sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +330 -156
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +8 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +134 -23
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +70 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +66 -66
 - sglang/srt/entrypoints/grpc_server.py +431 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +120 -8
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +42 -4
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +18 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +4 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +12 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +248 -21
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +11 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +45 -15
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +147 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +119 -397
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +17 -1
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +84 -18
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +5 -30
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +673 -16
 - sglang/srt/layers/sampler.py +36 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +66 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +399 -499
 - sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +378 -90
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +4 -1
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +435 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +28 -23
 - sglang/srt/model_executor/model_runner.py +379 -139
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +273 -98
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +14 -37
 - sglang/srt/models/glm4_moe_nextn.py +2 -2
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +5 -5
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3_moe.py +19 -35
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +6 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +577 -73
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +38 -28
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +192 -47
 - sglang/srt/utils/hf_transformers_utils.py +40 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +232 -99
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,6 +1,5 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            import sys
         
     | 
| 
       4 
3 
     | 
    
         
             
            from dataclasses import dataclass
         
     | 
| 
       5 
4 
     | 
    
         
             
            from typing import TYPE_CHECKING, Dict, List, Literal, Optional, TypeAlias
         
     | 
| 
       6 
5 
     | 
    
         | 
| 
         @@ -30,22 +29,23 @@ if TYPE_CHECKING: 
     | 
|
| 
       30 
29 
     | 
    
         
             
                from sglang.srt.model_executor.model_runner import ModelRunner
         
     | 
| 
       31 
30 
     | 
    
         
             
                from sglang.srt.speculative.spec_info import SpecInput
         
     | 
| 
       32 
31 
     | 
    
         | 
| 
      
 32 
     | 
    
         
            +
             
     | 
| 
       33 
33 
     | 
    
         
             
            _is_hip = is_hip()
         
     | 
| 
       34 
34 
     | 
    
         | 
| 
       35 
35 
     | 
    
         
             
            if _is_hip:
         
     | 
| 
       36 
36 
     | 
    
         
             
                try:
         
     | 
| 
       37 
     | 
    
         
            -
                    from aiter import (
         
     | 
| 
      
 37 
     | 
    
         
            +
                    from aiter import (  # noqa: F401
         
     | 
| 
       38 
38 
     | 
    
         
             
                        flash_attn_varlen_func,
         
     | 
| 
       39 
39 
     | 
    
         
             
                        mha_batch_prefill_func,
         
     | 
| 
       40 
40 
     | 
    
         
             
                        paged_attention_ragged,
         
     | 
| 
       41 
41 
     | 
    
         
             
                    )
         
     | 
| 
       42 
     | 
    
         
            -
                    from aiter.mla import mla_decode_fwd, mla_prefill_fwd
         
     | 
| 
      
 42 
     | 
    
         
            +
                    from aiter.mla import mla_decode_fwd, mla_prefill_fwd  # noqa: F401
         
     | 
| 
       43 
43 
     | 
    
         
             
                except ImportError:
         
     | 
| 
       44 
44 
     | 
    
         
             
                    print(
         
     | 
| 
       45 
45 
     | 
    
         
             
                        "aiter is AMD specific kernel library. Please make sure aiter is installed on your AMD device."
         
     | 
| 
       46 
46 
     | 
    
         
             
                    )
         
     | 
| 
       47 
47 
     | 
    
         
             
            else:
         
     | 
| 
       48 
     | 
    
         
            -
                from sgl_kernel.flash_attn import  
     | 
| 
      
 48 
     | 
    
         
            +
                from sgl_kernel.flash_attn import flash_attn_with_kvcache
         
     | 
| 
       49 
49 
     | 
    
         | 
| 
       50 
50 
     | 
    
         | 
| 
       51 
51 
     | 
    
         
             
            @dataclass(frozen=True)
         
     | 
| 
         @@ -140,16 +140,21 @@ def compute_cu_seqlens(seqlens: torch.Tensor) -> torch.Tensor: 
     | 
|
| 
       140 
140 
     | 
    
         
             
                )
         
     | 
| 
       141 
141 
     | 
    
         | 
| 
       142 
142 
     | 
    
         | 
| 
       143 
     | 
    
         
            -
            _NSA_IMPL_T: TypeAlias = Literal[
         
     | 
| 
       144 
     | 
    
         
            -
                "flashmla_prefill", "flashmla_decode", "fa3", "tilelang"
         
     | 
| 
       145 
     | 
    
         
            -
            ]
         
     | 
| 
      
 143 
     | 
    
         
            +
            _NSA_IMPL_T: TypeAlias = Literal["flashmla_sparse", "flashmla_kv", "fa3", "tilelang"]
         
     | 
| 
       146 
144 
     | 
    
         | 
| 
       147 
145 
     | 
    
         
             
            NSA_PREFILL_IMPL: _NSA_IMPL_T
         
     | 
| 
       148 
146 
     | 
    
         
             
            NSA_DECODE_IMPL: _NSA_IMPL_T
         
     | 
| 
       149 
147 
     | 
    
         | 
| 
       150 
148 
     | 
    
         | 
| 
       151 
149 
     | 
    
         
             
            class NativeSparseAttnBackend(AttentionBackend):
         
     | 
| 
       152 
     | 
    
         
            -
                def __init__( 
     | 
| 
      
 150 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 151 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 152 
     | 
    
         
            +
                    model_runner: ModelRunner,
         
     | 
| 
      
 153 
     | 
    
         
            +
                    skip_prefill: bool = False,
         
     | 
| 
      
 154 
     | 
    
         
            +
                    speculative_step_id=0,
         
     | 
| 
      
 155 
     | 
    
         
            +
                    topk=0,
         
     | 
| 
      
 156 
     | 
    
         
            +
                    speculative_num_steps=0,
         
     | 
| 
      
 157 
     | 
    
         
            +
                ):
         
     | 
| 
       153 
158 
     | 
    
         
             
                    super().__init__()
         
     | 
| 
       154 
159 
     | 
    
         
             
                    self.forward_metadata: NSAMetadata
         
     | 
| 
       155 
160 
     | 
    
         
             
                    self.device = model_runner.device
         
     | 
| 
         @@ -174,8 +179,8 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       174 
179 
     | 
    
         
             
                    self.req_to_token = model_runner.req_to_token_pool.req_to_token
         
     | 
| 
       175 
180 
     | 
    
         | 
| 
       176 
181 
     | 
    
         
             
                    global NSA_PREFILL_IMPL, NSA_DECODE_IMPL
         
     | 
| 
       177 
     | 
    
         
            -
                    NSA_PREFILL_IMPL = model_runner.server_args. 
     | 
| 
       178 
     | 
    
         
            -
                    NSA_DECODE_IMPL = model_runner.server_args. 
     | 
| 
      
 182 
     | 
    
         
            +
                    NSA_PREFILL_IMPL = model_runner.server_args.nsa_prefill_backend
         
     | 
| 
      
 183 
     | 
    
         
            +
                    NSA_DECODE_IMPL = model_runner.server_args.nsa_decode_backend
         
     | 
| 
       179 
184 
     | 
    
         | 
| 
       180 
185 
     | 
    
         
             
                    self._arange_buf = torch.arange(16384, device=self.device, dtype=torch.int32)
         
     | 
| 
       181 
186 
     | 
    
         | 
| 
         @@ -186,6 +191,14 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       186 
191 
     | 
    
         
             
                            (max_bs + 1,), dtype=torch.int32, device=model_runner.device
         
     | 
| 
       187 
192 
     | 
    
         
             
                        )
         
     | 
| 
       188 
193 
     | 
    
         | 
| 
      
 194 
     | 
    
         
            +
                    # Speculative decoding
         
     | 
| 
      
 195 
     | 
    
         
            +
                    self.topk = model_runner.server_args.speculative_eagle_topk or 0
         
     | 
| 
      
 196 
     | 
    
         
            +
                    self.speculative_num_steps = speculative_num_steps
         
     | 
| 
      
 197 
     | 
    
         
            +
                    self.speculative_num_draft_tokens = (
         
     | 
| 
      
 198 
     | 
    
         
            +
                        model_runner.server_args.speculative_num_draft_tokens
         
     | 
| 
      
 199 
     | 
    
         
            +
                    )
         
     | 
| 
      
 200 
     | 
    
         
            +
                    self.speculative_step_id = speculative_step_id
         
     | 
| 
      
 201 
     | 
    
         
            +
             
     | 
| 
       189 
202 
     | 
    
         
             
                def get_device_int32_arange(self, l: int) -> torch.Tensor:
         
     | 
| 
       190 
203 
     | 
    
         
             
                    if l > len(self._arange_buf):
         
     | 
| 
       191 
204 
     | 
    
         
             
                        next_pow_of_2 = 1 << (l - 1).bit_length()
         
     | 
| 
         @@ -209,13 +222,15 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       209 
222 
     | 
    
         
             
                    batch_size = forward_batch.batch_size
         
     | 
| 
       210 
223 
     | 
    
         
             
                    device = forward_batch.seq_lens.device
         
     | 
| 
       211 
224 
     | 
    
         | 
| 
       212 
     | 
    
         
            -
                     
     | 
| 
       213 
     | 
    
         
            -
                         
     | 
| 
       214 
     | 
    
         
            -
                     
     | 
| 
       215 
     | 
    
         
            -
             
     | 
| 
      
 225 
     | 
    
         
            +
                    if forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 226 
     | 
    
         
            +
                        draft_token_num = self.speculative_num_draft_tokens
         
     | 
| 
      
 227 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 228 
     | 
    
         
            +
                        draft_token_num = 0
         
     | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
                    cache_seqlens_int32 = (forward_batch.seq_lens + draft_token_num).to(torch.int32)
         
     | 
| 
       216 
231 
     | 
    
         
             
                    cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
         
     | 
| 
       217 
232 
     | 
    
         
             
                    assert forward_batch.seq_lens_cpu is not None
         
     | 
| 
       218 
     | 
    
         
            -
                    max_seqlen_k = int(forward_batch.seq_lens_cpu.max().item())
         
     | 
| 
      
 233 
     | 
    
         
            +
                    max_seqlen_k = int(forward_batch.seq_lens_cpu.max().item() + draft_token_num)
         
     | 
| 
       219 
234 
     | 
    
         
             
                    page_table = forward_batch.req_to_token_pool.req_to_token[
         
     | 
| 
       220 
235 
     | 
    
         
             
                        forward_batch.req_pool_indices, :max_seqlen_k
         
     | 
| 
       221 
236 
     | 
    
         
             
                    ]
         
     | 
| 
         @@ -225,6 +240,41 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       225 
240 
     | 
    
         
             
                        max_seqlen_q = 1
         
     | 
| 
       226 
241 
     | 
    
         
             
                        cu_seqlens_q = self.get_device_int32_arange(batch_size + 1)
         
     | 
| 
       227 
242 
     | 
    
         
             
                        seqlens_expanded = cache_seqlens_int32
         
     | 
| 
      
 243 
     | 
    
         
            +
                    elif forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 244 
     | 
    
         
            +
                        max_seqlen_q = self.speculative_num_draft_tokens
         
     | 
| 
      
 245 
     | 
    
         
            +
                        nsa_max_seqlen_q = self.speculative_num_draft_tokens
         
     | 
| 
      
 246 
     | 
    
         
            +
                        cu_seqlens_q = torch.arange(
         
     | 
| 
      
 247 
     | 
    
         
            +
                            0,
         
     | 
| 
      
 248 
     | 
    
         
            +
                            batch_size * self.speculative_num_draft_tokens + 1,
         
     | 
| 
      
 249 
     | 
    
         
            +
                            1,
         
     | 
| 
      
 250 
     | 
    
         
            +
                            dtype=torch.int32,
         
     | 
| 
      
 251 
     | 
    
         
            +
                            device=device,
         
     | 
| 
      
 252 
     | 
    
         
            +
                        )
         
     | 
| 
      
 253 
     | 
    
         
            +
                        extend_seq_lens_cpu = [self.speculative_num_draft_tokens] * batch_size
         
     | 
| 
      
 254 
     | 
    
         
            +
                        forward_batch.extend_seq_lens_cpu = extend_seq_lens_cpu
         
     | 
| 
      
 255 
     | 
    
         
            +
             
     | 
| 
      
 256 
     | 
    
         
            +
                        seqlens_int32_cpu = [
         
     | 
| 
      
 257 
     | 
    
         
            +
                            self.speculative_num_draft_tokens + kv_len
         
     | 
| 
      
 258 
     | 
    
         
            +
                            for kv_len in forward_batch.seq_lens_cpu.tolist()
         
     | 
| 
      
 259 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 260 
     | 
    
         
            +
                        seqlens_expanded = torch.cat(
         
     | 
| 
      
 261 
     | 
    
         
            +
                            [
         
     | 
| 
      
 262 
     | 
    
         
            +
                                torch.arange(
         
     | 
| 
      
 263 
     | 
    
         
            +
                                    kv_len - qo_len + 1,
         
     | 
| 
      
 264 
     | 
    
         
            +
                                    kv_len + 1,
         
     | 
| 
      
 265 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 266 
     | 
    
         
            +
                                    device=device,
         
     | 
| 
      
 267 
     | 
    
         
            +
                                )
         
     | 
| 
      
 268 
     | 
    
         
            +
                                for qo_len, kv_len in zip(
         
     | 
| 
      
 269 
     | 
    
         
            +
                                    extend_seq_lens_cpu,
         
     | 
| 
      
 270 
     | 
    
         
            +
                                    seqlens_int32_cpu,
         
     | 
| 
      
 271 
     | 
    
         
            +
                                    strict=True,
         
     | 
| 
      
 272 
     | 
    
         
            +
                                )
         
     | 
| 
      
 273 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 274 
     | 
    
         
            +
                        )
         
     | 
| 
      
 275 
     | 
    
         
            +
                        page_table = torch.repeat_interleave(
         
     | 
| 
      
 276 
     | 
    
         
            +
                            page_table, repeats=self.speculative_num_draft_tokens, dim=0
         
     | 
| 
      
 277 
     | 
    
         
            +
                        )
         
     | 
| 
       228 
278 
     | 
    
         
             
                    elif forward_batch.forward_mode.is_extend():
         
     | 
| 
       229 
279 
     | 
    
         
             
                        assert (
         
     | 
| 
       230 
280 
     | 
    
         
             
                            forward_batch.extend_seq_lens_cpu is not None
         
     | 
| 
         @@ -233,7 +283,11 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       233 
283 
     | 
    
         
             
                        ), "All of them must not be None"
         
     | 
| 
       234 
284 
     | 
    
         
             
                        extend_seq_lens_cpu = forward_batch.extend_seq_lens_cpu
         
     | 
| 
       235 
285 
     | 
    
         
             
                        assert forward_batch.extend_seq_lens is not None
         
     | 
| 
       236 
     | 
    
         
            -
             
     | 
| 
      
 286 
     | 
    
         
            +
             
     | 
| 
      
 287 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 288 
     | 
    
         
            +
                            any(forward_batch.extend_prefix_lens_cpu)
         
     | 
| 
      
 289 
     | 
    
         
            +
                            or forward_batch.forward_mode == ForwardMode.DRAFT_EXTEND
         
     | 
| 
      
 290 
     | 
    
         
            +
                        ):
         
     | 
| 
       237 
291 
     | 
    
         
             
                            max_seqlen_q = max(extend_seq_lens_cpu)
         
     | 
| 
       238 
292 
     | 
    
         
             
                            cu_seqlens_q = compute_cu_seqlens(
         
     | 
| 
       239 
293 
     | 
    
         
             
                                forward_batch.extend_seq_lens.to(torch.int32)
         
     | 
| 
         @@ -278,9 +332,9 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       278 
332 
     | 
    
         
             
                        flashmla_metadata=(
         
     | 
| 
       279 
333 
     | 
    
         
             
                            self._compute_flashmla_metadata(
         
     | 
| 
       280 
334 
     | 
    
         
             
                                cache_seqlens=nsa_cache_seqlens_int32,
         
     | 
| 
       281 
     | 
    
         
            -
                                seq_len_q=1, 
     | 
| 
      
 335 
     | 
    
         
            +
                                seq_len_q=1,
         
     | 
| 
       282 
336 
     | 
    
         
             
                            )
         
     | 
| 
       283 
     | 
    
         
            -
                            if NSA_DECODE_IMPL == " 
     | 
| 
      
 337 
     | 
    
         
            +
                            if NSA_DECODE_IMPL == "flashmla_kv"
         
     | 
| 
       284 
338 
     | 
    
         
             
                            else None
         
     | 
| 
       285 
339 
     | 
    
         
             
                        ),
         
     | 
| 
       286 
340 
     | 
    
         
             
                        nsa_cache_seqlens_int32=nsa_cache_seqlens_int32,
         
     | 
| 
         @@ -289,6 +343,7 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       289 
343 
     | 
    
         
             
                        nsa_seqlens_expanded=seqlens_expanded,
         
     | 
| 
       290 
344 
     | 
    
         
             
                        nsa_extend_seq_lens_list=extend_seq_lens_cpu,
         
     | 
| 
       291 
345 
     | 
    
         
             
                        real_page_table=self._transform_table_1_to_real(page_table),
         
     | 
| 
      
 346 
     | 
    
         
            +
                        nsa_max_seqlen_q=1,
         
     | 
| 
       292 
347 
     | 
    
         
             
                    )
         
     | 
| 
       293 
348 
     | 
    
         | 
| 
       294 
349 
     | 
    
         
             
                    self.forward_metadata = metadata
         
     | 
| 
         @@ -303,7 +358,9 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       303 
358 
     | 
    
         
             
                    to avoid memory allocations.
         
     | 
| 
       304 
359 
     | 
    
         
             
                    """
         
     | 
| 
       305 
360 
     | 
    
         
             
                    self.decode_cuda_graph_metadata: Dict = {
         
     | 
| 
       306 
     | 
    
         
            -
                        "cache_seqlens": torch. 
     | 
| 
      
 361 
     | 
    
         
            +
                        "cache_seqlens": torch.ones(
         
     | 
| 
      
 362 
     | 
    
         
            +
                            max_num_tokens, dtype=torch.int32, device=self.device
         
     | 
| 
      
 363 
     | 
    
         
            +
                        ),
         
     | 
| 
       307 
364 
     | 
    
         
             
                        "cu_seqlens_q": torch.arange(
         
     | 
| 
       308 
365 
     | 
    
         
             
                            0, max_bs + 1, dtype=torch.int32, device=self.device
         
     | 
| 
       309 
366 
     | 
    
         
             
                        ),
         
     | 
| 
         @@ -312,7 +369,7 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       312 
369 
     | 
    
         
             
                        ),
         
     | 
| 
       313 
370 
     | 
    
         
             
                        # fake page_table for sparse_prefill
         
     | 
| 
       314 
371 
     | 
    
         
             
                        "page_table": torch.zeros(
         
     | 
| 
       315 
     | 
    
         
            -
                             
     | 
| 
      
 372 
     | 
    
         
            +
                            max_num_tokens,
         
     | 
| 
       316 
373 
     | 
    
         
             
                            self.max_context_len,
         
     | 
| 
       317 
374 
     | 
    
         
             
                            dtype=torch.int32,
         
     | 
| 
       318 
375 
     | 
    
         
             
                            device=self.device,
         
     | 
| 
         @@ -320,11 +377,11 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       320 
377 
     | 
    
         
             
                        "flashmla_metadata": (
         
     | 
| 
       321 
378 
     | 
    
         
             
                            self._compute_flashmla_metadata(
         
     | 
| 
       322 
379 
     | 
    
         
             
                                cache_seqlens=torch.ones(
         
     | 
| 
       323 
     | 
    
         
            -
                                     
     | 
| 
      
 380 
     | 
    
         
            +
                                    max_num_tokens, dtype=torch.int32, device=self.device
         
     | 
| 
       324 
381 
     | 
    
         
             
                                ),
         
     | 
| 
       325 
     | 
    
         
            -
                                seq_len_q=1, 
     | 
| 
      
 382 
     | 
    
         
            +
                                seq_len_q=1,
         
     | 
| 
       326 
383 
     | 
    
         
             
                            )
         
     | 
| 
       327 
     | 
    
         
            -
                            if NSA_DECODE_IMPL == " 
     | 
| 
      
 384 
     | 
    
         
            +
                            if NSA_DECODE_IMPL == "flashmla_kv"
         
     | 
| 
       328 
385 
     | 
    
         
             
                            else None
         
     | 
| 
       329 
386 
     | 
    
         
             
                        ),
         
     | 
| 
       330 
387 
     | 
    
         
             
                    }
         
     | 
| 
         @@ -340,50 +397,166 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       340 
397 
     | 
    
         
             
                    spec_info: Optional[SpecInput],
         
     | 
| 
       341 
398 
     | 
    
         
             
                ):
         
     | 
| 
       342 
399 
     | 
    
         
             
                    """Initialize forward metadata for capturing CUDA graph."""
         
     | 
| 
       343 
     | 
    
         
            -
                     
     | 
| 
       344 
     | 
    
         
            -
             
     | 
| 
       345 
     | 
    
         
            -
                         
     | 
| 
       346 
     | 
    
         
            -
             
     | 
| 
      
 400 
     | 
    
         
            +
                    if forward_mode.is_decode_or_idle():
         
     | 
| 
      
 401 
     | 
    
         
            +
                        # Normal Decode
         
     | 
| 
      
 402 
     | 
    
         
            +
                        # Get sequence information
         
     | 
| 
      
 403 
     | 
    
         
            +
                        cache_seqlens_int32 = seq_lens.to(torch.int32)
         
     | 
| 
      
 404 
     | 
    
         
            +
                        cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
         
     | 
| 
      
 405 
     | 
    
         
            +
             
     | 
| 
      
 406 
     | 
    
         
            +
                        # Use max context length for seq_len_k
         
     | 
| 
      
 407 
     | 
    
         
            +
                        page_table_1 = self.decode_cuda_graph_metadata["page_table"][:bs, :]
         
     | 
| 
      
 408 
     | 
    
         
            +
                        max_seqlen_q = 1
         
     | 
| 
      
 409 
     | 
    
         
            +
                        max_seqlen_k = page_table_1.shape[1]
         
     | 
| 
       347 
410 
     | 
    
         | 
| 
       348 
     | 
    
         
            -
             
     | 
| 
       349 
     | 
    
         
            -
             
     | 
| 
       350 
     | 
    
         
            -
                    cache_seqlens_int32 = seq_lens.to(torch.int32)
         
     | 
| 
       351 
     | 
    
         
            -
                    cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
         
     | 
| 
      
 411 
     | 
    
         
            +
                        # Precompute page table
         
     | 
| 
      
 412 
     | 
    
         
            +
                        # Precompute cumulative sequence lengths
         
     | 
| 
       352 
413 
     | 
    
         | 
| 
       353 
     | 
    
         
            -
             
     | 
| 
       354 
     | 
    
         
            -
             
     | 
| 
       355 
     | 
    
         
            -
             
     | 
| 
      
 414 
     | 
    
         
            +
                        # NOTE(dark): this is always arange, since we are decoding
         
     | 
| 
      
 415 
     | 
    
         
            +
                        cu_seqlens_q = self.decode_cuda_graph_metadata["cu_seqlens_q"][: bs + 1]
         
     | 
| 
      
 416 
     | 
    
         
            +
                        nsa_cache_seqlens_int32 = compute_nsa_seqlens(
         
     | 
| 
      
 417 
     | 
    
         
            +
                            cache_seqlens_int32, nsa_index_topk=self.nsa_index_topk
         
     | 
| 
      
 418 
     | 
    
         
            +
                        )
         
     | 
| 
       356 
419 
     | 
    
         | 
| 
       357 
     | 
    
         
            -
             
     | 
| 
       358 
     | 
    
         
            -
             
     | 
| 
      
 420 
     | 
    
         
            +
                        seqlens_expanded = cache_seqlens_int32
         
     | 
| 
      
 421 
     | 
    
         
            +
                        nsa_extend_seq_lens_list = [1] * num_tokens
         
     | 
| 
      
 422 
     | 
    
         
            +
                        if NSA_DECODE_IMPL == "flashmla_kv":
         
     | 
| 
      
 423 
     | 
    
         
            +
                            flashmla_metadata = self.decode_cuda_graph_metadata[
         
     | 
| 
      
 424 
     | 
    
         
            +
                                "flashmla_metadata"
         
     | 
| 
      
 425 
     | 
    
         
            +
                            ].slice(slice(0, num_tokens + 1))
         
     | 
| 
      
 426 
     | 
    
         
            +
                            flashmla_metadata.copy_(
         
     | 
| 
      
 427 
     | 
    
         
            +
                                self._compute_flashmla_metadata(
         
     | 
| 
      
 428 
     | 
    
         
            +
                                    cache_seqlens=nsa_cache_seqlens_int32,
         
     | 
| 
      
 429 
     | 
    
         
            +
                                    seq_len_q=1,
         
     | 
| 
      
 430 
     | 
    
         
            +
                                )
         
     | 
| 
      
 431 
     | 
    
         
            +
                            )
         
     | 
| 
      
 432 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 433 
     | 
    
         
            +
                            flashmla_metadata = None
         
     | 
| 
      
 434 
     | 
    
         
            +
                    elif forward_mode.is_target_verify():
         
     | 
| 
      
 435 
     | 
    
         
            +
                        cache_seqlens_int32 = (seq_lens + self.speculative_num_draft_tokens).to(
         
     | 
| 
      
 436 
     | 
    
         
            +
                            torch.int32
         
     | 
| 
      
 437 
     | 
    
         
            +
                        )
         
     | 
| 
      
 438 
     | 
    
         
            +
                        cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
         
     | 
| 
      
 439 
     | 
    
         
            +
                        max_seqlen_q = 1
         
     | 
| 
      
 440 
     | 
    
         
            +
                        page_table_1 = self.decode_cuda_graph_metadata["page_table"][
         
     | 
| 
      
 441 
     | 
    
         
            +
                            : bs * self.speculative_num_draft_tokens, :
         
     | 
| 
      
 442 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 443 
     | 
    
         
            +
                        max_seqlen_k = page_table_1.shape[1]
         
     | 
| 
      
 444 
     | 
    
         
            +
             
     | 
| 
      
 445 
     | 
    
         
            +
                        cu_seqlens_q = torch.arange(
         
     | 
| 
      
 446 
     | 
    
         
            +
                            0,
         
     | 
| 
      
 447 
     | 
    
         
            +
                            bs * self.speculative_num_draft_tokens + 1,
         
     | 
| 
      
 448 
     | 
    
         
            +
                            1,
         
     | 
| 
      
 449 
     | 
    
         
            +
                            dtype=torch.int32,
         
     | 
| 
      
 450 
     | 
    
         
            +
                            device=self.device,
         
     | 
| 
      
 451 
     | 
    
         
            +
                        )
         
     | 
| 
       359 
452 
     | 
    
         | 
| 
       360 
     | 
    
         
            -
             
     | 
| 
       361 
     | 
    
         
            -
                    cu_seqlens_q = self.decode_cuda_graph_metadata["cu_seqlens_q"][: bs + 1]
         
     | 
| 
       362 
     | 
    
         
            -
                    nsa_cache_seqlens_int32 = compute_nsa_seqlens(
         
     | 
| 
       363 
     | 
    
         
            -
                        cache_seqlens_int32, nsa_index_topk=self.nsa_index_topk
         
     | 
| 
       364 
     | 
    
         
            -
                    )
         
     | 
| 
       365 
     | 
    
         
            -
                    nsa_cu_seqlens_k = compute_cu_seqlens(nsa_cache_seqlens_int32)
         
     | 
| 
       366 
     | 
    
         
            -
                    nsa_cu_seqlens_q = self.get_device_int32_arange(len(nsa_cu_seqlens_k))
         
     | 
| 
       367 
     | 
    
         
            -
                    real_page_table = self._transform_table_1_to_real(page_table_1)
         
     | 
| 
      
 453 
     | 
    
         
            +
                        extend_seq_lens_cpu = [self.speculative_num_draft_tokens] * bs
         
     | 
| 
       368 
454 
     | 
    
         | 
| 
       369 
     | 
    
         
            -
             
     | 
| 
       370 
     | 
    
         
            -
             
     | 
| 
       371 
     | 
    
         
            -
                             
     | 
| 
       372 
     | 
    
         
            -
                        ] 
     | 
| 
       373 
     | 
    
         
            -
                         
     | 
| 
       374 
     | 
    
         
            -
                             
     | 
| 
       375 
     | 
    
         
            -
                                 
     | 
| 
       376 
     | 
    
         
            -
             
     | 
| 
      
 455 
     | 
    
         
            +
                        seqlens_int32_cpu = [
         
     | 
| 
      
 456 
     | 
    
         
            +
                            self.speculative_num_draft_tokens + kv_len
         
     | 
| 
      
 457 
     | 
    
         
            +
                            for kv_len in seq_lens.tolist()
         
     | 
| 
      
 458 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 459 
     | 
    
         
            +
                        seqlens_expanded = torch.cat(
         
     | 
| 
      
 460 
     | 
    
         
            +
                            [
         
     | 
| 
      
 461 
     | 
    
         
            +
                                torch.arange(
         
     | 
| 
      
 462 
     | 
    
         
            +
                                    kv_len - qo_len + 1,
         
     | 
| 
      
 463 
     | 
    
         
            +
                                    kv_len + 1,
         
     | 
| 
      
 464 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 465 
     | 
    
         
            +
                                    device=self.device,
         
     | 
| 
      
 466 
     | 
    
         
            +
                                )
         
     | 
| 
      
 467 
     | 
    
         
            +
                                for qo_len, kv_len in zip(
         
     | 
| 
      
 468 
     | 
    
         
            +
                                    extend_seq_lens_cpu,
         
     | 
| 
      
 469 
     | 
    
         
            +
                                    seqlens_int32_cpu,
         
     | 
| 
      
 470 
     | 
    
         
            +
                                    strict=True,
         
     | 
| 
      
 471 
     | 
    
         
            +
                                )
         
     | 
| 
      
 472 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 473 
     | 
    
         
            +
                        )
         
     | 
| 
      
 474 
     | 
    
         
            +
                        nsa_cache_seqlens_int32 = compute_nsa_seqlens(
         
     | 
| 
      
 475 
     | 
    
         
            +
                            seqlens_expanded, nsa_index_topk=self.nsa_index_topk
         
     | 
| 
      
 476 
     | 
    
         
            +
                        )
         
     | 
| 
      
 477 
     | 
    
         
            +
                        nsa_extend_seq_lens_list = [1] * bs * self.speculative_num_draft_tokens
         
     | 
| 
      
 478 
     | 
    
         
            +
             
     | 
| 
      
 479 
     | 
    
         
            +
                        if NSA_DECODE_IMPL == "flashmla_kv":
         
     | 
| 
      
 480 
     | 
    
         
            +
                            flashmla_metadata = self.decode_cuda_graph_metadata[
         
     | 
| 
      
 481 
     | 
    
         
            +
                                "flashmla_metadata"
         
     | 
| 
      
 482 
     | 
    
         
            +
                            ].slice(slice(0, bs * self.speculative_num_draft_tokens + 1))
         
     | 
| 
      
 483 
     | 
    
         
            +
             
     | 
| 
      
 484 
     | 
    
         
            +
                            flashmla_metadata.copy_(
         
     | 
| 
      
 485 
     | 
    
         
            +
                                self._compute_flashmla_metadata(
         
     | 
| 
      
 486 
     | 
    
         
            +
                                    cache_seqlens=nsa_cache_seqlens_int32,
         
     | 
| 
      
 487 
     | 
    
         
            +
                                    seq_len_q=1,
         
     | 
| 
      
 488 
     | 
    
         
            +
                                )
         
     | 
| 
       377 
489 
     | 
    
         
             
                            )
         
     | 
| 
      
 490 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 491 
     | 
    
         
            +
                            flashmla_metadata = None
         
     | 
| 
      
 492 
     | 
    
         
            +
                    elif forward_mode.is_draft_extend():
         
     | 
| 
      
 493 
     | 
    
         
            +
                        cache_seqlens_int32 = (seq_lens + self.speculative_num_draft_tokens).to(
         
     | 
| 
      
 494 
     | 
    
         
            +
                            torch.int32
         
     | 
| 
       378 
495 
     | 
    
         
             
                        )
         
     | 
| 
       379 
     | 
    
         
            -
             
     | 
| 
       380 
     | 
    
         
            -
                         
     | 
| 
      
 496 
     | 
    
         
            +
                        cu_seqlens_k = compute_cu_seqlens(cache_seqlens_int32)
         
     | 
| 
      
 497 
     | 
    
         
            +
                        page_table_1 = self.decode_cuda_graph_metadata["page_table"][:bs, :]
         
     | 
| 
      
 498 
     | 
    
         
            +
                        max_seqlen_k = page_table_1.shape[1]
         
     | 
| 
      
 499 
     | 
    
         
            +
             
     | 
| 
      
 500 
     | 
    
         
            +
                        extend_seq_lens_cpu = [self.speculative_num_draft_tokens] * bs
         
     | 
| 
      
 501 
     | 
    
         
            +
                        extend_seq_lens = torch.full(
         
     | 
| 
      
 502 
     | 
    
         
            +
                            (bs,),
         
     | 
| 
      
 503 
     | 
    
         
            +
                            self.speculative_num_draft_tokens,
         
     | 
| 
      
 504 
     | 
    
         
            +
                            device=self.device,
         
     | 
| 
      
 505 
     | 
    
         
            +
                            dtype=torch.int32,
         
     | 
| 
      
 506 
     | 
    
         
            +
                        )
         
     | 
| 
      
 507 
     | 
    
         
            +
             
     | 
| 
      
 508 
     | 
    
         
            +
                        max_seqlen_q = max(extend_seq_lens_cpu)
         
     | 
| 
      
 509 
     | 
    
         
            +
                        cu_seqlens_q = compute_cu_seqlens(extend_seq_lens.to(torch.int32))
         
     | 
| 
      
 510 
     | 
    
         
            +
             
     | 
| 
      
 511 
     | 
    
         
            +
                        seqlens_int32_cpu = [
         
     | 
| 
      
 512 
     | 
    
         
            +
                            self.speculative_num_draft_tokens + kv_len
         
     | 
| 
      
 513 
     | 
    
         
            +
                            for kv_len in seq_lens.tolist()
         
     | 
| 
      
 514 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 515 
     | 
    
         
            +
                        seqlens_expanded = torch.cat(
         
     | 
| 
      
 516 
     | 
    
         
            +
                            [
         
     | 
| 
      
 517 
     | 
    
         
            +
                                torch.arange(
         
     | 
| 
      
 518 
     | 
    
         
            +
                                    kv_len - qo_len + 1,
         
     | 
| 
      
 519 
     | 
    
         
            +
                                    kv_len + 1,
         
     | 
| 
      
 520 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 521 
     | 
    
         
            +
                                    device=self.device,
         
     | 
| 
      
 522 
     | 
    
         
            +
                                )
         
     | 
| 
      
 523 
     | 
    
         
            +
                                for qo_len, kv_len in zip(
         
     | 
| 
      
 524 
     | 
    
         
            +
                                    extend_seq_lens_cpu,
         
     | 
| 
      
 525 
     | 
    
         
            +
                                    seqlens_int32_cpu,
         
     | 
| 
      
 526 
     | 
    
         
            +
                                    strict=True,
         
     | 
| 
      
 527 
     | 
    
         
            +
                                )
         
     | 
| 
      
 528 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 529 
     | 
    
         
            +
                        )
         
     | 
| 
      
 530 
     | 
    
         
            +
                        nsa_cache_seqlens_int32 = compute_nsa_seqlens(
         
     | 
| 
      
 531 
     | 
    
         
            +
                            seqlens_expanded, nsa_index_topk=self.nsa_index_topk
         
     | 
| 
      
 532 
     | 
    
         
            +
                        )
         
     | 
| 
      
 533 
     | 
    
         
            +
                        nsa_extend_seq_lens_list = [1] * bs
         
     | 
| 
      
 534 
     | 
    
         
            +
             
     | 
| 
      
 535 
     | 
    
         
            +
                        if NSA_DECODE_IMPL == "flashmla_kv":
         
     | 
| 
      
 536 
     | 
    
         
            +
                            flashmla_metadata = self.decode_cuda_graph_metadata[
         
     | 
| 
      
 537 
     | 
    
         
            +
                                "flashmla_metadata"
         
     | 
| 
      
 538 
     | 
    
         
            +
                            ].slice(slice(0, bs * self.speculative_num_draft_tokens + 1))
         
     | 
| 
      
 539 
     | 
    
         
            +
                            # As the DeepGemm is not support for q_len = 3/4 in Indexer and every token has independent topk_indices,
         
     | 
| 
      
 540 
     | 
    
         
            +
                            # we made the Q shape [bs * speculative_num_draft_tokens, 1, head_nums, dim].
         
     | 
| 
      
 541 
     | 
    
         
            +
                            # So seq_len_q is 1 for flashmla_metadata in target_verify and draft_extend mode.
         
     | 
| 
      
 542 
     | 
    
         
            +
                            flashmla_metadata.copy_(
         
     | 
| 
      
 543 
     | 
    
         
            +
                                self._compute_flashmla_metadata(
         
     | 
| 
      
 544 
     | 
    
         
            +
                                    cache_seqlens=nsa_cache_seqlens_int32,
         
     | 
| 
      
 545 
     | 
    
         
            +
                                    seq_len_q=1,
         
     | 
| 
      
 546 
     | 
    
         
            +
                                )
         
     | 
| 
      
 547 
     | 
    
         
            +
                            )
         
     | 
| 
      
 548 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 549 
     | 
    
         
            +
                            flashmla_metadata = None
         
     | 
| 
      
 550 
     | 
    
         
            +
             
     | 
| 
      
 551 
     | 
    
         
            +
                    nsa_cu_seqlens_k = compute_cu_seqlens(nsa_cache_seqlens_int32)
         
     | 
| 
      
 552 
     | 
    
         
            +
                    nsa_cu_seqlens_q = self.get_device_int32_arange(len(nsa_cu_seqlens_k))
         
     | 
| 
      
 553 
     | 
    
         
            +
                    real_page_table = self._transform_table_1_to_real(page_table_1)
         
     | 
| 
       381 
554 
     | 
    
         | 
| 
       382 
555 
     | 
    
         
             
                    metadata = NSAMetadata(
         
     | 
| 
       383 
556 
     | 
    
         
             
                        page_size=self.real_page_size,
         
     | 
| 
       384 
557 
     | 
    
         
             
                        cache_seqlens_int32=cache_seqlens_int32,
         
     | 
| 
       385 
     | 
    
         
            -
                        max_seq_len_q= 
     | 
| 
       386 
     | 
    
         
            -
                        max_seq_len_k= 
     | 
| 
      
 558 
     | 
    
         
            +
                        max_seq_len_q=max_seqlen_q,
         
     | 
| 
      
 559 
     | 
    
         
            +
                        max_seq_len_k=max_seqlen_k,
         
     | 
| 
       387 
560 
     | 
    
         
             
                        cu_seqlens_q=cu_seqlens_q,
         
     | 
| 
       388 
561 
     | 
    
         
             
                        cu_seqlens_k=cu_seqlens_k,
         
     | 
| 
       389 
562 
     | 
    
         
             
                        page_table_1=page_table_1,
         
     | 
| 
         @@ -391,9 +564,9 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       391 
564 
     | 
    
         
             
                        nsa_cache_seqlens_int32=nsa_cache_seqlens_int32,
         
     | 
| 
       392 
565 
     | 
    
         
             
                        nsa_cu_seqlens_q=nsa_cu_seqlens_q,
         
     | 
| 
       393 
566 
     | 
    
         
             
                        nsa_cu_seqlens_k=nsa_cu_seqlens_k,
         
     | 
| 
       394 
     | 
    
         
            -
                        nsa_seqlens_expanded= 
     | 
| 
      
 567 
     | 
    
         
            +
                        nsa_seqlens_expanded=seqlens_expanded,
         
     | 
| 
       395 
568 
     | 
    
         
             
                        real_page_table=real_page_table,
         
     | 
| 
       396 
     | 
    
         
            -
                        nsa_extend_seq_lens_list= 
     | 
| 
      
 569 
     | 
    
         
            +
                        nsa_extend_seq_lens_list=nsa_extend_seq_lens_list,
         
     | 
| 
       397 
570 
     | 
    
         
             
                    )
         
     | 
| 
       398 
571 
     | 
    
         
             
                    self.decode_cuda_graph_metadata[bs] = metadata
         
     | 
| 
       399 
572 
     | 
    
         
             
                    self.forward_metadata = metadata
         
     | 
| 
         @@ -412,33 +585,119 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       412 
585 
     | 
    
         
             
                ):
         
     | 
| 
       413 
586 
     | 
    
         
             
                    """Initialize forward metadata for replaying CUDA graph."""
         
     | 
| 
       414 
587 
     | 
    
         
             
                    assert seq_lens_cpu is not None
         
     | 
| 
       415 
     | 
    
         
            -
             
     | 
| 
       416 
     | 
    
         
            -
                    assert (
         
     | 
| 
       417 
     | 
    
         
            -
                        spec_info is None
         
     | 
| 
       418 
     | 
    
         
            -
                    ), "Speculative decoding is not supported for NSA backend now"
         
     | 
| 
      
 588 
     | 
    
         
            +
             
     | 
| 
       419 
589 
     | 
    
         
             
                    seq_lens = seq_lens[:bs]
         
     | 
| 
       420 
590 
     | 
    
         
             
                    seq_lens_cpu = seq_lens_cpu[:bs]
         
     | 
| 
       421 
591 
     | 
    
         
             
                    req_pool_indices = req_pool_indices[:bs]
         
     | 
| 
       422 
592 
     | 
    
         | 
| 
       423 
593 
     | 
    
         
             
                    # Normal Decode
         
     | 
| 
       424 
594 
     | 
    
         
             
                    metadata: NSAMetadata = self.decode_cuda_graph_metadata[bs]
         
     | 
| 
       425 
     | 
    
         
            -
                     
     | 
| 
      
 595 
     | 
    
         
            +
                    if forward_mode.is_decode_or_idle():
         
     | 
| 
      
 596 
     | 
    
         
            +
                        # Normal Decode
         
     | 
| 
      
 597 
     | 
    
         
            +
                        max_len = int(seq_lens_cpu.max().item())
         
     | 
| 
      
 598 
     | 
    
         
            +
             
     | 
| 
      
 599 
     | 
    
         
            +
                        cache_seqlens = seq_lens.to(torch.int32)
         
     | 
| 
      
 600 
     | 
    
         
            +
                        metadata.cache_seqlens_int32.copy_(cache_seqlens)
         
     | 
| 
      
 601 
     | 
    
         
            +
                        metadata.cu_seqlens_k[1:].copy_(
         
     | 
| 
      
 602 
     | 
    
         
            +
                            torch.cumsum(cache_seqlens, dim=0, dtype=torch.int32)
         
     | 
| 
      
 603 
     | 
    
         
            +
                        )
         
     | 
| 
      
 604 
     | 
    
         
            +
                        page_indices = self.req_to_token[req_pool_indices, :max_len]
         
     | 
| 
      
 605 
     | 
    
         
            +
                        metadata.page_table_1[:, :max_len].copy_(page_indices)
         
     | 
| 
      
 606 
     | 
    
         
            +
                        nsa_cache_seqlens = compute_nsa_seqlens(
         
     | 
| 
      
 607 
     | 
    
         
            +
                            cache_seqlens, nsa_index_topk=self.nsa_index_topk
         
     | 
| 
      
 608 
     | 
    
         
            +
                        )
         
     | 
| 
      
 609 
     | 
    
         
            +
                        metadata.nsa_cache_seqlens_int32.copy_(nsa_cache_seqlens)
         
     | 
| 
      
 610 
     | 
    
         
            +
                        seqlens_expanded = cache_seqlens
         
     | 
| 
      
 611 
     | 
    
         
            +
                    elif forward_mode.is_target_verify():
         
     | 
| 
      
 612 
     | 
    
         
            +
                        max_seqlen_k = int(
         
     | 
| 
      
 613 
     | 
    
         
            +
                            seq_lens_cpu.max().item() + self.speculative_num_draft_tokens
         
     | 
| 
      
 614 
     | 
    
         
            +
                        )
         
     | 
| 
       426 
615 
     | 
    
         | 
| 
       427 
     | 
    
         
            -
             
     | 
| 
       428 
     | 
    
         
            -
             
     | 
| 
       429 
     | 
    
         
            -
             
     | 
| 
       430 
     | 
    
         
            -
                         
     | 
| 
       431 
     | 
    
         
            -
             
     | 
| 
       432 
     | 
    
         
            -
             
     | 
| 
       433 
     | 
    
         
            -
             
     | 
| 
      
 616 
     | 
    
         
            +
                        cache_seqlens = (seq_lens + self.speculative_num_draft_tokens).to(
         
     | 
| 
      
 617 
     | 
    
         
            +
                            torch.int32
         
     | 
| 
      
 618 
     | 
    
         
            +
                        )
         
     | 
| 
      
 619 
     | 
    
         
            +
                        metadata.cache_seqlens_int32.copy_(cache_seqlens)
         
     | 
| 
      
 620 
     | 
    
         
            +
                        metadata.cu_seqlens_k[1:].copy_(
         
     | 
| 
      
 621 
     | 
    
         
            +
                            torch.cumsum(cache_seqlens, dim=0, dtype=torch.int32)
         
     | 
| 
      
 622 
     | 
    
         
            +
                        )
         
     | 
| 
      
 623 
     | 
    
         
            +
                        page_indices = self.req_to_token[req_pool_indices, :max_seqlen_k]
         
     | 
| 
      
 624 
     | 
    
         
            +
                        page_indices = torch.repeat_interleave(
         
     | 
| 
      
 625 
     | 
    
         
            +
                            page_indices, repeats=self.speculative_num_draft_tokens, dim=0
         
     | 
| 
      
 626 
     | 
    
         
            +
                        )
         
     | 
| 
      
 627 
     | 
    
         
            +
                        metadata.page_table_1[:, :max_seqlen_k].copy_(page_indices)
         
     | 
| 
      
 628 
     | 
    
         
            +
                        extend_seq_lens_cpu = [self.speculative_num_draft_tokens] * bs
         
     | 
| 
      
 629 
     | 
    
         
            +
             
     | 
| 
      
 630 
     | 
    
         
            +
                        seqlens_int32_cpu = [
         
     | 
| 
      
 631 
     | 
    
         
            +
                            self.speculative_num_draft_tokens + kv_len
         
     | 
| 
      
 632 
     | 
    
         
            +
                            for kv_len in seq_lens_cpu.tolist()
         
     | 
| 
      
 633 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 634 
     | 
    
         
            +
                        seqlens_expanded = torch.cat(
         
     | 
| 
      
 635 
     | 
    
         
            +
                            [
         
     | 
| 
      
 636 
     | 
    
         
            +
                                torch.arange(
         
     | 
| 
      
 637 
     | 
    
         
            +
                                    kv_len - qo_len + 1,
         
     | 
| 
      
 638 
     | 
    
         
            +
                                    kv_len + 1,
         
     | 
| 
      
 639 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 640 
     | 
    
         
            +
                                    device=self.device,
         
     | 
| 
      
 641 
     | 
    
         
            +
                                )
         
     | 
| 
      
 642 
     | 
    
         
            +
                                for qo_len, kv_len in zip(
         
     | 
| 
      
 643 
     | 
    
         
            +
                                    extend_seq_lens_cpu,
         
     | 
| 
      
 644 
     | 
    
         
            +
                                    seqlens_int32_cpu,
         
     | 
| 
      
 645 
     | 
    
         
            +
                                    strict=True,
         
     | 
| 
      
 646 
     | 
    
         
            +
                                )
         
     | 
| 
      
 647 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 648 
     | 
    
         
            +
                        )
         
     | 
| 
      
 649 
     | 
    
         
            +
                        metadata.nsa_seqlens_expanded.copy_(seqlens_expanded)
         
     | 
| 
      
 650 
     | 
    
         
            +
                        nsa_cache_seqlens = compute_nsa_seqlens(
         
     | 
| 
      
 651 
     | 
    
         
            +
                            seqlens_expanded, self.nsa_index_topk
         
     | 
| 
      
 652 
     | 
    
         
            +
                        )
         
     | 
| 
      
 653 
     | 
    
         
            +
                        metadata.nsa_cache_seqlens_int32.copy_(nsa_cache_seqlens)
         
     | 
| 
      
 654 
     | 
    
         
            +
                    elif forward_mode.is_draft_extend():
         
     | 
| 
      
 655 
     | 
    
         
            +
                        max_seqlen_k = int(seq_lens_cpu.max().item())
         
     | 
| 
      
 656 
     | 
    
         
            +
                        cache_seqlens = seq_lens.to(torch.int32)
         
     | 
| 
      
 657 
     | 
    
         
            +
                        metadata.cache_seqlens_int32.copy_(cache_seqlens)
         
     | 
| 
      
 658 
     | 
    
         
            +
                        metadata.cu_seqlens_k[1:].copy_(
         
     | 
| 
      
 659 
     | 
    
         
            +
                            torch.cumsum(cache_seqlens, dim=0, dtype=torch.int32)
         
     | 
| 
      
 660 
     | 
    
         
            +
                        )
         
     | 
| 
      
 661 
     | 
    
         
            +
                        page_indices = self.req_to_token[req_pool_indices, :max_seqlen_k]
         
     | 
| 
      
 662 
     | 
    
         
            +
                        metadata.page_table_1[:, :max_seqlen_k].copy_(page_indices)
         
     | 
| 
      
 663 
     | 
    
         
            +
                        extend_seq_lens_cpu = spec_info.accept_length[:bs].tolist()
         
     | 
| 
      
 664 
     | 
    
         
            +
             
     | 
| 
      
 665 
     | 
    
         
            +
                        seqlens_int32_cpu = [
         
     | 
| 
      
 666 
     | 
    
         
            +
                            self.speculative_num_draft_tokens + kv_len
         
     | 
| 
      
 667 
     | 
    
         
            +
                            for kv_len in seq_lens_cpu.tolist()
         
     | 
| 
      
 668 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 669 
     | 
    
         
            +
                        seqlens_expanded = torch.cat(
         
     | 
| 
      
 670 
     | 
    
         
            +
                            [
         
     | 
| 
      
 671 
     | 
    
         
            +
                                torch.arange(
         
     | 
| 
      
 672 
     | 
    
         
            +
                                    kv_len - qo_len + 1,
         
     | 
| 
      
 673 
     | 
    
         
            +
                                    kv_len + 1,
         
     | 
| 
      
 674 
     | 
    
         
            +
                                    dtype=torch.int32,
         
     | 
| 
      
 675 
     | 
    
         
            +
                                    device=self.device,
         
     | 
| 
      
 676 
     | 
    
         
            +
                                )
         
     | 
| 
      
 677 
     | 
    
         
            +
                                for qo_len, kv_len in zip(
         
     | 
| 
      
 678 
     | 
    
         
            +
                                    extend_seq_lens_cpu,
         
     | 
| 
      
 679 
     | 
    
         
            +
                                    seqlens_int32_cpu,
         
     | 
| 
      
 680 
     | 
    
         
            +
                                    strict=True,
         
     | 
| 
      
 681 
     | 
    
         
            +
                                )
         
     | 
| 
      
 682 
     | 
    
         
            +
                            ]
         
     | 
| 
      
 683 
     | 
    
         
            +
                        )
         
     | 
| 
      
 684 
     | 
    
         
            +
                        metadata.nsa_seqlens_expanded[: seqlens_expanded.size(0)].copy_(
         
     | 
| 
      
 685 
     | 
    
         
            +
                            seqlens_expanded
         
     | 
| 
      
 686 
     | 
    
         
            +
                        )
         
     | 
| 
      
 687 
     | 
    
         
            +
                        nsa_cache_seqlens = compute_nsa_seqlens(
         
     | 
| 
      
 688 
     | 
    
         
            +
                            seqlens_expanded, self.nsa_index_topk
         
     | 
| 
      
 689 
     | 
    
         
            +
                        )
         
     | 
| 
      
 690 
     | 
    
         
            +
                        metadata.nsa_cache_seqlens_int32[: seqlens_expanded.size(0)].copy_(
         
     | 
| 
      
 691 
     | 
    
         
            +
                            nsa_cache_seqlens
         
     | 
| 
      
 692 
     | 
    
         
            +
                        )
         
     | 
| 
      
 693 
     | 
    
         
            +
                    seqlens_expanded_size = seqlens_expanded.size(0)
         
     | 
| 
       434 
694 
     | 
    
         
             
                    assert (
         
     | 
| 
       435 
695 
     | 
    
         
             
                        metadata.nsa_cache_seqlens_int32 is not None
         
     | 
| 
       436 
696 
     | 
    
         
             
                        and metadata.nsa_cu_seqlens_k is not None
         
     | 
| 
       437 
697 
     | 
    
         
             
                        and self.nsa_index_topk is not None
         
     | 
| 
       438 
698 
     | 
    
         
             
                    )
         
     | 
| 
       439 
     | 
    
         
            -
             
     | 
| 
       440 
     | 
    
         
            -
                    metadata. 
     | 
| 
       441 
     | 
    
         
            -
                    metadata.nsa_cu_seqlens_k[1:].copy_(
         
     | 
| 
      
 699 
     | 
    
         
            +
             
     | 
| 
      
 700 
     | 
    
         
            +
                    metadata.nsa_cu_seqlens_k[1 : 1 + seqlens_expanded_size].copy_(
         
     | 
| 
       442 
701 
     | 
    
         
             
                        torch.cumsum(nsa_cache_seqlens, dim=0, dtype=torch.int32)
         
     | 
| 
       443 
702 
     | 
    
         
             
                    )
         
     | 
| 
       444 
703 
     | 
    
         
             
                    # NOTE(dark): (nsa-) cu_seqlens_q is always arange, no need to copy
         
     | 
| 
         @@ -451,11 +710,14 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       451 
710 
     | 
    
         
             
                    else:
         
     | 
| 
       452 
711 
     | 
    
         
             
                        assert metadata.real_page_table is metadata.page_table_1
         
     | 
| 
       453 
712 
     | 
    
         | 
| 
       454 
     | 
    
         
            -
                    if NSA_DECODE_IMPL == " 
     | 
| 
       455 
     | 
    
         
            -
                        metadata.flashmla_metadata. 
     | 
| 
      
 713 
     | 
    
         
            +
                    if NSA_DECODE_IMPL == "flashmla_kv":
         
     | 
| 
      
 714 
     | 
    
         
            +
                        flashmla_metadata = metadata.flashmla_metadata.slice(
         
     | 
| 
      
 715 
     | 
    
         
            +
                            slice(0, seqlens_expanded_size + 1)
         
     | 
| 
      
 716 
     | 
    
         
            +
                        )
         
     | 
| 
      
 717 
     | 
    
         
            +
                        flashmla_metadata.copy_(
         
     | 
| 
       456 
718 
     | 
    
         
             
                            self._compute_flashmla_metadata(
         
     | 
| 
       457 
719 
     | 
    
         
             
                                cache_seqlens=nsa_cache_seqlens,
         
     | 
| 
       458 
     | 
    
         
            -
                                seq_len_q=1, 
     | 
| 
      
 720 
     | 
    
         
            +
                                seq_len_q=1,
         
     | 
| 
       459 
721 
     | 
    
         
             
                            )
         
     | 
| 
       460 
722 
     | 
    
         
             
                        )
         
     | 
| 
       461 
723 
     | 
    
         | 
| 
         @@ -474,10 +736,7 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       474 
736 
     | 
    
         
             
                    k_rope: Optional[torch.Tensor] = None,
         
     | 
| 
       475 
737 
     | 
    
         
             
                    topk_indices: Optional[torch.Tensor] = None,
         
     | 
| 
       476 
738 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       477 
     | 
    
         
            -
             
     | 
| 
       478 
     | 
    
         
            -
                        not forward_batch.forward_mode.is_target_verify()
         
     | 
| 
       479 
     | 
    
         
            -
                        and not forward_batch.forward_mode.is_draft_extend()
         
     | 
| 
       480 
     | 
    
         
            -
                    ), "NSA backend doesn't support speculative decoding"
         
     | 
| 
      
 739 
     | 
    
         
            +
             
     | 
| 
       481 
740 
     | 
    
         
             
                    if k is not None:
         
     | 
| 
       482 
741 
     | 
    
         
             
                        assert v is not None
         
     | 
| 
       483 
742 
     | 
    
         
             
                        if save_kv_cache:
         
     | 
| 
         @@ -542,20 +801,20 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       542 
801 
     | 
    
         
             
                            sm_scale=layer.scaling,
         
     | 
| 
       543 
802 
     | 
    
         
             
                            v_head_dim=layer.v_head_dim,
         
     | 
| 
       544 
803 
     | 
    
         
             
                        )
         
     | 
| 
       545 
     | 
    
         
            -
                    elif NSA_PREFILL_IMPL == " 
     | 
| 
      
 804 
     | 
    
         
            +
                    elif NSA_PREFILL_IMPL == "flashmla_sparse":
         
     | 
| 
       546 
805 
     | 
    
         
             
                        if q_rope is not None:
         
     | 
| 
       547 
806 
     | 
    
         
             
                            q_all = torch.cat([q_nope, q_rope], dim=-1)
         
     | 
| 
       548 
     | 
    
         
            -
                        return self. 
     | 
| 
      
 807 
     | 
    
         
            +
                        return self._forward_flashmla_sparse(
         
     | 
| 
       549 
808 
     | 
    
         
             
                            q_all=q_all,
         
     | 
| 
       550 
809 
     | 
    
         
             
                            kv_cache=kv_cache,
         
     | 
| 
       551 
810 
     | 
    
         
             
                            page_table_1=page_table_1,
         
     | 
| 
       552 
811 
     | 
    
         
             
                            sm_scale=layer.scaling,
         
     | 
| 
       553 
812 
     | 
    
         
             
                            v_head_dim=layer.v_head_dim,
         
     | 
| 
       554 
813 
     | 
    
         
             
                        )
         
     | 
| 
       555 
     | 
    
         
            -
                    elif NSA_PREFILL_IMPL == " 
     | 
| 
      
 814 
     | 
    
         
            +
                    elif NSA_PREFILL_IMPL == "flashmla_kv":
         
     | 
| 
       556 
815 
     | 
    
         
             
                        if q_rope is not None:
         
     | 
| 
       557 
816 
     | 
    
         
             
                            q_all = torch.cat([q_nope, q_rope], dim=-1)
         
     | 
| 
       558 
     | 
    
         
            -
                        return self. 
     | 
| 
      
 817 
     | 
    
         
            +
                        return self._forward_flashmla_kv(
         
     | 
| 
       559 
818 
     | 
    
         
             
                            q_all=q_all,
         
     | 
| 
       560 
819 
     | 
    
         
             
                            kv_cache=kv_cache,
         
     | 
| 
       561 
820 
     | 
    
         
             
                            sm_scale=layer.scaling,
         
     | 
| 
         @@ -636,20 +895,20 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       636 
895 
     | 
    
         
             
                            page_size=1,
         
     | 
| 
       637 
896 
     | 
    
         
             
                        )
         
     | 
| 
       638 
897 
     | 
    
         | 
| 
       639 
     | 
    
         
            -
                    if NSA_DECODE_IMPL == " 
     | 
| 
      
 898 
     | 
    
         
            +
                    if NSA_DECODE_IMPL == "flashmla_sparse":
         
     | 
| 
       640 
899 
     | 
    
         
             
                        if q_rope is not None:
         
     | 
| 
       641 
900 
     | 
    
         
             
                            q_all = torch.cat([q_nope, q_rope], dim=-1)
         
     | 
| 
       642 
     | 
    
         
            -
                        return self. 
     | 
| 
      
 901 
     | 
    
         
            +
                        return self._forward_flashmla_sparse(
         
     | 
| 
       643 
902 
     | 
    
         
             
                            q_all=q_all,
         
     | 
| 
       644 
903 
     | 
    
         
             
                            kv_cache=kv_cache,
         
     | 
| 
       645 
904 
     | 
    
         
             
                            page_table_1=page_table_1,
         
     | 
| 
       646 
905 
     | 
    
         
             
                            sm_scale=layer.scaling,
         
     | 
| 
       647 
906 
     | 
    
         
             
                            v_head_dim=layer.v_head_dim,
         
     | 
| 
       648 
907 
     | 
    
         
             
                        )
         
     | 
| 
       649 
     | 
    
         
            -
                    elif NSA_DECODE_IMPL == " 
     | 
| 
      
 908 
     | 
    
         
            +
                    elif NSA_DECODE_IMPL == "flashmla_kv":
         
     | 
| 
       650 
909 
     | 
    
         
             
                        if q_rope is not None:
         
     | 
| 
       651 
910 
     | 
    
         
             
                            q_all = torch.cat([q_nope, q_rope], dim=-1)
         
     | 
| 
       652 
     | 
    
         
            -
                        return self. 
     | 
| 
      
 911 
     | 
    
         
            +
                        return self._forward_flashmla_kv(
         
     | 
| 
       653 
912 
     | 
    
         
             
                            q_all=q_all,
         
     | 
| 
       654 
913 
     | 
    
         
             
                            kv_cache=kv_cache,
         
     | 
| 
       655 
914 
     | 
    
         
             
                            sm_scale=layer.scaling,
         
     | 
| 
         @@ -737,7 +996,7 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       737 
996 
     | 
    
         
             
                    )
         
     | 
| 
       738 
997 
     | 
    
         
             
                    return o  # type: ignore
         
     | 
| 
       739 
998 
     | 
    
         | 
| 
       740 
     | 
    
         
            -
                def  
     | 
| 
      
 999 
     | 
    
         
            +
                def _forward_flashmla_sparse(
         
     | 
| 
       741 
1000 
     | 
    
         
             
                    self,
         
     | 
| 
       742 
1001 
     | 
    
         
             
                    q_all: torch.Tensor,
         
     | 
| 
       743 
1002 
     | 
    
         
             
                    kv_cache: torch.Tensor,
         
     | 
| 
         @@ -756,7 +1015,7 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       756 
1015 
     | 
    
         
             
                    )
         
     | 
| 
       757 
1016 
     | 
    
         
             
                    return o
         
     | 
| 
       758 
1017 
     | 
    
         | 
| 
       759 
     | 
    
         
            -
                def  
     | 
| 
      
 1018 
     | 
    
         
            +
                def _forward_flashmla_kv(
         
     | 
| 
       760 
1019 
     | 
    
         
             
                    self,
         
     | 
| 
       761 
1020 
     | 
    
         
             
                    q_all: torch.Tensor,
         
     | 
| 
       762 
1021 
     | 
    
         
             
                    kv_cache: torch.Tensor,
         
     | 
| 
         @@ -885,3 +1144,58 @@ class NativeSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       885 
1144 
     | 
    
         
             
                        flashmla_metadata=flashmla_metadata,
         
     | 
| 
       886 
1145 
     | 
    
         
             
                        num_splits=num_splits,
         
     | 
| 
       887 
1146 
     | 
    
         
             
                    )
         
     | 
| 
      
 1147 
     | 
    
         
            +
             
     | 
| 
      
 1148 
     | 
    
         
            +
             
     | 
| 
      
 1149 
     | 
    
         
            +
            class NativeSparseAttnMultiStepBackend:
         
     | 
| 
      
 1150 
     | 
    
         
            +
             
     | 
| 
      
 1151 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 1152 
     | 
    
         
            +
                    self, model_runner: ModelRunner, topk: int, speculative_num_steps: int
         
     | 
| 
      
 1153 
     | 
    
         
            +
                ):
         
     | 
| 
      
 1154 
     | 
    
         
            +
                    self.model_runner = model_runner
         
     | 
| 
      
 1155 
     | 
    
         
            +
                    self.topk = topk
         
     | 
| 
      
 1156 
     | 
    
         
            +
                    self.speculative_num_steps = speculative_num_steps
         
     | 
| 
      
 1157 
     | 
    
         
            +
                    self.attn_backends = []
         
     | 
| 
      
 1158 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 1159 
     | 
    
         
            +
                        self.attn_backends.append(
         
     | 
| 
      
 1160 
     | 
    
         
            +
                            NativeSparseAttnBackend(
         
     | 
| 
      
 1161 
     | 
    
         
            +
                                model_runner,
         
     | 
| 
      
 1162 
     | 
    
         
            +
                                speculative_step_id=i,
         
     | 
| 
      
 1163 
     | 
    
         
            +
                                topk=self.topk,
         
     | 
| 
      
 1164 
     | 
    
         
            +
                                speculative_num_steps=self.speculative_num_steps,
         
     | 
| 
      
 1165 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1166 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1167 
     | 
    
         
            +
             
     | 
| 
      
 1168 
     | 
    
         
            +
                def init_forward_metadata(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 1169 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps - 1):
         
     | 
| 
      
 1170 
     | 
    
         
            +
                        self.attn_backends[i].init_forward_metadata(forward_batch)
         
     | 
| 
      
 1171 
     | 
    
         
            +
             
     | 
| 
      
 1172 
     | 
    
         
            +
                def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
         
     | 
| 
      
 1173 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 1174 
     | 
    
         
            +
                        self.attn_backends[i].init_cuda_graph_state(max_bs, max_num_tokens)
         
     | 
| 
      
 1175 
     | 
    
         
            +
             
     | 
| 
      
 1176 
     | 
    
         
            +
                def init_forward_metadata_capture_cuda_graph(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 1177 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 1178 
     | 
    
         
            +
                        self.attn_backends[i].init_forward_metadata_capture_cuda_graph(
         
     | 
| 
      
 1179 
     | 
    
         
            +
                            forward_batch.batch_size,
         
     | 
| 
      
 1180 
     | 
    
         
            +
                            forward_batch.batch_size * self.topk,
         
     | 
| 
      
 1181 
     | 
    
         
            +
                            forward_batch.req_pool_indices,
         
     | 
| 
      
 1182 
     | 
    
         
            +
                            forward_batch.seq_lens,
         
     | 
| 
      
 1183 
     | 
    
         
            +
                            encoder_lens=None,
         
     | 
| 
      
 1184 
     | 
    
         
            +
                            forward_mode=ForwardMode.DECODE,
         
     | 
| 
      
 1185 
     | 
    
         
            +
                            spec_info=forward_batch.spec_info,
         
     | 
| 
      
 1186 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1187 
     | 
    
         
            +
             
     | 
| 
      
 1188 
     | 
    
         
            +
                def init_forward_metadata_replay_cuda_graph(
         
     | 
| 
      
 1189 
     | 
    
         
            +
                    self, forward_batch: ForwardBatch, bs: int
         
     | 
| 
      
 1190 
     | 
    
         
            +
                ):
         
     | 
| 
      
 1191 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 1192 
     | 
    
         
            +
                        self.attn_backends[i].init_forward_metadata_replay_cuda_graph(
         
     | 
| 
      
 1193 
     | 
    
         
            +
                            bs,
         
     | 
| 
      
 1194 
     | 
    
         
            +
                            forward_batch.req_pool_indices,
         
     | 
| 
      
 1195 
     | 
    
         
            +
                            forward_batch.seq_lens,
         
     | 
| 
      
 1196 
     | 
    
         
            +
                            seq_lens_sum=-1,
         
     | 
| 
      
 1197 
     | 
    
         
            +
                            encoder_lens=None,
         
     | 
| 
      
 1198 
     | 
    
         
            +
                            forward_mode=ForwardMode.DECODE,
         
     | 
| 
      
 1199 
     | 
    
         
            +
                            spec_info=forward_batch.spec_info,
         
     | 
| 
      
 1200 
     | 
    
         
            +
                            seq_lens_cpu=forward_batch.seq_lens_cpu,
         
     | 
| 
      
 1201 
     | 
    
         
            +
                        )
         
     |