sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +330 -156
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +8 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +134 -23
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +70 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +66 -66
 - sglang/srt/entrypoints/grpc_server.py +431 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +120 -8
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +42 -4
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +18 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +4 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +12 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +248 -21
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +11 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +45 -15
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +147 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +119 -397
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +17 -1
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +84 -18
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +5 -30
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +673 -16
 - sglang/srt/layers/sampler.py +36 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +66 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +399 -499
 - sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +378 -90
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +4 -1
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +435 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +28 -23
 - sglang/srt/model_executor/model_runner.py +379 -139
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +273 -98
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +14 -37
 - sglang/srt/models/glm4_moe_nextn.py +2 -2
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +5 -5
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3_moe.py +19 -35
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +6 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +577 -73
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +38 -28
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +192 -47
 - sglang/srt/utils/hf_transformers_utils.py +40 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +232 -99
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,480 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from __future__ import annotations
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 7 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 8 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
            from sglang.srt.mem_cache.allocator import SWATokenToKVPoolAllocator
         
     | 
| 
      
 11 
     | 
    
         
            +
            from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
         
     | 
| 
      
 12 
     | 
    
         
            +
            from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
         
     | 
| 
      
 13 
     | 
    
         
            +
            from sglang.srt.mem_cache.mamba_radix_cache import MambaRadixCache
         
     | 
| 
      
 14 
     | 
    
         
            +
            from sglang.srt.mem_cache.memory_pool import HybridReqToTokenPool, ReqToTokenPool
         
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
      
 16 
     | 
    
         
            +
            from sglang.srt.utils import support_triton
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            if TYPE_CHECKING:
         
     | 
| 
      
 19 
     | 
    
         
            +
                from sglang.srt.managers.schedule_batch import Req, ScheduleBatch
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 25 
     | 
    
         
            +
            def write_req_to_token_pool_triton(
         
     | 
| 
      
 26 
     | 
    
         
            +
                req_to_token_ptr,  # [max_batch, max_context_len]
         
     | 
| 
      
 27 
     | 
    
         
            +
                req_pool_indices,
         
     | 
| 
      
 28 
     | 
    
         
            +
                prefix_tensors,
         
     | 
| 
      
 29 
     | 
    
         
            +
                pre_lens,
         
     | 
| 
      
 30 
     | 
    
         
            +
                seq_lens,
         
     | 
| 
      
 31 
     | 
    
         
            +
                extend_lens,
         
     | 
| 
      
 32 
     | 
    
         
            +
                out_cache_loc,
         
     | 
| 
      
 33 
     | 
    
         
            +
                req_to_token_ptr_stride: tl.constexpr,
         
     | 
| 
      
 34 
     | 
    
         
            +
            ):
         
     | 
| 
      
 35 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr = 512
         
     | 
| 
      
 36 
     | 
    
         
            +
                pid = tl.program_id(0)
         
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
                req_pool_index = tl.load(req_pool_indices + pid)
         
     | 
| 
      
 39 
     | 
    
         
            +
                pre_len = tl.load(pre_lens + pid)
         
     | 
| 
      
 40 
     | 
    
         
            +
                seq_len = tl.load(seq_lens + pid)
         
     | 
| 
      
 41 
     | 
    
         
            +
                prefix_tensor = tl.load(prefix_tensors + pid).to(tl.pointer_type(tl.int64))
         
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
                # write prefix
         
     | 
| 
      
 44 
     | 
    
         
            +
                num_loop = tl.cdiv(pre_len, BLOCK_SIZE)
         
     | 
| 
      
 45 
     | 
    
         
            +
                for i in range(num_loop):
         
     | 
| 
      
 46 
     | 
    
         
            +
                    offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE
         
     | 
| 
      
 47 
     | 
    
         
            +
                    mask = offset < pre_len
         
     | 
| 
      
 48 
     | 
    
         
            +
                    value = tl.load(prefix_tensor + offset, mask=mask)
         
     | 
| 
      
 49 
     | 
    
         
            +
                    tl.store(
         
     | 
| 
      
 50 
     | 
    
         
            +
                        req_to_token_ptr + req_pool_index * req_to_token_ptr_stride + offset,
         
     | 
| 
      
 51 
     | 
    
         
            +
                        value,
         
     | 
| 
      
 52 
     | 
    
         
            +
                        mask=mask,
         
     | 
| 
      
 53 
     | 
    
         
            +
                    )
         
     | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
      
 55 
     | 
    
         
            +
                # NOTE: This can be slow for large bs
         
     | 
| 
      
 56 
     | 
    
         
            +
                cumsum_start = tl.cast(0, tl.int64)
         
     | 
| 
      
 57 
     | 
    
         
            +
                for i in range(pid):
         
     | 
| 
      
 58 
     | 
    
         
            +
                    cumsum_start += tl.load(extend_lens + i)
         
     | 
| 
      
 59 
     | 
    
         
            +
             
     | 
| 
      
 60 
     | 
    
         
            +
                num_loop = tl.cdiv(seq_len - pre_len, BLOCK_SIZE)
         
     | 
| 
      
 61 
     | 
    
         
            +
                for i in range(num_loop):
         
     | 
| 
      
 62 
     | 
    
         
            +
                    offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE
         
     | 
| 
      
 63 
     | 
    
         
            +
                    mask = offset < (seq_len - pre_len)
         
     | 
| 
      
 64 
     | 
    
         
            +
                    value = tl.load(out_cache_loc + cumsum_start + offset, mask=mask)
         
     | 
| 
      
 65 
     | 
    
         
            +
                    tl.store(
         
     | 
| 
      
 66 
     | 
    
         
            +
                        req_to_token_ptr
         
     | 
| 
      
 67 
     | 
    
         
            +
                        + req_pool_index * req_to_token_ptr_stride
         
     | 
| 
      
 68 
     | 
    
         
            +
                        + offset
         
     | 
| 
      
 69 
     | 
    
         
            +
                        + pre_len,
         
     | 
| 
      
 70 
     | 
    
         
            +
                        value,
         
     | 
| 
      
 71 
     | 
    
         
            +
                        mask=mask,
         
     | 
| 
      
 72 
     | 
    
         
            +
                    )
         
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
            def write_cache_indices(
         
     | 
| 
      
 76 
     | 
    
         
            +
                out_cache_loc: torch.Tensor,
         
     | 
| 
      
 77 
     | 
    
         
            +
                req_pool_indices_tensor: torch.Tensor,
         
     | 
| 
      
 78 
     | 
    
         
            +
                req_pool_indices_cpu: torch.Tensor,
         
     | 
| 
      
 79 
     | 
    
         
            +
                prefix_lens_tensor: torch.Tensor,
         
     | 
| 
      
 80 
     | 
    
         
            +
                prefix_lens_cpu: torch.Tensor,
         
     | 
| 
      
 81 
     | 
    
         
            +
                seq_lens_tensor: torch.Tensor,
         
     | 
| 
      
 82 
     | 
    
         
            +
                seq_lens_cpu: torch.Tensor,
         
     | 
| 
      
 83 
     | 
    
         
            +
                extend_lens_tensor: torch.Tensor,
         
     | 
| 
      
 84 
     | 
    
         
            +
                extend_lens_cpu: torch.Tensor,
         
     | 
| 
      
 85 
     | 
    
         
            +
                prefix_tensors: list[torch.Tensor],
         
     | 
| 
      
 86 
     | 
    
         
            +
                req_to_token_pool: ReqToTokenPool,
         
     | 
| 
      
 87 
     | 
    
         
            +
            ):
         
     | 
| 
      
 88 
     | 
    
         
            +
                if support_triton(get_global_server_args().attention_backend):
         
     | 
| 
      
 89 
     | 
    
         
            +
                    prefix_pointers = torch.tensor(
         
     | 
| 
      
 90 
     | 
    
         
            +
                        [t.data_ptr() for t in prefix_tensors],
         
     | 
| 
      
 91 
     | 
    
         
            +
                        device=req_to_token_pool.device,
         
     | 
| 
      
 92 
     | 
    
         
            +
                    )
         
     | 
| 
      
 93 
     | 
    
         
            +
                    # TODO: some tensors can be reused for ForwardBatchInfo (e.g., extend_lens, cumsum_start)
         
     | 
| 
      
 94 
     | 
    
         
            +
                    write_req_to_token_pool_triton[(req_pool_indices_tensor.shape[0],)](
         
     | 
| 
      
 95 
     | 
    
         
            +
                        req_to_token_pool.req_to_token,
         
     | 
| 
      
 96 
     | 
    
         
            +
                        req_pool_indices_tensor,
         
     | 
| 
      
 97 
     | 
    
         
            +
                        prefix_pointers,
         
     | 
| 
      
 98 
     | 
    
         
            +
                        prefix_lens_tensor,
         
     | 
| 
      
 99 
     | 
    
         
            +
                        seq_lens_tensor,
         
     | 
| 
      
 100 
     | 
    
         
            +
                        extend_lens_tensor,
         
     | 
| 
      
 101 
     | 
    
         
            +
                        out_cache_loc,
         
     | 
| 
      
 102 
     | 
    
         
            +
                        req_to_token_pool.req_to_token.shape[1],
         
     | 
| 
      
 103 
     | 
    
         
            +
                    )
         
     | 
| 
      
 104 
     | 
    
         
            +
                else:
         
     | 
| 
      
 105 
     | 
    
         
            +
                    pt = 0
         
     | 
| 
      
 106 
     | 
    
         
            +
                    for i in range(req_pool_indices_cpu.shape[0]):
         
     | 
| 
      
 107 
     | 
    
         
            +
                        req_idx = req_pool_indices_cpu[i].item()
         
     | 
| 
      
 108 
     | 
    
         
            +
                        prefix_len = prefix_lens_cpu[i].item()
         
     | 
| 
      
 109 
     | 
    
         
            +
                        seq_len = seq_lens_cpu[i].item()
         
     | 
| 
      
 110 
     | 
    
         
            +
                        extend_len = extend_lens_cpu[i].item()
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                        req_to_token_pool.write(
         
     | 
| 
      
 113 
     | 
    
         
            +
                            (req_idx, slice(0, prefix_len)),
         
     | 
| 
      
 114 
     | 
    
         
            +
                            prefix_tensors[i],
         
     | 
| 
      
 115 
     | 
    
         
            +
                        )
         
     | 
| 
      
 116 
     | 
    
         
            +
                        req_to_token_pool.write(
         
     | 
| 
      
 117 
     | 
    
         
            +
                            (req_idx, slice(prefix_len, seq_len)),
         
     | 
| 
      
 118 
     | 
    
         
            +
                            out_cache_loc[pt : pt + extend_len],
         
     | 
| 
      
 119 
     | 
    
         
            +
                        )
         
     | 
| 
      
 120 
     | 
    
         
            +
                        pt += extend_len
         
     | 
| 
      
 121 
     | 
    
         
            +
             
     | 
| 
      
 122 
     | 
    
         
            +
             
     | 
| 
      
 123 
     | 
    
         
            +
            def get_last_loc(
         
     | 
| 
      
 124 
     | 
    
         
            +
                req_to_token: torch.Tensor,
         
     | 
| 
      
 125 
     | 
    
         
            +
                req_pool_indices_tensor: torch.Tensor,
         
     | 
| 
      
 126 
     | 
    
         
            +
                prefix_lens_tensor: torch.Tensor,
         
     | 
| 
      
 127 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 128 
     | 
    
         
            +
                if (
         
     | 
| 
      
 129 
     | 
    
         
            +
                    get_global_server_args().attention_backend != "ascend"
         
     | 
| 
      
 130 
     | 
    
         
            +
                    and get_global_server_args().attention_backend != "torch_native"
         
     | 
| 
      
 131 
     | 
    
         
            +
                ):
         
     | 
| 
      
 132 
     | 
    
         
            +
                    impl = get_last_loc_triton
         
     | 
| 
      
 133 
     | 
    
         
            +
                else:
         
     | 
| 
      
 134 
     | 
    
         
            +
                    impl = get_last_loc_torch
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
                return impl(req_to_token, req_pool_indices_tensor, prefix_lens_tensor)
         
     | 
| 
      
 137 
     | 
    
         
            +
             
     | 
| 
      
 138 
     | 
    
         
            +
             
     | 
| 
      
 139 
     | 
    
         
            +
            def get_last_loc_torch(
         
     | 
| 
      
 140 
     | 
    
         
            +
                req_to_token: torch.Tensor,
         
     | 
| 
      
 141 
     | 
    
         
            +
                req_pool_indices_tensor: torch.Tensor,
         
     | 
| 
      
 142 
     | 
    
         
            +
                prefix_lens_tensor: torch.Tensor,
         
     | 
| 
      
 143 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 144 
     | 
    
         
            +
                return torch.where(
         
     | 
| 
      
 145 
     | 
    
         
            +
                    prefix_lens_tensor > 0,
         
     | 
| 
      
 146 
     | 
    
         
            +
                    req_to_token[req_pool_indices_tensor, prefix_lens_tensor - 1],
         
     | 
| 
      
 147 
     | 
    
         
            +
                    torch.full_like(prefix_lens_tensor, -1),
         
     | 
| 
      
 148 
     | 
    
         
            +
                )
         
     | 
| 
      
 149 
     | 
    
         
            +
             
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 152 
     | 
    
         
            +
            def get_last_loc_kernel(
         
     | 
| 
      
 153 
     | 
    
         
            +
                req_to_token,
         
     | 
| 
      
 154 
     | 
    
         
            +
                req_pool_indices_tensor,
         
     | 
| 
      
 155 
     | 
    
         
            +
                prefix_lens_tensor,
         
     | 
| 
      
 156 
     | 
    
         
            +
                result,
         
     | 
| 
      
 157 
     | 
    
         
            +
                num_tokens,
         
     | 
| 
      
 158 
     | 
    
         
            +
                req_to_token_stride,
         
     | 
| 
      
 159 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 160 
     | 
    
         
            +
            ):
         
     | 
| 
      
 161 
     | 
    
         
            +
                pid = tl.program_id(0)
         
     | 
| 
      
 162 
     | 
    
         
            +
                offset = tl.arange(0, BLOCK_SIZE) + pid * BLOCK_SIZE
         
     | 
| 
      
 163 
     | 
    
         
            +
                mask = offset < num_tokens
         
     | 
| 
      
 164 
     | 
    
         
            +
             
     | 
| 
      
 165 
     | 
    
         
            +
                prefix_lens = tl.load(prefix_lens_tensor + offset, mask=mask, other=0)
         
     | 
| 
      
 166 
     | 
    
         
            +
                req_pool_indices = tl.load(req_pool_indices_tensor + offset, mask=mask, other=0)
         
     | 
| 
      
 167 
     | 
    
         
            +
             
     | 
| 
      
 168 
     | 
    
         
            +
                token_mask = prefix_lens > 0
         
     | 
| 
      
 169 
     | 
    
         
            +
                token_index = req_pool_indices * req_to_token_stride + (prefix_lens - 1)
         
     | 
| 
      
 170 
     | 
    
         
            +
                tokens = tl.load(req_to_token + token_index, mask=token_mask, other=-1)
         
     | 
| 
      
 171 
     | 
    
         
            +
             
     | 
| 
      
 172 
     | 
    
         
            +
                tl.store(result + offset, tokens, mask=mask)
         
     | 
| 
      
 173 
     | 
    
         
            +
             
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
      
 175 
     | 
    
         
            +
            def get_last_loc_triton(
         
     | 
| 
      
 176 
     | 
    
         
            +
                req_to_token: torch.Tensor,
         
     | 
| 
      
 177 
     | 
    
         
            +
                req_pool_indices_tensor: torch.Tensor,
         
     | 
| 
      
 178 
     | 
    
         
            +
                prefix_lens_tensor: torch.Tensor,
         
     | 
| 
      
 179 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 180 
     | 
    
         
            +
                BLOCK_SIZE = 256
         
     | 
| 
      
 181 
     | 
    
         
            +
                num_tokens = prefix_lens_tensor.shape[0]
         
     | 
| 
      
 182 
     | 
    
         
            +
                result = torch.empty_like(prefix_lens_tensor)
         
     | 
| 
      
 183 
     | 
    
         
            +
                grid = (triton.cdiv(num_tokens, BLOCK_SIZE),)
         
     | 
| 
      
 184 
     | 
    
         
            +
             
     | 
| 
      
 185 
     | 
    
         
            +
                get_last_loc_kernel[grid](
         
     | 
| 
      
 186 
     | 
    
         
            +
                    req_to_token,
         
     | 
| 
      
 187 
     | 
    
         
            +
                    req_pool_indices_tensor,
         
     | 
| 
      
 188 
     | 
    
         
            +
                    prefix_lens_tensor,
         
     | 
| 
      
 189 
     | 
    
         
            +
                    result,
         
     | 
| 
      
 190 
     | 
    
         
            +
                    num_tokens,
         
     | 
| 
      
 191 
     | 
    
         
            +
                    req_to_token.stride(0),
         
     | 
| 
      
 192 
     | 
    
         
            +
                    BLOCK_SIZE,
         
     | 
| 
      
 193 
     | 
    
         
            +
                )
         
     | 
| 
      
 194 
     | 
    
         
            +
                return result
         
     | 
| 
      
 195 
     | 
    
         
            +
             
     | 
| 
      
 196 
     | 
    
         
            +
             
     | 
| 
      
 197 
     | 
    
         
            +
            def alloc_token_slots(
         
     | 
| 
      
 198 
     | 
    
         
            +
                tree_cache: BasePrefixCache,
         
     | 
| 
      
 199 
     | 
    
         
            +
                num_tokens: int,
         
     | 
| 
      
 200 
     | 
    
         
            +
                backup_state: bool = False,
         
     | 
| 
      
 201 
     | 
    
         
            +
            ):
         
     | 
| 
      
 202 
     | 
    
         
            +
                allocator = tree_cache.token_to_kv_pool_allocator
         
     | 
| 
      
 203 
     | 
    
         
            +
                evict_from_tree_cache(tree_cache, num_tokens)
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                state = None
         
     | 
| 
      
 206 
     | 
    
         
            +
                if backup_state:
         
     | 
| 
      
 207 
     | 
    
         
            +
                    state = allocator.backup_state()
         
     | 
| 
      
 208 
     | 
    
         
            +
             
     | 
| 
      
 209 
     | 
    
         
            +
                out_cache_loc = allocator.alloc(num_tokens)
         
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
      
 211 
     | 
    
         
            +
                if out_cache_loc is None:
         
     | 
| 
      
 212 
     | 
    
         
            +
                    error_msg = (
         
     | 
| 
      
 213 
     | 
    
         
            +
                        f"Out of memory. Try to lower your batch size.\n"
         
     | 
| 
      
 214 
     | 
    
         
            +
                        f"Try to allocate {num_tokens} tokens.\n"
         
     | 
| 
      
 215 
     | 
    
         
            +
                        f"{available_and_evictable_str(tree_cache)}"
         
     | 
| 
      
 216 
     | 
    
         
            +
                    )
         
     | 
| 
      
 217 
     | 
    
         
            +
                    logger.error(error_msg)
         
     | 
| 
      
 218 
     | 
    
         
            +
                    if tree_cache is not None:
         
     | 
| 
      
 219 
     | 
    
         
            +
                        tree_cache.pretty_print()
         
     | 
| 
      
 220 
     | 
    
         
            +
                    raise RuntimeError(error_msg)
         
     | 
| 
      
 221 
     | 
    
         
            +
             
     | 
| 
      
 222 
     | 
    
         
            +
                return (out_cache_loc, state) if backup_state else out_cache_loc
         
     | 
| 
      
 223 
     | 
    
         
            +
             
     | 
| 
      
 224 
     | 
    
         
            +
             
     | 
| 
      
 225 
     | 
    
         
            +
            def evict_from_tree_cache(tree_cache: BasePrefixCache | None, num_tokens: int):
         
     | 
| 
      
 226 
     | 
    
         
            +
                if tree_cache is None:
         
     | 
| 
      
 227 
     | 
    
         
            +
                    return
         
     | 
| 
      
 228 
     | 
    
         
            +
             
     | 
| 
      
 229 
     | 
    
         
            +
                if isinstance(tree_cache, (SWAChunkCache, ChunkCache)):
         
     | 
| 
      
 230 
     | 
    
         
            +
                    return
         
     | 
| 
      
 231 
     | 
    
         
            +
             
     | 
| 
      
 232 
     | 
    
         
            +
                allocator = tree_cache.token_to_kv_pool_allocator
         
     | 
| 
      
 233 
     | 
    
         
            +
             
     | 
| 
      
 234 
     | 
    
         
            +
                # Check if this is a hybrid allocator
         
     | 
| 
      
 235 
     | 
    
         
            +
                if hasattr(allocator, "full_available_size"):
         
     | 
| 
      
 236 
     | 
    
         
            +
                    # Hybrid allocator
         
     | 
| 
      
 237 
     | 
    
         
            +
                    full_available_size = allocator.full_available_size()
         
     | 
| 
      
 238 
     | 
    
         
            +
                    swa_available_size = allocator.swa_available_size()
         
     | 
| 
      
 239 
     | 
    
         
            +
             
     | 
| 
      
 240 
     | 
    
         
            +
                    if full_available_size < num_tokens or swa_available_size < num_tokens:
         
     | 
| 
      
 241 
     | 
    
         
            +
                        full_num_tokens = max(0, num_tokens - full_available_size)
         
     | 
| 
      
 242 
     | 
    
         
            +
                        swa_num_tokens = max(0, num_tokens - swa_available_size)
         
     | 
| 
      
 243 
     | 
    
         
            +
                        tree_cache.evict(full_num_tokens, swa_num_tokens)
         
     | 
| 
      
 244 
     | 
    
         
            +
                else:
         
     | 
| 
      
 245 
     | 
    
         
            +
                    # Standard allocator
         
     | 
| 
      
 246 
     | 
    
         
            +
                    if allocator.available_size() < num_tokens:
         
     | 
| 
      
 247 
     | 
    
         
            +
                        tree_cache.evict(num_tokens)
         
     | 
| 
      
 248 
     | 
    
         
            +
             
     | 
| 
      
 249 
     | 
    
         
            +
             
     | 
| 
      
 250 
     | 
    
         
            +
            def alloc_paged_token_slots_extend(
         
     | 
| 
      
 251 
     | 
    
         
            +
                tree_cache: BasePrefixCache,
         
     | 
| 
      
 252 
     | 
    
         
            +
                prefix_lens: torch.Tensor,
         
     | 
| 
      
 253 
     | 
    
         
            +
                prefix_lens_cpu: torch.Tensor,
         
     | 
| 
      
 254 
     | 
    
         
            +
                seq_lens: torch.Tensor,
         
     | 
| 
      
 255 
     | 
    
         
            +
                seq_lens_cpu: torch.Tensor,
         
     | 
| 
      
 256 
     | 
    
         
            +
                last_loc: torch.Tensor,
         
     | 
| 
      
 257 
     | 
    
         
            +
                extend_num_tokens: int,
         
     | 
| 
      
 258 
     | 
    
         
            +
                backup_state: bool = False,
         
     | 
| 
      
 259 
     | 
    
         
            +
            ):
         
     | 
| 
      
 260 
     | 
    
         
            +
                # Over estimate the number of tokens: assume each request needs a new page.
         
     | 
| 
      
 261 
     | 
    
         
            +
                allocator = tree_cache.token_to_kv_pool_allocator
         
     | 
| 
      
 262 
     | 
    
         
            +
                num_tokens = extend_num_tokens + len(seq_lens_cpu) * allocator.page_size
         
     | 
| 
      
 263 
     | 
    
         
            +
                evict_from_tree_cache(tree_cache, num_tokens)
         
     | 
| 
      
 264 
     | 
    
         
            +
             
     | 
| 
      
 265 
     | 
    
         
            +
                state = None
         
     | 
| 
      
 266 
     | 
    
         
            +
                if backup_state:
         
     | 
| 
      
 267 
     | 
    
         
            +
                    state = allocator.backup_state()
         
     | 
| 
      
 268 
     | 
    
         
            +
             
     | 
| 
      
 269 
     | 
    
         
            +
                out_cache_loc = allocator.alloc_extend(
         
     | 
| 
      
 270 
     | 
    
         
            +
                    prefix_lens,
         
     | 
| 
      
 271 
     | 
    
         
            +
                    prefix_lens_cpu,
         
     | 
| 
      
 272 
     | 
    
         
            +
                    seq_lens,
         
     | 
| 
      
 273 
     | 
    
         
            +
                    seq_lens_cpu,
         
     | 
| 
      
 274 
     | 
    
         
            +
                    last_loc,
         
     | 
| 
      
 275 
     | 
    
         
            +
                    extend_num_tokens,
         
     | 
| 
      
 276 
     | 
    
         
            +
                )
         
     | 
| 
      
 277 
     | 
    
         
            +
             
     | 
| 
      
 278 
     | 
    
         
            +
                if out_cache_loc is None:
         
     | 
| 
      
 279 
     | 
    
         
            +
                    error_msg = (
         
     | 
| 
      
 280 
     | 
    
         
            +
                        f"Prefill out of memory. Try to lower your batch size.\n"
         
     | 
| 
      
 281 
     | 
    
         
            +
                        f"Try to allocate {extend_num_tokens} tokens.\n"
         
     | 
| 
      
 282 
     | 
    
         
            +
                        f"{available_and_evictable_str(tree_cache)}"
         
     | 
| 
      
 283 
     | 
    
         
            +
                    )
         
     | 
| 
      
 284 
     | 
    
         
            +
                    logger.error(error_msg)
         
     | 
| 
      
 285 
     | 
    
         
            +
                    if tree_cache is not None:
         
     | 
| 
      
 286 
     | 
    
         
            +
                        tree_cache.pretty_print()
         
     | 
| 
      
 287 
     | 
    
         
            +
                    raise RuntimeError(error_msg)
         
     | 
| 
      
 288 
     | 
    
         
            +
             
     | 
| 
      
 289 
     | 
    
         
            +
                return (out_cache_loc, state) if backup_state else out_cache_loc
         
     | 
| 
      
 290 
     | 
    
         
            +
             
     | 
| 
      
 291 
     | 
    
         
            +
             
     | 
| 
      
 292 
     | 
    
         
            +
            def alloc_req_slots(
         
     | 
| 
      
 293 
     | 
    
         
            +
                req_to_token_pool: ReqToTokenPool,
         
     | 
| 
      
 294 
     | 
    
         
            +
                num_reqs: int,
         
     | 
| 
      
 295 
     | 
    
         
            +
                reqs: list[Req] | None,
         
     | 
| 
      
 296 
     | 
    
         
            +
                tree_cache: BasePrefixCache | None,
         
     | 
| 
      
 297 
     | 
    
         
            +
            ) -> list[int]:
         
     | 
| 
      
 298 
     | 
    
         
            +
                """Allocate request slots from the pool."""
         
     | 
| 
      
 299 
     | 
    
         
            +
                if isinstance(req_to_token_pool, HybridReqToTokenPool):
         
     | 
| 
      
 300 
     | 
    
         
            +
                    mamba_available_size = req_to_token_pool.mamba_pool.available_size()
         
     | 
| 
      
 301 
     | 
    
         
            +
                    if mamba_available_size < num_reqs:
         
     | 
| 
      
 302 
     | 
    
         
            +
                        if tree_cache is not None and isinstance(tree_cache, MambaRadixCache):
         
     | 
| 
      
 303 
     | 
    
         
            +
                            mamba_num = max(0, num_reqs - mamba_available_size)
         
     | 
| 
      
 304 
     | 
    
         
            +
                            tree_cache.evict_mamba(mamba_num)
         
     | 
| 
      
 305 
     | 
    
         
            +
                    req_pool_indices = req_to_token_pool.alloc(num_reqs, reqs)
         
     | 
| 
      
 306 
     | 
    
         
            +
                else:
         
     | 
| 
      
 307 
     | 
    
         
            +
                    req_pool_indices = req_to_token_pool.alloc(num_reqs)
         
     | 
| 
      
 308 
     | 
    
         
            +
             
     | 
| 
      
 309 
     | 
    
         
            +
                if req_pool_indices is None:
         
     | 
| 
      
 310 
     | 
    
         
            +
                    raise RuntimeError(
         
     | 
| 
      
 311 
     | 
    
         
            +
                        "alloc_req_slots runs out of memory. "
         
     | 
| 
      
 312 
     | 
    
         
            +
                        "Please set a smaller number for `--max-running-requests`. "
         
     | 
| 
      
 313 
     | 
    
         
            +
                        f"{req_to_token_pool.available_size()=}, "
         
     | 
| 
      
 314 
     | 
    
         
            +
                        f"{num_reqs=}, "
         
     | 
| 
      
 315 
     | 
    
         
            +
                    )
         
     | 
| 
      
 316 
     | 
    
         
            +
                return req_pool_indices
         
     | 
| 
      
 317 
     | 
    
         
            +
             
     | 
| 
      
 318 
     | 
    
         
            +
             
     | 
| 
      
 319 
     | 
    
         
            +
            def alloc_for_extend(
         
     | 
| 
      
 320 
     | 
    
         
            +
                batch: ScheduleBatch,
         
     | 
| 
      
 321 
     | 
    
         
            +
            ) -> tuple[torch.Tensor, torch.Tensor, list[int]]:
         
     | 
| 
      
 322 
     | 
    
         
            +
                """
         
     | 
| 
      
 323 
     | 
    
         
            +
                Allocate KV cache for extend batch and write to req_to_token_pool.
         
     | 
| 
      
 324 
     | 
    
         
            +
             
     | 
| 
      
 325 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 326 
     | 
    
         
            +
                    out_cache_loc: allocated cache locations
         
     | 
| 
      
 327 
     | 
    
         
            +
                    req_pool_indices_device: request pool indices at a device tensor
         
     | 
| 
      
 328 
     | 
    
         
            +
                    req_pool_indices: request pool indices as list
         
     | 
| 
      
 329 
     | 
    
         
            +
                """
         
     | 
| 
      
 330 
     | 
    
         
            +
                # free out-of-window swa tokens
         
     | 
| 
      
 331 
     | 
    
         
            +
                if isinstance(batch.tree_cache, SWAChunkCache):
         
     | 
| 
      
 332 
     | 
    
         
            +
                    for req, pre_len in zip(batch.reqs, batch.prefix_lens):
         
     | 
| 
      
 333 
     | 
    
         
            +
                        batch.tree_cache.evict_swa(
         
     | 
| 
      
 334 
     | 
    
         
            +
                            req, pre_len, batch.model_config.attention_chunk_size
         
     | 
| 
      
 335 
     | 
    
         
            +
                        )
         
     | 
| 
      
 336 
     | 
    
         
            +
             
     | 
| 
      
 337 
     | 
    
         
            +
                bs = len(batch.reqs)
         
     | 
| 
      
 338 
     | 
    
         
            +
                prefix_tensors = [r.prefix_indices for r in batch.reqs]
         
     | 
| 
      
 339 
     | 
    
         
            +
             
     | 
| 
      
 340 
     | 
    
         
            +
                # Create tensors for allocation
         
     | 
| 
      
 341 
     | 
    
         
            +
                prefix_lens_cpu = torch.tensor(batch.prefix_lens, dtype=torch.int64)
         
     | 
| 
      
 342 
     | 
    
         
            +
                extend_lens_cpu = torch.tensor(batch.extend_lens, dtype=torch.int64)
         
     | 
| 
      
 343 
     | 
    
         
            +
                prefix_lens_device = prefix_lens_cpu.to(batch.device, non_blocking=True)
         
     | 
| 
      
 344 
     | 
    
         
            +
                extend_lens_device = extend_lens_cpu.to(batch.device, non_blocking=True)
         
     | 
| 
      
 345 
     | 
    
         
            +
             
     | 
| 
      
 346 
     | 
    
         
            +
                # Allocate req slots
         
     | 
| 
      
 347 
     | 
    
         
            +
                req_pool_indices = alloc_req_slots(
         
     | 
| 
      
 348 
     | 
    
         
            +
                    batch.req_to_token_pool, bs, batch.reqs, batch.tree_cache
         
     | 
| 
      
 349 
     | 
    
         
            +
                )
         
     | 
| 
      
 350 
     | 
    
         
            +
                req_pool_indices_cpu = torch.tensor(req_pool_indices, dtype=torch.int64)
         
     | 
| 
      
 351 
     | 
    
         
            +
                req_pool_indices_device = req_pool_indices_cpu.to(batch.device, non_blocking=True)
         
     | 
| 
      
 352 
     | 
    
         
            +
             
     | 
| 
      
 353 
     | 
    
         
            +
                # Allocate KV cache (throws exception on failure)
         
     | 
| 
      
 354 
     | 
    
         
            +
                if batch.tree_cache.page_size == 1:
         
     | 
| 
      
 355 
     | 
    
         
            +
                    out_cache_loc = alloc_token_slots(batch.tree_cache, batch.extend_num_tokens)
         
     | 
| 
      
 356 
     | 
    
         
            +
                else:
         
     | 
| 
      
 357 
     | 
    
         
            +
                    # Paged allocation - build last_loc
         
     | 
| 
      
 358 
     | 
    
         
            +
                    last_loc = [
         
     | 
| 
      
 359 
     | 
    
         
            +
                        (t[-1:] if len(t) > 0 else torch.tensor([-1], device=batch.device))
         
     | 
| 
      
 360 
     | 
    
         
            +
                        for t in prefix_tensors
         
     | 
| 
      
 361 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 362 
     | 
    
         
            +
                    out_cache_loc = alloc_paged_token_slots_extend(
         
     | 
| 
      
 363 
     | 
    
         
            +
                        tree_cache=batch.tree_cache,
         
     | 
| 
      
 364 
     | 
    
         
            +
                        prefix_lens=prefix_lens_device,
         
     | 
| 
      
 365 
     | 
    
         
            +
                        prefix_lens_cpu=prefix_lens_cpu,
         
     | 
| 
      
 366 
     | 
    
         
            +
                        seq_lens=batch.seq_lens,
         
     | 
| 
      
 367 
     | 
    
         
            +
                        seq_lens_cpu=batch.seq_lens_cpu,
         
     | 
| 
      
 368 
     | 
    
         
            +
                        last_loc=torch.cat(last_loc),
         
     | 
| 
      
 369 
     | 
    
         
            +
                        extend_num_tokens=batch.extend_num_tokens,
         
     | 
| 
      
 370 
     | 
    
         
            +
                    )
         
     | 
| 
      
 371 
     | 
    
         
            +
             
     | 
| 
      
 372 
     | 
    
         
            +
                # Write to req_to_token_pool
         
     | 
| 
      
 373 
     | 
    
         
            +
                write_cache_indices(
         
     | 
| 
      
 374 
     | 
    
         
            +
                    out_cache_loc,
         
     | 
| 
      
 375 
     | 
    
         
            +
                    req_pool_indices_device,
         
     | 
| 
      
 376 
     | 
    
         
            +
                    req_pool_indices_cpu,
         
     | 
| 
      
 377 
     | 
    
         
            +
                    prefix_lens_device,
         
     | 
| 
      
 378 
     | 
    
         
            +
                    prefix_lens_cpu,
         
     | 
| 
      
 379 
     | 
    
         
            +
                    batch.seq_lens,
         
     | 
| 
      
 380 
     | 
    
         
            +
                    batch.seq_lens_cpu,
         
     | 
| 
      
 381 
     | 
    
         
            +
                    extend_lens_device,
         
     | 
| 
      
 382 
     | 
    
         
            +
                    extend_lens_cpu,
         
     | 
| 
      
 383 
     | 
    
         
            +
                    prefix_tensors,
         
     | 
| 
      
 384 
     | 
    
         
            +
                    batch.req_to_token_pool,
         
     | 
| 
      
 385 
     | 
    
         
            +
                )
         
     | 
| 
      
 386 
     | 
    
         
            +
             
     | 
| 
      
 387 
     | 
    
         
            +
                return out_cache_loc, req_pool_indices_device, req_pool_indices
         
     | 
| 
      
 388 
     | 
    
         
            +
             
     | 
| 
      
 389 
     | 
    
         
            +
             
     | 
| 
      
 390 
     | 
    
         
            +
            def alloc_paged_token_slots_decode(
         
     | 
| 
      
 391 
     | 
    
         
            +
                tree_cache: BasePrefixCache,
         
     | 
| 
      
 392 
     | 
    
         
            +
                seq_lens: torch.Tensor,
         
     | 
| 
      
 393 
     | 
    
         
            +
                seq_lens_cpu: torch.Tensor,
         
     | 
| 
      
 394 
     | 
    
         
            +
                last_loc: torch.Tensor,
         
     | 
| 
      
 395 
     | 
    
         
            +
                token_per_req: int = 1,
         
     | 
| 
      
 396 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 397 
     | 
    
         
            +
                """Allocate paged KV cache for decode batch."""
         
     | 
| 
      
 398 
     | 
    
         
            +
                allocator = tree_cache.token_to_kv_pool_allocator
         
     | 
| 
      
 399 
     | 
    
         
            +
                # Over estimate the number of tokens: assume each request needs a new page.
         
     | 
| 
      
 400 
     | 
    
         
            +
                num_tokens = len(seq_lens) * allocator.page_size
         
     | 
| 
      
 401 
     | 
    
         
            +
                evict_from_tree_cache(tree_cache, num_tokens)
         
     | 
| 
      
 402 
     | 
    
         
            +
             
     | 
| 
      
 403 
     | 
    
         
            +
                out_cache_loc = allocator.alloc_decode(seq_lens, seq_lens_cpu, last_loc)
         
     | 
| 
      
 404 
     | 
    
         
            +
             
     | 
| 
      
 405 
     | 
    
         
            +
                if out_cache_loc is None:
         
     | 
| 
      
 406 
     | 
    
         
            +
                    error_msg = (
         
     | 
| 
      
 407 
     | 
    
         
            +
                        f"Decode out of memory. Try to lower your batch size.\n"
         
     | 
| 
      
 408 
     | 
    
         
            +
                        f"Try to allocate {len(seq_lens) * token_per_req} tokens.\n"
         
     | 
| 
      
 409 
     | 
    
         
            +
                        f"{available_and_evictable_str(tree_cache)}"
         
     | 
| 
      
 410 
     | 
    
         
            +
                    )
         
     | 
| 
      
 411 
     | 
    
         
            +
                    logger.error(error_msg)
         
     | 
| 
      
 412 
     | 
    
         
            +
                    if tree_cache is not None:
         
     | 
| 
      
 413 
     | 
    
         
            +
                        tree_cache.pretty_print()
         
     | 
| 
      
 414 
     | 
    
         
            +
                    raise RuntimeError(error_msg)
         
     | 
| 
      
 415 
     | 
    
         
            +
             
     | 
| 
      
 416 
     | 
    
         
            +
                return out_cache_loc
         
     | 
| 
      
 417 
     | 
    
         
            +
             
     | 
| 
      
 418 
     | 
    
         
            +
             
     | 
| 
      
 419 
     | 
    
         
            +
            def alloc_for_decode(batch: ScheduleBatch, token_per_req: int) -> torch.Tensor:
         
     | 
| 
      
 420 
     | 
    
         
            +
                """
         
     | 
| 
      
 421 
     | 
    
         
            +
                Allocate KV cache for decode batch and write to req_to_token_pool.
         
     | 
| 
      
 422 
     | 
    
         
            +
             
     | 
| 
      
 423 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 424 
     | 
    
         
            +
                    out_cache_loc: allocated cache locations
         
     | 
| 
      
 425 
     | 
    
         
            +
                """
         
     | 
| 
      
 426 
     | 
    
         
            +
                if isinstance(batch.tree_cache, SWAChunkCache):
         
     | 
| 
      
 427 
     | 
    
         
            +
                    for req in batch.reqs:
         
     | 
| 
      
 428 
     | 
    
         
            +
                        batch.tree_cache.evict_swa(
         
     | 
| 
      
 429 
     | 
    
         
            +
                            req, req.seqlen - 1, batch.model_config.attention_chunk_size
         
     | 
| 
      
 430 
     | 
    
         
            +
                        )
         
     | 
| 
      
 431 
     | 
    
         
            +
             
     | 
| 
      
 432 
     | 
    
         
            +
                bs = batch.seq_lens.shape[0]
         
     | 
| 
      
 433 
     | 
    
         
            +
             
     | 
| 
      
 434 
     | 
    
         
            +
                if batch.tree_cache.page_size == 1:
         
     | 
| 
      
 435 
     | 
    
         
            +
                    # Non-paged allocation
         
     | 
| 
      
 436 
     | 
    
         
            +
                    out_cache_loc = alloc_token_slots(batch.tree_cache, bs * token_per_req)
         
     | 
| 
      
 437 
     | 
    
         
            +
                else:
         
     | 
| 
      
 438 
     | 
    
         
            +
                    # Paged allocation
         
     | 
| 
      
 439 
     | 
    
         
            +
                    last_loc = batch.req_to_token_pool.req_to_token[
         
     | 
| 
      
 440 
     | 
    
         
            +
                        batch.req_pool_indices, batch.seq_lens - 1
         
     | 
| 
      
 441 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 442 
     | 
    
         
            +
                    seq_lens_next = batch.seq_lens + token_per_req
         
     | 
| 
      
 443 
     | 
    
         
            +
                    out_cache_loc = alloc_paged_token_slots_decode(
         
     | 
| 
      
 444 
     | 
    
         
            +
                        tree_cache=batch.tree_cache,
         
     | 
| 
      
 445 
     | 
    
         
            +
                        seq_lens=seq_lens_next,
         
     | 
| 
      
 446 
     | 
    
         
            +
                        seq_lens_cpu=batch.seq_lens_cpu + token_per_req,
         
     | 
| 
      
 447 
     | 
    
         
            +
                        last_loc=last_loc,
         
     | 
| 
      
 448 
     | 
    
         
            +
                        token_per_req=token_per_req,
         
     | 
| 
      
 449 
     | 
    
         
            +
                    )
         
     | 
| 
      
 450 
     | 
    
         
            +
             
     | 
| 
      
 451 
     | 
    
         
            +
                # Write to req_to_token_pool
         
     | 
| 
      
 452 
     | 
    
         
            +
                if batch.model_config.is_encoder_decoder:
         
     | 
| 
      
 453 
     | 
    
         
            +
                    locs = batch.encoder_lens + batch.seq_lens
         
     | 
| 
      
 454 
     | 
    
         
            +
                else:
         
     | 
| 
      
 455 
     | 
    
         
            +
                    locs = batch.seq_lens.clone()
         
     | 
| 
      
 456 
     | 
    
         
            +
             
     | 
| 
      
 457 
     | 
    
         
            +
                batch.req_to_token_pool.write(
         
     | 
| 
      
 458 
     | 
    
         
            +
                    (batch.req_pool_indices, locs), out_cache_loc.to(torch.int32)
         
     | 
| 
      
 459 
     | 
    
         
            +
                )
         
     | 
| 
      
 460 
     | 
    
         
            +
             
     | 
| 
      
 461 
     | 
    
         
            +
                return out_cache_loc
         
     | 
| 
      
 462 
     | 
    
         
            +
             
     | 
| 
      
 463 
     | 
    
         
            +
             
     | 
| 
      
 464 
     | 
    
         
            +
            def available_and_evictable_str(tree_cache) -> str:
         
     | 
| 
      
 465 
     | 
    
         
            +
                token_to_kv_pool_allocator = tree_cache.token_to_kv_pool_allocator
         
     | 
| 
      
 466 
     | 
    
         
            +
                if isinstance(token_to_kv_pool_allocator, SWATokenToKVPoolAllocator):
         
     | 
| 
      
 467 
     | 
    
         
            +
                    full_available_size = token_to_kv_pool_allocator.full_available_size()
         
     | 
| 
      
 468 
     | 
    
         
            +
                    swa_available_size = token_to_kv_pool_allocator.swa_available_size()
         
     | 
| 
      
 469 
     | 
    
         
            +
                    full_evictable_size = tree_cache.full_evictable_size()
         
     | 
| 
      
 470 
     | 
    
         
            +
                    swa_evictable_size = tree_cache.swa_evictable_size()
         
     | 
| 
      
 471 
     | 
    
         
            +
                    return (
         
     | 
| 
      
 472 
     | 
    
         
            +
                        f"Available full tokens: {full_available_size + full_evictable_size} ({full_available_size=} + {full_evictable_size=})\n"
         
     | 
| 
      
 473 
     | 
    
         
            +
                        f"Available swa tokens: {swa_available_size + swa_evictable_size} ({swa_available_size=} + {swa_evictable_size=})\n"
         
     | 
| 
      
 474 
     | 
    
         
            +
                        f"Full LRU list evictable size: {tree_cache.full_lru_list_evictable_size()}\n"
         
     | 
| 
      
 475 
     | 
    
         
            +
                        f"SWA LRU list evictable size: {tree_cache.swa_lru_list_evictable_size()}\n"
         
     | 
| 
      
 476 
     | 
    
         
            +
                    )
         
     | 
| 
      
 477 
     | 
    
         
            +
                else:
         
     | 
| 
      
 478 
     | 
    
         
            +
                    available_size = token_to_kv_pool_allocator.available_size()
         
     | 
| 
      
 479 
     | 
    
         
            +
                    evictable_size = tree_cache.evictable_size()
         
     | 
| 
      
 480 
     | 
    
         
            +
                    return f"Available tokens: {available_size + evictable_size} ({available_size=} + {evictable_size=})\n"
         
     | 
| 
         @@ -1,7 +1,7 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
3 
     | 
    
         
             
            from abc import ABC, abstractmethod
         
     | 
| 
       4 
     | 
    
         
            -
            from typing import TYPE_CHECKING,  
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Tuple, Union
         
     | 
| 
       5 
5 
     | 
    
         | 
| 
       6 
6 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       7 
7 
     | 
    
         
             
                from sglang.srt.mem_cache.radix_cache import TreeNode
         
     | 
| 
         @@ -21,3 +21,18 @@ class LRUStrategy(EvictionStrategy): 
     | 
|
| 
       21 
21 
     | 
    
         
             
            class LFUStrategy(EvictionStrategy):
         
     | 
| 
       22 
22 
     | 
    
         
             
                def get_priority(self, node: "TreeNode") -> Tuple[int, float]:
         
     | 
| 
       23 
23 
     | 
    
         
             
                    return (node.hit_count, node.last_access_time)
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
            class FIFOStrategy(EvictionStrategy):
         
     | 
| 
      
 27 
     | 
    
         
            +
                def get_priority(self, node: "TreeNode") -> float:
         
     | 
| 
      
 28 
     | 
    
         
            +
                    return node.creation_time
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
            class MRUStrategy(EvictionStrategy):
         
     | 
| 
      
 32 
     | 
    
         
            +
                def get_priority(self, node: "TreeNode") -> float:
         
     | 
| 
      
 33 
     | 
    
         
            +
                    return -node.last_access_time
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
            class FILOStrategy(EvictionStrategy):
         
     | 
| 
      
 37 
     | 
    
         
            +
                def get_priority(self, node: "TreeNode") -> float:
         
     | 
| 
      
 38 
     | 
    
         
            +
                    return -node.creation_time
         
     | 
| 
         @@ -36,6 +36,7 @@ class HiCacheStorageConfig: 
     | 
|
| 
       36 
36 
     | 
    
         | 
| 
       37 
37 
     | 
    
         
             
            @dataclass
         
     | 
| 
       38 
38 
     | 
    
         
             
            class HiCacheStorageExtraInfo:
         
     | 
| 
      
 39 
     | 
    
         
            +
                prefix_keys: Optional[List[str]] = (None,)
         
     | 
| 
       39 
40 
     | 
    
         
             
                extra_info: Optional[dict] = None
         
     | 
| 
       40 
41 
     | 
    
         | 
| 
       41 
42 
     | 
    
         | 
| 
         @@ -139,7 +140,9 @@ class HiCacheStorage(ABC): 
     | 
|
| 
       139 
140 
     | 
    
         
             
                    pass
         
     | 
| 
       140 
141 
     | 
    
         | 
| 
       141 
142 
     | 
    
         
             
                # TODO: Use a finer-grained return type (e.g., List[bool])
         
     | 
| 
       142 
     | 
    
         
            -
                def batch_exists( 
     | 
| 
      
 143 
     | 
    
         
            +
                def batch_exists(
         
     | 
| 
      
 144 
     | 
    
         
            +
                    self, keys: List[str], extra_info: Optional[HiCacheStorageExtraInfo] = None
         
     | 
| 
      
 145 
     | 
    
         
            +
                ) -> int:
         
     | 
| 
       143 
146 
     | 
    
         
             
                    """
         
     | 
| 
       144 
147 
     | 
    
         
             
                    Check if the keys exist in the storage.
         
     | 
| 
       145 
148 
     | 
    
         
             
                    return the number of consecutive existing keys from the start.
         
     | 
| 
         @@ -84,12 +84,14 @@ class HiRadixCache(RadixCache): 
     | 
|
| 
       84 
84 
     | 
    
         
             
                        prefetch_threshold,
         
     | 
| 
       85 
85 
     | 
    
         
             
                        prefetch_timeout_base,
         
     | 
| 
       86 
86 
     | 
    
         
             
                        prefetch_timeout_per_ki_token,
         
     | 
| 
      
 87 
     | 
    
         
            +
                        hicache_storage_pass_prefix_keys,
         
     | 
| 
       87 
88 
     | 
    
         
             
                    ) = self._parse_storage_backend_extra_config(storage_backend_extra_config)
         
     | 
| 
       88 
89 
     | 
    
         
             
                    self.prefetch_threshold = prefetch_threshold
         
     | 
| 
       89 
90 
     | 
    
         
             
                    self.prefetch_timeout_base = prefetch_timeout_base
         
     | 
| 
       90 
91 
     | 
    
         
             
                    self.prefetch_timeout_per_page = (
         
     | 
| 
       91 
92 
     | 
    
         
             
                        page_size / 1024 * prefetch_timeout_per_ki_token
         
     | 
| 
       92 
93 
     | 
    
         
             
                    )
         
     | 
| 
      
 94 
     | 
    
         
            +
                    self.hicache_storage_pass_prefix_keys = hicache_storage_pass_prefix_keys
         
     | 
| 
       93 
95 
     | 
    
         
             
                    # TODO: support more timeout check functions
         
     | 
| 
       94 
96 
     | 
    
         
             
                    self.is_prefetch_timeout = self._prefetch_timeout_check_linear_func
         
     | 
| 
       95 
97 
     | 
    
         
             
                    self.prefetch_stop_policy = hicache_storage_prefetch_policy
         
     | 
| 
         @@ -149,7 +151,7 @@ class HiRadixCache(RadixCache): 
     | 
|
| 
       149 
151 
     | 
    
         
             
                        storage_backend_extra_config: JSON string containing extra configuration
         
     | 
| 
       150 
152 
     | 
    
         | 
| 
       151 
153 
     | 
    
         
             
                    Returns:
         
     | 
| 
       152 
     | 
    
         
            -
                        tuple: (extra_config_dict, prefetch_threshold, prefetch_timeout_base, prefetch_timeout_per_ki_token)
         
     | 
| 
      
 154 
     | 
    
         
            +
                        tuple: (extra_config_dict, prefetch_threshold, prefetch_timeout_base, prefetch_timeout_per_ki_token, hicache_storage_pass_prefix_keys)
         
     | 
| 
       153 
155 
     | 
    
         
             
                    """
         
     | 
| 
       154 
156 
     | 
    
         
             
                    # Parse extra config JSON if provided
         
     | 
| 
       155 
157 
     | 
    
         
             
                    extra_config = {}
         
     | 
| 
         @@ -165,6 +167,9 @@ class HiRadixCache(RadixCache): 
     | 
|
| 
       165 
167 
     | 
    
         
             
                    prefetch_timeout_per_ki_token = extra_config.pop(
         
     | 
| 
       166 
168 
     | 
    
         
             
                        "prefetch_timeout_per_ki_token", 0.25
         
     | 
| 
       167 
169 
     | 
    
         
             
                    )  # seconds per 1024 tokens
         
     | 
| 
      
 170 
     | 
    
         
            +
                    hicache_storage_pass_prefix_keys = extra_config.pop(
         
     | 
| 
      
 171 
     | 
    
         
            +
                        "hicache_storage_pass_prefix_keys", False
         
     | 
| 
      
 172 
     | 
    
         
            +
                    )
         
     | 
| 
       168 
173 
     | 
    
         | 
| 
       169 
174 
     | 
    
         
             
                    if not isinstance(prefetch_threshold, int):
         
     | 
| 
       170 
175 
     | 
    
         
             
                        raise ValueError(
         
     | 
| 
         @@ -184,6 +189,7 @@ class HiRadixCache(RadixCache): 
     | 
|
| 
       184 
189 
     | 
    
         
             
                        prefetch_threshold,
         
     | 
| 
       185 
190 
     | 
    
         
             
                        float(prefetch_timeout_base),
         
     | 
| 
       186 
191 
     | 
    
         
             
                        float(prefetch_timeout_per_ki_token),
         
     | 
| 
      
 192 
     | 
    
         
            +
                        hicache_storage_pass_prefix_keys,
         
     | 
| 
       187 
193 
     | 
    
         
             
                    )
         
     | 
| 
       188 
194 
     | 
    
         | 
| 
       189 
195 
     | 
    
         
             
                def reset(self):
         
     | 
| 
         @@ -245,8 +251,14 @@ class HiRadixCache(RadixCache): 
     | 
|
| 
       245 
251 
     | 
    
         
             
                    return len(host_indices)
         
     | 
| 
       246 
252 
     | 
    
         | 
| 
       247 
253 
     | 
    
         
             
                def write_backup_storage(self, node: TreeNode):
         
     | 
| 
      
 254 
     | 
    
         
            +
                    prefix_keys = (
         
     | 
| 
      
 255 
     | 
    
         
            +
                        node.get_prefix_hash_values(node.parent)
         
     | 
| 
      
 256 
     | 
    
         
            +
                        if self.hicache_storage_pass_prefix_keys
         
     | 
| 
      
 257 
     | 
    
         
            +
                        else None
         
     | 
| 
      
 258 
     | 
    
         
            +
                    )
         
     | 
| 
      
 259 
     | 
    
         
            +
             
     | 
| 
       248 
260 
     | 
    
         
             
                    operation_id = self.cache_controller.write_storage(
         
     | 
| 
       249 
     | 
    
         
            -
                        node.host_value, node.key, node.hash_value
         
     | 
| 
      
 261 
     | 
    
         
            +
                        node.host_value, node.key, node.hash_value, prefix_keys
         
     | 
| 
       250 
262 
     | 
    
         
             
                    )
         
     | 
| 
       251 
263 
     | 
    
         
             
                    self.ongoing_backup[operation_id] = node
         
     | 
| 
       252 
264 
     | 
    
         
             
                    node.protect_host()
         
     | 
| 
         @@ -700,6 +712,7 @@ class HiRadixCache(RadixCache): 
     | 
|
| 
       700 
712 
     | 
    
         
             
                    last_host_node: TreeNode,
         
     | 
| 
       701 
713 
     | 
    
         
             
                    new_input_tokens: List[int],
         
     | 
| 
       702 
714 
     | 
    
         
             
                    last_hash: Optional[str] = None,
         
     | 
| 
      
 715 
     | 
    
         
            +
                    prefix_keys: Optional[List[str]] = None,
         
     | 
| 
       703 
716 
     | 
    
         
             
                ):
         
     | 
| 
       704 
717 
     | 
    
         
             
                    # align the number of fetching tokens to the page size
         
     | 
| 
       705 
718 
     | 
    
         
             
                    prefetch_length = len(new_input_tokens) - (
         
     | 
| 
         @@ -723,7 +736,7 @@ class HiRadixCache(RadixCache): 
     | 
|
| 
       723 
736 
     | 
    
         
             
                        # no sufficient host memory for prefetch
         
     | 
| 
       724 
737 
     | 
    
         
             
                        return
         
     | 
| 
       725 
738 
     | 
    
         
             
                    operation = self.cache_controller.prefetch(
         
     | 
| 
       726 
     | 
    
         
            -
                        req_id, host_indices, new_input_tokens, last_hash
         
     | 
| 
      
 739 
     | 
    
         
            +
                        req_id, host_indices, new_input_tokens, last_hash, prefix_keys
         
     | 
| 
       727 
740 
     | 
    
         
             
                    )
         
     | 
| 
       728 
741 
     | 
    
         
             
                    self.ongoing_prefetch[req_id] = (
         
     | 
| 
       729 
742 
     | 
    
         
             
                        last_host_node,
         
     |