sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
- sglang/bench_one_batch_server.py +41 -25
- sglang/bench_serving.py +330 -156
- sglang/check_env.py +1 -1
- sglang/compile_deep_gemm.py +6 -2
- sglang/global_config.py +1 -25
- sglang/lang/api.py +6 -0
- sglang/lang/interpreter.py +1 -0
- sglang/lang/ir.py +13 -0
- sglang/launch_server.py +8 -15
- sglang/profiler.py +18 -1
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
- sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
- sglang/srt/compilation/backend.py +437 -0
- sglang/srt/compilation/compilation_config.py +20 -0
- sglang/srt/compilation/compilation_counter.py +47 -0
- sglang/srt/compilation/compile.py +210 -0
- sglang/srt/compilation/compiler_interface.py +503 -0
- sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
- sglang/srt/compilation/fix_functionalization.py +134 -0
- sglang/srt/compilation/fx_utils.py +83 -0
- sglang/srt/compilation/inductor_pass.py +140 -0
- sglang/srt/compilation/pass_manager.py +66 -0
- sglang/srt/compilation/piecewise_context_manager.py +40 -0
- sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/deepseek_ocr.py +262 -0
- sglang/srt/configs/deepseekvl2.py +194 -96
- sglang/srt/configs/dots_vlm.py +2 -7
- sglang/srt/configs/falcon_h1.py +13 -64
- sglang/srt/configs/load_config.py +25 -2
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +134 -23
- sglang/srt/configs/modelopt_config.py +30 -0
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/olmo3.py +105 -0
- sglang/srt/configs/points_v15_chat.py +29 -0
- sglang/srt/configs/qwen3_next.py +11 -47
- sglang/srt/configs/qwen3_omni.py +613 -0
- sglang/srt/configs/qwen3_vl.py +0 -10
- sglang/srt/connector/remote_instance.py +1 -1
- sglang/srt/constrained/base_grammar_backend.py +5 -1
- sglang/srt/constrained/llguidance_backend.py +5 -0
- sglang/srt/constrained/outlines_backend.py +1 -1
- sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
- sglang/srt/constrained/utils.py +12 -0
- sglang/srt/constrained/xgrammar_backend.py +20 -11
- sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
- sglang/srt/disaggregation/base/conn.py +17 -4
- sglang/srt/disaggregation/common/conn.py +4 -2
- sglang/srt/disaggregation/decode.py +123 -31
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
- sglang/srt/disaggregation/fake/conn.py +11 -3
- sglang/srt/disaggregation/mooncake/conn.py +157 -19
- sglang/srt/disaggregation/nixl/conn.py +69 -24
- sglang/srt/disaggregation/prefill.py +96 -270
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
- sglang/srt/distributed/device_communicators/pynccl.py +24 -12
- sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
- sglang/srt/distributed/naive_distributed.py +5 -4
- sglang/srt/distributed/parallel_state.py +70 -19
- sglang/srt/elastic_ep/elastic_ep.py +74 -0
- sglang/srt/entrypoints/context.py +3 -2
- sglang/srt/entrypoints/engine.py +66 -66
- sglang/srt/entrypoints/grpc_server.py +431 -234
- sglang/srt/entrypoints/harmony_utils.py +2 -2
- sglang/srt/entrypoints/http_server.py +120 -8
- sglang/srt/entrypoints/http_server_engine.py +1 -7
- sglang/srt/entrypoints/openai/protocol.py +225 -37
- sglang/srt/entrypoints/openai/serving_base.py +49 -2
- sglang/srt/entrypoints/openai/serving_chat.py +29 -74
- sglang/srt/entrypoints/openai/serving_classify.py +204 -0
- sglang/srt/entrypoints/openai/serving_completions.py +15 -1
- sglang/srt/entrypoints/openai/serving_responses.py +5 -2
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +42 -4
- sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
- sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
- sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
- sglang/srt/eplb/expert_distribution.py +3 -4
- sglang/srt/eplb/expert_location_dispatch.py +2 -2
- sglang/srt/eplb/expert_location_updater.py +2 -2
- sglang/srt/function_call/base_format_detector.py +17 -18
- sglang/srt/function_call/function_call_parser.py +18 -14
- sglang/srt/function_call/glm4_moe_detector.py +1 -5
- sglang/srt/function_call/gpt_oss_detector.py +1 -1
- sglang/srt/function_call/json_array_parser.py +0 -2
- sglang/srt/function_call/utils.py +2 -2
- sglang/srt/grpc/compile_proto.py +3 -3
- sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
- sglang/srt/grpc/health_servicer.py +189 -0
- sglang/srt/grpc/scheduler_launcher.py +181 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
- sglang/srt/layers/activation.py +4 -1
- sglang/srt/layers/attention/aiter_backend.py +3 -3
- sglang/srt/layers/attention/ascend_backend.py +17 -1
- sglang/srt/layers/attention/attention_registry.py +43 -23
- sglang/srt/layers/attention/base_attn_backend.py +20 -1
- sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
- sglang/srt/layers/attention/fla/chunk.py +0 -1
- sglang/srt/layers/attention/fla/chunk_o.py +1 -1
- sglang/srt/layers/attention/fla/index.py +0 -2
- sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
- sglang/srt/layers/attention/fla/utils.py +0 -3
- sglang/srt/layers/attention/fla/wy_fast.py +0 -2
- sglang/srt/layers/attention/flashattention_backend.py +12 -8
- sglang/srt/layers/attention/flashinfer_backend.py +248 -21
- sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
- sglang/srt/layers/attention/flashmla_backend.py +2 -2
- sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
- sglang/srt/layers/attention/intel_amx_backend.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
- sglang/srt/layers/attention/mamba/mamba.py +189 -241
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
- sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
- sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
- sglang/srt/layers/attention/nsa/utils.py +0 -1
- sglang/srt/layers/attention/nsa_backend.py +404 -90
- sglang/srt/layers/attention/triton_backend.py +208 -34
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
- sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
- sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
- sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
- sglang/srt/layers/attention/utils.py +11 -7
- sglang/srt/layers/attention/vision.py +3 -3
- sglang/srt/layers/attention/xpu_backend.py +1028 -0
- sglang/srt/layers/communicator.py +11 -7
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
- sglang/srt/layers/dp_attention.py +17 -0
- sglang/srt/layers/layernorm.py +45 -15
- sglang/srt/layers/linear.py +9 -1
- sglang/srt/layers/logits_processor.py +147 -17
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_moe.py +0 -2
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
- sglang/srt/layers/moe/ep_moe/layer.py +119 -397
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
- sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +3 -0
- sglang/srt/layers/moe/moe_runner/triton.py +3 -1
- sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
- sglang/srt/layers/moe/router.py +51 -15
- sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
- sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
- sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
- sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
- sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
- sglang/srt/layers/moe/topk.py +3 -2
- sglang/srt/layers/moe/utils.py +17 -1
- sglang/srt/layers/quantization/__init__.py +2 -53
- sglang/srt/layers/quantization/awq.py +183 -6
- sglang/srt/layers/quantization/awq_triton.py +29 -0
- sglang/srt/layers/quantization/base_config.py +20 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
- sglang/srt/layers/quantization/fp8.py +84 -18
- sglang/srt/layers/quantization/fp8_kernel.py +55 -10
- sglang/srt/layers/quantization/fp8_utils.py +42 -14
- sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
- sglang/srt/layers/quantization/gptq.py +0 -1
- sglang/srt/layers/quantization/int8_kernel.py +18 -2
- sglang/srt/layers/quantization/marlin_utils.py +12 -0
- sglang/srt/layers/quantization/modelopt_quant.py +125 -100
- sglang/srt/layers/quantization/mxfp4.py +5 -30
- sglang/srt/layers/quantization/petit.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
- sglang/srt/layers/quantization/unquant.py +1 -4
- sglang/srt/layers/quantization/utils.py +0 -1
- sglang/srt/layers/quantization/w4afp8.py +51 -20
- sglang/srt/layers/quantization/w8a8_int8.py +30 -24
- sglang/srt/layers/radix_attention.py +59 -9
- sglang/srt/layers/rotary_embedding.py +673 -16
- sglang/srt/layers/sampler.py +36 -16
- sglang/srt/layers/sparse_pooler.py +98 -0
- sglang/srt/layers/utils.py +0 -1
- sglang/srt/layers/vocab_parallel_embedding.py +4 -1
- sglang/srt/lora/backend/triton_backend.py +0 -1
- sglang/srt/lora/eviction_policy.py +139 -0
- sglang/srt/lora/lora_manager.py +24 -9
- sglang/srt/lora/lora_registry.py +1 -1
- sglang/srt/lora/mem_pool.py +40 -16
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
- sglang/srt/managers/cache_controller.py +48 -17
- sglang/srt/managers/data_parallel_controller.py +146 -42
- sglang/srt/managers/detokenizer_manager.py +40 -13
- sglang/srt/managers/io_struct.py +66 -16
- sglang/srt/managers/mm_utils.py +20 -18
- sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
- sglang/srt/managers/overlap_utils.py +96 -19
- sglang/srt/managers/schedule_batch.py +241 -511
- sglang/srt/managers/schedule_policy.py +15 -2
- sglang/srt/managers/scheduler.py +399 -499
- sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
- sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
- sglang/srt/managers/scheduler_pp_mixin.py +341 -0
- sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
- sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
- sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
- sglang/srt/managers/tokenizer_manager.py +378 -90
- sglang/srt/managers/tp_worker.py +212 -161
- sglang/srt/managers/utils.py +78 -2
- sglang/srt/mem_cache/allocator.py +7 -2
- sglang/srt/mem_cache/allocator_ascend.py +2 -2
- sglang/srt/mem_cache/base_prefix_cache.py +2 -2
- sglang/srt/mem_cache/chunk_cache.py +13 -2
- sglang/srt/mem_cache/common.py +480 -0
- sglang/srt/mem_cache/evict_policy.py +16 -1
- sglang/srt/mem_cache/hicache_storage.py +4 -1
- sglang/srt/mem_cache/hiradix_cache.py +16 -3
- sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
- sglang/srt/mem_cache/memory_pool.py +435 -219
- sglang/srt/mem_cache/memory_pool_host.py +0 -1
- sglang/srt/mem_cache/multimodal_cache.py +0 -1
- sglang/srt/mem_cache/radix_cache.py +53 -19
- sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
- sglang/srt/mem_cache/storage/backend_factory.py +2 -2
- sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
- sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
- sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
- sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
- sglang/srt/mem_cache/swa_radix_cache.py +92 -26
- sglang/srt/metrics/collector.py +31 -0
- sglang/srt/metrics/func_timer.py +1 -1
- sglang/srt/model_executor/cuda_graph_runner.py +43 -5
- sglang/srt/model_executor/forward_batch_info.py +28 -23
- sglang/srt/model_executor/model_runner.py +379 -139
- sglang/srt/model_executor/npu_graph_runner.py +2 -3
- sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +424 -27
- sglang/srt/model_loader/utils.py +0 -1
- sglang/srt/model_loader/weight_utils.py +47 -28
- sglang/srt/models/apertus.py +2 -3
- sglang/srt/models/arcee.py +2 -2
- sglang/srt/models/bailing_moe.py +13 -52
- sglang/srt/models/bailing_moe_nextn.py +3 -4
- sglang/srt/models/bert.py +1 -1
- sglang/srt/models/deepseek_nextn.py +19 -3
- sglang/srt/models/deepseek_ocr.py +1516 -0
- sglang/srt/models/deepseek_v2.py +273 -98
- sglang/srt/models/dots_ocr.py +0 -2
- sglang/srt/models/dots_vlm.py +0 -1
- sglang/srt/models/dots_vlm_vit.py +1 -1
- sglang/srt/models/falcon_h1.py +13 -19
- sglang/srt/models/gemma3_mm.py +16 -0
- sglang/srt/models/gemma3n_mm.py +1 -2
- sglang/srt/models/glm4_moe.py +14 -37
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +2 -1
- sglang/srt/models/glm4v_moe.py +5 -5
- sglang/srt/models/gpt_oss.py +5 -5
- sglang/srt/models/grok.py +10 -23
- sglang/srt/models/hunyuan.py +2 -7
- sglang/srt/models/interns1.py +0 -1
- sglang/srt/models/kimi_vl.py +1 -7
- sglang/srt/models/kimi_vl_moonvit.py +3 -1
- sglang/srt/models/llama.py +2 -2
- sglang/srt/models/llama_eagle3.py +1 -1
- sglang/srt/models/longcat_flash.py +5 -22
- sglang/srt/models/longcat_flash_nextn.py +3 -14
- sglang/srt/models/mimo.py +2 -13
- sglang/srt/models/mimo_mtp.py +1 -2
- sglang/srt/models/minicpmo.py +7 -5
- sglang/srt/models/mixtral.py +1 -4
- sglang/srt/models/mllama.py +1 -1
- sglang/srt/models/mllama4.py +13 -3
- sglang/srt/models/nemotron_h.py +511 -0
- sglang/srt/models/olmo2.py +31 -4
- sglang/srt/models/opt.py +5 -5
- sglang/srt/models/phi.py +1 -1
- sglang/srt/models/phi4mm.py +1 -1
- sglang/srt/models/phimoe.py +0 -1
- sglang/srt/models/pixtral.py +0 -3
- sglang/srt/models/points_v15_chat.py +186 -0
- sglang/srt/models/qwen.py +0 -1
- sglang/srt/models/qwen2_5_vl.py +3 -3
- sglang/srt/models/qwen2_audio.py +2 -15
- sglang/srt/models/qwen2_moe.py +15 -12
- sglang/srt/models/qwen2_vl.py +5 -2
- sglang/srt/models/qwen3_moe.py +19 -35
- sglang/srt/models/qwen3_next.py +7 -12
- sglang/srt/models/qwen3_next_mtp.py +3 -4
- sglang/srt/models/qwen3_omni_moe.py +661 -0
- sglang/srt/models/qwen3_vl.py +37 -33
- sglang/srt/models/qwen3_vl_moe.py +57 -185
- sglang/srt/models/roberta.py +55 -3
- sglang/srt/models/sarashina2_vision.py +0 -1
- sglang/srt/models/step3_vl.py +3 -5
- sglang/srt/models/utils.py +11 -1
- sglang/srt/multimodal/processors/base_processor.py +6 -2
- sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
- sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
- sglang/srt/multimodal/processors/dots_vlm.py +0 -1
- sglang/srt/multimodal/processors/glm4v.py +1 -5
- sglang/srt/multimodal/processors/internvl.py +0 -2
- sglang/srt/multimodal/processors/janus_pro.py +0 -1
- sglang/srt/multimodal/processors/mllama4.py +0 -8
- sglang/srt/multimodal/processors/phi4mm.py +0 -1
- sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
- sglang/srt/multimodal/processors/qwen_vl.py +75 -16
- sglang/srt/multimodal/processors/step3_vl.py +1 -1
- sglang/srt/parser/conversation.py +41 -0
- sglang/srt/parser/reasoning_parser.py +0 -1
- sglang/srt/sampling/custom_logit_processor.py +77 -2
- sglang/srt/sampling/sampling_batch_info.py +17 -22
- sglang/srt/sampling/sampling_params.py +70 -2
- sglang/srt/server_args.py +577 -73
- sglang/srt/server_args_config_parser.py +1 -1
- sglang/srt/single_batch_overlap.py +38 -28
- sglang/srt/speculative/base_spec_worker.py +34 -0
- sglang/srt/speculative/draft_utils.py +226 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
- sglang/srt/speculative/eagle_info.py +57 -18
- sglang/srt/speculative/eagle_info_v2.py +458 -0
- sglang/srt/speculative/eagle_utils.py +138 -0
- sglang/srt/speculative/eagle_worker.py +83 -280
- sglang/srt/speculative/eagle_worker_v2.py +702 -0
- sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
- sglang/srt/speculative/ngram_worker.py +12 -11
- sglang/srt/speculative/spec_info.py +2 -0
- sglang/srt/speculative/spec_utils.py +38 -3
- sglang/srt/speculative/standalone_worker.py +4 -14
- sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
- sglang/srt/two_batch_overlap.py +28 -14
- sglang/srt/utils/__init__.py +1 -1
- sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
- sglang/srt/utils/common.py +192 -47
- sglang/srt/utils/hf_transformers_utils.py +40 -17
- sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
- sglang/srt/{offloader.py → utils/offloader.py} +4 -4
- sglang/srt/utils/profile_merger.py +199 -0
- sglang/test/attention/test_flashattn_backend.py +1 -1
- sglang/test/attention/test_flashattn_mla_backend.py +0 -1
- sglang/test/attention/test_prefix_chunk_info.py +0 -2
- sglang/test/attention/test_trtllm_mla_backend.py +221 -53
- sglang/test/few_shot_gsm8k_engine.py +2 -4
- sglang/test/kit_matched_stop.py +157 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +41 -0
- sglang/test/runners.py +2 -0
- sglang/test/send_one.py +42 -7
- sglang/test/simple_eval_common.py +3 -0
- sglang/test/simple_eval_gpqa.py +0 -1
- sglang/test/simple_eval_humaneval.py +0 -3
- sglang/test/simple_eval_longbench_v2.py +344 -0
- sglang/test/test_block_fp8.py +1 -2
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
- sglang/test/test_cutlass_moe.py +1 -2
- sglang/test/test_cutlass_w4a8_moe.py +10 -20
- sglang/test/test_deterministic.py +232 -99
- sglang/test/test_deterministic_utils.py +73 -0
- sglang/test/test_disaggregation_utils.py +81 -0
- sglang/test/test_marlin_moe.py +0 -1
- sglang/test/test_utils.py +85 -20
- sglang/version.py +1 -1
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
- sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
- sglang/srt/speculative/build_eagle_tree.py +0 -427
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
- /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
- /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,702 @@
|
|
|
1
|
+
import contextlib
|
|
2
|
+
import logging
|
|
3
|
+
import time
|
|
4
|
+
from typing import List, Optional, Tuple
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
from torch.cuda import Stream as CudaStream
|
|
8
|
+
|
|
9
|
+
from sglang.srt.environ import envs
|
|
10
|
+
from sglang.srt.managers.schedule_batch import ModelWorkerBatch
|
|
11
|
+
from sglang.srt.managers.scheduler import GenerationBatchResult
|
|
12
|
+
from sglang.srt.managers.tp_worker import TpModelWorker
|
|
13
|
+
from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode, ForwardBatch
|
|
14
|
+
from sglang.srt.server_args import ServerArgs
|
|
15
|
+
from sglang.srt.speculative.base_spec_worker import BaseDraftWorker, BaseSpecWorker
|
|
16
|
+
from sglang.srt.speculative.draft_utils import DraftBackendFactory
|
|
17
|
+
from sglang.srt.speculative.eagle_draft_cuda_graph_runner import (
|
|
18
|
+
EAGLEDraftCudaGraphRunner,
|
|
19
|
+
)
|
|
20
|
+
from sglang.srt.speculative.eagle_draft_extend_cuda_graph_runner import (
|
|
21
|
+
EAGLEDraftExtendCudaGraphRunner,
|
|
22
|
+
)
|
|
23
|
+
from sglang.srt.speculative.eagle_info import EagleDraftInput, EagleVerifyInput
|
|
24
|
+
from sglang.srt.speculative.eagle_info_v2 import (
|
|
25
|
+
assign_extend_cache_locs,
|
|
26
|
+
fill_accepted_out_cache_loc,
|
|
27
|
+
fill_new_verified_id,
|
|
28
|
+
select_top_k_tokens_tmp,
|
|
29
|
+
)
|
|
30
|
+
from sglang.srt.speculative.eagle_utils import TreeMaskMode, build_tree_kernel_efficient
|
|
31
|
+
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
|
|
32
|
+
from sglang.srt.speculative.spec_utils import (
|
|
33
|
+
detect_nan,
|
|
34
|
+
draft_tp_context,
|
|
35
|
+
load_token_map,
|
|
36
|
+
)
|
|
37
|
+
from sglang.srt.utils.common import (
|
|
38
|
+
empty_context,
|
|
39
|
+
fast_topk,
|
|
40
|
+
get_available_gpu_memory,
|
|
41
|
+
next_power_of_2,
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
logger = logging.getLogger(__name__)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _get_plan_stream(
|
|
48
|
+
device: str,
|
|
49
|
+
) -> Tuple[Optional[CudaStream], contextlib.AbstractContextManager]:
|
|
50
|
+
if envs.SGLANG_ENABLE_OVERLAP_PLAN_STREAM.get():
|
|
51
|
+
plan_stream: CudaStream = torch.get_device_module(device).Stream()
|
|
52
|
+
plan_stream_ctx = torch.cuda.stream(plan_stream)
|
|
53
|
+
return plan_stream, plan_stream_ctx
|
|
54
|
+
else:
|
|
55
|
+
return None, contextlib.nullcontext()
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class EagleDraftWorker(BaseDraftWorker):
|
|
59
|
+
def __init__(
|
|
60
|
+
self,
|
|
61
|
+
server_args: ServerArgs,
|
|
62
|
+
gpu_id: int,
|
|
63
|
+
tp_rank: int,
|
|
64
|
+
dp_rank: int,
|
|
65
|
+
moe_ep_rank: int,
|
|
66
|
+
nccl_port: int,
|
|
67
|
+
target_worker: TpModelWorker,
|
|
68
|
+
):
|
|
69
|
+
# copy args
|
|
70
|
+
self.server_args = server_args
|
|
71
|
+
self.gpu_id = gpu_id
|
|
72
|
+
self.tp_rank = tp_rank
|
|
73
|
+
self.dp_rank = dp_rank
|
|
74
|
+
self.moe_ep_rank = moe_ep_rank
|
|
75
|
+
self.nccl_port = nccl_port
|
|
76
|
+
self.target_worker = target_worker
|
|
77
|
+
|
|
78
|
+
# Args for easy access
|
|
79
|
+
self.device = server_args.device
|
|
80
|
+
self.topk = server_args.speculative_eagle_topk
|
|
81
|
+
self.speculative_num_steps = server_args.speculative_num_steps
|
|
82
|
+
self.speculative_num_draft_tokens = server_args.speculative_num_draft_tokens
|
|
83
|
+
self.speculative_algorithm = SpeculativeAlgorithm.from_string(
|
|
84
|
+
server_args.speculative_algorithm
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
# Set constant
|
|
88
|
+
EagleDraftInput.ALLOC_LEN_PER_DECODE = max(
|
|
89
|
+
self.speculative_num_steps * self.topk, self.speculative_num_draft_tokens
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
# Do not capture cuda graph in `TpModelWorker` init,
|
|
93
|
+
# will capture later with init_cuda_graphs()
|
|
94
|
+
backup_disable_cuda_graph = server_args.disable_cuda_graph
|
|
95
|
+
server_args.disable_cuda_graph = True
|
|
96
|
+
|
|
97
|
+
# Share the allocator with a target worker.
|
|
98
|
+
# Draft and target worker own their own KV cache pools.
|
|
99
|
+
self.req_to_token_pool, self.token_to_kv_pool_allocator = (
|
|
100
|
+
target_worker.get_memory_pool()
|
|
101
|
+
)
|
|
102
|
+
with empty_context():
|
|
103
|
+
# Init draft worker
|
|
104
|
+
self.draft_worker = TpModelWorker(
|
|
105
|
+
server_args=server_args,
|
|
106
|
+
gpu_id=gpu_id,
|
|
107
|
+
tp_rank=tp_rank,
|
|
108
|
+
pp_rank=0, # FIXME
|
|
109
|
+
dp_rank=dp_rank,
|
|
110
|
+
moe_ep_rank=moe_ep_rank,
|
|
111
|
+
nccl_port=nccl_port,
|
|
112
|
+
is_draft_worker=True,
|
|
113
|
+
req_to_token_pool=self.req_to_token_pool,
|
|
114
|
+
token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
# Alias for better readability
|
|
118
|
+
self.draft_runner = self.draft_worker.model_runner
|
|
119
|
+
|
|
120
|
+
self.init_token_map()
|
|
121
|
+
self.init_lm_head()
|
|
122
|
+
|
|
123
|
+
# Init attention backend and cuda graphs
|
|
124
|
+
self.draft_runner.server_args.disable_cuda_graph = backup_disable_cuda_graph
|
|
125
|
+
self.draft_tp_context = (
|
|
126
|
+
draft_tp_context if server_args.enable_dp_attention else empty_context
|
|
127
|
+
)
|
|
128
|
+
with self.draft_tp_context(self.draft_runner.tp_group):
|
|
129
|
+
self.init_attention_backend()
|
|
130
|
+
self.init_cuda_graphs()
|
|
131
|
+
|
|
132
|
+
self.tree_mask_mode = TreeMaskMode.FULL_MASK
|
|
133
|
+
|
|
134
|
+
self.plan_stream, self.plan_stream_ctx = _get_plan_stream(self.device)
|
|
135
|
+
|
|
136
|
+
def init_token_map(self):
|
|
137
|
+
# Load hot token ids
|
|
138
|
+
if self.speculative_algorithm.is_eagle3():
|
|
139
|
+
if self.server_args.speculative_token_map is not None:
|
|
140
|
+
logger.warning(
|
|
141
|
+
"Speculative token map specified, but EAGLE3 models already have this. Ignoring the specified token map."
|
|
142
|
+
)
|
|
143
|
+
self.hot_token_id = None
|
|
144
|
+
elif self.server_args.speculative_token_map is not None:
|
|
145
|
+
self.hot_token_id = load_token_map(self.server_args.speculative_token_map)
|
|
146
|
+
self.server_args.json_model_override_args = (
|
|
147
|
+
f'{{"hot_vocab_size": {len(self.hot_token_id)}}}'
|
|
148
|
+
)
|
|
149
|
+
else:
|
|
150
|
+
self.hot_token_id = None
|
|
151
|
+
|
|
152
|
+
def init_lm_head(self):
|
|
153
|
+
embed, head = self.target_worker.model_runner.model.get_embed_and_head()
|
|
154
|
+
if self.speculative_algorithm.is_eagle3():
|
|
155
|
+
# most cases EAGLE3 models don't share lm_head
|
|
156
|
+
# but some models (e.g. nvidia/gpt-oss-120b-Eagle3) shares
|
|
157
|
+
if (
|
|
158
|
+
hasattr(self.draft_runner.model, "load_lm_head_from_target")
|
|
159
|
+
and self.draft_runner.model.load_lm_head_from_target
|
|
160
|
+
):
|
|
161
|
+
self.draft_runner.model.set_embed_and_head(embed, head)
|
|
162
|
+
else:
|
|
163
|
+
self.draft_runner.model.set_embed(embed)
|
|
164
|
+
|
|
165
|
+
# grab hot token ids
|
|
166
|
+
if self.draft_runner.model.hot_token_id is not None:
|
|
167
|
+
self.hot_token_id = self.draft_runner.model.hot_token_id.to(
|
|
168
|
+
embed.device
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
else:
|
|
172
|
+
if self.hot_token_id is not None:
|
|
173
|
+
head = head.clone()
|
|
174
|
+
self.hot_token_id = self.hot_token_id.to(head.device)
|
|
175
|
+
head.data = head.data[self.hot_token_id]
|
|
176
|
+
|
|
177
|
+
# Share the embedding and lm_head
|
|
178
|
+
self.draft_runner.model.set_embed_and_head(embed, head)
|
|
179
|
+
|
|
180
|
+
def init_attention_backend(self):
|
|
181
|
+
# Create multi-step attn backends and cuda graph runners
|
|
182
|
+
|
|
183
|
+
self.has_prefill_wrapper_verify = False
|
|
184
|
+
self.draft_extend_attn_backend = None
|
|
185
|
+
|
|
186
|
+
draft_backend_factory = DraftBackendFactory(
|
|
187
|
+
self.server_args,
|
|
188
|
+
self.draft_runner,
|
|
189
|
+
self.topk,
|
|
190
|
+
self.speculative_num_steps,
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
# Initialize decode attention backend
|
|
194
|
+
self.draft_attn_backend = draft_backend_factory.create_decode_backend()
|
|
195
|
+
|
|
196
|
+
# Initialize draft extend attention backend (respects speculative_attention_mode setting)
|
|
197
|
+
self.draft_extend_attn_backend = (
|
|
198
|
+
draft_backend_factory.create_draft_extend_backend()
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
self.draft_runner.draft_attn_backend = self.draft_attn_backend
|
|
202
|
+
self.tree_mask_mode = TreeMaskMode.FULL_MASK
|
|
203
|
+
|
|
204
|
+
def init_cuda_graphs(self):
|
|
205
|
+
"""Capture cuda graphs."""
|
|
206
|
+
self.cuda_graph_runner = None
|
|
207
|
+
self.cuda_graph_runner_for_draft_extend = None
|
|
208
|
+
|
|
209
|
+
if self.server_args.disable_cuda_graph:
|
|
210
|
+
return
|
|
211
|
+
|
|
212
|
+
# Capture draft
|
|
213
|
+
if self.speculative_num_steps > 1:
|
|
214
|
+
tic = time.perf_counter()
|
|
215
|
+
before_mem = get_available_gpu_memory(self.device, self.gpu_id)
|
|
216
|
+
logger.info(
|
|
217
|
+
f"Capture draft cuda graph begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
|
|
218
|
+
)
|
|
219
|
+
self.cuda_graph_runner = EAGLEDraftCudaGraphRunner(self)
|
|
220
|
+
after_mem = get_available_gpu_memory(self.device, self.gpu_id)
|
|
221
|
+
logger.info(
|
|
222
|
+
f"Capture draft cuda graph end. Time elapsed: {time.perf_counter() - tic:.2f} s. mem usage={(before_mem - after_mem):.2f} GB. avail mem={after_mem:.2f} GB."
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
# Capture extend
|
|
226
|
+
if self.draft_extend_attn_backend:
|
|
227
|
+
tic = time.perf_counter()
|
|
228
|
+
before_mem = get_available_gpu_memory(self.device, self.gpu_id)
|
|
229
|
+
logger.info(
|
|
230
|
+
f"Capture draft extend cuda graph begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
|
|
231
|
+
)
|
|
232
|
+
self.cuda_graph_runner_for_draft_extend = EAGLEDraftExtendCudaGraphRunner(
|
|
233
|
+
self
|
|
234
|
+
)
|
|
235
|
+
after_mem = get_available_gpu_memory(self.device, self.gpu_id)
|
|
236
|
+
logger.info(
|
|
237
|
+
f"Capture draft extend cuda graph end. Time elapsed: {time.perf_counter() - tic:.2f} s. mem usage={(before_mem - after_mem):.2f} GB. avail mem={after_mem:.2f} GB."
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
def draft(self, model_worker_batch: ModelWorkerBatch):
|
|
241
|
+
draft_input: EagleDraftInput = model_worker_batch.spec_info
|
|
242
|
+
forward_batch, can_cuda_graph = draft_input.prepare_for_v2_draft(
|
|
243
|
+
self.req_to_token_pool,
|
|
244
|
+
model_worker_batch,
|
|
245
|
+
self.cuda_graph_runner,
|
|
246
|
+
self.draft_runner,
|
|
247
|
+
self.topk,
|
|
248
|
+
self.speculative_num_steps,
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
# Run draft
|
|
252
|
+
if can_cuda_graph:
|
|
253
|
+
parent_list, top_scores_index, draft_tokens = self.cuda_graph_runner.replay(
|
|
254
|
+
forward_batch,
|
|
255
|
+
)
|
|
256
|
+
else:
|
|
257
|
+
if self.speculative_num_steps > 1:
|
|
258
|
+
# Skip attention backend init for 1-step draft,
|
|
259
|
+
# `draft_forward` only does sample in this case.
|
|
260
|
+
self.draft_attn_backend.init_forward_metadata(forward_batch)
|
|
261
|
+
parent_list, top_scores_index, draft_tokens = self.draft_forward(
|
|
262
|
+
forward_batch
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
# Build tree mask
|
|
266
|
+
# Directly write to cuda graph buffers for verify attn
|
|
267
|
+
tree_mask_buf, position_buf = (
|
|
268
|
+
self.target_worker.model_runner.attn_backend.get_verify_buffers_to_fill_after_draft()
|
|
269
|
+
)
|
|
270
|
+
|
|
271
|
+
(
|
|
272
|
+
tree_mask,
|
|
273
|
+
position,
|
|
274
|
+
retrive_index,
|
|
275
|
+
retrive_next_token,
|
|
276
|
+
retrive_next_sibling,
|
|
277
|
+
draft_tokens,
|
|
278
|
+
) = build_tree_kernel_efficient(
|
|
279
|
+
draft_input.verified_id,
|
|
280
|
+
parent_list,
|
|
281
|
+
top_scores_index,
|
|
282
|
+
draft_tokens,
|
|
283
|
+
model_worker_batch.seq_lens,
|
|
284
|
+
model_worker_batch.seq_lens_sum,
|
|
285
|
+
self.topk,
|
|
286
|
+
self.speculative_num_steps,
|
|
287
|
+
self.speculative_num_draft_tokens,
|
|
288
|
+
self.tree_mask_mode,
|
|
289
|
+
tree_mask_buf,
|
|
290
|
+
position_buf,
|
|
291
|
+
)
|
|
292
|
+
|
|
293
|
+
return EagleVerifyInput(
|
|
294
|
+
draft_token=draft_tokens,
|
|
295
|
+
custom_mask=tree_mask,
|
|
296
|
+
positions=position,
|
|
297
|
+
retrive_index=retrive_index,
|
|
298
|
+
retrive_next_token=retrive_next_token,
|
|
299
|
+
retrive_next_sibling=retrive_next_sibling,
|
|
300
|
+
retrive_cum_len=None,
|
|
301
|
+
spec_steps=self.speculative_num_steps,
|
|
302
|
+
topk=self.topk,
|
|
303
|
+
draft_token_num=self.speculative_num_draft_tokens,
|
|
304
|
+
capture_hidden_mode=None,
|
|
305
|
+
seq_lens_sum=None,
|
|
306
|
+
seq_lens_cpu=None,
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
def draft_forward(self, forward_batch: ForwardBatch):
|
|
310
|
+
# Parse args
|
|
311
|
+
spec_info: EagleDraftInput = forward_batch.spec_info
|
|
312
|
+
out_cache_loc = forward_batch.out_cache_loc
|
|
313
|
+
topk_p, topk_index, hidden_states = (
|
|
314
|
+
spec_info.topk_p,
|
|
315
|
+
spec_info.topk_index,
|
|
316
|
+
spec_info.hidden_states,
|
|
317
|
+
)
|
|
318
|
+
if self.hot_token_id is not None:
|
|
319
|
+
topk_index = self.hot_token_id[topk_index]
|
|
320
|
+
|
|
321
|
+
out_cache_loc = out_cache_loc.reshape(
|
|
322
|
+
forward_batch.batch_size, self.topk, self.speculative_num_steps
|
|
323
|
+
)
|
|
324
|
+
out_cache_loc = out_cache_loc.permute((2, 0, 1)).reshape(
|
|
325
|
+
self.speculative_num_steps, -1
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
# Return values
|
|
329
|
+
score_list: List[torch.Tensor] = []
|
|
330
|
+
token_list: List[torch.Tensor] = []
|
|
331
|
+
parents_list: List[torch.Tensor] = []
|
|
332
|
+
|
|
333
|
+
# Forward multiple steps
|
|
334
|
+
scores = None
|
|
335
|
+
for i in range(self.speculative_num_steps):
|
|
336
|
+
input_ids, hidden_states, scores, tree_info = select_top_k_tokens_tmp(
|
|
337
|
+
i, topk_p, topk_index, hidden_states, scores, self.topk
|
|
338
|
+
)
|
|
339
|
+
score_list.append(tree_info[0])
|
|
340
|
+
token_list.append(tree_info[1])
|
|
341
|
+
parents_list.append(tree_info[2])
|
|
342
|
+
|
|
343
|
+
# We don't need to run the last forward. we get 1 token from draft prefill and (#spec steps - 1) tokens here
|
|
344
|
+
if i == self.speculative_num_steps - 1:
|
|
345
|
+
break
|
|
346
|
+
|
|
347
|
+
# Set inputs
|
|
348
|
+
forward_batch.input_ids = input_ids
|
|
349
|
+
forward_batch.out_cache_loc = out_cache_loc[i]
|
|
350
|
+
forward_batch.positions.add_(1)
|
|
351
|
+
forward_batch.attn_backend = self.draft_attn_backend.attn_backends[i]
|
|
352
|
+
spec_info.hidden_states = hidden_states
|
|
353
|
+
|
|
354
|
+
# Run forward
|
|
355
|
+
logits_output = self.draft_runner.model.forward(
|
|
356
|
+
forward_batch.input_ids, forward_batch.positions, forward_batch
|
|
357
|
+
)
|
|
358
|
+
if self.server_args.enable_nan_detection:
|
|
359
|
+
detect_nan(logits_output)
|
|
360
|
+
probs = torch.softmax(logits_output.next_token_logits, dim=-1)
|
|
361
|
+
topk_p, topk_index = fast_topk(probs, self.topk, dim=-1)
|
|
362
|
+
if self.hot_token_id is not None:
|
|
363
|
+
topk_index = self.hot_token_id[topk_index]
|
|
364
|
+
hidden_states = logits_output.hidden_states
|
|
365
|
+
|
|
366
|
+
# Organize the results
|
|
367
|
+
score_list = torch.cat(score_list, dim=1).flatten(
|
|
368
|
+
1
|
|
369
|
+
) # b, n, topk; n= 1 + (num_steps-1) * self.topk
|
|
370
|
+
ss_token_list = torch.cat(
|
|
371
|
+
token_list, dim=1
|
|
372
|
+
) # b, (self.topk + (num_steps-1) * self.topk)
|
|
373
|
+
top_scores = torch.topk(
|
|
374
|
+
score_list, self.speculative_num_draft_tokens - 1, dim=-1
|
|
375
|
+
)
|
|
376
|
+
top_scores_index = top_scores.indices
|
|
377
|
+
top_scores_index = torch.sort(top_scores_index).values
|
|
378
|
+
draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
|
|
379
|
+
|
|
380
|
+
if len(parents_list) > 1:
|
|
381
|
+
parent_list = torch.cat(parents_list[:-1], dim=1)
|
|
382
|
+
else:
|
|
383
|
+
batch_size = parents_list[0].shape[0]
|
|
384
|
+
parent_list = torch.empty(batch_size, 0, device=parents_list[0].device)
|
|
385
|
+
|
|
386
|
+
return parent_list, top_scores_index, draft_tokens
|
|
387
|
+
|
|
388
|
+
def draft_extend(self):
|
|
389
|
+
pass
|
|
390
|
+
|
|
391
|
+
def _draft_extend_for_prefill(
|
|
392
|
+
self,
|
|
393
|
+
batch: ModelWorkerBatch,
|
|
394
|
+
target_hidden_states: torch.Tensor,
|
|
395
|
+
next_token_ids: torch.Tensor,
|
|
396
|
+
):
|
|
397
|
+
"""
|
|
398
|
+
Run draft model extend to correctly fill the KV cache.
|
|
399
|
+
|
|
400
|
+
Args:
|
|
401
|
+
batch: The batch to run.
|
|
402
|
+
target_hidden_states: Hidden states from the target model forward
|
|
403
|
+
next_token_ids: Next token ids generated from the target forward.
|
|
404
|
+
"""
|
|
405
|
+
# Construct input_ids
|
|
406
|
+
pt = 0
|
|
407
|
+
for i, extend_len in enumerate(batch.extend_seq_lens):
|
|
408
|
+
input_ids = batch.input_ids[pt : pt + extend_len]
|
|
409
|
+
batch.input_ids[pt : pt + extend_len] = torch.cat(
|
|
410
|
+
(input_ids[1:], next_token_ids[i].reshape(1))
|
|
411
|
+
)
|
|
412
|
+
pt += extend_len
|
|
413
|
+
|
|
414
|
+
# Construct spec_info
|
|
415
|
+
next_draft_input = EagleDraftInput(
|
|
416
|
+
hidden_states=target_hidden_states,
|
|
417
|
+
verified_id=next_token_ids,
|
|
418
|
+
new_seq_lens=batch.seq_lens,
|
|
419
|
+
allocate_lens=batch.seq_lens,
|
|
420
|
+
)
|
|
421
|
+
batch.spec_info = next_draft_input
|
|
422
|
+
|
|
423
|
+
# Run forward
|
|
424
|
+
forward_batch = ForwardBatch.init_new(batch, self.draft_runner)
|
|
425
|
+
logits_output, _ = self.draft_runner.forward(forward_batch)
|
|
426
|
+
|
|
427
|
+
# Update spec_info for the next draft step
|
|
428
|
+
probs = torch.softmax(logits_output.next_token_logits, dim=-1)
|
|
429
|
+
next_draft_input.topk_p, next_draft_input.topk_index = fast_topk(
|
|
430
|
+
probs, self.topk, dim=-1
|
|
431
|
+
)
|
|
432
|
+
next_draft_input.hidden_states = logits_output.hidden_states
|
|
433
|
+
return next_draft_input
|
|
434
|
+
|
|
435
|
+
def _draft_extend_for_decode(
|
|
436
|
+
self, batch: ModelWorkerBatch, batch_result: GenerationBatchResult
|
|
437
|
+
):
|
|
438
|
+
# Batch 2: Draft extend
|
|
439
|
+
draft_input = EagleDraftInput(
|
|
440
|
+
hidden_states=batch_result.logits_output.hidden_states,
|
|
441
|
+
)
|
|
442
|
+
select_index = (
|
|
443
|
+
torch.arange(len(batch.seq_lens), device=self.device)
|
|
444
|
+
* self.speculative_num_draft_tokens
|
|
445
|
+
+ batch_result.accept_lens
|
|
446
|
+
- 1
|
|
447
|
+
)
|
|
448
|
+
|
|
449
|
+
# Prepare for draft extend in a separate stream
|
|
450
|
+
with self.plan_stream_ctx:
|
|
451
|
+
forward_batch = draft_input.prepare_for_extend_to_fill_draft_kvcache(
|
|
452
|
+
batch,
|
|
453
|
+
batch_result.next_token_ids,
|
|
454
|
+
self.speculative_num_draft_tokens,
|
|
455
|
+
self.draft_runner,
|
|
456
|
+
)
|
|
457
|
+
|
|
458
|
+
if self.plan_stream:
|
|
459
|
+
torch.cuda.current_stream().wait_stream(self.plan_stream)
|
|
460
|
+
|
|
461
|
+
# Run draft extend batch in the main compute stream
|
|
462
|
+
draft_logits_output = self.draft_runner.model.forward(
|
|
463
|
+
forward_batch.input_ids, forward_batch.positions, forward_batch
|
|
464
|
+
)
|
|
465
|
+
|
|
466
|
+
# Reorganize the spec info for the next batch
|
|
467
|
+
draft_logits_output.next_token_logits = draft_logits_output.next_token_logits[
|
|
468
|
+
select_index
|
|
469
|
+
]
|
|
470
|
+
draft_logits_output.hidden_states = draft_logits_output.hidden_states[
|
|
471
|
+
select_index
|
|
472
|
+
]
|
|
473
|
+
probs = torch.softmax(draft_logits_output.next_token_logits, dim=-1)
|
|
474
|
+
ret_topk_p, ret_topk_index = fast_topk(probs, self.topk, dim=-1)
|
|
475
|
+
ret_hidden_states = draft_logits_output.hidden_states
|
|
476
|
+
|
|
477
|
+
# Construct the return values
|
|
478
|
+
next_draft_input = batch_result.next_draft_input
|
|
479
|
+
(
|
|
480
|
+
next_draft_input.topk_p,
|
|
481
|
+
next_draft_input.topk_index,
|
|
482
|
+
next_draft_input.hidden_states,
|
|
483
|
+
) = (
|
|
484
|
+
ret_topk_p,
|
|
485
|
+
ret_topk_index,
|
|
486
|
+
ret_hidden_states,
|
|
487
|
+
)
|
|
488
|
+
|
|
489
|
+
|
|
490
|
+
class EAGLEWorkerV2(BaseSpecWorker):
|
|
491
|
+
def __init__(
|
|
492
|
+
self,
|
|
493
|
+
server_args: ServerArgs,
|
|
494
|
+
gpu_id: int,
|
|
495
|
+
tp_rank: int,
|
|
496
|
+
dp_rank: Optional[int],
|
|
497
|
+
moe_ep_rank: int,
|
|
498
|
+
nccl_port: int,
|
|
499
|
+
target_worker: TpModelWorker,
|
|
500
|
+
):
|
|
501
|
+
# Parse arguments
|
|
502
|
+
self.server_args = server_args
|
|
503
|
+
self.topk = server_args.speculative_eagle_topk
|
|
504
|
+
self.speculative_num_steps = server_args.speculative_num_steps
|
|
505
|
+
self.speculative_num_draft_tokens = server_args.speculative_num_draft_tokens
|
|
506
|
+
self.enable_nan_detection = server_args.enable_nan_detection
|
|
507
|
+
self.gpu_id = gpu_id
|
|
508
|
+
self.device = server_args.device
|
|
509
|
+
self._target_worker = target_worker
|
|
510
|
+
self.page_size = server_args.page_size
|
|
511
|
+
self.speculative_algorithm = SpeculativeAlgorithm.from_string(
|
|
512
|
+
server_args.speculative_algorithm
|
|
513
|
+
)
|
|
514
|
+
|
|
515
|
+
self.req_to_token_pool, self.token_to_kv_pool_allocator = (
|
|
516
|
+
target_worker.get_memory_pool()
|
|
517
|
+
)
|
|
518
|
+
|
|
519
|
+
# Override the context length of the draft model to be the same as the target model.
|
|
520
|
+
server_args.context_length = target_worker.model_runner.model_config.context_len
|
|
521
|
+
|
|
522
|
+
self._draft_worker = EagleDraftWorker(
|
|
523
|
+
server_args, gpu_id, tp_rank, dp_rank, moe_ep_rank, nccl_port, target_worker
|
|
524
|
+
)
|
|
525
|
+
|
|
526
|
+
# Some dummy tensors
|
|
527
|
+
self.num_new_pages_per_topk = torch.empty(
|
|
528
|
+
(), dtype=torch.int64, device=self.device
|
|
529
|
+
)
|
|
530
|
+
self.extend_lens = torch.empty((), dtype=torch.int64, device=self.device)
|
|
531
|
+
|
|
532
|
+
self.plan_stream, self.plan_stream_ctx = _get_plan_stream(self.device)
|
|
533
|
+
|
|
534
|
+
@property
|
|
535
|
+
def target_worker(self):
|
|
536
|
+
return self._target_worker
|
|
537
|
+
|
|
538
|
+
@property
|
|
539
|
+
def draft_worker(self):
|
|
540
|
+
return self._draft_worker
|
|
541
|
+
|
|
542
|
+
def clear_cache_pool(self):
|
|
543
|
+
# allocator and kv cache pool are shared with target worker, which are cleared in scheduler
|
|
544
|
+
pass
|
|
545
|
+
|
|
546
|
+
def forward_batch_generation(self, model_worker_batch: ModelWorkerBatch):
|
|
547
|
+
if model_worker_batch.forward_mode.is_decode():
|
|
548
|
+
draft_input: EagleDraftInput = model_worker_batch.spec_info
|
|
549
|
+
assert draft_input.is_draft_input()
|
|
550
|
+
verify_input: EagleVerifyInput = self.draft_worker.draft(model_worker_batch)
|
|
551
|
+
assert verify_input.is_verify_input()
|
|
552
|
+
model_worker_batch.spec_info = verify_input
|
|
553
|
+
batch_output = self.verify(model_worker_batch, draft_input.allocate_lens)
|
|
554
|
+
self.draft_worker._draft_extend_for_decode(model_worker_batch, batch_output)
|
|
555
|
+
return batch_output
|
|
556
|
+
else:
|
|
557
|
+
# Target prefill
|
|
558
|
+
model_worker_batch.capture_hidden_mode = CaptureHiddenMode.FULL
|
|
559
|
+
batch_output = self.target_worker.forward_batch_generation(
|
|
560
|
+
model_worker_batch
|
|
561
|
+
)
|
|
562
|
+
|
|
563
|
+
# Draft prefill
|
|
564
|
+
model_worker_batch.capture_hidden_mode = CaptureHiddenMode.LAST
|
|
565
|
+
batch_output.next_draft_input = self.draft_worker._draft_extend_for_prefill(
|
|
566
|
+
model_worker_batch,
|
|
567
|
+
batch_output.logits_output.hidden_states,
|
|
568
|
+
batch_output.next_token_ids,
|
|
569
|
+
)
|
|
570
|
+
return batch_output
|
|
571
|
+
|
|
572
|
+
def verify(
|
|
573
|
+
self,
|
|
574
|
+
batch: ModelWorkerBatch,
|
|
575
|
+
cur_allocate_lens: torch.Tensor,
|
|
576
|
+
):
|
|
577
|
+
# Since batch.seq_lens is allocated in another stream, we need
|
|
578
|
+
# record_stream() to prevent pytorch gc and reuse the gpu memory
|
|
579
|
+
# while forward_stream is still running.
|
|
580
|
+
batch.seq_lens.record_stream(torch.cuda.current_stream())
|
|
581
|
+
|
|
582
|
+
# Parse args
|
|
583
|
+
verify_input: EagleVerifyInput = batch.spec_info
|
|
584
|
+
bs = len(batch.seq_lens)
|
|
585
|
+
|
|
586
|
+
# Batch 1: Target verify
|
|
587
|
+
# Prepare for target verify in a separate stream
|
|
588
|
+
with self.plan_stream_ctx:
|
|
589
|
+
verify_forward_batch, can_run_cuda_graph = (
|
|
590
|
+
verify_input.prepare_for_v2_verify(
|
|
591
|
+
self.req_to_token_pool,
|
|
592
|
+
batch,
|
|
593
|
+
self.target_worker,
|
|
594
|
+
)
|
|
595
|
+
)
|
|
596
|
+
|
|
597
|
+
# Correct some buffers due to the overlap plan
|
|
598
|
+
if self.plan_stream:
|
|
599
|
+
torch.cuda.current_stream().wait_stream(self.plan_stream)
|
|
600
|
+
|
|
601
|
+
# Some values such as custom_mask and position depend on the output of draft,
|
|
602
|
+
# so the previous plan step used the wrong values. Here, we need to run the related
|
|
603
|
+
# computation again to update them to the correct values.
|
|
604
|
+
self.target_worker.model_runner.attn_backend.update_verify_buffers_to_fill_after_draft(
|
|
605
|
+
verify_input,
|
|
606
|
+
(
|
|
607
|
+
self.target_worker.model_runner.graph_runner.bs
|
|
608
|
+
if can_run_cuda_graph
|
|
609
|
+
else None
|
|
610
|
+
),
|
|
611
|
+
)
|
|
612
|
+
|
|
613
|
+
# Run target verify batch in the main compute stream
|
|
614
|
+
forward_batch_output = self.target_worker.forward_batch_generation(
|
|
615
|
+
model_worker_batch=None,
|
|
616
|
+
forward_batch=verify_forward_batch,
|
|
617
|
+
is_verify=True,
|
|
618
|
+
skip_attn_backend_init=True,
|
|
619
|
+
)
|
|
620
|
+
logits_output = forward_batch_output.logits_output
|
|
621
|
+
|
|
622
|
+
# Sample
|
|
623
|
+
if self.enable_nan_detection:
|
|
624
|
+
detect_nan(logits_output)
|
|
625
|
+
(
|
|
626
|
+
predict,
|
|
627
|
+
accept_length,
|
|
628
|
+
accept_index,
|
|
629
|
+
) = verify_input.sample(batch, logits_output)
|
|
630
|
+
new_seq_lens = batch.seq_lens + accept_length
|
|
631
|
+
verify_done = torch.cuda.Event()
|
|
632
|
+
verify_done.record()
|
|
633
|
+
|
|
634
|
+
all_verified_id = predict[accept_index]
|
|
635
|
+
verified_id = torch.empty_like(accept_length, dtype=torch.int32)
|
|
636
|
+
fill_new_verified_id[(bs,)](
|
|
637
|
+
all_verified_id,
|
|
638
|
+
accept_length,
|
|
639
|
+
verified_id,
|
|
640
|
+
self.speculative_num_draft_tokens,
|
|
641
|
+
)
|
|
642
|
+
|
|
643
|
+
# Construct the next draft input
|
|
644
|
+
next_draft_input = EagleDraftInput(
|
|
645
|
+
verified_id=verified_id,
|
|
646
|
+
new_seq_lens=new_seq_lens,
|
|
647
|
+
allocate_lens=cur_allocate_lens,
|
|
648
|
+
verify_done=verify_done,
|
|
649
|
+
)
|
|
650
|
+
|
|
651
|
+
return GenerationBatchResult(
|
|
652
|
+
logits_output=logits_output,
|
|
653
|
+
next_token_ids=predict,
|
|
654
|
+
can_run_cuda_graph=can_run_cuda_graph,
|
|
655
|
+
next_draft_input=next_draft_input,
|
|
656
|
+
accept_lens=accept_length,
|
|
657
|
+
allocate_lens=cur_allocate_lens,
|
|
658
|
+
)
|
|
659
|
+
|
|
660
|
+
def move_accepted_tokens_to_target_kvcache(
|
|
661
|
+
self,
|
|
662
|
+
batch: ModelWorkerBatch,
|
|
663
|
+
accept_index: torch.Tensor,
|
|
664
|
+
accept_length: torch.Tensor,
|
|
665
|
+
):
|
|
666
|
+
"""
|
|
667
|
+
Move accepted tokens to the target KV cache.
|
|
668
|
+
|
|
669
|
+
Args:
|
|
670
|
+
batch: The batch to run.
|
|
671
|
+
accept_index: The index of the accepted tokens.
|
|
672
|
+
accept_length: The length of the accepted tokens.
|
|
673
|
+
"""
|
|
674
|
+
bs = len(batch.seq_lens)
|
|
675
|
+
size = bs * self.speculative_num_draft_tokens
|
|
676
|
+
|
|
677
|
+
tgt_cache_loc = torch.zeros(
|
|
678
|
+
size,
|
|
679
|
+
dtype=torch.int64,
|
|
680
|
+
device=self.device,
|
|
681
|
+
)
|
|
682
|
+
accepted_out_cache_loc = torch.zeros(
|
|
683
|
+
size, dtype=torch.int64, device=self.device
|
|
684
|
+
)
|
|
685
|
+
assign_extend_cache_locs[(bs,)](
|
|
686
|
+
batch.req_pool_indices,
|
|
687
|
+
self.req_to_token_pool.req_to_token,
|
|
688
|
+
batch.seq_lens,
|
|
689
|
+
batch.seq_lens + accept_length,
|
|
690
|
+
tgt_cache_loc,
|
|
691
|
+
self.req_to_token_pool.req_to_token.shape[1],
|
|
692
|
+
next_power_of_2(bs),
|
|
693
|
+
)
|
|
694
|
+
fill_accepted_out_cache_loc[(size,)](
|
|
695
|
+
accept_index,
|
|
696
|
+
batch.out_cache_loc,
|
|
697
|
+
accepted_out_cache_loc,
|
|
698
|
+
next_power_of_2(size),
|
|
699
|
+
)
|
|
700
|
+
self.token_to_kv_pool_allocator.get_kvcache().move_kv_cache(
|
|
701
|
+
tgt_cache_loc, accepted_out_cache_loc
|
|
702
|
+
)
|