_fill) Dehn-filling
|
55
|
+
m_fill, l_fill = (int(x) for x in manifold.cusp_info()[0]['filling'])
|
56
|
+
|
57
|
+
# Compute what the peripheral curves goes to right now
|
58
|
+
p_interval = (m_fill * m + l_fill * l).imag() / multiple_of_pi
|
59
|
+
is_int, p = p_interval.is_int()
|
60
|
+
|
61
|
+
if not is_int:
|
62
|
+
raise Exception(
|
63
|
+
"Expected multiple of %d * pi * i (increase precision?)" % f)
|
64
|
+
|
65
|
+
if p == 0:
|
66
|
+
# Nothing to do
|
67
|
+
return m, l
|
68
|
+
|
69
|
+
# Compute by what multiple of 2 pi i to adjust
|
70
|
+
g, a, b = xgcd(m_fill, l_fill)
|
71
|
+
m -= p * a * multiple_of_pi * I
|
72
|
+
l -= p * b * multiple_of_pi * I
|
73
|
+
|
74
|
+
# For sanity, double check that we compute it right.
|
75
|
+
p_interval = (m_fill * m + l_fill * l).imag() / multiple_of_pi
|
76
|
+
is_int, p = p_interval.is_int()
|
77
|
+
|
78
|
+
if not is_int:
|
79
|
+
raise Exception(
|
80
|
+
"Expected multiple of %d * pi * i (increase precision?)" % f)
|
81
|
+
|
82
|
+
if p != 0:
|
83
|
+
# Nothing to do
|
84
|
+
raise Exception("Expected 0")
|
85
|
+
|
86
|
+
return m, l
|
87
|
+
|
88
|
+
|
89
|
+
@sage_method
|
90
|
+
def verified_complex_volume_closed_torsion(manifold, bits_prec=None):
|
91
|
+
"""
|
92
|
+
Computes the verified complex volume (where the real part is the
|
93
|
+
volume and the imaginary part is the Chern-Simons) for a given
|
94
|
+
SnapPy.Manifold.
|
95
|
+
|
96
|
+
Note that the result is correct only up to two torsion, i.e.,
|
97
|
+
up to multiples of pi^2/2. The method expects an oriented manifold
|
98
|
+
with exactly one cusp which is filled, otherwise it raises an exception.
|
99
|
+
|
100
|
+
If bits_prec is unspecified, the default precision of
|
101
|
+
SnapPy.Manifold or SnapPy.ManifoldHP, respectively, will be used.
|
102
|
+
"""
|
103
|
+
|
104
|
+
if manifold.num_cusps() != 1:
|
105
|
+
raise ValueError(
|
106
|
+
"The method does not support the given manifold because "
|
107
|
+
"it does not have exactly one cusp.")
|
108
|
+
|
109
|
+
if manifold.cusp_info()[0]['complete?']:
|
110
|
+
raise ValueError(
|
111
|
+
"The method does not support the given manifold because "
|
112
|
+
"it is not a closed manifold.")
|
113
|
+
|
114
|
+
# Compute tetrahedra shapes to arbitrary precision.
|
115
|
+
shapes = manifold.tetrahedra_shapes(
|
116
|
+
'rect', bits_prec=bits_prec, intervals=True)
|
117
|
+
|
118
|
+
# Check it is a valid hyperbolic structure
|
119
|
+
hyperbolicity.check_logarithmic_gluing_equations_and_positively_oriented_tets(
|
120
|
+
manifold, shapes)
|
121
|
+
|
122
|
+
# Compute holonomy
|
123
|
+
m_holonomy, l_holonomy = _compute_holonomy(manifold, shapes)
|
124
|
+
|
125
|
+
# Compute 1-cocycle in H^1(boundary; Z)
|
126
|
+
m_star, l_star = peripheral.peripheral_cohomology_basis(manifold)
|
127
|
+
|
128
|
+
# Keys for the dual edges in cusp triangulation
|
129
|
+
cusp_dual_edges = [ (i, F, V)
|
130
|
+
for i in range(manifold.num_tetrahedra())
|
131
|
+
for F in simplex.TwoSubsimplices
|
132
|
+
for V in simplex.ZeroSubsimplices
|
133
|
+
if F & V ]
|
134
|
+
|
135
|
+
# Compute 1-cocycle in C^1(boundary; C^*) matching the holonomy
|
136
|
+
one_cocycle = {
|
137
|
+
k : 1 / (m_holonomy ** m_star[k] * l_holonomy ** l_star[k])
|
138
|
+
for k in cusp_dual_edges }
|
139
|
+
|
140
|
+
# Compute cusp cross section (for computation of complex volume,
|
141
|
+
# choices such as cusp size don't matter).
|
142
|
+
c = ComplexCuspCrossSection.fromManifoldAndShapes(
|
143
|
+
manifold, shapes, one_cocycle)
|
144
|
+
|
145
|
+
# Lift holonomy from C^* to C such that it is zero on the
|
146
|
+
# curve we fill along
|
147
|
+
m_lifted_holonomy, l_lifted_holonomy = zero_lifted_holonomy(
|
148
|
+
manifold, m_holonomy.log() / 2, l_holonomy.log() / 2, 1)
|
149
|
+
|
150
|
+
# Compute corresponding 1-cocycle in C^1(boundary; C)
|
151
|
+
lifted_one_cocycle = {
|
152
|
+
k: m_lifted_holonomy * m_star[k] + l_lifted_holonomy * l_star[k]
|
153
|
+
for k in cusp_dual_edges }
|
154
|
+
|
155
|
+
# Compute the lifted Ptolemy coordinates from cross section
|
156
|
+
lifted_ptolemys = lifted_ptolemys_from_cross_section(
|
157
|
+
c, lifted_one_cocycle)
|
158
|
+
|
159
|
+
# Compute the complex volume from the Ptolemy coordinates
|
160
|
+
complex_volume = verified_complex_volume_from_lifted_ptolemys(
|
161
|
+
c.mcomplex, lifted_ptolemys)
|
162
|
+
|
163
|
+
# When using the dilogarithm, the Chern-Simons is the real part.
|
164
|
+
# By SnapPy convention, the volume is the real part, so divide by
|
165
|
+
# I.
|
166
|
+
# Also add multiples of pi^2/2 to try to get the Chern-Simons part
|
167
|
+
# between -pi^2/4 and pi^2/4.
|
168
|
+
return normalize_by_pi_square_over_two(complex_volume) / I
|
@@ -0,0 +1,90 @@
|
|
1
|
+
from ...snap import t3mlite as t3m
|
2
|
+
|
3
|
+
__all__ = ['lifted_ptolemys_from_cross_section']
|
4
|
+
|
5
|
+
|
6
|
+
def _ptolemy_coordinate_key(tet_index, edge):
|
7
|
+
return 'c_%d%d%d%d_%d' % (
|
8
|
+
(edge & 8) >> 3,
|
9
|
+
(edge & 4) >> 2,
|
10
|
+
(edge & 2) >> 1,
|
11
|
+
(edge & 1),
|
12
|
+
tet_index)
|
13
|
+
|
14
|
+
|
15
|
+
def lifted_ptolemys_from_cross_section(cusp_cross_section,
|
16
|
+
lifted_one_cocycle=None):
|
17
|
+
"""
|
18
|
+
Given a cusp cross section, compute lifted Ptolemy coordinates
|
19
|
+
(i.e., logarithms of the Ptolemy coordinates) returned as a dictionary
|
20
|
+
(e.g., the key for the Ptolemy coordinate for the edge from
|
21
|
+
vertex 0 to vertex 3 or simplex 4 is c_1001_4).
|
22
|
+
|
23
|
+
For complete cusp cross sections (where no lifted_one_cocycle is
|
24
|
+
necessary), we use Zickert's algorithm (Christian Zickert, The
|
25
|
+
volume and Chern-Simons invariant of a representation, Duke
|
26
|
+
Math. J. 150 no. 3 (2009) 489-532, math.GT/0710.2049). In this
|
27
|
+
case, all values for keys corresponding to the same edge in the
|
28
|
+
triangulation are guaranteed to be the same.
|
29
|
+
|
30
|
+
For the incomplete cusp cross sections, a lifted_one_cocycle
|
31
|
+
needs to be given. This cocycle is a lift of the cocycle one_cocycle
|
32
|
+
given to ComplexCuspCrossSection.fromManifoldAndShapes.
|
33
|
+
More precisely, lifted_one_cocycle is in C^1(boundary M; C) and
|
34
|
+
needs to map to one_cocycle in C^1(boundary M; C^*).
|
35
|
+
"""
|
36
|
+
|
37
|
+
result = {}
|
38
|
+
|
39
|
+
some_tet = cusp_cross_section.mcomplex.Tetrahedra[0]
|
40
|
+
some_z = some_tet.ShapeParameters[t3m.E01]
|
41
|
+
CIF = some_z.parent()
|
42
|
+
|
43
|
+
# Compute the (lifted) Ptolemy coordinate for each edge of the
|
44
|
+
# triangulation only once
|
45
|
+
for edge in cusp_cross_section.mcomplex.Edges:
|
46
|
+
# Look at each way the triangulation's edge appears as edge
|
47
|
+
# of a tetrahedron
|
48
|
+
for i, (tet, perm) in enumerate(edge.embeddings()):
|
49
|
+
# The two vertices of the tetrahedron's edge
|
50
|
+
v0 = perm.image(t3m.V0)
|
51
|
+
v1 = perm.image(t3m.V1)
|
52
|
+
v2 = perm.image(t3m.V2)
|
53
|
+
# The edge in the tetrahedron
|
54
|
+
e = v0 | v1
|
55
|
+
# Face adjacent to the edge
|
56
|
+
face = e | v2
|
57
|
+
|
58
|
+
# Compute Ptolemy coordinate only once and use it
|
59
|
+
# for all other representatives of the triangulation's
|
60
|
+
# edge. Or use one_cocycle to transfer Ptolemy coordinate
|
61
|
+
# to other representatives.
|
62
|
+
if i == 0:
|
63
|
+
# Near one of the two ends of the edge of the tetrahedron
|
64
|
+
# the tetrahedron's face intersect the cusp neighborhood
|
65
|
+
# in an edge of the cusp cross section.
|
66
|
+
# Get the complex lengths of the two edges in the
|
67
|
+
# cusp cross section.
|
68
|
+
l1 = CIF(tet.horotriangles[v0].lengths[face])
|
69
|
+
l2 = CIF(tet.horotriangles[v1].lengths[face])
|
70
|
+
|
71
|
+
# Zickert's result: the Ptolemy coordinate is the
|
72
|
+
# inverse of the square root of the product of those two
|
73
|
+
# edge lengths.
|
74
|
+
#
|
75
|
+
# The choice of square root (and logarithm) does not
|
76
|
+
# matter as long as it is only done once per edge of
|
77
|
+
# the triangulation.
|
78
|
+
ptolemy = 1 / (l1 * l2).sqrt()
|
79
|
+
ptolemy = ptolemy.log()
|
80
|
+
|
81
|
+
elif lifted_one_cocycle:
|
82
|
+
# Use cocycle to compute for different representative
|
83
|
+
# edges
|
84
|
+
ptolemy -= lifted_one_cocycle[tet.Index, face, v0]
|
85
|
+
ptolemy -= lifted_one_cocycle[tet.Index, face, v1]
|
86
|
+
|
87
|
+
# Save Ptolemy coordinate in dictionary
|
88
|
+
result[_ptolemy_coordinate_key(tet.Index, e)] = ptolemy
|
89
|
+
|
90
|
+
return result
|
@@ -0,0 +1,56 @@
|
|
1
|
+
from ...sage_helper import _within_sage, sage_method
|
2
|
+
|
3
|
+
if _within_sage:
|
4
|
+
from ...sage_helper import I
|
5
|
+
|
6
|
+
from .. import hyperbolicity
|
7
|
+
from ...geometric_structure.cusp_neighborhood.complex_cusp_cross_section import ComplexCuspCrossSection
|
8
|
+
|
9
|
+
from .adjust_torsion import *
|
10
|
+
from .compute_ptolemys import *
|
11
|
+
|
12
|
+
__all__ = ['verified_complex_volume_cusped_torsion']
|
13
|
+
|
14
|
+
|
15
|
+
@sage_method
|
16
|
+
def verified_complex_volume_cusped_torsion(manifold, bits_prec=None):
|
17
|
+
"""
|
18
|
+
Computes the verified complex volume (where the real part is the
|
19
|
+
volume and the imaginary part is the Chern-Simons) for a given
|
20
|
+
SnapPy.Manifold.
|
21
|
+
|
22
|
+
Note that the result is correct only up to two torsion, i.e.,
|
23
|
+
up to multiples of pi^2/2. The method raises an exception if the
|
24
|
+
manifold is not oriented or has a filled cusp.
|
25
|
+
|
26
|
+
If bits_prec is unspecified, the default precision of
|
27
|
+
SnapPy.Manifold, respectively, SnapPy.ManifoldHP will be used.
|
28
|
+
"""
|
29
|
+
|
30
|
+
# Compute tetrahedra shapes to arbitrary precision.
|
31
|
+
shapes = manifold.tetrahedra_shapes(
|
32
|
+
'rect', bits_prec=bits_prec, intervals=True)
|
33
|
+
|
34
|
+
# Check it is a valid hyperbolic structure
|
35
|
+
hyperbolicity.check_logarithmic_gluing_equations_and_positively_oriented_tets(
|
36
|
+
manifold, shapes)
|
37
|
+
|
38
|
+
# Compute cusp cross section. For computation of complex volume,
|
39
|
+
# the size does not matter.
|
40
|
+
c = ComplexCuspCrossSection.fromManifoldAndShapes(manifold, shapes)
|
41
|
+
|
42
|
+
# Compute lifted Ptolemy coordinates: for each edge of the
|
43
|
+
# triangulation, a logarithm of the Ptolemy coordinate is computed
|
44
|
+
# once. Result is a dictionary.
|
45
|
+
lifted_ptolemys = lifted_ptolemys_from_cross_section(c)
|
46
|
+
|
47
|
+
# Compute the complex volume from the Ptolemy coordinates
|
48
|
+
complex_volume = verified_complex_volume_from_lifted_ptolemys(
|
49
|
+
c.mcomplex, lifted_ptolemys)
|
50
|
+
|
51
|
+
# When using the dilogarithm, the Chern-Simons is the real part.
|
52
|
+
# By SnapPy convention, the volume is the real part, so divide by
|
53
|
+
# I.
|
54
|
+
# Also add multiples of pi^2/2 to try to get the Chern-Simons part
|
55
|
+
# between -pi^2/4 and pi^2/4.
|
56
|
+
return normalize_by_pi_square_over_two(complex_volume) / I
|
@@ -0,0 +1,201 @@
|
|
1
|
+
from ...sage_helper import _within_sage, sage_method
|
2
|
+
|
3
|
+
if _within_sage:
|
4
|
+
from sage.symbolic.constants import pi
|
5
|
+
from ...sage_helper import I, Integer, RealField, ComplexBallField, exp
|
6
|
+
|
7
|
+
|
8
|
+
@sage_method
|
9
|
+
def compute_z_and_parities_from_flattening_w0_w1(w0, w1):
|
10
|
+
"""
|
11
|
+
Given a pair (w0, w1) with +- exp(w0) +- exp(-w1) = 1, compute (z, p, q)
|
12
|
+
such that z = (-1)^p * exp(w0) and 1/(1-z) = (-1)^q exp(w1)
|
13
|
+
where p, q in {0,1}.
|
14
|
+
"""
|
15
|
+
|
16
|
+
e0 = exp( w0)
|
17
|
+
e1 = exp(-w1)
|
18
|
+
|
19
|
+
l = [ (((-1) ** p) * e0, p, q)
|
20
|
+
for p in [ 0, 1]
|
21
|
+
for q in [ 0, 1]
|
22
|
+
if Integer(1) in ((-1) ** p) * e0 + ((-1) ** q) * e1 ]
|
23
|
+
if not len(l) == 1:
|
24
|
+
raise Exception("Bad flattening %s %s %s" % (w0, w1, len(l)))
|
25
|
+
|
26
|
+
return l[0]
|
27
|
+
|
28
|
+
|
29
|
+
@sage_method
|
30
|
+
def compute_p_from_w_and_parity(w, parity):
|
31
|
+
"""
|
32
|
+
Compute p such that w - p * pi * i should have imaginary part between
|
33
|
+
-pi and pi and p has the same parity as the given value for parity
|
34
|
+
(the given value is supposed to be 0 or 1).
|
35
|
+
|
36
|
+
Note that this computation is not verified.
|
37
|
+
"""
|
38
|
+
|
39
|
+
RF = RealField(w.parent().precision())
|
40
|
+
real_part = (w.imag().center() / RF(pi) - parity) / 2
|
41
|
+
return 2 * Integer(real_part.round()) + parity
|
42
|
+
|
43
|
+
|
44
|
+
@sage_method
|
45
|
+
def compute_z_p_q_from_flattening_w0_w1(w0, w1):
|
46
|
+
"""
|
47
|
+
Given w0 and w1 such that +- exp(w0) +- exp(-w1) = 1, compute
|
48
|
+
a triple [z; p, q] such that
|
49
|
+
w0 = log(z) + p * pi * i and w1 = -log(1-z) + q * pi * i.
|
50
|
+
|
51
|
+
While z is and the parities of p and q are verified, p and q are
|
52
|
+
not verified in the following sense:
|
53
|
+
w0 - p * pi * i and w1 + q * pi * i are likely to have imaginary
|
54
|
+
part between -pi and pi, but this is not verified.
|
55
|
+
"""
|
56
|
+
z, p_parity, q_parity = compute_z_and_parities_from_flattening_w0_w1(w0, w1)
|
57
|
+
|
58
|
+
return (z,
|
59
|
+
compute_p_from_w_and_parity(w0, p_parity),
|
60
|
+
compute_p_from_w_and_parity(w1, q_parity))
|
61
|
+
|
62
|
+
|
63
|
+
@sage_method
|
64
|
+
def my_dilog(z):
|
65
|
+
"""
|
66
|
+
Compute dilogarithm using complex ball field.
|
67
|
+
The dilogarithm isn't implemented for ComplexIntervalField itself, so
|
68
|
+
we use ComplexBallField. Note that ComplexBallField is conservative
|
69
|
+
about branch cuts. For Li_2(2+-i * epsilon), it returns the interval
|
70
|
+
containing both Li_2(2+i * epsilon) and Li_2(2-i * epsilon).
|
71
|
+
|
72
|
+
Thus, we need to avoid calling this function with a value near real numbers
|
73
|
+
greater 1.
|
74
|
+
"""
|
75
|
+
|
76
|
+
CIF = z.parent()
|
77
|
+
CBF = ComplexBallField(CIF.precision())
|
78
|
+
|
79
|
+
return CIF(CBF(z).polylog(2))
|
80
|
+
|
81
|
+
|
82
|
+
@sage_method
|
83
|
+
def is_imaginary_part_bounded(z, v):
|
84
|
+
"""
|
85
|
+
Check that the imaginary part of z is in (-v, v).
|
86
|
+
"""
|
87
|
+
imag = z.imag()
|
88
|
+
return -v < imag and imag < v
|
89
|
+
|
90
|
+
|
91
|
+
@sage_method
|
92
|
+
def compute_Neumanns_Rogers_dilog_from_flattening_w0_w1(w0, w1):
|
93
|
+
"""
|
94
|
+
Given a flattening w0, w1 such that +- exp(w0) +- exp(-w1) = 1, compute
|
95
|
+
the complex volume given by R(z;p,q) (equation before Proposition 2.5 in
|
96
|
+
Neumann's Extended Bloch group and the Cheeger-Chern-Simons class).
|
97
|
+
"""
|
98
|
+
RIF = w0.parent().real_field()
|
99
|
+
my_pi = RIF(pi)
|
100
|
+
|
101
|
+
# Compute [z; p, q]
|
102
|
+
z, p, q = compute_z_p_q_from_flattening_w0_w1(w0, w1)
|
103
|
+
|
104
|
+
# Note that the values computed for log(z) and log(1-z)
|
105
|
+
# are not verified to have the imaginary part between -pi and pi.
|
106
|
+
logZ = w0 - my_pi * p * I
|
107
|
+
logOneMinusZ = - (w1 - my_pi * q * I)
|
108
|
+
|
109
|
+
# Neumann's formula for the complex volume is
|
110
|
+
#
|
111
|
+
# (1) R(z; p, q) = Li_2( z) + ( term1 + term2) / 2 - pi^2/6
|
112
|
+
#
|
113
|
+
# where
|
114
|
+
# term1 = log(z) * log(1-z)
|
115
|
+
# term2 = pi * i * (p * log(1-z) + q * log(z))
|
116
|
+
#
|
117
|
+
# Using Li_2(z) + Li_1(1-z) = pi^2/6 - log(z) * log(1-z), we also get
|
118
|
+
#
|
119
|
+
# (2) R(z; p, q) = - Li_2(1-z) + (-term1 + term2) / 2
|
120
|
+
#
|
121
|
+
# We use (1) when Re(z) < 1/2 and (2) otherwise.
|
122
|
+
#
|
123
|
+
# Note that if we use (1), we do not rely on the value computed for log(z)
|
124
|
+
# to have imaginary part between -pi and pi (because p was not computed
|
125
|
+
# such that we have this property). More precisely, if we add 2 to p, the
|
126
|
+
# value computed for log(z) changes by -2 * pi * i, so term1 changes by
|
127
|
+
# -2 * pi * i * log(1-z) but this is compensated by the change in term2.
|
128
|
+
# We do, however, need to check that the value of log(1-z) has imaginary
|
129
|
+
# part between -pi and pi. Since We have Re(z) < 1/2, we indeed expect that
|
130
|
+
# the imaginary part is between -pi/2 and pi/2 and can check the stronger
|
131
|
+
# condition that the imaginary part is between -2 and 2.
|
132
|
+
# We need to make sure that Li_2(z) is evaluated correctly. We always
|
133
|
+
# want to take the main branch. If z is close to the branch cut ([1,inf)),
|
134
|
+
# the choice is ambiguous but we are safe since my_dilog would
|
135
|
+
# conservatively return the large interval containing both branch choices.
|
136
|
+
# Note that we should always be able to avoid this by increasing bits_prec
|
137
|
+
# since we only use (1) if the interval for z is centered to the left of
|
138
|
+
# the line with real part 1/2.
|
139
|
+
#
|
140
|
+
# Similar considerations apply to (2) used when Re(z) > 1/2.
|
141
|
+
|
142
|
+
term1 = logZ * logOneMinusZ
|
143
|
+
term2 = my_pi * I * (p * logOneMinusZ + q * logZ)
|
144
|
+
|
145
|
+
if z.real().center() < 0.5:
|
146
|
+
# Check that we can apply equation (1)
|
147
|
+
if not is_imaginary_part_bounded(logOneMinusZ, 2):
|
148
|
+
raise Exception("Problem with computing Neumanns dilog using (1)",
|
149
|
+
z, logOneMinusZ)
|
150
|
+
|
151
|
+
return ( term1 + term2) / 2 + my_dilog(z) - my_pi * my_pi / 6
|
152
|
+
else:
|
153
|
+
# Check that we can apply equation (2)
|
154
|
+
if not is_imaginary_part_bounded(logZ, 2):
|
155
|
+
raise Exception("Problem with computing Neumanns dilog using (2)",
|
156
|
+
z, logZ)
|
157
|
+
|
158
|
+
return (-term1 + term2) / 2 - my_dilog(1 - z)
|
159
|
+
|
160
|
+
|
161
|
+
@sage_method
|
162
|
+
def compute_complex_volume_of_simplex_from_lifted_ptolemys(index, ptolemys):
|
163
|
+
"""
|
164
|
+
Given lifted Ptolemy coordinates for a triangulation (as dictionary),
|
165
|
+
compute the complex volume contribution by the simplex with given index.
|
166
|
+
"""
|
167
|
+
|
168
|
+
# The six Ptolemy coordinates for the given simplex
|
169
|
+
c_1100 = ptolemys['c_1100_%d' % index]
|
170
|
+
c_1010 = ptolemys['c_1010_%d' % index]
|
171
|
+
c_1001 = ptolemys['c_1001_%d' % index]
|
172
|
+
c_0110 = ptolemys['c_0110_%d' % index]
|
173
|
+
c_0101 = ptolemys['c_0101_%d' % index]
|
174
|
+
c_0011 = ptolemys['c_0011_%d' % index]
|
175
|
+
|
176
|
+
# Compute Neumann's flattening (w0, w1) from Ptolemy coordinates
|
177
|
+
w0 = c_1010 + c_0101 - c_1001 - c_0110
|
178
|
+
w1 = c_1001 + c_0110 - c_1100 - c_0011
|
179
|
+
|
180
|
+
# Compute Neumann's version of Roger's dilogarithm from flattening.
|
181
|
+
return compute_Neumanns_Rogers_dilog_from_flattening_w0_w1(w0, w1)
|
182
|
+
|
183
|
+
|
184
|
+
@sage_method
|
185
|
+
def compute_complex_volume_from_lifted_ptolemys_no_torsion_adjustment(
|
186
|
+
num_tetrahedra, ptolemys):
|
187
|
+
"""
|
188
|
+
Given lifted Ptolemy coordinates for a triangulation (as dictionary)
|
189
|
+
and the number of tetrahedra, compute the complex volume (where
|
190
|
+
the real part is the Chern-Simons and the imaginary part is the
|
191
|
+
volume).
|
192
|
+
|
193
|
+
This sums of the dilogs across tetrahedra without adjusting for the
|
194
|
+
fact that the triangulation might not be ordered.
|
195
|
+
Thus, the Chern-Simons is correct only up to multiples of pi^2/6.
|
196
|
+
"""
|
197
|
+
|
198
|
+
return sum(
|
199
|
+
[ compute_complex_volume_of_simplex_from_lifted_ptolemys(
|
200
|
+
index, ptolemys)
|
201
|
+
for index in range(num_tetrahedra) ])
|
@@ -0,0 +1,85 @@
|
|
1
|
+
from ..geometric_structure.cusp_neighborhood.complex_cusp_cross_section import ComplexCuspCrossSection
|
2
|
+
from .shapes import compute_hyperbolic_shapes
|
3
|
+
|
4
|
+
__all__ = ['cusp_translations_for_manifold',
|
5
|
+
'cusp_translations_for_neighborhood']
|
6
|
+
|
7
|
+
|
8
|
+
def cusp_translations_for_manifold(manifold, verified, areas=None,
|
9
|
+
check_std_form=True,
|
10
|
+
bits_prec=None):
|
11
|
+
|
12
|
+
shapes = compute_hyperbolic_shapes(
|
13
|
+
manifold, verified=verified, bits_prec=bits_prec)
|
14
|
+
|
15
|
+
# Compute cusp cross section, the code is agnostic about whether
|
16
|
+
# the numbers are floating-point or intervals.
|
17
|
+
# Note that the constructed cusp cross section will always be too "large"
|
18
|
+
# and we need to scale them down (since during construction the
|
19
|
+
# cross-section of each cusp will have one edge of length 1, the
|
20
|
+
# corresponding tetrahedron does not intersect in "standard" form.)
|
21
|
+
c = ComplexCuspCrossSection.fromManifoldAndShapes(manifold, shapes)
|
22
|
+
|
23
|
+
if areas:
|
24
|
+
RF = shapes[0].real().parent()
|
25
|
+
# Convert given areas to elements in real (interval) field and then
|
26
|
+
# scale cusps to have that given area.
|
27
|
+
#
|
28
|
+
# These areas are just used as a hint to initialize the computation
|
29
|
+
# of cusp neighborhoods that are disjoint. ensure_disjoint will
|
30
|
+
# scale the cusps further down so that it is verified they are
|
31
|
+
# disjoint. In particular, it is ok that the given areas might be
|
32
|
+
# of a lower precision type or two use the number and turn it
|
33
|
+
# into an interval of length 0.
|
34
|
+
#
|
35
|
+
# Remark: If verified, RF(area) will result in intervals of
|
36
|
+
# length 0.
|
37
|
+
c.normalize_cusps([RF(area) for area in areas])
|
38
|
+
|
39
|
+
if check_std_form:
|
40
|
+
# If so desired, make neighborhoods a bit smaller if necessary
|
41
|
+
# so that they are "proven" to be in standard form.
|
42
|
+
c.ensure_std_form()
|
43
|
+
else:
|
44
|
+
# If no areas are given, scale (up or down) all the cusps so that
|
45
|
+
# they are in standard form.
|
46
|
+
c.ensure_std_form(allow_scaling_up=True)
|
47
|
+
|
48
|
+
# Note: the only code path avoiding ensure_std_form is through calling
|
49
|
+
# all_translations on a CuspNeighborhood with verified = False,
|
50
|
+
# see comment in cusp_translations_for_neighborhood
|
51
|
+
|
52
|
+
# Scale down cusps neighborhoods further to make sure that they are
|
53
|
+
# disjoint.
|
54
|
+
c.ensure_disjoint_on_edges()
|
55
|
+
|
56
|
+
# The result
|
57
|
+
return c.all_normalized_translations()
|
58
|
+
|
59
|
+
|
60
|
+
def cusp_translations_for_neighborhood(neighborhood,
|
61
|
+
verified=False, bits_prec=None):
|
62
|
+
|
63
|
+
# Use the proto-canonical triangulation corresponding to the given
|
64
|
+
# neighborhood and use Proposition 1 from cusp_neighborhoods.c to compute
|
65
|
+
# the cusp areas
|
66
|
+
|
67
|
+
manifold = neighborhood.manifold()
|
68
|
+
areas = [ neighborhood.volume(i) * 2 for i in range(manifold.num_cusps()) ]
|
69
|
+
|
70
|
+
# If we want verified results, do not rely on anything reported from
|
71
|
+
# the kernel, the areas are only used as hint. The cusps could be scaled
|
72
|
+
# down further to ensure the cusps neighborhoods are in standard form.
|
73
|
+
|
74
|
+
# If we don't want verified results, we set check_std_form to False to
|
75
|
+
# get high-precision results consistent with the translations reported
|
76
|
+
# by the kernel.
|
77
|
+
# This is safe under the assumption that the kernel has found a correct
|
78
|
+
# proto-canonical triangulation for the CuspNeighborhood. The kernel
|
79
|
+
# also should have given us areas corresponding to disjoint cusps to
|
80
|
+
# begin with.
|
81
|
+
|
82
|
+
return cusp_translations_for_manifold(manifold, areas=areas,
|
83
|
+
check_std_form=verified,
|
84
|
+
verified=verified,
|
85
|
+
bits_prec=bits_prec)
|
@@ -0,0 +1,80 @@
|
|
1
|
+
from .exceptions import *
|
2
|
+
|
3
|
+
from ..snap.t3mlite import simplex
|
4
|
+
|
5
|
+
def check_polynomial_edge_equations_exactly(mcomplex):
|
6
|
+
"""
|
7
|
+
Check that the polynomial edge equations are fulfilled exactly.
|
8
|
+
|
9
|
+
We use the conjugate inverse to support non-orientable manifolds.
|
10
|
+
"""
|
11
|
+
|
12
|
+
# For each edge
|
13
|
+
for edge in mcomplex.Edges:
|
14
|
+
# The exact value when evaluating the edge equation
|
15
|
+
val = 1
|
16
|
+
|
17
|
+
# Iterate through edge embeddings
|
18
|
+
for tet, perm in edge.embeddings():
|
19
|
+
# Accumulate shapes of the edge exactly
|
20
|
+
val *= _shape_for_edge_embedding(tet, perm)
|
21
|
+
|
22
|
+
if not val == 1:
|
23
|
+
raise EdgeEquationExactVerifyError(val)
|
24
|
+
|
25
|
+
def check_logarithmic_edge_equations_and_positivity(mcomplex, NumericalField):
|
26
|
+
"""
|
27
|
+
Check that the shapes have positive imaginary part and that the
|
28
|
+
logarithmic gluing equations have small error.
|
29
|
+
|
30
|
+
The shapes are coerced into the field given as argument before the
|
31
|
+
logarithm is computed. It can be, e.g., a ComplexIntervalField.
|
32
|
+
"""
|
33
|
+
|
34
|
+
# For each edge
|
35
|
+
for edge in mcomplex.Edges:
|
36
|
+
|
37
|
+
# The complex interval arithmetic value of the logarithmic
|
38
|
+
# version of the edge equation.
|
39
|
+
log_sum = 0
|
40
|
+
|
41
|
+
# Iterate through edge embeddings
|
42
|
+
for tet, perm in edge.embeddings():
|
43
|
+
|
44
|
+
shape = _shape_for_edge_embedding(tet, perm)
|
45
|
+
|
46
|
+
numerical_shape = NumericalField(shape)
|
47
|
+
|
48
|
+
log_shape = numerical_shape.log()
|
49
|
+
|
50
|
+
# Note that this is true for z in R, R < 0 as well,
|
51
|
+
# but then it would fail for 1 - 1/z or 1 / (1-z)
|
52
|
+
|
53
|
+
if not (log_shape.imag() > 0):
|
54
|
+
raise ShapePositiveImaginaryPartNumericalVerifyError(
|
55
|
+
numerical_shape)
|
56
|
+
|
57
|
+
# Take logarithm and accumulate
|
58
|
+
log_sum += log_shape
|
59
|
+
|
60
|
+
twoPiI = NumericalField.pi() * NumericalField(2j)
|
61
|
+
|
62
|
+
if not abs(log_sum - twoPiI) < NumericalField(1e-7):
|
63
|
+
raise EdgeEquationLogLiftNumericalVerifyError(log_sum)
|
64
|
+
|
65
|
+
def _shape_for_edge_embedding(tet, perm):
|
66
|
+
"""
|
67
|
+
Given an edge embedding, find the shape assignment for it.
|
68
|
+
If the edge embedding flips orientation, apply conjugate inverse.
|
69
|
+
"""
|
70
|
+
|
71
|
+
# Get the shape for this edge embedding
|
72
|
+
subsimplex = perm.image(simplex.E01)
|
73
|
+
|
74
|
+
# Figure out the orientation of this tetrahedron
|
75
|
+
# with respect to the edge, apply conjugate inverse
|
76
|
+
# if differ
|
77
|
+
if perm.sign():
|
78
|
+
return 1 / tet.ShapeParameters[subsimplex].conjugate()
|
79
|
+
else:
|
80
|
+
return tet.ShapeParameters[subsimplex]
|