snappy 3.2__cp310-cp310-macosx_10_12_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-310-darwin.so +0 -0
- snappy/SnapPy.cpython-310-darwin.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-310-darwin.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-310-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +5 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,2290 @@
|
|
1
|
+
from .component import ZeroDimensionalComponent
|
2
|
+
from .rur import RUR
|
3
|
+
from . import matrix
|
4
|
+
from . import findLoops
|
5
|
+
from . import utilities
|
6
|
+
from ..sage_helper import _within_sage
|
7
|
+
from ..pari import Gen, pari
|
8
|
+
import re
|
9
|
+
|
10
|
+
|
11
|
+
class PtolemyCannotBeCheckedError(Exception):
|
12
|
+
def __init__(self):
|
13
|
+
msg = (
|
14
|
+
"Use .cross_ratios().check_against_manifold(...) since checking "
|
15
|
+
"Ptolemy coordinates for non-trivial generalized obstruction "
|
16
|
+
"class is not supported.")
|
17
|
+
Exception.__init__(self, msg)
|
18
|
+
|
19
|
+
|
20
|
+
class LogToCloseToBranchCutError(Exception):
|
21
|
+
"""
|
22
|
+
An exception raised when taking log(-x) for some real number x
|
23
|
+
Due to numerical inaccuracies, we cannot know in this case whether to take
|
24
|
+
-Pi or Pi as imaginary part.
|
25
|
+
"""
|
26
|
+
pass
|
27
|
+
|
28
|
+
|
29
|
+
class RelationViolationError(Exception):
|
30
|
+
"""
|
31
|
+
An exception raised when some supposed relation doesn't hold exactly
|
32
|
+
or numerical.
|
33
|
+
"""
|
34
|
+
|
35
|
+
def __init__(self, value, epsilon, comment):
|
36
|
+
self.value = value
|
37
|
+
self.epsilon = epsilon
|
38
|
+
self.comment = comment
|
39
|
+
|
40
|
+
def __str__(self):
|
41
|
+
r = self.comment + " is violated, "
|
42
|
+
r += "difference is %s" % self.value
|
43
|
+
if self.epsilon is None:
|
44
|
+
return r + " (exact values)"
|
45
|
+
return r + " (epsilon = %s)" % self.epsilon
|
46
|
+
|
47
|
+
|
48
|
+
class NotPU21Representation:
|
49
|
+
"""
|
50
|
+
Returned by is_pu_2_1_representation if cross ratios do not fulfill
|
51
|
+
conditions to be a PU(2,1)-representation.
|
52
|
+
Contains the reason why cross ratios fail to do so.
|
53
|
+
Cast to bool evaluates to False.
|
54
|
+
"""
|
55
|
+
|
56
|
+
def __init__(self, reason):
|
57
|
+
self.reason = reason
|
58
|
+
|
59
|
+
def __repr__(self):
|
60
|
+
return "NotPU21Representation(reason = %r)" % self.reason
|
61
|
+
|
62
|
+
def __bool__(self):
|
63
|
+
return False
|
64
|
+
|
65
|
+
__nonzero__ = __bool__ # backwards compatibility python 2x
|
66
|
+
|
67
|
+
|
68
|
+
class NumericalMethodError(Exception):
|
69
|
+
def __init__(self, method):
|
70
|
+
self.method = method
|
71
|
+
|
72
|
+
def __str__(self):
|
73
|
+
return "Method %s only supported for numerical values" % self.method
|
74
|
+
|
75
|
+
|
76
|
+
class ExactMethodError(Exception):
|
77
|
+
def __init__(self, method):
|
78
|
+
self.method = method
|
79
|
+
|
80
|
+
def __str__(self):
|
81
|
+
return "Method %s only supported for exact values" % self.method
|
82
|
+
|
83
|
+
|
84
|
+
def _check_relation(value, epsilon, comment):
|
85
|
+
if epsilon is None:
|
86
|
+
if not value == 0:
|
87
|
+
raise RelationViolationError(value, epsilon, comment)
|
88
|
+
else:
|
89
|
+
if not abs(value) < epsilon:
|
90
|
+
raise RelationViolationError(value, epsilon, comment)
|
91
|
+
|
92
|
+
|
93
|
+
class PtolemyCoordinates(dict):
|
94
|
+
"""
|
95
|
+
Represents a solution of a Ptolemy variety as python dictionary.
|
96
|
+
|
97
|
+
=== Examples ===
|
98
|
+
|
99
|
+
Construct solution from magma output:
|
100
|
+
|
101
|
+
>>> from snappy.ptolemy.processMagmaFile import _magma_output_for_4_1__sl3, solutions_from_magma
|
102
|
+
>>> from snappy import Manifold
|
103
|
+
>>> solutions = solutions_from_magma(_magma_output_for_4_1__sl3)
|
104
|
+
>>> solution = solutions[2]
|
105
|
+
|
106
|
+
Access a Ptolemy coordinate:
|
107
|
+
|
108
|
+
>>> solution['c_2100_0']
|
109
|
+
1
|
110
|
+
|
111
|
+
>>> solution.number_field()
|
112
|
+
x^2 + x + 1
|
113
|
+
|
114
|
+
Solution is always 0 dimensional:
|
115
|
+
|
116
|
+
>>> solution.dimension
|
117
|
+
0
|
118
|
+
|
119
|
+
Check that it is really a solution, exactly:
|
120
|
+
|
121
|
+
>>> solution.check_against_manifold()
|
122
|
+
|
123
|
+
If the solution was not created through the ptolemy module
|
124
|
+
and thus not associated to a manifold, we need to explicitly
|
125
|
+
specify one:
|
126
|
+
|
127
|
+
>>> myDict = {}
|
128
|
+
>>> for key, value in solution.items():
|
129
|
+
... myDict[key] = value
|
130
|
+
>>> mysolution = PtolemyCoordinates(myDict)
|
131
|
+
>>> M = Manifold("4_1")
|
132
|
+
>>> solution.check_against_manifold(M)
|
133
|
+
|
134
|
+
Turn into (Galois conjugate) numerical solutions:
|
135
|
+
|
136
|
+
>>> old_precision = pari.set_real_precision(100) # with high precision
|
137
|
+
>>> numerical_solutions = solution.numerical()
|
138
|
+
|
139
|
+
Check that it is a solution, numerically:
|
140
|
+
|
141
|
+
>>> numerical_solutions[0].check_against_manifold(M, 1e-80)
|
142
|
+
>>> pari.set_real_precision(old_precision) # reset pari engine
|
143
|
+
100
|
144
|
+
|
145
|
+
Compute cross ratios from the Ptolemy coordinates (cross ratios
|
146
|
+
according to SnapPy convention, see help(solution.cross_ratios):
|
147
|
+
|
148
|
+
>>> cross = solution.cross_ratios()
|
149
|
+
>>> cross['z_0001_0']
|
150
|
+
Mod(-x, x^2 + x + 1)
|
151
|
+
|
152
|
+
Compute volumes:
|
153
|
+
|
154
|
+
>>> volumes = cross.volume_numerical()
|
155
|
+
|
156
|
+
Check that volume is 4 times the geometric one:
|
157
|
+
|
158
|
+
>>> volume = volumes[0].abs()
|
159
|
+
>>> diff = abs(4 * M.volume() - volume)
|
160
|
+
>>> diff < 1e-9
|
161
|
+
True
|
162
|
+
|
163
|
+
Compute flattenings:
|
164
|
+
|
165
|
+
>>> flattenings = solution.flattenings_numerical()
|
166
|
+
|
167
|
+
Compute complex volumes:
|
168
|
+
|
169
|
+
>>> cvols = [flattening.complex_volume() for flattening in flattenings]
|
170
|
+
>>> volume = cvols[0].real().abs()
|
171
|
+
>>> chernSimons = cvols[0].imag()
|
172
|
+
>>> diff = abs(4 * M.volume() - volume)
|
173
|
+
>>> diff < 1e-9
|
174
|
+
True
|
175
|
+
|
176
|
+
>>> from snappy import pari
|
177
|
+
>>> normalized = chernSimons * 6 / (pari('Pi')**2)
|
178
|
+
|
179
|
+
Check that Chern Simons is zero up to 6 torsion:
|
180
|
+
|
181
|
+
>>> normalized - normalized.round() < 1e-9
|
182
|
+
True
|
183
|
+
"""
|
184
|
+
|
185
|
+
def __init__(self, d, is_numerical=True, py_eval_section=None,
|
186
|
+
manifold_thunk=lambda : None,
|
187
|
+
non_trivial_generalized_obstruction_class=False):
|
188
|
+
|
189
|
+
self._manifold_thunk = manifold_thunk
|
190
|
+
|
191
|
+
self._is_numerical = is_numerical
|
192
|
+
self.dimension = 0
|
193
|
+
|
194
|
+
self._non_trivial_generalized_obstruction_class = (
|
195
|
+
non_trivial_generalized_obstruction_class)
|
196
|
+
processed_dict = d
|
197
|
+
|
198
|
+
if py_eval_section is not None:
|
199
|
+
# process the extra information that is given by
|
200
|
+
# ptolemyVariety's py_eval_section
|
201
|
+
|
202
|
+
processed_dict = py_eval_section['variable_dict'](d)
|
203
|
+
if py_eval_section.get(
|
204
|
+
'non_trivial_generalized_obstruction_class'):
|
205
|
+
self._non_trivial_generalized_obstruction_class = True
|
206
|
+
|
207
|
+
# Caches the matrices that label the short and long edges
|
208
|
+
# of the truncated simplices building the manifold
|
209
|
+
self._edge_cache = {}
|
210
|
+
|
211
|
+
# Caches the images of a fundamental group generator
|
212
|
+
self._matrix_cache = []
|
213
|
+
self._inverse_matrix_cache = []
|
214
|
+
|
215
|
+
super().__init__(processed_dict)
|
216
|
+
|
217
|
+
def __repr__(self):
|
218
|
+
dict_repr = dict.__repr__(self)
|
219
|
+
return "PtolemyCoordinates(%s, is_numerical = %r, ...)" % (
|
220
|
+
dict_repr, self._is_numerical)
|
221
|
+
|
222
|
+
def _repr_pretty_(self, p, cycle):
|
223
|
+
if cycle:
|
224
|
+
p.text('PtolemyCoordinates(...)')
|
225
|
+
else:
|
226
|
+
with p.group(4, 'PtolemyCoordinates(',')'):
|
227
|
+
p.breakable()
|
228
|
+
p.pretty(dict(self))
|
229
|
+
p.text(',')
|
230
|
+
p.breakable()
|
231
|
+
p.text('is_numerical = %r, ...' % self._is_numerical)
|
232
|
+
|
233
|
+
def get_manifold(self):
|
234
|
+
"""
|
235
|
+
Get the manifold for which this structure represents a solution
|
236
|
+
to the Ptolemy variety.
|
237
|
+
"""
|
238
|
+
|
239
|
+
return self._manifold_thunk()
|
240
|
+
|
241
|
+
def num_tetrahedra(self):
|
242
|
+
"""
|
243
|
+
The number of tetrahedra for which we have Ptolemy coordinates.
|
244
|
+
"""
|
245
|
+
return _num_tetrahedra(self)
|
246
|
+
|
247
|
+
def N(self):
|
248
|
+
"""
|
249
|
+
Get the *N* where these coordinates are for SL/PSL(*N*, **C**)-representations.
|
250
|
+
"""
|
251
|
+
|
252
|
+
N, has_obstruction = _N_and_has_obstruction_for_ptolemys(self)
|
253
|
+
return N
|
254
|
+
|
255
|
+
def has_obstruction(self):
|
256
|
+
"""
|
257
|
+
Whether the Ptolemy variety has legacy obstruction class that
|
258
|
+
modifies the Ptolemy relation to
|
259
|
+
"""
|
260
|
+
N, has_obstruction = _N_and_has_obstruction_for_ptolemys(self)
|
261
|
+
return has_obstruction
|
262
|
+
|
263
|
+
def number_field(self):
|
264
|
+
"""
|
265
|
+
For an exact solution, return the number_field spanned by the
|
266
|
+
Ptolemy coordinates. If number_field is Q, return None.
|
267
|
+
"""
|
268
|
+
|
269
|
+
if self._is_numerical:
|
270
|
+
raise ExactMethodError("number_field")
|
271
|
+
|
272
|
+
return _get_number_field(self)
|
273
|
+
|
274
|
+
def numerical(self):
|
275
|
+
"""
|
276
|
+
Turn exact solutions into numerical solutions using pari.
|
277
|
+
|
278
|
+
Take an exact solution:
|
279
|
+
|
280
|
+
>>> from snappy.ptolemy.processMagmaFile import _magma_output_for_4_1__sl3, solutions_from_magma
|
281
|
+
>>> solutions = solutions_from_magma(_magma_output_for_4_1__sl3)
|
282
|
+
>>> solution = solutions[2]
|
283
|
+
|
284
|
+
Turn into a numerical solution:
|
285
|
+
|
286
|
+
>>> old_precision = pari.set_real_precision(100) # with high precision
|
287
|
+
>>> numerical_solutions = solution.numerical()
|
288
|
+
>>> pari.set_real_precision(old_precision) # reset pari engine
|
289
|
+
100
|
290
|
+
|
291
|
+
Pick one of the Galois conjugates:
|
292
|
+
|
293
|
+
>>> numerical_solution = numerical_solutions[0]
|
294
|
+
>>> value = numerical_solution['c_1110_0']
|
295
|
+
"""
|
296
|
+
|
297
|
+
if self._is_numerical:
|
298
|
+
return self
|
299
|
+
return ZeroDimensionalComponent(
|
300
|
+
[ PtolemyCoordinates(
|
301
|
+
d, is_numerical=True,
|
302
|
+
manifold_thunk=self._manifold_thunk,
|
303
|
+
non_trivial_generalized_obstruction_class=(
|
304
|
+
self._non_trivial_generalized_obstruction_class))
|
305
|
+
for d in _to_numerical(self) ])
|
306
|
+
|
307
|
+
def to_PUR(self):
|
308
|
+
"""
|
309
|
+
If any Ptolemy coordinates are given as Rational Univariate
|
310
|
+
Representation, convert them to Polynomial Univariate Representation and
|
311
|
+
return the result.
|
312
|
+
|
313
|
+
See to_PUR of RUR.
|
314
|
+
|
315
|
+
This conversion might lead to very large coefficients.
|
316
|
+
"""
|
317
|
+
|
318
|
+
return PtolemyCoordinates(
|
319
|
+
_apply_to_RURs(self, RUR.to_PUR),
|
320
|
+
is_numerical=self._is_numerical,
|
321
|
+
manifold_thunk=self._manifold_thunk,
|
322
|
+
non_trivial_generalized_obstruction_class=(
|
323
|
+
self._non_trivial_generalized_obstruction_class))
|
324
|
+
|
325
|
+
def multiply_terms_in_RUR(self):
|
326
|
+
"""
|
327
|
+
If a Ptolemy coordinate is given as Rational Univariate Representation
|
328
|
+
with numerator and denominator being a product, multiply the terms and
|
329
|
+
return the result.
|
330
|
+
|
331
|
+
See multiply_terms of RUR.
|
332
|
+
|
333
|
+
This loses information about how the numerator and denominator are
|
334
|
+
factorised.
|
335
|
+
"""
|
336
|
+
|
337
|
+
return PtolemyCoordinates(
|
338
|
+
_apply_to_RURs(self, RUR.multiply_terms),
|
339
|
+
is_numerical=self._is_numerical,
|
340
|
+
manifold_thunk=self._manifold_thunk,
|
341
|
+
non_trivial_generalized_obstruction_class=(
|
342
|
+
self._non_trivial_generalized_obstruction_class))
|
343
|
+
|
344
|
+
def multiply_and_simplify_terms_in_RUR(self):
|
345
|
+
"""
|
346
|
+
If a Ptolemy coordinate is given as Rational Univariate Representation
|
347
|
+
with numerator and denominator being a product, multiply the terms,
|
348
|
+
reduce the fraction and return the result.
|
349
|
+
|
350
|
+
See multiply_and_simplify_terms of RUR.
|
351
|
+
|
352
|
+
This loses information about how the numerator and denominator are
|
353
|
+
factorised.
|
354
|
+
|
355
|
+
"""
|
356
|
+
|
357
|
+
return PtolemyCoordinates(
|
358
|
+
_apply_to_RURs(self, RUR.multiply_and_simplify_terms),
|
359
|
+
is_numerical=self._is_numerical,
|
360
|
+
manifold_thunk=self._manifold_thunk,
|
361
|
+
non_trivial_generalized_obstruction_class=(
|
362
|
+
self._non_trivial_generalized_obstruction_class))
|
363
|
+
|
364
|
+
def cross_ratios(self):
|
365
|
+
"""
|
366
|
+
Compute cross ratios from Ptolemy coordinates. The cross ratios are
|
367
|
+
according to the SnapPy convention, so we have::
|
368
|
+
|
369
|
+
z = 1 - 1/zp, zp = 1 - 1/zpp, zpp = 1 - 1/z
|
370
|
+
|
371
|
+
where::
|
372
|
+
|
373
|
+
z is at the edge 01 and equal to s0 * s1 * (c_1010 * c_0101) / (c_1001 * c_0110)
|
374
|
+
zp is at the edge 02 and equal to - s0 * s2 * (c_1001 * c_0110) / (c_1100 * c_0011)
|
375
|
+
zpp is at the edge 03 and equal to s0 * s3 * (c_1100 * c_0011) / (c_0101 * c_1010).
|
376
|
+
|
377
|
+
Note that this is different from the convention used in
|
378
|
+
Garoufalidis, Goerner, Zickert:
|
379
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
380
|
+
https://arxiv.org/abs/1207.6711
|
381
|
+
|
382
|
+
Take an exact solution:
|
383
|
+
|
384
|
+
>>> from snappy.ptolemy.processMagmaFile import _magma_output_for_4_1__sl3, solutions_from_magma
|
385
|
+
>>> solutions = solutions_from_magma(_magma_output_for_4_1__sl3)
|
386
|
+
>>> solution = solutions[2]
|
387
|
+
|
388
|
+
Turn into cross Ratios:
|
389
|
+
|
390
|
+
>>> crossRatios = solution.cross_ratios()
|
391
|
+
|
392
|
+
Get a cross ratio:
|
393
|
+
|
394
|
+
>>> crossRatios['zp_0010_0']
|
395
|
+
Mod(-x, x^2 + x + 1)
|
396
|
+
|
397
|
+
Check the relationship between cross ratios:
|
398
|
+
|
399
|
+
>>> crossRatios['z_0010_0'] == 1 - 1 / crossRatios['zp_0010_0']
|
400
|
+
True
|
401
|
+
|
402
|
+
>>> crossRatios['zp_0010_0'] == 1 - 1 / crossRatios['zpp_0010_0']
|
403
|
+
True
|
404
|
+
|
405
|
+
>>> crossRatios['zpp_0010_0'] == 1 - 1 / crossRatios['z_0010_0']
|
406
|
+
True
|
407
|
+
|
408
|
+
Get information about what one can do with cross ratios
|
409
|
+
"""
|
410
|
+
return CrossRatios(_ptolemy_to_cross_ratio(self)[0],
|
411
|
+
is_numerical=self._is_numerical,
|
412
|
+
manifold_thunk=self._manifold_thunk)
|
413
|
+
|
414
|
+
def cross_ratios_numerical(self):
|
415
|
+
"""
|
416
|
+
Turn exact solutions into numerical and then compute cross ratios.
|
417
|
+
See numerical() and cross_ratios().
|
418
|
+
"""
|
419
|
+
|
420
|
+
if self._is_numerical:
|
421
|
+
return self.cross_ratios()
|
422
|
+
else:
|
423
|
+
return ZeroDimensionalComponent(
|
424
|
+
[num.cross_ratios() for num in self.numerical()])
|
425
|
+
|
426
|
+
def flattenings_numerical(self):
|
427
|
+
"""
|
428
|
+
Turn into numerical solutions and compute flattenings, see
|
429
|
+
help(snappy.ptolemy.coordinates.Flattenings)
|
430
|
+
Also see numerical()
|
431
|
+
|
432
|
+
Get Ptolemy coordinates.
|
433
|
+
|
434
|
+
>>> from snappy.ptolemy.processMagmaFile import _magma_output_for_4_1__sl3, solutions_from_magma
|
435
|
+
>>> solutions = solutions_from_magma(_magma_output_for_4_1__sl3)
|
436
|
+
>>> solution = solutions[2]
|
437
|
+
|
438
|
+
Compute a numerical solution
|
439
|
+
|
440
|
+
>>> flattenings = solution.flattenings_numerical()
|
441
|
+
|
442
|
+
Get more information with help(flattenings[0])
|
443
|
+
"""
|
444
|
+
|
445
|
+
if self._is_numerical:
|
446
|
+
# Used as a factor when taking log's to shift the branch slightly
|
447
|
+
# from the standard branch cut at the negative real line
|
448
|
+
branch_factor = 1
|
449
|
+
|
450
|
+
# Try different branch cuts 1000 times
|
451
|
+
for i in range(1000):
|
452
|
+
try:
|
453
|
+
# get the dictionary containing flattenings
|
454
|
+
# and the evenN that describes in what
|
455
|
+
# flavor of the Extended Bloch group the result lives in
|
456
|
+
d, evenN = _ptolemy_to_cross_ratio(
|
457
|
+
self,
|
458
|
+
branch_factor,
|
459
|
+
self._non_trivial_generalized_obstruction_class,
|
460
|
+
as_flattenings=True)
|
461
|
+
|
462
|
+
return Flattenings(d,
|
463
|
+
manifold_thunk=self._manifold_thunk,
|
464
|
+
evenN=evenN)
|
465
|
+
except LogToCloseToBranchCutError:
|
466
|
+
# Values to close to the branch cut, just multiply
|
467
|
+
# by a small offset
|
468
|
+
branch_factor *= pari('exp(0.0001 * I)')
|
469
|
+
|
470
|
+
raise Exception("Could not find non-ambiguous branch cut for log")
|
471
|
+
else:
|
472
|
+
return ZeroDimensionalComponent(
|
473
|
+
[num.flattenings_numerical() for num in self.numerical()])
|
474
|
+
|
475
|
+
def volume_numerical(self, drop_negative_vols=False):
|
476
|
+
"""
|
477
|
+
Turn into (Galois conjugate) numerical solutions and compute volumes.
|
478
|
+
If already numerical, only return the one volume.
|
479
|
+
See numerical().
|
480
|
+
|
481
|
+
If drop_negative_vols = True is given as optional argument,
|
482
|
+
only return non-negative volumes.
|
483
|
+
"""
|
484
|
+
if self._is_numerical:
|
485
|
+
return self.cross_ratios().volume_numerical()
|
486
|
+
else:
|
487
|
+
vols = ZeroDimensionalComponent(
|
488
|
+
[num.volume_numerical() for num in self.numerical()])
|
489
|
+
if drop_negative_vols:
|
490
|
+
return [vol for vol in vols if vol > -1e-12]
|
491
|
+
return vols
|
492
|
+
|
493
|
+
def complex_volume_numerical(self,
|
494
|
+
drop_negative_vols=False,
|
495
|
+
with_modulo=False):
|
496
|
+
"""
|
497
|
+
Turn into (Galois conjugate) numerical solutions and compute complex
|
498
|
+
volumes. If already numerical, return the volume.
|
499
|
+
|
500
|
+
Complex volume is defined up to i*pi**2/6.
|
501
|
+
|
502
|
+
See numerical(). If drop_negative_vols = True is given as optional
|
503
|
+
argument, only return complex volumes with non-negative real part.
|
504
|
+
"""
|
505
|
+
|
506
|
+
if self._is_numerical:
|
507
|
+
return self.flattenings_numerical().complex_volume(
|
508
|
+
with_modulo=with_modulo)
|
509
|
+
else:
|
510
|
+
cvols = ZeroDimensionalComponent(
|
511
|
+
[ num.flattenings_numerical().complex_volume(
|
512
|
+
with_modulo=with_modulo)
|
513
|
+
for num in self.numerical()])
|
514
|
+
if drop_negative_vols:
|
515
|
+
return [cvol for cvol in cvols if cvol.real() > -1e-12]
|
516
|
+
return cvols
|
517
|
+
|
518
|
+
def _coordinate_at_tet_and_point(self, tet, pt):
|
519
|
+
"""
|
520
|
+
Given the index of a tetrahedron and a quadruple (any iterable) of
|
521
|
+
integer to mark an integral point on that tetrahedron, returns the
|
522
|
+
associated Ptolemy coordinate.
|
523
|
+
If this is a vertex Ptolemy coordinate, always return 1 without
|
524
|
+
checking for it in the dictionary.
|
525
|
+
"""
|
526
|
+
|
527
|
+
# Handle the vertex Ptolemy coordinate case
|
528
|
+
if sum(pt) in pt:
|
529
|
+
return 1
|
530
|
+
|
531
|
+
# Normal case
|
532
|
+
return self['c_%d%d%d%d' % tuple(pt) + '_%d' % tet]
|
533
|
+
|
534
|
+
def _get_obstruction_variable(self, face, tet):
|
535
|
+
"""
|
536
|
+
Get the obstruction variable sigma_face for the given face and
|
537
|
+
tetrahedron. Return 1 if there is no such obstruction class.
|
538
|
+
"""
|
539
|
+
|
540
|
+
key = "s_%d_%d" % (face, tet)
|
541
|
+
return self.get(key, +1) # Default to 1 if no obstruction class given
|
542
|
+
|
543
|
+
@staticmethod
|
544
|
+
def _three_perm_sign(v0, v1, v2):
|
545
|
+
"""
|
546
|
+
Returns the sign of the permutation necessary to bring the three
|
547
|
+
elements v0, v1, v2 in order.
|
548
|
+
"""
|
549
|
+
if v0 < v2 and v2 < v1:
|
550
|
+
return -1
|
551
|
+
if v1 < v0 and v0 < v2:
|
552
|
+
return -1
|
553
|
+
if v2 < v1 and v1 < v0:
|
554
|
+
return -1
|
555
|
+
return +1
|
556
|
+
|
557
|
+
def diamond_coordinate(self, tet, v0, v1, v2, pt):
|
558
|
+
"""
|
559
|
+
Returns the diamond coordinate for tetrahedron with index tet
|
560
|
+
for the face with vertices v0, v1, v2 (integers between 0 and 3) and
|
561
|
+
integral point pt (quadruple adding up to N-2).
|
562
|
+
|
563
|
+
See Definition 10.1:
|
564
|
+
Garoufalidis, Goerner, Zickert:
|
565
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
566
|
+
https://arxiv.org/abs/1207.6711
|
567
|
+
"""
|
568
|
+
|
569
|
+
# Integral points that are indices of Ptolemy coordinates
|
570
|
+
pt_v0_v0 = [ a + 2 * _kronecker_delta(v0, i)
|
571
|
+
for i, a in enumerate(pt) ]
|
572
|
+
pt_v0_v1 = [ a + _kronecker_delta(v0, i) + _kronecker_delta(v1, i)
|
573
|
+
for i, a in enumerate(pt) ]
|
574
|
+
pt_v0_v2 = [ a + _kronecker_delta(v0, i) + _kronecker_delta(v2, i)
|
575
|
+
for i, a in enumerate(pt) ]
|
576
|
+
pt_v1_v2 = [ a + _kronecker_delta(v1, i) + _kronecker_delta(v2, i)
|
577
|
+
for i, a in enumerate(pt) ]
|
578
|
+
|
579
|
+
# Ptolemy coordinates involved
|
580
|
+
c_pt_v0_v0 = self._coordinate_at_tet_and_point(tet, pt_v0_v0)
|
581
|
+
c_pt_v0_v1 = self._coordinate_at_tet_and_point(tet, pt_v0_v1)
|
582
|
+
c_pt_v0_v2 = self._coordinate_at_tet_and_point(tet, pt_v0_v2)
|
583
|
+
c_pt_v1_v2 = self._coordinate_at_tet_and_point(tet, pt_v1_v2)
|
584
|
+
|
585
|
+
# Obstruction variable
|
586
|
+
# See Definition 9.23 of
|
587
|
+
# Garoufalidis, Thurston, Zickert
|
588
|
+
# The Complex Volume of SL(n,C)-Representations of 3-Manifolds
|
589
|
+
# httpss://arxiv.org/abs/1111.2828
|
590
|
+
face = next(iter(set(range(4)) - {v0, v1, v2}))
|
591
|
+
obstruction = self._get_obstruction_variable(face, tet)
|
592
|
+
|
593
|
+
# The epsilon permutation sign from Definition 10.1 of
|
594
|
+
# Garoufalidis, Goerner, Zickert:
|
595
|
+
# Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
596
|
+
# https://arxiv.org/abs/1207.6711
|
597
|
+
s = PtolemyCoordinates._three_perm_sign(v0, v1, v2)
|
598
|
+
|
599
|
+
# The equation from the same Definition
|
600
|
+
return - (obstruction * s *
|
601
|
+
(c_pt_v0_v0 * c_pt_v1_v2) /
|
602
|
+
(c_pt_v0_v1 * c_pt_v0_v2))
|
603
|
+
|
604
|
+
def ratio_coordinate(self, tet, v0, v1, pt):
|
605
|
+
"""
|
606
|
+
Returns the ratio coordinate for tetrahedron with index tet
|
607
|
+
for the edge from v0 to v1 (integers between 0 and 3) and integral
|
608
|
+
point pt (quadruple adding up N-1) on the edge.
|
609
|
+
|
610
|
+
See Definition 10.2:
|
611
|
+
Garoufalidis, Goerner, Zickert:
|
612
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
613
|
+
https://arxiv.org/abs/1207.6711
|
614
|
+
|
615
|
+
Note that this definition turned out to have the wrong sign. Multiply
|
616
|
+
the result by -1 if v1 < v0 and N is even.
|
617
|
+
"""
|
618
|
+
|
619
|
+
# Integral points on the edge
|
620
|
+
pt_v0 = [ a + _kronecker_delta(v0, i) for i, a in enumerate(pt) ]
|
621
|
+
pt_v1 = [ a + _kronecker_delta(v1, i) for i, a in enumerate(pt) ]
|
622
|
+
|
623
|
+
# Ptolemy coordinates at those integral points
|
624
|
+
c_pt_v0 = self._coordinate_at_tet_and_point(tet, pt_v0)
|
625
|
+
c_pt_v1 = self._coordinate_at_tet_and_point(tet, pt_v1)
|
626
|
+
|
627
|
+
# Sign
|
628
|
+
s = (-1) ** pt[v1]
|
629
|
+
|
630
|
+
if v1 < v0 and (self.N() % 2 == 0):
|
631
|
+
s *= -1
|
632
|
+
|
633
|
+
# Equation from Definition 10.2
|
634
|
+
return s * c_pt_v1 / c_pt_v0
|
635
|
+
|
636
|
+
def _get_identity_matrix(self):
|
637
|
+
|
638
|
+
# Get N
|
639
|
+
N = self.N()
|
640
|
+
|
641
|
+
return [[_kronecker_delta(i, j) for i in range(N)] for j in range(N)]
|
642
|
+
|
643
|
+
def long_edge(self, tet, v0, v1, v2):
|
644
|
+
"""
|
645
|
+
The matrix that labels a long edge from v0 to v1 (integers between 0
|
646
|
+
and 3) of a (doubly) truncated simplex corresponding to an ideal
|
647
|
+
tetrahedron with index tet.
|
648
|
+
|
649
|
+
This matrix was labeled alpha^{v0v1v2} (v2 does not matter for non
|
650
|
+
double-truncated simplex) in Figure 18 of
|
651
|
+
Garoufalidis, Goerner, Zickert:
|
652
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
653
|
+
https://arxiv.org/abs/1207.6711
|
654
|
+
|
655
|
+
It is computed using equation 10.4. Note that the ratio coordinate
|
656
|
+
is different from the definition in the paper (see ratio_coordinate).
|
657
|
+
|
658
|
+
The resulting matrix is given as a python list of lists.
|
659
|
+
"""
|
660
|
+
|
661
|
+
# Key for the cache
|
662
|
+
key = 'long_%d_%d%d' % (tet, v0, v1)
|
663
|
+
|
664
|
+
# Fill cache if necessary
|
665
|
+
if key not in self._edge_cache:
|
666
|
+
|
667
|
+
# Get N
|
668
|
+
N = self.N()
|
669
|
+
|
670
|
+
# Start with the 0 matrix
|
671
|
+
m = [[0 for i in range(N)] for j in range(N)]
|
672
|
+
|
673
|
+
# Traverse the edge to fill the counter diagonal elements
|
674
|
+
# with the ratio coordinates
|
675
|
+
for c in range(N):
|
676
|
+
r = N - 1 - c
|
677
|
+
pt = [ r * _kronecker_delta(v0, i) + c * _kronecker_delta(v1, i)
|
678
|
+
for i in range(4) ]
|
679
|
+
m[r][c] = self.ratio_coordinate(tet, v0, v1, pt)
|
680
|
+
|
681
|
+
# Set in cache
|
682
|
+
self._edge_cache[key] = m
|
683
|
+
|
684
|
+
# Return
|
685
|
+
return self._edge_cache[key]
|
686
|
+
|
687
|
+
def middle_edge(self, tet, v0, v1, v2):
|
688
|
+
"""
|
689
|
+
The matrix that labels a middle edge on the face v0, v1, v2 (integers
|
690
|
+
between 0 and 3) of a doubly truncated simplex (or a short edge of the
|
691
|
+
truncated simplex) corresponding to an ideal tetrahedron with index
|
692
|
+
tet.
|
693
|
+
|
694
|
+
This matrix was labeled beta^{v0v1v2} in Figure 18 of
|
695
|
+
Garoufalidis, Goerner, Zickert:
|
696
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
697
|
+
https://arxiv.org/abs/1207.6711
|
698
|
+
|
699
|
+
It is computed using equation 10.4.
|
700
|
+
|
701
|
+
The resulting matrix is given as a python list of lists.
|
702
|
+
"""
|
703
|
+
|
704
|
+
# Key for the cache
|
705
|
+
key = 'middle_%d_%d%d%d' % (tet, v0, v1, v2)
|
706
|
+
|
707
|
+
# Fill cache if necessary
|
708
|
+
if key not in self._edge_cache:
|
709
|
+
|
710
|
+
# Get N
|
711
|
+
N = self.N()
|
712
|
+
|
713
|
+
# Start with identity
|
714
|
+
m = self._get_identity_matrix()
|
715
|
+
|
716
|
+
# Compute the product in equation 10.4
|
717
|
+
for a0, a1, a2 in utilities.triples_with_fixed_sum_iterator(N - 2):
|
718
|
+
|
719
|
+
# Get integral point for diamond coordinate
|
720
|
+
pt = [ a1 * _kronecker_delta(v0, i) +
|
721
|
+
a2 * _kronecker_delta(v1, i) +
|
722
|
+
a0 * _kronecker_delta(v2, i) for i in range(4) ]
|
723
|
+
|
724
|
+
# Compute diamond coordinate
|
725
|
+
diamond = self.diamond_coordinate(tet, v0, v1, v2, pt)
|
726
|
+
|
727
|
+
# Multiply result with the x matrix
|
728
|
+
m = matrix.matrix_mult(m, _X(N, a1 + 1, diamond))
|
729
|
+
|
730
|
+
# Fill cache
|
731
|
+
self._edge_cache[key] = m
|
732
|
+
|
733
|
+
return self._edge_cache[key]
|
734
|
+
|
735
|
+
def short_edge(self, tet, v0, v1, v2):
|
736
|
+
"""
|
737
|
+
Returns the identity. This is because we can think of the matrices
|
738
|
+
given by Ptolemy coordinates of living on truncated simplices which
|
739
|
+
can be though of as doubly truncated simplices where all short edges
|
740
|
+
are collapsed, hence labeled by the identity.
|
741
|
+
|
742
|
+
See equation 10.4 in
|
743
|
+
Garoufalidis, Goerner, Zickert:
|
744
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
745
|
+
https://arxiv.org/abs/1207.6711
|
746
|
+
"""
|
747
|
+
|
748
|
+
# Key for the cache
|
749
|
+
key = 'short'
|
750
|
+
|
751
|
+
# Fill cache if necessary
|
752
|
+
if key not in self._edge_cache:
|
753
|
+
|
754
|
+
# Get N
|
755
|
+
N = self.N()
|
756
|
+
|
757
|
+
# Take the identity matrix
|
758
|
+
m = self._get_identity_matrix()
|
759
|
+
|
760
|
+
# Fill cache
|
761
|
+
self._edge_cache[key] = m
|
762
|
+
|
763
|
+
return self._edge_cache[key]
|
764
|
+
|
765
|
+
def _init_matrix_and_inverse_cache(self):
|
766
|
+
# Fill the caches of matrices corresponding to the
|
767
|
+
# fundamental group generators and their inverses
|
768
|
+
|
769
|
+
if self._matrix_cache and self._inverse_matrix_cache:
|
770
|
+
return
|
771
|
+
|
772
|
+
# Compute all the matrices for the generators and there inverses
|
773
|
+
# The short edges of the doubly truncated simplices are all identities
|
774
|
+
# (they will be collapset in the truncated simplex), thus we give them
|
775
|
+
# no penalty.
|
776
|
+
self._matrix_cache, self._inverse_matrix_cache = (
|
777
|
+
findLoops.images_of_original_generators(self,
|
778
|
+
penalties=(0, 1, 1)))
|
779
|
+
|
780
|
+
def evaluate_word(self, word, G=None):
|
781
|
+
"""
|
782
|
+
Given a word in the generators of the fundamental group,
|
783
|
+
compute the corresponding matrix. By default, these are the
|
784
|
+
generators of the unsimplified presentation of the fundamental
|
785
|
+
group. An optional SnapPy fundamental group can be given if the
|
786
|
+
words are in generators of a different presentation, e.g.,
|
787
|
+
c.evaluate_word(word, M.fundamental_group(True)) to
|
788
|
+
evaluate a word in the simplified presentation returned by
|
789
|
+
M.fundamental_group(True).
|
790
|
+
|
791
|
+
For now, the matrix is returned as list of lists.
|
792
|
+
"""
|
793
|
+
|
794
|
+
# Init the matrices corresponding to generators
|
795
|
+
self._init_matrix_and_inverse_cache()
|
796
|
+
|
797
|
+
return findLoops.evaluate_word(
|
798
|
+
self._get_identity_matrix(),
|
799
|
+
self._matrix_cache,
|
800
|
+
self._inverse_matrix_cache,
|
801
|
+
word,
|
802
|
+
G)
|
803
|
+
|
804
|
+
def _testing_assert_identity(self, m,
|
805
|
+
allow_sign_if_obstruction_class=False):
|
806
|
+
|
807
|
+
N = self.N()
|
808
|
+
|
809
|
+
null = [[0 for i in range(N)] for j in range(N)]
|
810
|
+
identity = self._get_identity_matrix()
|
811
|
+
|
812
|
+
if allow_sign_if_obstruction_class and self.has_obstruction():
|
813
|
+
|
814
|
+
if not (matrix.matrix_add(m, identity) == null or
|
815
|
+
matrix.matrix_sub(m, identity) == null):
|
816
|
+
raise Exception("Cocycle condition violated: %s" % m)
|
817
|
+
|
818
|
+
else:
|
819
|
+
|
820
|
+
if not matrix.matrix_sub(m, identity) == null:
|
821
|
+
raise Exception("Cocycle condition violated: %s" % m)
|
822
|
+
|
823
|
+
def _testing_check_cocycles(self):
|
824
|
+
for tet in range(self.num_tetrahedra()):
|
825
|
+
# Check middle edges is inverse when direction reversed
|
826
|
+
for v in [(0,1,2),(0,1,3),(0,2,1),(0,2,3),(0,3,1),(0,3,2),
|
827
|
+
(1,0,2),(1,0,3),(1,2,0),(1,2,3),(1,3,0),(1,3,2),
|
828
|
+
(2,0,1),(2,0,3),(2,1,0),(2,1,3),(2,3,0),(2,3,1),
|
829
|
+
(3,0,1),(3,0,2),(3,1,0),(3,1,2),(3,2,0),(3,2,1)]:
|
830
|
+
m1 = self.middle_edge(tet,v[0],v[1],v[2])
|
831
|
+
m2 = self.middle_edge(tet,v[0],v[2],v[1])
|
832
|
+
self._testing_assert_identity(
|
833
|
+
matrix.matrix_mult(m1, m2))
|
834
|
+
|
835
|
+
# Check long edges is inverse when direction reversed
|
836
|
+
for v in [(0,1,2), (0,2,1), (0,3,1),
|
837
|
+
(1,0,2), (1,2,0), (1,3,0),
|
838
|
+
(2,0,1), (2,1,0), (2,3,0),
|
839
|
+
(3,0,1), (3,1,0), (3,2,0)]:
|
840
|
+
m1 = self.long_edge(tet,v[0],v[1],v[2])
|
841
|
+
m2 = self.long_edge(tet,v[1],v[0],v[2])
|
842
|
+
self._testing_assert_identity(
|
843
|
+
matrix.matrix_mult(m1, m2))
|
844
|
+
|
845
|
+
# Check triangle for each vertex
|
846
|
+
for v in [(0,1,2,3), (1,2,3,0), (2,3,0,1), (3,0,1,2)]:
|
847
|
+
m1 = self.middle_edge(tet, v[0], v[1], v[2])
|
848
|
+
m2 = self.middle_edge(tet, v[0], v[2], v[3])
|
849
|
+
m3 = self.middle_edge(tet, v[0], v[3], v[1])
|
850
|
+
|
851
|
+
self._testing_assert_identity(
|
852
|
+
matrix.matrix_mult(
|
853
|
+
m1, matrix.matrix_mult(m2, m3)))
|
854
|
+
|
855
|
+
# Check hexagon for each face
|
856
|
+
for v in [(0,1,2), (0,1,3), (0,2,3), (1,2,3)]:
|
857
|
+
m1 = self.middle_edge(tet,v[0],v[1],v[2])
|
858
|
+
m2 = self.long_edge( tet,v[0],v[2],v[1])
|
859
|
+
m3 = self.middle_edge(tet,v[2],v[0],v[1])
|
860
|
+
m4 = self.long_edge( tet,v[2],v[1],v[0])
|
861
|
+
m5 = self.middle_edge(tet,v[1],v[2],v[0])
|
862
|
+
m6 = self.long_edge( tet,v[1],v[0],v[2])
|
863
|
+
self._testing_assert_identity(
|
864
|
+
matrix.matrix_mult(
|
865
|
+
m1,
|
866
|
+
matrix.matrix_mult(
|
867
|
+
m2,
|
868
|
+
matrix.matrix_mult(
|
869
|
+
m3,
|
870
|
+
matrix.matrix_mult(
|
871
|
+
m4,
|
872
|
+
matrix.matrix_mult(m5,m6))))), True)
|
873
|
+
|
874
|
+
def check_against_manifold(self, M=None, epsilon=None):
|
875
|
+
"""
|
876
|
+
Checks that the given solution really is a solution to the Ptolemy
|
877
|
+
variety of a manifold. See help(ptolemy.PtolemyCoordinates) for
|
878
|
+
more example.
|
879
|
+
|
880
|
+
=== Arguments ===
|
881
|
+
|
882
|
+
* M --- manifold to check this for
|
883
|
+
* epsilon --- maximal allowed error when checking the relations, use
|
884
|
+
None for exact comparison.
|
885
|
+
"""
|
886
|
+
|
887
|
+
if M is None:
|
888
|
+
M = self.get_manifold()
|
889
|
+
|
890
|
+
if M is None:
|
891
|
+
raise Exception("Need to give manifold")
|
892
|
+
|
893
|
+
if self._non_trivial_generalized_obstruction_class:
|
894
|
+
raise PtolemyCannotBeCheckedError()
|
895
|
+
|
896
|
+
num_tets = self.num_tetrahedra()
|
897
|
+
N, has_obstruction_class = _N_and_has_obstruction_for_ptolemys(self)
|
898
|
+
|
899
|
+
if not M.num_tetrahedra() == num_tets:
|
900
|
+
raise Exception("Number tetrahedra not matching")
|
901
|
+
|
902
|
+
if has_obstruction_class:
|
903
|
+
# check cocycle condition
|
904
|
+
for tet in range(num_tets):
|
905
|
+
_check_relation(
|
906
|
+
self._get_obstruction_variable(0, tet) *
|
907
|
+
self._get_obstruction_variable(1, tet) *
|
908
|
+
self._get_obstruction_variable(2, tet) *
|
909
|
+
self._get_obstruction_variable(3, tet) - 1,
|
910
|
+
epsilon,
|
911
|
+
"Obstruction cocycle")
|
912
|
+
# check identified faces
|
913
|
+
for dummy_sign, power, var1, var2 in (
|
914
|
+
M._ptolemy_equations_identified_face_classes()):
|
915
|
+
_check_relation(
|
916
|
+
self[var1] - self[var2],
|
917
|
+
epsilon,
|
918
|
+
"Identification of face classes")
|
919
|
+
|
920
|
+
# Check identified Ptolemy coordinates
|
921
|
+
for sign, power, var1, var2 in (
|
922
|
+
M._ptolemy_equations_identified_coordinates(N)):
|
923
|
+
_check_relation(
|
924
|
+
self[var1] - sign * self[var2],
|
925
|
+
epsilon,
|
926
|
+
"Identification of Ptolemy coordinates")
|
927
|
+
|
928
|
+
# Check Ptolemy relationship
|
929
|
+
for tet in range(num_tets):
|
930
|
+
for index in utilities.quadruples_with_fixed_sum_iterator(N - 2):
|
931
|
+
|
932
|
+
def get_ptolemy_coordinate(addl_index):
|
933
|
+
total_index = matrix.vector_add(index, addl_index)
|
934
|
+
key = "c_%d%d%d%d" % tuple(total_index) + "_%d" % tet
|
935
|
+
return self[key]
|
936
|
+
|
937
|
+
s0 = self._get_obstruction_variable(0, tet)
|
938
|
+
s1 = self._get_obstruction_variable(1, tet)
|
939
|
+
s2 = self._get_obstruction_variable(2, tet)
|
940
|
+
s3 = self._get_obstruction_variable(3, tet)
|
941
|
+
|
942
|
+
rel = ( s0 * s1 * get_ptolemy_coordinate((1,1,0,0))
|
943
|
+
* get_ptolemy_coordinate((0,0,1,1))
|
944
|
+
- s0 * s2 * get_ptolemy_coordinate((1,0,1,0))
|
945
|
+
* get_ptolemy_coordinate((0,1,0,1))
|
946
|
+
+ s0 * s3 * get_ptolemy_coordinate((1,0,0,1))
|
947
|
+
* get_ptolemy_coordinate((0,1,1,0)))
|
948
|
+
|
949
|
+
_check_relation(rel,
|
950
|
+
epsilon,
|
951
|
+
"Ptolemy relation")
|
952
|
+
|
953
|
+
def is_geometric(self, epsilon=1e-6):
|
954
|
+
"""
|
955
|
+
Returns true if all shapes corresponding to this solution have positive
|
956
|
+
imaginary part.
|
957
|
+
|
958
|
+
If the solutions are exact, it returns true if one of the corresponding
|
959
|
+
numerical solutions is geometric.
|
960
|
+
|
961
|
+
An optional epsilon can be given. An imaginary part of a shape is
|
962
|
+
considered positive if it is larger than this epsilon.
|
963
|
+
"""
|
964
|
+
|
965
|
+
if self._is_numerical:
|
966
|
+
return self.cross_ratios().is_geometric(epsilon)
|
967
|
+
else:
|
968
|
+
for numerical_sol in self.numerical():
|
969
|
+
if numerical_sol.is_geometric(epsilon):
|
970
|
+
return True
|
971
|
+
return False
|
972
|
+
|
973
|
+
|
974
|
+
class Flattenings(dict):
|
975
|
+
"""
|
976
|
+
Represents a flattening assigned to each edge of a simplex as dictionary.
|
977
|
+
|
978
|
+
We assign to each pair of parallel edges of each simplex a triple (w, z, p)
|
979
|
+
such that::
|
980
|
+
|
981
|
+
w = log(z) + p * (2 * pi * i / N) where N is fixed and even.
|
982
|
+
|
983
|
+
For N = 2, the three triples belonging to a simplex form a combinatorial
|
984
|
+
flattening (w0, w1, w2) as defined in Definition 3.1 in
|
985
|
+
Walter D. Neumann, Extended Bloch group and the Cheeger-Chern-Simons class
|
986
|
+
https://arxiv.org/abs/math.GT/0307092
|
987
|
+
|
988
|
+
For N > 2, the three triples form a generalized combinatorial flattening
|
989
|
+
(w0, w1, w2) that gives an element in the generalized Extended Bloch group
|
990
|
+
which is the Extended Bloch group corresponding to the Riemann surface
|
991
|
+
given by::
|
992
|
+
|
993
|
+
u1 * e^w0 + u2 * e^w1 = 1
|
994
|
+
|
995
|
+
where u1^N = u2^N = 1.
|
996
|
+
|
997
|
+
A representation in SL(n,C) and SL(n,C)/{+1,-1} with n even gives an element
|
998
|
+
in the generalized Extended Bloch group for N = 2.
|
999
|
+
A representation in PSL(n,C) with n even in the group for N = n.
|
1000
|
+
A representation in PSL(n,C) with n odd in the group for N = 2 * n.
|
1001
|
+
|
1002
|
+
This work has not been published yet.
|
1003
|
+
|
1004
|
+
If f is a flattening, then in the notation of Neumann, the value of::
|
1005
|
+
|
1006
|
+
f['z_xxxx_y'] is (w0, z, p)
|
1007
|
+
f['zp_xxxx_y'] is (w1, z', q)
|
1008
|
+
f['zpp_xxxx_y'] is (w2, z'', r).
|
1009
|
+
"""
|
1010
|
+
|
1011
|
+
def __init__(self, d, manifold_thunk=lambda : None, evenN=2):
|
1012
|
+
super().__init__(d)
|
1013
|
+
self._is_numerical = True
|
1014
|
+
self._manifold_thunk = manifold_thunk
|
1015
|
+
self.dimension = 0
|
1016
|
+
|
1017
|
+
# The N for which we get the generalized Extended Bloch group
|
1018
|
+
self._evenN = evenN
|
1019
|
+
|
1020
|
+
def __repr__(self):
|
1021
|
+
dict_repr = dict.__repr__(self)
|
1022
|
+
return "Flattenings(%s, ...)" % dict_repr
|
1023
|
+
|
1024
|
+
def _repr_pretty_(self, p, cycle):
|
1025
|
+
if cycle:
|
1026
|
+
p.text('Flattenings(...)')
|
1027
|
+
else:
|
1028
|
+
with p.group(4, 'Flattenings(',')'):
|
1029
|
+
p.breakable()
|
1030
|
+
p.pretty(dict(self))
|
1031
|
+
p.text(', ...')
|
1032
|
+
|
1033
|
+
def get_manifold(self):
|
1034
|
+
"""
|
1035
|
+
Get the manifold for which this structure represents a flattening.
|
1036
|
+
"""
|
1037
|
+
|
1038
|
+
return self._manifold_thunk()
|
1039
|
+
|
1040
|
+
def num_tetrahedra(self):
|
1041
|
+
"""
|
1042
|
+
The number of tetrahedra for which we have cross ratios.
|
1043
|
+
"""
|
1044
|
+
return _num_tetrahedra(self)
|
1045
|
+
|
1046
|
+
def N(self):
|
1047
|
+
"""
|
1048
|
+
Get the N such that these cross ratios are for
|
1049
|
+
SL/PSL(N,C)-representations.
|
1050
|
+
"""
|
1051
|
+
|
1052
|
+
return _N_for_shapes(self)
|
1053
|
+
|
1054
|
+
@classmethod
|
1055
|
+
def from_tetrahedra_shapes_of_manifold(cls, M):
|
1056
|
+
"""
|
1057
|
+
Takes as argument a manifold and produces (weak) flattenings using
|
1058
|
+
the tetrahedra_shapes of the manifold M.
|
1059
|
+
|
1060
|
+
>>> from snappy import Manifold
|
1061
|
+
>>> M = Manifold("5_2")
|
1062
|
+
>>> flattenings = Flattenings.from_tetrahedra_shapes_of_manifold(M)
|
1063
|
+
>>> flattenings.check_against_manifold(M)
|
1064
|
+
>>> flattenings.check_against_manifold()
|
1065
|
+
"""
|
1066
|
+
|
1067
|
+
PiI = pari('Pi * I')
|
1068
|
+
|
1069
|
+
num_tets = M.num_tetrahedra()
|
1070
|
+
|
1071
|
+
z_cross_ratios = M.tetrahedra_shapes(
|
1072
|
+
part='rect', dec_prec=pari.get_real_precision())
|
1073
|
+
|
1074
|
+
all_cross_ratios = sum(
|
1075
|
+
[ [z, 1 / (1-z), 1 - 1/z] for z in z_cross_ratios], [])
|
1076
|
+
|
1077
|
+
log_all_cross_ratios = [ z.log() for z in all_cross_ratios ]
|
1078
|
+
|
1079
|
+
def flattening_condition(r):
|
1080
|
+
return (3 * r * [0]
|
1081
|
+
+ 3 * [1]
|
1082
|
+
+ 3 * (num_tets - r - 1) * [0])
|
1083
|
+
|
1084
|
+
flattening_conditions = [
|
1085
|
+
flattening_condition(r) for r in range(num_tets)]
|
1086
|
+
|
1087
|
+
try: # works for snappy.SnapPy.SimpleMatrix
|
1088
|
+
equations = M.gluing_equations().data
|
1089
|
+
except AttributeError: # works Sage's matrix class
|
1090
|
+
equations = [
|
1091
|
+
[ int(c) for c in row] for row in M.gluing_equations().rows()]
|
1092
|
+
|
1093
|
+
all_equations = equations + flattening_conditions
|
1094
|
+
|
1095
|
+
u, v, d_mat = matrix.smith_normal_form(all_equations)
|
1096
|
+
|
1097
|
+
extra_cols = len(all_equations[0]) - len(all_equations)
|
1098
|
+
|
1099
|
+
d = [d_mat[r][r + extra_cols] for r in range(len(d_mat))]
|
1100
|
+
|
1101
|
+
# errors to the gluing equations and flattening condition
|
1102
|
+
# when using the logarithms without adding p * pi * i as complex
|
1103
|
+
# numbers
|
1104
|
+
errors = matrix.matrix_mult_vector(all_equations,
|
1105
|
+
log_all_cross_ratios)
|
1106
|
+
|
1107
|
+
# divide by pi * i and turn into integers
|
1108
|
+
int_errors = [ (x / PiI).real().round() for x in errors ]
|
1109
|
+
|
1110
|
+
int_errors_in_other_basis = matrix.matrix_mult_vector(u, int_errors)
|
1111
|
+
|
1112
|
+
def quotient(x, y):
|
1113
|
+
if x == 0 and y == 0:
|
1114
|
+
return 0
|
1115
|
+
|
1116
|
+
assert x % y == 0, "%s %s" % (x, y)
|
1117
|
+
return x / y
|
1118
|
+
|
1119
|
+
flattenings_in_other_basis = (
|
1120
|
+
extra_cols * [0] +
|
1121
|
+
[ - quotient(x, y)
|
1122
|
+
for x, y in zip(int_errors_in_other_basis, d) ])
|
1123
|
+
|
1124
|
+
flattenings = matrix.matrix_mult_vector(v, flattenings_in_other_basis)
|
1125
|
+
|
1126
|
+
assert (matrix.matrix_mult_vector(all_equations, flattenings) ==
|
1127
|
+
[-x for x in int_errors])
|
1128
|
+
|
1129
|
+
keys = sum([ ['z_0000_%d' % i,
|
1130
|
+
'zp_0000_%d' % i,
|
1131
|
+
'zpp_0000_%d' % i] for i in range(num_tets)],[])
|
1132
|
+
|
1133
|
+
Mcopy = M.copy()
|
1134
|
+
|
1135
|
+
return Flattenings(
|
1136
|
+
{k: (log + PiI * p, z, p)
|
1137
|
+
for k, log, z, p in zip(keys, log_all_cross_ratios,
|
1138
|
+
all_cross_ratios, flattenings)},
|
1139
|
+
manifold_thunk=lambda : Mcopy)
|
1140
|
+
|
1141
|
+
def get_order(self):
|
1142
|
+
"""
|
1143
|
+
Returns the number N. This flattening represents an element in the
|
1144
|
+
generalized Extended Bloch group for the Riemann surface given by
|
1145
|
+
u1 * e^w0 + u2 * e^w1 = 1 where u1^N = u2^N = 1.
|
1146
|
+
"""
|
1147
|
+
|
1148
|
+
return self._evenN
|
1149
|
+
|
1150
|
+
def get_zpq_triple(self, key_z):
|
1151
|
+
"""
|
1152
|
+
Gives a flattening as triple [z;p,q] representing an element
|
1153
|
+
in the generalized Extended Bloch group similar to the way the
|
1154
|
+
triple [z;p,q] is used in Lemma 3.2 in
|
1155
|
+
Walter D. Neumann, Extended Bloch group and the Cheeger-Chern-Simons class
|
1156
|
+
https://arxiv.org/abs/math.GT/0307092
|
1157
|
+
"""
|
1158
|
+
if not key_z[:2] == 'z_':
|
1159
|
+
raise Exception("Need to be called with cross ratio variable z_....")
|
1160
|
+
key_zp = 'zp_' + key_z[2:]
|
1161
|
+
|
1162
|
+
w, z, p = self[key_z]
|
1163
|
+
wp, zp, q_canonical_branch_cut = self[key_zp]
|
1164
|
+
|
1165
|
+
# Note that the q in l(z;p,q) and in Definition 3.1 are different if
|
1166
|
+
# z is on the real axis and > 1!!!
|
1167
|
+
# Thus we need to compute the q again here according to the formula
|
1168
|
+
# for l(z;p,q)
|
1169
|
+
|
1170
|
+
pari_z = _convert_to_pari_float(z)
|
1171
|
+
|
1172
|
+
f = pari('2 * Pi * I') / self._evenN
|
1173
|
+
|
1174
|
+
q_dilog_branch_cut = ((wp + (1-pari_z).log()) / f).round()
|
1175
|
+
|
1176
|
+
return (z, p, q_dilog_branch_cut)
|
1177
|
+
|
1178
|
+
def complex_volume(self, with_modulo=False):
|
1179
|
+
"""
|
1180
|
+
Compute complex volume. The complex volume is defined only up to
|
1181
|
+
some multiple of m where m = i * pi**2/6 for PSL(2,C) and SL(N,C)
|
1182
|
+
and m = i * pi**2/18 for PSL(3,C).
|
1183
|
+
|
1184
|
+
When called with with_modulo = True, gives a pair
|
1185
|
+
(volume, m)
|
1186
|
+
"""
|
1187
|
+
|
1188
|
+
if self._evenN == 2:
|
1189
|
+
m = pari('Pi^2/6')
|
1190
|
+
else:
|
1191
|
+
m = pari('Pi^2/18')
|
1192
|
+
|
1193
|
+
sum_L_functions = sum(
|
1194
|
+
[
|
1195
|
+
_L_function(
|
1196
|
+
self.get_zpq_triple(key), self._evenN)
|
1197
|
+
for key in list(self.keys())
|
1198
|
+
if key[:2] == 'z_' ])
|
1199
|
+
|
1200
|
+
cvol = sum_L_functions / pari('I')
|
1201
|
+
vol = cvol.real()
|
1202
|
+
cs = cvol.imag() % m
|
1203
|
+
|
1204
|
+
if cs > m/2 + pari('1e-12'):
|
1205
|
+
cs = cs - m
|
1206
|
+
|
1207
|
+
cvol = vol + cs * pari('I')
|
1208
|
+
|
1209
|
+
if with_modulo:
|
1210
|
+
if self._evenN not in [2, 6]:
|
1211
|
+
raise Exception("Unknown torsion")
|
1212
|
+
|
1213
|
+
return cvol, m * pari('I')
|
1214
|
+
return cvol
|
1215
|
+
|
1216
|
+
def check_against_manifold(self, M=None, epsilon=1e-10):
|
1217
|
+
"""
|
1218
|
+
Checks that the flattening really is a solution to the logarithmic
|
1219
|
+
PGL(N,C) gluing equations of a manifold. Usage similar to
|
1220
|
+
check_against_manifold of Ptolemy Coordinates, see
|
1221
|
+
help(ptolemy.Coordinates) for similar examples.
|
1222
|
+
|
1223
|
+
=== Arguments ===
|
1224
|
+
|
1225
|
+
M --- manifold to check this for
|
1226
|
+
epsilon --- maximal allowed error when checking the equations
|
1227
|
+
"""
|
1228
|
+
|
1229
|
+
if M is None:
|
1230
|
+
M = self.get_manifold()
|
1231
|
+
|
1232
|
+
if M is None:
|
1233
|
+
raise Exception("Need to give manifold")
|
1234
|
+
|
1235
|
+
f = pari('2 * Pi * I') / self._evenN
|
1236
|
+
|
1237
|
+
for w, z, p in list(self.values()):
|
1238
|
+
_check_relation(
|
1239
|
+
w - (z.log() + f * p),
|
1240
|
+
epsilon,
|
1241
|
+
"Flattening relation w == log(z) + PiI * p")
|
1242
|
+
|
1243
|
+
for k in list(self.keys()):
|
1244
|
+
if k[:2] == 'z_':
|
1245
|
+
w, z, p = self[k]
|
1246
|
+
wp, zp, q = self['zp_'+k[2:]]
|
1247
|
+
wpp, zpp, r = self['zpp_'+k[2:]]
|
1248
|
+
_check_relation(
|
1249
|
+
w + wp + wpp,
|
1250
|
+
epsilon,
|
1251
|
+
"Flattening relation w0 + w1 + w2 == 0")
|
1252
|
+
|
1253
|
+
some_z = list(self.keys())[0]
|
1254
|
+
variable_name, index, tet_index = some_z.split('_')
|
1255
|
+
if variable_name not in ['z', 'zp', 'zpp']:
|
1256
|
+
raise Exception("Variable not z, zp, or, zpp")
|
1257
|
+
if len(index) != 4:
|
1258
|
+
raise Exception("Not 4 indices")
|
1259
|
+
N = sum([int(x) for x in index]) + 2
|
1260
|
+
|
1261
|
+
matrix_with_explanations = M.gluing_equations_pgl(
|
1262
|
+
N, equation_type='all')
|
1263
|
+
|
1264
|
+
matrix = matrix_with_explanations.matrix
|
1265
|
+
rows = matrix_with_explanations.explain_rows
|
1266
|
+
cols = matrix_with_explanations.explain_columns
|
1267
|
+
|
1268
|
+
for row in range(len(rows)):
|
1269
|
+
s = 0
|
1270
|
+
for col in range(len(cols)):
|
1271
|
+
flattening_variable = cols[col]
|
1272
|
+
w, z, p = self[flattening_variable]
|
1273
|
+
s = s + w
|
1274
|
+
_check_relation(
|
1275
|
+
s,
|
1276
|
+
epsilon,
|
1277
|
+
"Gluing equation %s" % rows[row])
|
1278
|
+
|
1279
|
+
|
1280
|
+
class CrossRatios(dict):
|
1281
|
+
"""
|
1282
|
+
Represents assigned shape parameters/cross ratios as
|
1283
|
+
dictionary. The cross ratios are according to SnapPy convention, so we
|
1284
|
+
have::
|
1285
|
+
|
1286
|
+
z = 1 - 1/zp, zp = 1 - 1/zpp, zpp = 1 - 1/z
|
1287
|
+
|
1288
|
+
where::
|
1289
|
+
|
1290
|
+
z is at the edge 01 and equal to s0 * s1 * (c_1010 * c_0101) / (c_1001 * c_0110)
|
1291
|
+
zp is at the edge 02 and equal to s0 * s2 * (c_1001 * c_0110) / (c_1100 * c_0011)
|
1292
|
+
zpp is at the edge 03 and equal to s0 * s3 * (c_1100 * c_0011) / (c_0101 * c_1010).
|
1293
|
+
|
1294
|
+
Note that this is different from the convention used in
|
1295
|
+
Garoufalidis, Goerner, Zickert:
|
1296
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1297
|
+
https://arxiv.org/abs/1207.6711
|
1298
|
+
"""
|
1299
|
+
|
1300
|
+
def __init__(self, d, is_numerical=True, manifold_thunk=None):
|
1301
|
+
super().__init__(d)
|
1302
|
+
self._is_numerical = is_numerical
|
1303
|
+
self._manifold_thunk = manifold_thunk
|
1304
|
+
|
1305
|
+
# Caches the matrices that label the short and long edges
|
1306
|
+
# of the truncated simplices building the manifold
|
1307
|
+
self._edge_cache = {}
|
1308
|
+
|
1309
|
+
# Caches the images of a fundamental group generator
|
1310
|
+
self._matrix_cache = []
|
1311
|
+
self._inverse_matrix_cache = []
|
1312
|
+
|
1313
|
+
self.dimension = 0
|
1314
|
+
|
1315
|
+
@staticmethod
|
1316
|
+
def from_snappy_manifold(M, dec_prec=None, bits_prec=None,
|
1317
|
+
intervals=False):
|
1318
|
+
"""
|
1319
|
+
Constructs an assignment of shape parameters/cross ratios using
|
1320
|
+
the tetrahehdra_shapes method of a given SnapPy manifold. The optional
|
1321
|
+
parameters are the same as that of tetrahedra_shapes.
|
1322
|
+
"""
|
1323
|
+
|
1324
|
+
shapes = M.tetrahedra_shapes('rect', dec_prec=dec_prec,
|
1325
|
+
bits_prec=bits_prec,
|
1326
|
+
intervals=intervals)
|
1327
|
+
d = {}
|
1328
|
+
for i, shape in enumerate(shapes):
|
1329
|
+
d['z_0000_%d' % i] = shape
|
1330
|
+
d['zp_0000_%d' % i] = 1 / (1 - shape)
|
1331
|
+
d['zpp_0000_%d' % i] = 1 - 1 / shape
|
1332
|
+
|
1333
|
+
return CrossRatios(d, is_numerical=True,
|
1334
|
+
manifold_thunk=lambda M=M: M)
|
1335
|
+
|
1336
|
+
def __repr__(self):
|
1337
|
+
dict_repr = dict.__repr__(self)
|
1338
|
+
return "CrossRatios(%s, is_numerical = %r, ...)" % (
|
1339
|
+
dict_repr, self._is_numerical)
|
1340
|
+
|
1341
|
+
def _repr_pretty_(self, p, cycle):
|
1342
|
+
if cycle:
|
1343
|
+
p.text('CrossRatios(...)')
|
1344
|
+
else:
|
1345
|
+
with p.group(4, 'CrossRatios(',')'):
|
1346
|
+
p.breakable()
|
1347
|
+
p.pretty(dict(self))
|
1348
|
+
p.text(',')
|
1349
|
+
p.breakable()
|
1350
|
+
p.text('is_numerical = %r, ...' % self._is_numerical)
|
1351
|
+
|
1352
|
+
def get_manifold(self):
|
1353
|
+
"""
|
1354
|
+
Get the manifold for which this structure represents a solution
|
1355
|
+
to the gluing equations.
|
1356
|
+
"""
|
1357
|
+
|
1358
|
+
return self._manifold_thunk()
|
1359
|
+
|
1360
|
+
def num_tetrahedra(self):
|
1361
|
+
"""
|
1362
|
+
The number of tetrahedra for which we have cross ratios.
|
1363
|
+
"""
|
1364
|
+
return _num_tetrahedra(self)
|
1365
|
+
|
1366
|
+
def N(self):
|
1367
|
+
"""
|
1368
|
+
Get the N such that these cross ratios are for
|
1369
|
+
SL/PSL(N,C)-representations.
|
1370
|
+
"""
|
1371
|
+
|
1372
|
+
return _N_for_shapes(self)
|
1373
|
+
|
1374
|
+
def numerical(self):
|
1375
|
+
"""
|
1376
|
+
Turn exact solutions into numerical solutions using pari. Similar to
|
1377
|
+
numerical() of PtolemyCoordinates. See help(ptolemy.PtolemyCoordinates)
|
1378
|
+
for example.
|
1379
|
+
"""
|
1380
|
+
if self._is_numerical:
|
1381
|
+
return self
|
1382
|
+
return ZeroDimensionalComponent([
|
1383
|
+
CrossRatios(d, is_numerical=True,
|
1384
|
+
manifold_thunk=self._manifold_thunk)
|
1385
|
+
for d in _to_numerical(self) ])
|
1386
|
+
|
1387
|
+
def to_PUR(self):
|
1388
|
+
"""
|
1389
|
+
If any Ptolemy coordinates are given as Rational Univariate
|
1390
|
+
Representation, convert them to Polynomial Univariate Representation and
|
1391
|
+
return the result.
|
1392
|
+
|
1393
|
+
See to_PUR of RUR.
|
1394
|
+
|
1395
|
+
This conversion might lead to very large coefficients.
|
1396
|
+
"""
|
1397
|
+
|
1398
|
+
return CrossRatios(
|
1399
|
+
_apply_to_RURs(self, RUR.to_PUR),
|
1400
|
+
is_numerical=self._is_numerical,
|
1401
|
+
manifold_thunk=self._manifold_thunk)
|
1402
|
+
|
1403
|
+
def multiply_terms_in_RUR(self):
|
1404
|
+
"""
|
1405
|
+
If a cross ratio is given as Rational Univariate Representation
|
1406
|
+
with numerator and denominator being a product, multiply the terms and
|
1407
|
+
return the result.
|
1408
|
+
|
1409
|
+
See multiply_terms of RUR.
|
1410
|
+
|
1411
|
+
This loses information about how the numerator and denominator are
|
1412
|
+
factorised.
|
1413
|
+
"""
|
1414
|
+
|
1415
|
+
return CrossRatios(
|
1416
|
+
_apply_to_RURs(self, RUR.multiply_terms),
|
1417
|
+
is_numerical=self._is_numerical,
|
1418
|
+
manifold_thunk=self._manifold_thunk)
|
1419
|
+
|
1420
|
+
def multiply_and_simplify_terms_in_RUR(self):
|
1421
|
+
"""
|
1422
|
+
If a cross ratio is given as Rational Univariate Representation
|
1423
|
+
with numerator and denominator being a product, multiply the terms,
|
1424
|
+
reduce the fraction and return the result.
|
1425
|
+
|
1426
|
+
See multiply_and_simplify_terms of RUR.
|
1427
|
+
|
1428
|
+
This loses information about how the numerator and denominator are
|
1429
|
+
factorised.
|
1430
|
+
|
1431
|
+
"""
|
1432
|
+
|
1433
|
+
return CrossRatios(
|
1434
|
+
_apply_to_RURs(self, RUR.multiply_and_simplify_terms),
|
1435
|
+
is_numerical=self._is_numerical,
|
1436
|
+
manifold_thunk=self._manifold_thunk)
|
1437
|
+
|
1438
|
+
def volume_numerical(self, drop_negative_vols=False):
|
1439
|
+
"""
|
1440
|
+
Turn into (Galois conjugate) numerical solutions and compute volumes.
|
1441
|
+
If already numerical, only compute the one volume.
|
1442
|
+
See numerical().
|
1443
|
+
|
1444
|
+
If drop_negative_vols = True is given as optional argument,
|
1445
|
+
only return non-negative volumes.
|
1446
|
+
"""
|
1447
|
+
if self._is_numerical:
|
1448
|
+
return sum([_volume(z) for key, z in list(self.items()) if 'z_' in key])
|
1449
|
+
else:
|
1450
|
+
vols = ZeroDimensionalComponent(
|
1451
|
+
[num.volume_numerical() for num in self.numerical()])
|
1452
|
+
if drop_negative_vols:
|
1453
|
+
return [vol for vol in vols if vol > -1e-12]
|
1454
|
+
return vols
|
1455
|
+
|
1456
|
+
@staticmethod
|
1457
|
+
def _cyclic_three_perm_sign(v0, v1, v2):
|
1458
|
+
"""
|
1459
|
+
Returns +1 or -1. It is +1 if and only if (v0, v1, v2) is in the
|
1460
|
+
orbit of (0, 1, 2) under the A4-action.
|
1461
|
+
"""
|
1462
|
+
|
1463
|
+
for t in [(v0,v1,v2), (v1,v2,v0), (v2,v0,v1)]:
|
1464
|
+
if t in [(0,1,2), (1,3,2), (2,3,0), (3,1,0)]:
|
1465
|
+
return +1
|
1466
|
+
return -1
|
1467
|
+
|
1468
|
+
def _shape_at_tet_point_and_edge(self, tet, pt, edge):
|
1469
|
+
"""
|
1470
|
+
Given the index of a tetrahedron and two quadruples (any iterabel) of
|
1471
|
+
integers, give the cross ratio at that integral point and edge of that
|
1472
|
+
tetrahedron.
|
1473
|
+
This method translates the SnapPy conventions of labeling simplices
|
1474
|
+
and the conventions in Definition 4.2 of
|
1475
|
+
|
1476
|
+
Garoufalidis, Goerner, Zickert:
|
1477
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1478
|
+
https://arxiv.org/abs/1207.6711
|
1479
|
+
"""
|
1480
|
+
|
1481
|
+
postfix = '_%d%d%d%d' % tuple(pt) + '_%d' % tet
|
1482
|
+
|
1483
|
+
if tuple(edge) in [(1,1,0,0), (0,0,1,1)]:
|
1484
|
+
return self['z' + postfix]
|
1485
|
+
|
1486
|
+
if tuple(edge) in [(1,0,1,0), (0,1,0,1)]:
|
1487
|
+
return self['zp' + postfix]
|
1488
|
+
|
1489
|
+
if tuple(edge) in [(1,0,0,1), (0,1,1,0)]:
|
1490
|
+
return self['zpp' + postfix]
|
1491
|
+
|
1492
|
+
raise Exception("Invalid edge " + str(edge))
|
1493
|
+
|
1494
|
+
def x_coordinate(self, tet, pt):
|
1495
|
+
"""
|
1496
|
+
Returns the X-coordinate for the tetrahedron with index tet
|
1497
|
+
at the point pt (quadruple of integers adding up to N).
|
1498
|
+
|
1499
|
+
See Definition 10.9:
|
1500
|
+
Garoufalidis, Goerner, Zickert:
|
1501
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1502
|
+
https://arxiv.org/abs/1207.6711
|
1503
|
+
"""
|
1504
|
+
|
1505
|
+
result = 1
|
1506
|
+
|
1507
|
+
for v0 in range(4):
|
1508
|
+
for v1 in range(v0 + 1, 4):
|
1509
|
+
e = [ _kronecker_delta(v0, i) +
|
1510
|
+
_kronecker_delta(v1, i) for i in range(4) ]
|
1511
|
+
p = [ x1 - x2 for x1, x2 in zip(pt, e) ]
|
1512
|
+
if all(x >= 0 for x in p):
|
1513
|
+
result *= self._shape_at_tet_point_and_edge(tet, p, e)
|
1514
|
+
|
1515
|
+
return -result
|
1516
|
+
|
1517
|
+
def _get_identity_matrix(self):
|
1518
|
+
|
1519
|
+
# Get N
|
1520
|
+
N = self.N()
|
1521
|
+
|
1522
|
+
return [[_kronecker_delta(i, j) for i in range(N)] for j in range(N)]
|
1523
|
+
|
1524
|
+
def long_edge(self, tet, v0, v1, v2):
|
1525
|
+
"""
|
1526
|
+
The matrix that labels a long edge starting at vertex (v0, v1, v2)
|
1527
|
+
of a doubly truncated simplex corresponding to the ideal tetrahedron
|
1528
|
+
with index tet.
|
1529
|
+
|
1530
|
+
This matrix was labeled alpha^{v0v1v2} in Figure 18 of
|
1531
|
+
Garoufalidis, Goerner, Zickert:
|
1532
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1533
|
+
https://arxiv.org/abs/1207.6711
|
1534
|
+
|
1535
|
+
It is computed using equation 10.22.
|
1536
|
+
|
1537
|
+
The resulting matrix is given as a python list of lists.
|
1538
|
+
"""
|
1539
|
+
|
1540
|
+
# Key for cache
|
1541
|
+
key = 'long_edge'
|
1542
|
+
|
1543
|
+
# Fill cache if necessary
|
1544
|
+
if key not in self._edge_cache:
|
1545
|
+
|
1546
|
+
# Get N
|
1547
|
+
N = self.N()
|
1548
|
+
|
1549
|
+
# It is just the counter diagonal matrix
|
1550
|
+
m = [ [ _kronecker_delta(i+j, N-1) for i in range(N) ]
|
1551
|
+
for j in range(N)]
|
1552
|
+
|
1553
|
+
# Set in cache
|
1554
|
+
self._edge_cache[key] = m
|
1555
|
+
|
1556
|
+
return self._edge_cache[key]
|
1557
|
+
|
1558
|
+
def middle_edge(self, tet, v0, v1, v2):
|
1559
|
+
"""
|
1560
|
+
The matrix that labels a middle edge starting at vertex (v0, v1, v2)
|
1561
|
+
of a doubly truncated simplex corresponding to the ideal tetrahedron
|
1562
|
+
with index tet.
|
1563
|
+
|
1564
|
+
This matrix was labeled beta^{v0v1v2} in Figure 18 of
|
1565
|
+
Garoufalidis, Goerner, Zickert:
|
1566
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1567
|
+
https://arxiv.org/abs/1207.6711
|
1568
|
+
|
1569
|
+
It is computed using equation 10.22.
|
1570
|
+
|
1571
|
+
The resulting matrix is given as a python list of lists.
|
1572
|
+
"""
|
1573
|
+
|
1574
|
+
# Key for the cache
|
1575
|
+
key = 'middle_%d_%d%d%d' % (tet, v0, v1, v2)
|
1576
|
+
|
1577
|
+
# Fill cache if necessary
|
1578
|
+
if key not in self._edge_cache:
|
1579
|
+
|
1580
|
+
# Get N
|
1581
|
+
N = self.N()
|
1582
|
+
|
1583
|
+
# The epsilon permutation sign
|
1584
|
+
sgn = CrossRatios._cyclic_three_perm_sign(v0, v1, v2)
|
1585
|
+
|
1586
|
+
# Start with identity
|
1587
|
+
m = self._get_identity_matrix()
|
1588
|
+
|
1589
|
+
for k in range(1, N):
|
1590
|
+
# Compute first product
|
1591
|
+
prod1 = self._get_identity_matrix()
|
1592
|
+
for i in range(1, N - k + 1):
|
1593
|
+
prod1 = matrix.matrix_mult(prod1, _X(N, i, 1))
|
1594
|
+
|
1595
|
+
# Compute second product
|
1596
|
+
prod2 = self._get_identity_matrix()
|
1597
|
+
for i in range(1, N - k):
|
1598
|
+
pt = [ k * _kronecker_delta(v2, j) +
|
1599
|
+
i * _kronecker_delta(v0, j) +
|
1600
|
+
(N-k-i) * _kronecker_delta(v1, j)
|
1601
|
+
for j in range(4) ]
|
1602
|
+
|
1603
|
+
# Note that the sgn is different from the paper
|
1604
|
+
# because we are using SnapPy conventions for
|
1605
|
+
# cross ratios here
|
1606
|
+
|
1607
|
+
prod2 = matrix.matrix_mult(
|
1608
|
+
prod2,
|
1609
|
+
_H(N, i, self.x_coordinate(tet, pt) ** -sgn))
|
1610
|
+
|
1611
|
+
m = matrix.matrix_mult(m,
|
1612
|
+
matrix.matrix_mult(prod1, prod2))
|
1613
|
+
|
1614
|
+
# Matrix from Equation 10.1
|
1615
|
+
dpm = [ [ - (-1) ** (N - i) * _kronecker_delta(i, j)
|
1616
|
+
for i in range(N) ]
|
1617
|
+
for j in range(N) ]
|
1618
|
+
|
1619
|
+
m = matrix.matrix_mult(m, dpm)
|
1620
|
+
|
1621
|
+
# Set in cache
|
1622
|
+
self._edge_cache[key] = m
|
1623
|
+
|
1624
|
+
return self._edge_cache[key]
|
1625
|
+
|
1626
|
+
def short_edge(self, tet, v0, v1, v2):
|
1627
|
+
"""
|
1628
|
+
The matrix that labels a long edge starting at vertex (v0, v1, v2)
|
1629
|
+
of a doubly truncated simplex corresponding to the ideal tetrahedron
|
1630
|
+
with index tet.
|
1631
|
+
|
1632
|
+
This matrix was labeled gamma^{v0v1v2} in Figure 18 of
|
1633
|
+
Garoufalidis, Goerner, Zickert:
|
1634
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
1635
|
+
https://arxiv.org/abs/1207.6711
|
1636
|
+
|
1637
|
+
It is computed using equation 10.22.
|
1638
|
+
|
1639
|
+
The resulting matrix is given as a python list of lists.
|
1640
|
+
"""
|
1641
|
+
|
1642
|
+
# Key for the cache
|
1643
|
+
key = 'short_%d_%d%d%d' % (tet, v0, v1, v2)
|
1644
|
+
|
1645
|
+
# Fill cache if necessary
|
1646
|
+
if key not in self._edge_cache:
|
1647
|
+
|
1648
|
+
edge = [ _kronecker_delta(v0, i) +
|
1649
|
+
_kronecker_delta(v1, i) for i in range(4) ]
|
1650
|
+
|
1651
|
+
# The epsilon permutation sign
|
1652
|
+
sgn = CrossRatios._cyclic_three_perm_sign(v0, v1, v2)
|
1653
|
+
|
1654
|
+
# Get N
|
1655
|
+
N = self.N()
|
1656
|
+
|
1657
|
+
# Start with identity
|
1658
|
+
m = self._get_identity_matrix()
|
1659
|
+
|
1660
|
+
# Compute the product in equation 10.22
|
1661
|
+
for a0 in range(N-1):
|
1662
|
+
a1 = N - 2 - a0
|
1663
|
+
pt = [ a0 * _kronecker_delta(v0, i) +
|
1664
|
+
a1 * _kronecker_delta(v1, i) for i in range(4) ]
|
1665
|
+
|
1666
|
+
cross_ratio = self._shape_at_tet_point_and_edge(tet, pt, edge)
|
1667
|
+
|
1668
|
+
# Multiply result with the H matrix
|
1669
|
+
|
1670
|
+
# Note that the sgn is different from the paper
|
1671
|
+
# because we are using SnapPy conventions for
|
1672
|
+
# cross ratios here
|
1673
|
+
|
1674
|
+
m = matrix.matrix_mult(m, _H(N, a0 + 1, cross_ratio ** sgn))
|
1675
|
+
|
1676
|
+
# Fill cache
|
1677
|
+
self._edge_cache[key] = m
|
1678
|
+
|
1679
|
+
return self._edge_cache[key]
|
1680
|
+
|
1681
|
+
def _init_matrix_and_inverse_cache(self):
|
1682
|
+
# Fill the caches of matrices corresponding to the
|
1683
|
+
# fundamental group generators and their inverses
|
1684
|
+
|
1685
|
+
if self._matrix_cache and self._inverse_matrix_cache:
|
1686
|
+
return
|
1687
|
+
|
1688
|
+
# Compute all the matrices for the generators and there inverses
|
1689
|
+
# The long edges of the doubly truncated simplex are all unit
|
1690
|
+
# counter-diagonal so they do not increase the
|
1691
|
+
# size of any polynomial coefficients. We thus don't give them penalty.
|
1692
|
+
self._matrix_cache, self._inverse_matrix_cache = (
|
1693
|
+
findLoops.images_of_original_generators(self,
|
1694
|
+
penalties=(0, 1, 1)))
|
1695
|
+
|
1696
|
+
def evaluate_word(self, word, G=None):
|
1697
|
+
"""
|
1698
|
+
Given a word in the generators of the fundamental group,
|
1699
|
+
compute the corresponding matrix. By default, these are the
|
1700
|
+
generators of the unsimplified presentation of the fundamental
|
1701
|
+
group. An optional SnapPy fundamental group can be given if the
|
1702
|
+
words are in generators of a different presentation, e.g.,
|
1703
|
+
c.evaluate_word(word, M.fundamental_group(True)) to
|
1704
|
+
evaluate a word in the simplified presentation returned by
|
1705
|
+
M.fundamental_group(True).
|
1706
|
+
|
1707
|
+
For now, the matrix is returned as list of lists.
|
1708
|
+
"""
|
1709
|
+
|
1710
|
+
# Init the matrices corresponding to generators
|
1711
|
+
self._init_matrix_and_inverse_cache()
|
1712
|
+
|
1713
|
+
return findLoops.evaluate_word(
|
1714
|
+
self._get_identity_matrix(),
|
1715
|
+
self._matrix_cache,
|
1716
|
+
self._inverse_matrix_cache,
|
1717
|
+
word,
|
1718
|
+
G)
|
1719
|
+
|
1720
|
+
def check_against_manifold(self, M=None, epsilon=None):
|
1721
|
+
"""
|
1722
|
+
Checks that the given solution really is a solution to the PGL(N,C) gluing
|
1723
|
+
equations of a manifold. Usage similar to check_against_manifold of
|
1724
|
+
PtolemyCoordinates. See help(ptolemy.PtolemtyCoordinates) for example.
|
1725
|
+
|
1726
|
+
=== Arguments ===
|
1727
|
+
|
1728
|
+
M --- manifold to check this for
|
1729
|
+
epsilon --- maximal allowed error when checking the relations, use
|
1730
|
+
None for exact comparison.
|
1731
|
+
"""
|
1732
|
+
if M is None:
|
1733
|
+
M = self.get_manifold()
|
1734
|
+
|
1735
|
+
if M is None:
|
1736
|
+
raise Exception("Need to give manifold")
|
1737
|
+
|
1738
|
+
some_z = list(self.keys())[0]
|
1739
|
+
variable_name, index, tet_index = some_z.split('_')
|
1740
|
+
if variable_name not in ['z', 'zp', 'zpp']:
|
1741
|
+
raise Exception("Variable not z, zp, or, zpp")
|
1742
|
+
if len(index) != 4:
|
1743
|
+
raise Exception("Not 4 indices")
|
1744
|
+
N = sum([int(x) for x in index]) + 2
|
1745
|
+
|
1746
|
+
matrix_with_explanations = M.gluing_equations_pgl(
|
1747
|
+
N, equation_type='all')
|
1748
|
+
|
1749
|
+
matrix = matrix_with_explanations.matrix
|
1750
|
+
rows = matrix_with_explanations.explain_rows
|
1751
|
+
cols = matrix_with_explanations.explain_columns
|
1752
|
+
|
1753
|
+
for row in range(len(rows)):
|
1754
|
+
product = 1
|
1755
|
+
for col in range(len(cols)):
|
1756
|
+
cross_ratio_variable = cols[col]
|
1757
|
+
cross_ratio_value = self[cross_ratio_variable]
|
1758
|
+
product = product * (cross_ratio_value ** matrix[row,col])
|
1759
|
+
_check_relation(
|
1760
|
+
product - 1,
|
1761
|
+
epsilon,
|
1762
|
+
"Gluing equation %s" % rows[row])
|
1763
|
+
|
1764
|
+
def induced_representation(self, N):
|
1765
|
+
"""
|
1766
|
+
Given a PSL(2,C) representation constructs the induced representation
|
1767
|
+
for the given N.
|
1768
|
+
The induced representation is in SL(N,C) if N is odd and
|
1769
|
+
SL(N,C) / {+1,-1} if N is even and is described in the Introduction of
|
1770
|
+
Garoufalidis, Thurston, Zickert
|
1771
|
+
The Complex Volume of SL(n,C)-Representations of 3-Manifolds
|
1772
|
+
https://arxiv.org/abs/1111.2828
|
1773
|
+
|
1774
|
+
There is a canonical group homomorphism SL(2,C)->SL(N,C) coming from
|
1775
|
+
the the natural SL(2,C)-action on the vector space Sym^{N-1}(C^2).
|
1776
|
+
This homomorphisms decends to a homomorphism from PSL(2,C) if one
|
1777
|
+
divides the right side by {+1,-1} when N is even.
|
1778
|
+
Composing a representation with this homomorphism gives the induced
|
1779
|
+
representation.
|
1780
|
+
"""
|
1781
|
+
|
1782
|
+
num_tetrahedra = self.num_tetrahedra()
|
1783
|
+
|
1784
|
+
if self.N() != 2:
|
1785
|
+
raise Exception(
|
1786
|
+
"Cross ratios need to come from a PSL(2,C) representation")
|
1787
|
+
|
1788
|
+
def key_value_pair(v, t, index):
|
1789
|
+
new_key = v + '_%d%d%d%d' % tuple(index) + '_%d' % t
|
1790
|
+
old_key = v + '_0000' + '_%d' % t
|
1791
|
+
return (new_key, self[old_key])
|
1792
|
+
|
1793
|
+
d = dict(
|
1794
|
+
[ key_value_pair(v, t, index)
|
1795
|
+
for v in ['z', 'zp', 'zpp']
|
1796
|
+
for t in range(num_tetrahedra)
|
1797
|
+
for index in utilities.quadruples_with_fixed_sum_iterator(N-2)])
|
1798
|
+
|
1799
|
+
return CrossRatios(d,
|
1800
|
+
is_numerical=self._is_numerical,
|
1801
|
+
manifold_thunk=self._manifold_thunk)
|
1802
|
+
|
1803
|
+
def is_real(self, epsilon):
|
1804
|
+
"""
|
1805
|
+
Returns True if all cross ratios are real (have absolute imaginary
|
1806
|
+
part < epsilon where epsilon is given as argument).
|
1807
|
+
This means that the corresponding representation is in PSL(N,R).
|
1808
|
+
"""
|
1809
|
+
|
1810
|
+
if not self._is_numerical:
|
1811
|
+
raise NumericalMethodError("is_real")
|
1812
|
+
|
1813
|
+
for v in self.values():
|
1814
|
+
if v.imag().abs() > epsilon:
|
1815
|
+
return False
|
1816
|
+
return True
|
1817
|
+
|
1818
|
+
def is_induced_from_psl2(self, epsilon=None):
|
1819
|
+
"""
|
1820
|
+
For each simplex and each edges, checks that all cross ratios of that
|
1821
|
+
simplex that are parallel to that each are the same (maximal absolute
|
1822
|
+
difference is the epsilon given as argument).
|
1823
|
+
This means that the corresponding representation is induced by a
|
1824
|
+
PSL(2,C) representation.
|
1825
|
+
"""
|
1826
|
+
|
1827
|
+
# Create an auxiliary dictionary containing one z, zp, zpp per tet
|
1828
|
+
d = { }
|
1829
|
+
|
1830
|
+
for key, value in self.items():
|
1831
|
+
variable_name, index, tet_index = key.split('_')
|
1832
|
+
if variable_name not in ['z', 'zp', 'zpp']:
|
1833
|
+
raise Exception("Variable not z, zp, or, zpp")
|
1834
|
+
if len(index) != 4:
|
1835
|
+
raise Exception("Not 4 indices")
|
1836
|
+
|
1837
|
+
# The key in the auxiliary dictionary
|
1838
|
+
short_key = variable_name + '_' + tet_index
|
1839
|
+
|
1840
|
+
# Get the old value in the auxiliary dictionary
|
1841
|
+
old_value = d.setdefault(short_key, value)
|
1842
|
+
|
1843
|
+
if epsilon is None:
|
1844
|
+
if value != old_value:
|
1845
|
+
return False
|
1846
|
+
else:
|
1847
|
+
if (value - old_value).abs() > epsilon:
|
1848
|
+
return False
|
1849
|
+
|
1850
|
+
return True
|
1851
|
+
|
1852
|
+
def is_pu_2_1_representation(self, epsilon, epsilon2=None):
|
1853
|
+
r"""
|
1854
|
+
Returns True if the representation is also a
|
1855
|
+
PU(2,1)-representation. This uses Proposition 3.5 and the
|
1856
|
+
remark following that proposition in [FKR2013]_.
|
1857
|
+
|
1858
|
+
If a condition given in that Proposition is violated, the method returns
|
1859
|
+
an object whose Boolean value is still False and that indicates which condition
|
1860
|
+
was violated. Thus, this method can still be used in ``if`` statements.
|
1861
|
+
|
1862
|
+
The method tests the following complex equalities and inequalities:
|
1863
|
+
|
1864
|
+
* the three complex equations given in (3.5.1) of [FKR2013]_.
|
1865
|
+
* the inequality z\ :sub:`ijl` :math:`\\not=` -1.
|
1866
|
+
|
1867
|
+
**Remark:** It does not check whether all z\ :sub:`ij` * z\ :sub:`ji` are real or
|
1868
|
+
not as these are still valid CR configurations, see the remark following
|
1869
|
+
Proposition 3.5.
|
1870
|
+
|
1871
|
+
The user has to supply an epsilon: an equality/inequality is considered
|
1872
|
+
to be true if and only if the absolute value | LHS - RHS | of difference between the
|
1873
|
+
left and right hand side is less/greater than epsilon.
|
1874
|
+
|
1875
|
+
The user can supply another parameter, epsilon2. If any | LHS - RHS | is in
|
1876
|
+
the interval [epsilon, epsilon2], this method fails with an exception
|
1877
|
+
as the value of | LHS - RHS | is an ambiguous interval where
|
1878
|
+
it is unclear whether inequality fails to hold because it truly does
|
1879
|
+
hold or just because of numerical noise.
|
1880
|
+
"""
|
1881
|
+
|
1882
|
+
def is_zero(val):
|
1883
|
+
if val.abs() < epsilon:
|
1884
|
+
return True
|
1885
|
+
if epsilon2:
|
1886
|
+
if not epsilon2 < val.abs():
|
1887
|
+
raise Exception(
|
1888
|
+
"Ambiguous error when determining whether a "
|
1889
|
+
"condition was fulfilled or nor: %s" % val)
|
1890
|
+
return False
|
1891
|
+
|
1892
|
+
def mainCondition(key_zij, key_zji, key_zkl, key_zlk):
|
1893
|
+
|
1894
|
+
lhs = (self[key_zij] * self[key_zji])
|
1895
|
+
rhs = (self[key_zkl] * self[key_zlk]).conj()
|
1896
|
+
|
1897
|
+
if not is_zero(lhs - rhs):
|
1898
|
+
reason = "%s * %s = conjugate(%s * %s) not fulfilled" % (
|
1899
|
+
key_zij, key_zji, key_zkl, key_zlk)
|
1900
|
+
return NotPU21Representation(reason)
|
1901
|
+
|
1902
|
+
return True
|
1903
|
+
|
1904
|
+
def tripleRatioCondition(key_zji, key_zki, key_zli):
|
1905
|
+
|
1906
|
+
tripleRatio = self[key_zji] * self[key_zki] * self[key_zli]
|
1907
|
+
|
1908
|
+
if is_zero(tripleRatio - 1):
|
1909
|
+
reason = 'Triple ratio %s * %s * %s = 1' % (
|
1910
|
+
key_zji, key_zki, key_zli)
|
1911
|
+
return NotPU21Representation(reason)
|
1912
|
+
|
1913
|
+
return True
|
1914
|
+
|
1915
|
+
if self.N() != 3:
|
1916
|
+
raise Exception("PU(2,1)-representations only allowed for N = 3")
|
1917
|
+
|
1918
|
+
if not self._is_numerical:
|
1919
|
+
raise NumericalMethodError("is_pu_2_1_representation")
|
1920
|
+
|
1921
|
+
for t in range(self.num_tetrahedra()):
|
1922
|
+
|
1923
|
+
m0 = mainCondition("z_1000_%d" % t, "z_0100_%d" % t,
|
1924
|
+
"z_0010_%d" % t, "z_0001_%d" % t)
|
1925
|
+
if not m0:
|
1926
|
+
return m0
|
1927
|
+
|
1928
|
+
m1 = mainCondition("zp_1000_%d" % t, "zp_0010_%d" % t,
|
1929
|
+
"zp_0100_%d" % t, "zp_0001_%d" % t)
|
1930
|
+
if not m1:
|
1931
|
+
return m1
|
1932
|
+
|
1933
|
+
m2 = mainCondition("zpp_1000_%d" % t, "zpp_0001_%d" % t,
|
1934
|
+
"zpp_0100_%d" % t, "zpp_0010_%d" % t)
|
1935
|
+
if not m2:
|
1936
|
+
return m2
|
1937
|
+
|
1938
|
+
t0 = tripleRatioCondition( "z_0100_%d" % t,
|
1939
|
+
"zp_0010_%d" % t,
|
1940
|
+
"zpp_0001_%d" % t)
|
1941
|
+
if not t0:
|
1942
|
+
return t0
|
1943
|
+
|
1944
|
+
t1 = tripleRatioCondition( "z_1000_%d" % t,
|
1945
|
+
"zp_0001_%d" % t,
|
1946
|
+
"zpp_0010_%d" % t)
|
1947
|
+
if not t1:
|
1948
|
+
return t1
|
1949
|
+
|
1950
|
+
t2 = tripleRatioCondition( "z_0001_%d" % t,
|
1951
|
+
"zp_1000_%d" % t,
|
1952
|
+
"zpp_0100_%d" % t)
|
1953
|
+
if not t2:
|
1954
|
+
return t2
|
1955
|
+
|
1956
|
+
t3 = tripleRatioCondition( "z_0010_%d" % t,
|
1957
|
+
"zp_0100_%d" % t,
|
1958
|
+
"zpp_1000_%d" % t)
|
1959
|
+
if not t3:
|
1960
|
+
return t3
|
1961
|
+
|
1962
|
+
return True
|
1963
|
+
|
1964
|
+
def is_geometric(self, epsilon=1e-6):
|
1965
|
+
"""
|
1966
|
+
Returns true if all shapes corresponding to this solution have positive
|
1967
|
+
imaginary part.
|
1968
|
+
|
1969
|
+
If the solutions are exact, it returns true if one of the corresponding
|
1970
|
+
numerical solutions is geometric.
|
1971
|
+
|
1972
|
+
An optional epsilon can be given. An imaginary part of a shape is
|
1973
|
+
considered positive if it is larger than this epsilon.
|
1974
|
+
"""
|
1975
|
+
|
1976
|
+
if self._is_numerical:
|
1977
|
+
for v in self.values():
|
1978
|
+
if not v.imag() > 0:
|
1979
|
+
return False
|
1980
|
+
return True
|
1981
|
+
else:
|
1982
|
+
for numerical_sol in self.numerical():
|
1983
|
+
if numerical_sol.is_geometric(epsilon):
|
1984
|
+
return True
|
1985
|
+
return False
|
1986
|
+
|
1987
|
+
|
1988
|
+
def _ptolemy_to_cross_ratio(solution_dict,
|
1989
|
+
branch_factor=1,
|
1990
|
+
non_trivial_generalized_obstruction_class=False,
|
1991
|
+
as_flattenings=False):
|
1992
|
+
|
1993
|
+
N, has_obstruction = _N_and_has_obstruction_for_ptolemys(solution_dict)
|
1994
|
+
num_tets = _num_tetrahedra(solution_dict)
|
1995
|
+
|
1996
|
+
if N % 2:
|
1997
|
+
evenN = 2 * N
|
1998
|
+
else:
|
1999
|
+
evenN = N
|
2000
|
+
|
2001
|
+
if not non_trivial_generalized_obstruction_class:
|
2002
|
+
evenN = 2
|
2003
|
+
|
2004
|
+
if as_flattenings:
|
2005
|
+
f = pari('2 * Pi * I') / evenN
|
2006
|
+
|
2007
|
+
def compute_cross_ratios_and_flattenings(tet, index):
|
2008
|
+
def get_ptolemy_coordinate(addl_index):
|
2009
|
+
total_index = matrix.vector_add(index, addl_index)
|
2010
|
+
key = "c_%d%d%d%d" % tuple(total_index) + "_%d" % tet
|
2011
|
+
return solution_dict[key]
|
2012
|
+
|
2013
|
+
def get_obstruction_variable(face):
|
2014
|
+
key = "s_%d_%d" % (face, tet)
|
2015
|
+
return solution_dict[key]
|
2016
|
+
|
2017
|
+
c1010 = get_ptolemy_coordinate((1,0,1,0))
|
2018
|
+
c1001 = get_ptolemy_coordinate((1,0,0,1))
|
2019
|
+
c0110 = get_ptolemy_coordinate((0,1,1,0))
|
2020
|
+
c0101 = get_ptolemy_coordinate((0,1,0,1))
|
2021
|
+
c1100 = get_ptolemy_coordinate((1,1,0,0))
|
2022
|
+
c0011 = get_ptolemy_coordinate((0,0,1,1))
|
2023
|
+
|
2024
|
+
z = (c1010 * c0101) / (c1001 * c0110)
|
2025
|
+
zp = - (c1001 * c0110) / (c1100 * c0011)
|
2026
|
+
zpp = (c1100 * c0011) / (c1010 * c0101)
|
2027
|
+
|
2028
|
+
if has_obstruction:
|
2029
|
+
s0 = get_obstruction_variable(0)
|
2030
|
+
s1 = get_obstruction_variable(1)
|
2031
|
+
s2 = get_obstruction_variable(2)
|
2032
|
+
s3 = get_obstruction_variable(3)
|
2033
|
+
z = s0 * s1 * z
|
2034
|
+
zp = s0 * s2 * zp
|
2035
|
+
zpp = s0 * s3 * zpp
|
2036
|
+
|
2037
|
+
variable_end = '_%d%d%d%d' % tuple(index) + '_%d' % tet
|
2038
|
+
|
2039
|
+
if as_flattenings:
|
2040
|
+
def make_triple(w, z):
|
2041
|
+
z = _convert_to_pari_float(z)
|
2042
|
+
return (w, z, ((w - z .log()) / f).round())
|
2043
|
+
|
2044
|
+
w = _compute_flattening(c1010, c0101, c1001, c0110,
|
2045
|
+
branch_factor, evenN)
|
2046
|
+
wp = _compute_flattening(c1001, c0110, c1100, c0011,
|
2047
|
+
branch_factor, evenN)
|
2048
|
+
wpp = _compute_flattening(c1100, c0011, c1010, c0101,
|
2049
|
+
branch_factor, evenN)
|
2050
|
+
|
2051
|
+
return [
|
2052
|
+
('z' + variable_end, make_triple(w ,z )),
|
2053
|
+
('zp' + variable_end, make_triple(wp ,zp )),
|
2054
|
+
('zpp' + variable_end, make_triple(wpp,zpp)) ]
|
2055
|
+
|
2056
|
+
else:
|
2057
|
+
return [
|
2058
|
+
('z' + variable_end, z),
|
2059
|
+
('zp' + variable_end, zp),
|
2060
|
+
('zpp' + variable_end, zpp) ]
|
2061
|
+
|
2062
|
+
return dict(
|
2063
|
+
sum([compute_cross_ratios_and_flattenings(tet,index)
|
2064
|
+
for tet in range(num_tets)
|
2065
|
+
for index in utilities.quadruples_with_fixed_sum_iterator(N - 2)],
|
2066
|
+
[])), evenN
|
2067
|
+
|
2068
|
+
|
2069
|
+
def _num_tetrahedra(solution_dict):
|
2070
|
+
return max( [ int(key.split('_')[-1])
|
2071
|
+
for key in solution_dict.keys() ] ) + 1
|
2072
|
+
|
2073
|
+
|
2074
|
+
def _N_for_shapes(solution_dict):
|
2075
|
+
|
2076
|
+
def get_N(key):
|
2077
|
+
m = re.match(r'zp{0,2}_(\d{4})_\d+$', key)
|
2078
|
+
if not m:
|
2079
|
+
raise Exception("Not a valid shape key: '%s'" % key)
|
2080
|
+
return sum([int(char) for char in m.group(1)]) + 2
|
2081
|
+
|
2082
|
+
l = [ get_N(key) for key in solution_dict.keys() ]
|
2083
|
+
if not len(set(l)) == 1:
|
2084
|
+
raise Exception("Shape keys for different N")
|
2085
|
+
|
2086
|
+
return l[0]
|
2087
|
+
|
2088
|
+
|
2089
|
+
def _N_and_has_obstruction_for_ptolemys(solution_dict):
|
2090
|
+
|
2091
|
+
def get_N(key):
|
2092
|
+
m = re.match(r'c_(\d{4})_\d+$', key)
|
2093
|
+
if not m:
|
2094
|
+
raise Exception("Not a valid Ptolemy key: '%s'" % key)
|
2095
|
+
return sum([int(char) for char in m.group(1)])
|
2096
|
+
|
2097
|
+
has_obstruction = False
|
2098
|
+
|
2099
|
+
l = set()
|
2100
|
+
for key in solution_dict.keys():
|
2101
|
+
if re.match(r's_\d_\d+$', key):
|
2102
|
+
has_obstruction = True
|
2103
|
+
else:
|
2104
|
+
l.add(get_N(key))
|
2105
|
+
|
2106
|
+
if not len(l) == 1:
|
2107
|
+
raise Exception("Ptolemy keys for different N")
|
2108
|
+
|
2109
|
+
for N in l:
|
2110
|
+
return N, has_obstruction
|
2111
|
+
|
2112
|
+
|
2113
|
+
def _get_number_field(d):
|
2114
|
+
for value in d.values():
|
2115
|
+
|
2116
|
+
if isinstance(value, RUR):
|
2117
|
+
nf = value.number_field()
|
2118
|
+
if nf:
|
2119
|
+
return nf
|
2120
|
+
|
2121
|
+
if type(value) == Gen and value.type() == 't_POLMOD':
|
2122
|
+
return value.mod()
|
2123
|
+
|
2124
|
+
return None
|
2125
|
+
|
2126
|
+
|
2127
|
+
def _evaluate_at_root(p, root):
|
2128
|
+
|
2129
|
+
if type(p) == Gen and p.type() == 't_POLMOD':
|
2130
|
+
return p.lift().substpol('x', root)
|
2131
|
+
|
2132
|
+
if isinstance(p, RUR):
|
2133
|
+
return p.evaluate_at_root(root)
|
2134
|
+
|
2135
|
+
return p
|
2136
|
+
|
2137
|
+
|
2138
|
+
def _to_numerical(d):
|
2139
|
+
|
2140
|
+
number_field = _get_number_field(d)
|
2141
|
+
|
2142
|
+
if number_field is None:
|
2143
|
+
roots = [ pari(0) ]
|
2144
|
+
else:
|
2145
|
+
# Bug in cypari: pari(str(number_field)).polroots()
|
2146
|
+
# gives less precision
|
2147
|
+
roots = pari('polroots(%s)' % number_field)
|
2148
|
+
|
2149
|
+
def evaluate_all_for_root(root):
|
2150
|
+
|
2151
|
+
def evaluate_key_for_root(key, value):
|
2152
|
+
|
2153
|
+
v = _evaluate_at_root(value, root)
|
2154
|
+
|
2155
|
+
if key[:2] == 'z_':
|
2156
|
+
z = v
|
2157
|
+
zp = 1 / (1 - z)
|
2158
|
+
zpp = 1 - 1 / z
|
2159
|
+
|
2160
|
+
return [(key, z),
|
2161
|
+
('zp_' + key[2:], zp),
|
2162
|
+
('zpp_' + key[2:], zpp)]
|
2163
|
+
elif key[:3] == 'zp_' or key[:4] == 'zpp_':
|
2164
|
+
return []
|
2165
|
+
else:
|
2166
|
+
return [(key, v)]
|
2167
|
+
|
2168
|
+
return dict(sum(
|
2169
|
+
[ evaluate_key_for_root(key, value)
|
2170
|
+
for key, value in d.items() ], []))
|
2171
|
+
|
2172
|
+
return [ evaluate_all_for_root(root) for root in roots ]
|
2173
|
+
|
2174
|
+
|
2175
|
+
def _apply_to_RURs(d, RUR_method):
|
2176
|
+
|
2177
|
+
def _apply_to_RUR(v):
|
2178
|
+
if isinstance(v, RUR):
|
2179
|
+
return RUR_method(v)
|
2180
|
+
return v
|
2181
|
+
|
2182
|
+
return {k: _apply_to_RUR(v) for k, v in d.items()}
|
2183
|
+
|
2184
|
+
|
2185
|
+
def _convert_to_pari_float(z):
|
2186
|
+
|
2187
|
+
if type(z) == Gen and z.type() in ['t_INT', 't_FRAC']:
|
2188
|
+
return z * pari('1.0')
|
2189
|
+
|
2190
|
+
return pari(z)
|
2191
|
+
|
2192
|
+
|
2193
|
+
def _compute_flattening(a, b, c, d, branch_factor, N=2):
|
2194
|
+
|
2195
|
+
PiMinusEpsilon = pari(3.141592)
|
2196
|
+
|
2197
|
+
def safe_log(z):
|
2198
|
+
|
2199
|
+
l = (branch_factor * z**N).log()
|
2200
|
+
|
2201
|
+
if l.imag().abs() > PiMinusEpsilon:
|
2202
|
+
raise LogToCloseToBranchCutError()
|
2203
|
+
|
2204
|
+
return l / N
|
2205
|
+
|
2206
|
+
a = _convert_to_pari_float(a)
|
2207
|
+
b = _convert_to_pari_float(b)
|
2208
|
+
c = _convert_to_pari_float(c)
|
2209
|
+
d = _convert_to_pari_float(d)
|
2210
|
+
|
2211
|
+
w = safe_log(a) + safe_log(b) - safe_log(c) - safe_log(d)
|
2212
|
+
|
2213
|
+
return w
|
2214
|
+
|
2215
|
+
# bug in pari
|
2216
|
+
|
2217
|
+
|
2218
|
+
def _dilog(z):
|
2219
|
+
return pari("dilog(%s)" % z)
|
2220
|
+
|
2221
|
+
|
2222
|
+
def _L_function(zpq_triple, evenN=2):
|
2223
|
+
|
2224
|
+
z, p, q = zpq_triple
|
2225
|
+
|
2226
|
+
z = _convert_to_pari_float(z)
|
2227
|
+
p = _convert_to_pari_float(p)
|
2228
|
+
q = _convert_to_pari_float(q)
|
2229
|
+
|
2230
|
+
f = pari('2 * Pi * I') / evenN
|
2231
|
+
Pi2 = pari('Pi * Pi')
|
2232
|
+
|
2233
|
+
return ( _dilog(z)
|
2234
|
+
+ (z.log() + p * f) * ((1-z).log() + q * f) / 2
|
2235
|
+
- Pi2 / 6)
|
2236
|
+
|
2237
|
+
|
2238
|
+
def _volume(z):
|
2239
|
+
|
2240
|
+
z = _convert_to_pari_float(z)
|
2241
|
+
|
2242
|
+
return (1-z).arg() * z.abs().log() + _dilog(z).imag()
|
2243
|
+
|
2244
|
+
|
2245
|
+
def _kronecker_delta(i, j):
|
2246
|
+
"""
|
2247
|
+
Kronecker Delta, returns 1 if and only if i and j are equal, other 0.
|
2248
|
+
"""
|
2249
|
+
|
2250
|
+
if i == j:
|
2251
|
+
return 1
|
2252
|
+
else:
|
2253
|
+
return 0
|
2254
|
+
|
2255
|
+
|
2256
|
+
def _X(N, k, v):
|
2257
|
+
"""
|
2258
|
+
Returns the NxN matrix with off-diagonal entry v at position k, that
|
2259
|
+
is the entry at row k and column k+1 is v.
|
2260
|
+
|
2261
|
+
See (10.2) of
|
2262
|
+
Garoufalidis, Goerner, Zickert:
|
2263
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
2264
|
+
https://arxiv.org/abs/1207.6711
|
2265
|
+
"""
|
2266
|
+
|
2267
|
+
m = [[_kronecker_delta(i,j) for i in range(N)] for j in range(N)]
|
2268
|
+
m[k-1][k] = v
|
2269
|
+
return m
|
2270
|
+
|
2271
|
+
|
2272
|
+
def _H(N, k, x):
|
2273
|
+
"""
|
2274
|
+
Returns the NxN diagonal matrix where the first k diagonal entries are x
|
2275
|
+
and all other entries are 1.
|
2276
|
+
|
2277
|
+
See (10.1) of
|
2278
|
+
Garoufalidis, Goerner, Zickert:
|
2279
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
2280
|
+
https://arxiv.org/abs/1207.6711
|
2281
|
+
"""
|
2282
|
+
|
2283
|
+
def _entry(i, j):
|
2284
|
+
if i != j:
|
2285
|
+
return 0
|
2286
|
+
if i < k:
|
2287
|
+
return x
|
2288
|
+
return 1
|
2289
|
+
|
2290
|
+
return [[_entry(i,j) for i in range(N)] for j in range(N)]
|