sglang 0.5.3rc2__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +47 -28
 - sglang/bench_one_batch_server.py +41 -25
 - sglang/bench_serving.py +330 -156
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +8 -15
 - sglang/profiler.py +18 -1
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +4 -6
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +4 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +13 -64
 - sglang/srt/configs/load_config.py +25 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +134 -23
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +0 -10
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +5 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +20 -11
 - sglang/srt/disaggregation/ascend/transfer_engine.py +1 -1
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +4 -2
 - sglang/srt/disaggregation/decode.py +123 -31
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +157 -19
 - sglang/srt/disaggregation/nixl/conn.py +69 -24
 - sglang/srt/disaggregation/prefill.py +96 -270
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +4 -4
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +1 -1
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +70 -19
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +66 -66
 - sglang/srt/entrypoints/grpc_server.py +431 -234
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +120 -8
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +225 -37
 - sglang/srt/entrypoints/openai/serving_base.py +49 -2
 - sglang/srt/entrypoints/openai/serving_chat.py +29 -74
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +15 -1
 - sglang/srt/entrypoints/openai/serving_responses.py +5 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +42 -4
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +18 -14
 - sglang/srt/function_call/glm4_moe_detector.py +1 -5
 - sglang/srt/function_call/gpt_oss_detector.py +1 -1
 - sglang/srt/function_call/json_array_parser.py +0 -2
 - sglang/srt/function_call/utils.py +2 -2
 - sglang/srt/grpc/compile_proto.py +3 -3
 - sglang/srt/{entrypoints → grpc}/grpc_request_manager.py +112 -52
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +66 -10
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +89 -1
 - sglang/srt/layers/activation.py +4 -1
 - sglang/srt/layers/attention/aiter_backend.py +3 -3
 - sglang/srt/layers/attention/ascend_backend.py +17 -1
 - sglang/srt/layers/attention/attention_registry.py +43 -23
 - sglang/srt/layers/attention/base_attn_backend.py +20 -1
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +12 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +248 -21
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +20 -18
 - sglang/srt/layers/attention/flashmla_backend.py +2 -2
 - sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -62
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -5
 - sglang/srt/layers/attention/mamba/mamba.py +189 -241
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +0 -1
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +1 -1
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +40 -83
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +0 -1
 - sglang/srt/layers/attention/nsa_backend.py +404 -90
 - sglang/srt/layers/attention/triton_backend.py +208 -34
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +2 -2
 - sglang/srt/layers/attention/trtllm_mla_backend.py +361 -30
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +3 -3
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +11 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/configurer.py +4 -3
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +17 -0
 - sglang/srt/layers/layernorm.py +45 -15
 - sglang/srt/layers/linear.py +9 -1
 - sglang/srt/layers/logits_processor.py +147 -17
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +35 -457
 - sglang/srt/layers/moe/ep_moe/layer.py +119 -397
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +1 -1
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +11 -3
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +76 -70
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +110 -97
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +17 -1
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +20 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +3 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +84 -18
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +42 -14
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +125 -100
 - sglang/srt/layers/quantization/mxfp4.py +5 -30
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +3 -3
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -20
 - sglang/srt/layers/quantization/w8a8_int8.py +30 -24
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +673 -16
 - sglang/srt/layers/sampler.py +36 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +0 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/triton_backend.py +0 -1
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora_manager.py +24 -9
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +40 -16
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +1 -1
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +4 -2
 - sglang/srt/managers/cache_controller.py +48 -17
 - sglang/srt/managers/data_parallel_controller.py +146 -42
 - sglang/srt/managers/detokenizer_manager.py +40 -13
 - sglang/srt/managers/io_struct.py +66 -16
 - sglang/srt/managers/mm_utils.py +20 -18
 - sglang/srt/managers/multi_tokenizer_mixin.py +66 -81
 - sglang/srt/managers/overlap_utils.py +96 -19
 - sglang/srt/managers/schedule_batch.py +241 -511
 - sglang/srt/managers/schedule_policy.py +15 -2
 - sglang/srt/managers/scheduler.py +399 -499
 - sglang/srt/managers/scheduler_metrics_mixin.py +55 -8
 - sglang/srt/managers/scheduler_output_processor_mixin.py +317 -111
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +57 -10
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +33 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +71 -55
 - sglang/srt/managers/tokenizer_manager.py +378 -90
 - sglang/srt/managers/tp_worker.py +212 -161
 - sglang/srt/managers/utils.py +78 -2
 - sglang/srt/mem_cache/allocator.py +7 -2
 - sglang/srt/mem_cache/allocator_ascend.py +2 -2
 - sglang/srt/mem_cache/base_prefix_cache.py +2 -2
 - sglang/srt/mem_cache/chunk_cache.py +13 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +16 -1
 - sglang/srt/mem_cache/hicache_storage.py +4 -1
 - sglang/srt/mem_cache/hiradix_cache.py +16 -3
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +435 -219
 - sglang/srt/mem_cache/memory_pool_host.py +0 -1
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +53 -19
 - sglang/srt/mem_cache/radix_cache_cpp.py +19 -14
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +8 -2
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +1 -13
 - sglang/srt/mem_cache/storage/backend_factory.py +2 -2
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +5 -6
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +9 -3
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +5 -3
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +101 -17
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +92 -26
 - sglang/srt/metrics/collector.py +31 -0
 - sglang/srt/metrics/func_timer.py +1 -1
 - sglang/srt/model_executor/cuda_graph_runner.py +43 -5
 - sglang/srt/model_executor/forward_batch_info.py +28 -23
 - sglang/srt/model_executor/model_runner.py +379 -139
 - sglang/srt/model_executor/npu_graph_runner.py +2 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +424 -27
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +47 -28
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +13 -52
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +19 -3
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +273 -98
 - sglang/srt/models/dots_ocr.py +0 -2
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +13 -19
 - sglang/srt/models/gemma3_mm.py +16 -0
 - sglang/srt/models/gemma3n_mm.py +1 -2
 - sglang/srt/models/glm4_moe.py +14 -37
 - sglang/srt/models/glm4_moe_nextn.py +2 -2
 - sglang/srt/models/glm4v.py +2 -1
 - sglang/srt/models/glm4v_moe.py +5 -5
 - sglang/srt/models/gpt_oss.py +5 -5
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +3 -1
 - sglang/srt/models/llama.py +2 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +5 -22
 - sglang/srt/models/longcat_flash_nextn.py +3 -14
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +13 -3
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2_5_vl.py +3 -3
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +15 -12
 - sglang/srt/models/qwen2_vl.py +5 -2
 - sglang/srt/models/qwen3_moe.py +19 -35
 - sglang/srt/models/qwen3_next.py +7 -12
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +37 -33
 - sglang/srt/models/qwen3_vl_moe.py +57 -185
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +0 -1
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/utils.py +11 -1
 - sglang/srt/multimodal/processors/base_processor.py +6 -2
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +0 -1
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +0 -2
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +75 -16
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +17 -22
 - sglang/srt/sampling/sampling_params.py +70 -2
 - sglang/srt/server_args.py +577 -73
 - sglang/srt/server_args_config_parser.py +1 -1
 - sglang/srt/single_batch_overlap.py +38 -28
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +24 -7
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +23 -2
 - sglang/srt/speculative/eagle_info.py +57 -18
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +138 -0
 - sglang/srt/speculative/eagle_worker.py +83 -280
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +14 -9
 - sglang/srt/speculative/ngram_worker.py +12 -11
 - sglang/srt/speculative/spec_info.py +2 -0
 - sglang/srt/speculative/spec_utils.py +38 -3
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/two_batch_overlap.py +28 -14
 - sglang/srt/utils/__init__.py +1 -1
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/utils/common.py +192 -47
 - sglang/srt/utils/hf_transformers_utils.py +40 -17
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +41 -0
 - sglang/test/runners.py +2 -0
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +3 -0
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/test_block_fp8.py +1 -2
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +232 -99
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +81 -0
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_utils.py +85 -20
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/METADATA +45 -33
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/RECORD +404 -345
 - sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc2.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,228 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/blob/v0.10.0/vllm/compilation/cuda_piecewise_backend.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import dataclasses
         
     | 
| 
      
 4 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 5 
     | 
    
         
            +
            from contextlib import ExitStack
         
     | 
| 
      
 6 
     | 
    
         
            +
            from typing import Any, Callable, Optional, Union
         
     | 
| 
      
 7 
     | 
    
         
            +
            from unittest.mock import patch
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 10 
     | 
    
         
            +
            import torch.fx as fx
         
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            import sglang.srt.compilation.weak_ref_tensor_jit  # noqa: F401
         
     | 
| 
      
 13 
     | 
    
         
            +
            from sglang.srt.compilation.compilation_config import CompilationConfig
         
     | 
| 
      
 14 
     | 
    
         
            +
            from sglang.srt.compilation.compilation_counter import compilation_counter
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
             
     | 
| 
      
 19 
     | 
    
         
            +
            def weak_ref_tensor(tensor: Any) -> Any:
         
     | 
| 
      
 20 
     | 
    
         
            +
                """
         
     | 
| 
      
 21 
     | 
    
         
            +
                Create a weak reference to a tensor.
         
     | 
| 
      
 22 
     | 
    
         
            +
                The new tensor will share the same data as the original tensor,
         
     | 
| 
      
 23 
     | 
    
         
            +
                but will not keep the original tensor alive.
         
     | 
| 
      
 24 
     | 
    
         
            +
                """
         
     | 
| 
      
 25 
     | 
    
         
            +
                if isinstance(tensor, torch.Tensor):
         
     | 
| 
      
 26 
     | 
    
         
            +
                    # TODO(yuwei): introduce weak_ref_tensor from sgl_kernel
         
     | 
| 
      
 27 
     | 
    
         
            +
                    return torch.ops.jit_weak_ref_tensor.weak_ref_tensor(tensor)
         
     | 
| 
      
 28 
     | 
    
         
            +
                return tensor
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
            def weak_ref_tensors(
         
     | 
| 
      
 32 
     | 
    
         
            +
                tensors: Union[torch.Tensor, list[torch.Tensor], tuple[torch.Tensor]]
         
     | 
| 
      
 33 
     | 
    
         
            +
            ) -> Union[torch.Tensor, list[Any], tuple[Any], Any]:
         
     | 
| 
      
 34 
     | 
    
         
            +
                """
         
     | 
| 
      
 35 
     | 
    
         
            +
                Convenience function to create weak references to tensors,
         
     | 
| 
      
 36 
     | 
    
         
            +
                for single tensor, list of tensors or tuple of tensors.
         
     | 
| 
      
 37 
     | 
    
         
            +
                """
         
     | 
| 
      
 38 
     | 
    
         
            +
                if isinstance(tensors, torch.Tensor):
         
     | 
| 
      
 39 
     | 
    
         
            +
                    return weak_ref_tensor(tensors)
         
     | 
| 
      
 40 
     | 
    
         
            +
                if isinstance(tensors, list):
         
     | 
| 
      
 41 
     | 
    
         
            +
                    return [weak_ref_tensor(t) for t in tensors]
         
     | 
| 
      
 42 
     | 
    
         
            +
                if isinstance(tensors, tuple):
         
     | 
| 
      
 43 
     | 
    
         
            +
                    return tuple(weak_ref_tensor(t) for t in tensors)
         
     | 
| 
      
 44 
     | 
    
         
            +
                raise ValueError("Invalid type for tensors")
         
     | 
| 
      
 45 
     | 
    
         
            +
             
     | 
| 
      
 46 
     | 
    
         
            +
             
     | 
| 
      
 47 
     | 
    
         
            +
            @dataclasses.dataclass
         
     | 
| 
      
 48 
     | 
    
         
            +
            class ConcreteSizeEntry:
         
     | 
| 
      
 49 
     | 
    
         
            +
                runtime_shape: int
         
     | 
| 
      
 50 
     | 
    
         
            +
                need_to_compile: bool  # the size is in compile_sizes
         
     | 
| 
      
 51 
     | 
    
         
            +
                use_cudagraph: bool  # the size is in cudagraph_capture_sizes
         
     | 
| 
      
 52 
     | 
    
         
            +
             
     | 
| 
      
 53 
     | 
    
         
            +
                compiled: bool = False
         
     | 
| 
      
 54 
     | 
    
         
            +
                runnable: Callable = None  # type: ignore
         
     | 
| 
      
 55 
     | 
    
         
            +
                num_finished_warmup: int = 0
         
     | 
| 
      
 56 
     | 
    
         
            +
                cudagraph: Optional[torch.cuda.CUDAGraph] = None
         
     | 
| 
      
 57 
     | 
    
         
            +
                output: Optional[Any] = None
         
     | 
| 
      
 58 
     | 
    
         
            +
             
     | 
| 
      
 59 
     | 
    
         
            +
                # for cudagraph debugging, track the input addresses
         
     | 
| 
      
 60 
     | 
    
         
            +
                # during capture, and check if they are the same during replay
         
     | 
| 
      
 61 
     | 
    
         
            +
                input_addresses: Optional[list[int]] = None
         
     | 
| 
      
 62 
     | 
    
         
            +
             
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
            class CUDAPiecewiseBackend:
         
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 67 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 68 
     | 
    
         
            +
                    graph: fx.GraphModule,
         
     | 
| 
      
 69 
     | 
    
         
            +
                    compile_config: CompilationConfig,
         
     | 
| 
      
 70 
     | 
    
         
            +
                    inductor_config: dict[str, Any],
         
     | 
| 
      
 71 
     | 
    
         
            +
                    graph_pool: Any,
         
     | 
| 
      
 72 
     | 
    
         
            +
                    piecewise_compile_index: int,
         
     | 
| 
      
 73 
     | 
    
         
            +
                    total_piecewise_compiles: int,
         
     | 
| 
      
 74 
     | 
    
         
            +
                    sym_shape_indices: list[int],
         
     | 
| 
      
 75 
     | 
    
         
            +
                    compiled_graph_for_general_shape: Callable,
         
     | 
| 
      
 76 
     | 
    
         
            +
                    sglang_backend,
         
     | 
| 
      
 77 
     | 
    
         
            +
                ):
         
     | 
| 
      
 78 
     | 
    
         
            +
                    """
         
     | 
| 
      
 79 
     | 
    
         
            +
                    The backend for piecewise compilation.
         
     | 
| 
      
 80 
     | 
    
         
            +
                    It mainly handles the compilation and cudagraph capturing.
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
                    We will compile `self.graph` once for the general shape,
         
     | 
| 
      
 83 
     | 
    
         
            +
                    and then compile for different shapes specified in
         
     | 
| 
      
 84 
     | 
    
         
            +
                    `compilation_config.compile_sizes`.
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
                    Independently, we will capture cudagraph for different shapes.
         
     | 
| 
      
 87 
     | 
    
         
            +
             
     | 
| 
      
 88 
     | 
    
         
            +
                    If a shape needs both compilation and cudagraph, we will
         
     | 
| 
      
 89 
     | 
    
         
            +
                    compile it first, and then capture cudagraph.
         
     | 
| 
      
 90 
     | 
    
         
            +
                    """
         
     | 
| 
      
 91 
     | 
    
         
            +
                    self.graph = graph
         
     | 
| 
      
 92 
     | 
    
         
            +
                    self.inductor_config = inductor_config
         
     | 
| 
      
 93 
     | 
    
         
            +
                    self.graph_pool = graph_pool
         
     | 
| 
      
 94 
     | 
    
         
            +
                    self.piecewise_compile_index = piecewise_compile_index
         
     | 
| 
      
 95 
     | 
    
         
            +
                    self.total_piecewise_compiles = total_piecewise_compiles
         
     | 
| 
      
 96 
     | 
    
         
            +
                    self.sglang_backend = sglang_backend
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
                    self.is_first_graph = piecewise_compile_index == 0
         
     | 
| 
      
 99 
     | 
    
         
            +
                    self.is_last_graph = piecewise_compile_index == total_piecewise_compiles - 1
         
     | 
| 
      
 100 
     | 
    
         
            +
             
     | 
| 
      
 101 
     | 
    
         
            +
                    self.compile_sizes: set[int] = set([])
         
     | 
| 
      
 102 
     | 
    
         
            +
                    self.compile_config = compile_config
         
     | 
| 
      
 103 
     | 
    
         
            +
                    self.cudagraph_capture_sizes: set[int] = set(compile_config.get_capture_sizes())
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
                    self.first_run_finished = False
         
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
                    self.compiled_graph_for_general_shape = compiled_graph_for_general_shape  # noqa
         
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
                    self.sym_shape_indices = sym_shape_indices
         
     | 
| 
      
 110 
     | 
    
         
            +
             
     | 
| 
      
 111 
     | 
    
         
            +
                    self.is_debugging_mode = True
         
     | 
| 
      
 112 
     | 
    
         
            +
             
     | 
| 
      
 113 
     | 
    
         
            +
                    # the entries for different shapes that we need to either
         
     | 
| 
      
 114 
     | 
    
         
            +
                    # compile or capture cudagraph
         
     | 
| 
      
 115 
     | 
    
         
            +
                    self.concrete_size_entries: dict[int, ConcreteSizeEntry] = {}
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                    # to_be_compiled_sizes tracks the remaining sizes to compile,
         
     | 
| 
      
 118 
     | 
    
         
            +
                    # and updates during the compilation process, so we need to copy it
         
     | 
| 
      
 119 
     | 
    
         
            +
                    self.to_be_compiled_sizes: set[int] = self.compile_sizes.copy()
         
     | 
| 
      
 120 
     | 
    
         
            +
                    for shape in self.compile_sizes.union(self.cudagraph_capture_sizes):
         
     | 
| 
      
 121 
     | 
    
         
            +
                        self.concrete_size_entries[shape] = ConcreteSizeEntry(
         
     | 
| 
      
 122 
     | 
    
         
            +
                            runtime_shape=shape,
         
     | 
| 
      
 123 
     | 
    
         
            +
                            need_to_compile=shape in self.compile_sizes,
         
     | 
| 
      
 124 
     | 
    
         
            +
                            use_cudagraph=shape in self.cudagraph_capture_sizes,
         
     | 
| 
      
 125 
     | 
    
         
            +
                        )
         
     | 
| 
      
 126 
     | 
    
         
            +
             
     | 
| 
      
 127 
     | 
    
         
            +
                def check_for_ending_compilation(self):
         
     | 
| 
      
 128 
     | 
    
         
            +
                    if self.is_last_graph and not self.to_be_compiled_sizes:
         
     | 
| 
      
 129 
     | 
    
         
            +
                        # no specific sizes to compile
         
     | 
| 
      
 130 
     | 
    
         
            +
                        # save the hash of the inductor graph for the next run
         
     | 
| 
      
 131 
     | 
    
         
            +
                        self.sglang_backend.compiler_manager.save_to_file()
         
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
      
 133 
     | 
    
         
            +
                def __call__(self, *args) -> Any:
         
     | 
| 
      
 134 
     | 
    
         
            +
                    if not self.first_run_finished:
         
     | 
| 
      
 135 
     | 
    
         
            +
                        self.first_run_finished = True
         
     | 
| 
      
 136 
     | 
    
         
            +
                        self.check_for_ending_compilation()
         
     | 
| 
      
 137 
     | 
    
         
            +
                        return self.compiled_graph_for_general_shape(*args)
         
     | 
| 
      
 138 
     | 
    
         
            +
                    runtime_shape = args[self.sym_shape_indices[0]]
         
     | 
| 
      
 139 
     | 
    
         
            +
                    if runtime_shape not in self.concrete_size_entries:
         
     | 
| 
      
 140 
     | 
    
         
            +
                        # we don't need to do anything for this shape
         
     | 
| 
      
 141 
     | 
    
         
            +
                        return self.compiled_graph_for_general_shape(*args)
         
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
                    entry = self.concrete_size_entries[runtime_shape]
         
     | 
| 
      
 144 
     | 
    
         
            +
             
     | 
| 
      
 145 
     | 
    
         
            +
                    if entry.runnable is None:
         
     | 
| 
      
 146 
     | 
    
         
            +
                        entry.runnable = self.compiled_graph_for_general_shape
         
     | 
| 
      
 147 
     | 
    
         
            +
             
     | 
| 
      
 148 
     | 
    
         
            +
                    if entry.need_to_compile and not entry.compiled:
         
     | 
| 
      
 149 
     | 
    
         
            +
                        entry.compiled = True
         
     | 
| 
      
 150 
     | 
    
         
            +
                        self.to_be_compiled_sizes.remove(runtime_shape)
         
     | 
| 
      
 151 
     | 
    
         
            +
                        # args are real arguments
         
     | 
| 
      
 152 
     | 
    
         
            +
                        entry.runnable = self.sglang_backend.compiler_manager.compile(
         
     | 
| 
      
 153 
     | 
    
         
            +
                            self.graph,
         
     | 
| 
      
 154 
     | 
    
         
            +
                            args,
         
     | 
| 
      
 155 
     | 
    
         
            +
                            self.inductor_config,
         
     | 
| 
      
 156 
     | 
    
         
            +
                            graph_index=self.piecewise_compile_index,
         
     | 
| 
      
 157 
     | 
    
         
            +
                            num_graphs=self.total_piecewise_compiles,
         
     | 
| 
      
 158 
     | 
    
         
            +
                            runtime_shape=runtime_shape,
         
     | 
| 
      
 159 
     | 
    
         
            +
                        )
         
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
                        # finished compilations for all required shapes
         
     | 
| 
      
 162 
     | 
    
         
            +
                        if self.is_last_graph and not self.to_be_compiled_sizes:
         
     | 
| 
      
 163 
     | 
    
         
            +
                            self.check_for_ending_compilation()
         
     | 
| 
      
 164 
     | 
    
         
            +
             
     | 
| 
      
 165 
     | 
    
         
            +
                    # Skip CUDA graphs if this entry doesn't use them OR
         
     | 
| 
      
 166 
     | 
    
         
            +
                    # if we're supposed to skip them globally
         
     | 
| 
      
 167 
     | 
    
         
            +
                    # skip_cuda_graphs = get_forward_context().skip_cuda_graphs
         
     | 
| 
      
 168 
     | 
    
         
            +
                    # if not entry.use_cudagraph or skip_cuda_graphs:
         
     | 
| 
      
 169 
     | 
    
         
            +
                    #     return entry.runnable(*args)
         
     | 
| 
      
 170 
     | 
    
         
            +
             
     | 
| 
      
 171 
     | 
    
         
            +
                    if entry.cudagraph is None:
         
     | 
| 
      
 172 
     | 
    
         
            +
                        if entry.num_finished_warmup < 1:  # noqa
         
     | 
| 
      
 173 
     | 
    
         
            +
                            entry.num_finished_warmup += 1
         
     | 
| 
      
 174 
     | 
    
         
            +
                            return entry.runnable(*args)
         
     | 
| 
      
 175 
     | 
    
         
            +
             
     | 
| 
      
 176 
     | 
    
         
            +
                        input_addresses = [
         
     | 
| 
      
 177 
     | 
    
         
            +
                            x.data_ptr() for x in args if isinstance(x, torch.Tensor)
         
     | 
| 
      
 178 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 179 
     | 
    
         
            +
                        entry.input_addresses = input_addresses
         
     | 
| 
      
 180 
     | 
    
         
            +
                        cudagraph = torch.cuda.CUDAGraph()
         
     | 
| 
      
 181 
     | 
    
         
            +
             
     | 
| 
      
 182 
     | 
    
         
            +
                        with ExitStack() as stack:
         
     | 
| 
      
 183 
     | 
    
         
            +
                            if not self.is_first_graph:
         
     | 
| 
      
 184 
     | 
    
         
            +
                                # during every model forward, we will capture
         
     | 
| 
      
 185 
     | 
    
         
            +
                                # many pieces of cudagraphs (roughly one per layer).
         
     | 
| 
      
 186 
     | 
    
         
            +
                                # running gc again and again across layers will
         
     | 
| 
      
 187 
     | 
    
         
            +
                                # make the cudagraph capture very slow.
         
     | 
| 
      
 188 
     | 
    
         
            +
                                # therefore, we only run gc for the first graph,
         
     | 
| 
      
 189 
     | 
    
         
            +
                                # and disable gc for the rest of the graphs.
         
     | 
| 
      
 190 
     | 
    
         
            +
                                stack.enter_context(patch("gc.collect", lambda: None))
         
     | 
| 
      
 191 
     | 
    
         
            +
                                stack.enter_context(patch("torch.cuda.empty_cache", lambda: None))
         
     | 
| 
      
 192 
     | 
    
         
            +
             
     | 
| 
      
 193 
     | 
    
         
            +
                            # mind-exploding: carefully manage the reference and memory.
         
     | 
| 
      
 194 
     | 
    
         
            +
                            with torch.cuda.graph(cudagraph, pool=self.graph_pool):
         
     | 
| 
      
 195 
     | 
    
         
            +
                                # `output` is managed by pytorch's cudagraph pool
         
     | 
| 
      
 196 
     | 
    
         
            +
                                output = entry.runnable(*args)
         
     | 
| 
      
 197 
     | 
    
         
            +
                                if self.is_last_graph:
         
     | 
| 
      
 198 
     | 
    
         
            +
                                    # by converting it to weak ref,
         
     | 
| 
      
 199 
     | 
    
         
            +
                                    # the original `output` will immediately be released
         
     | 
| 
      
 200 
     | 
    
         
            +
                                    # to save memory. It is only safe to do this for
         
     | 
| 
      
 201 
     | 
    
         
            +
                                    # the last graph, because the output of the last graph
         
     | 
| 
      
 202 
     | 
    
         
            +
                                    # will not be used by any other cuda graph.
         
     | 
| 
      
 203 
     | 
    
         
            +
                                    output = weak_ref_tensors(output)
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                        # here we always use weak ref for the output
         
     | 
| 
      
 206 
     | 
    
         
            +
                        # to save memory
         
     | 
| 
      
 207 
     | 
    
         
            +
                        entry.output = weak_ref_tensors(output)
         
     | 
| 
      
 208 
     | 
    
         
            +
                        entry.cudagraph = cudagraph
         
     | 
| 
      
 209 
     | 
    
         
            +
             
     | 
| 
      
 210 
     | 
    
         
            +
                        compilation_counter.num_cudagraph_captured += 1
         
     | 
| 
      
 211 
     | 
    
         
            +
             
     | 
| 
      
 212 
     | 
    
         
            +
                        # important: we need to return the output, rather than
         
     | 
| 
      
 213 
     | 
    
         
            +
                        # the weak ref of the output, so that pytorch can correctly
         
     | 
| 
      
 214 
     | 
    
         
            +
                        # manage the memory during cuda graph capture
         
     | 
| 
      
 215 
     | 
    
         
            +
                        return output
         
     | 
| 
      
 216 
     | 
    
         
            +
             
     | 
| 
      
 217 
     | 
    
         
            +
                    if self.is_debugging_mode:
         
     | 
| 
      
 218 
     | 
    
         
            +
                        # check if the input addresses are the same
         
     | 
| 
      
 219 
     | 
    
         
            +
                        new_input_addresses = [
         
     | 
| 
      
 220 
     | 
    
         
            +
                            x.data_ptr() for x in args if isinstance(x, torch.Tensor)
         
     | 
| 
      
 221 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 222 
     | 
    
         
            +
                        assert new_input_addresses == entry.input_addresses, (
         
     | 
| 
      
 223 
     | 
    
         
            +
                            "Input addresses for cudagraphs are different during replay."
         
     | 
| 
      
 224 
     | 
    
         
            +
                            f" Expected {entry.input_addresses}, got {new_input_addresses}"
         
     | 
| 
      
 225 
     | 
    
         
            +
                        )
         
     | 
| 
      
 226 
     | 
    
         
            +
             
     | 
| 
      
 227 
     | 
    
         
            +
                    entry.cudagraph.replay()
         
     | 
| 
      
 228 
     | 
    
         
            +
                    return entry.output
         
     | 
| 
         @@ -0,0 +1,134 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/blob/v0.10.0/vllm/compilation/fix_functionalization.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 4 
     | 
    
         
            +
            import operator
         
     | 
| 
      
 5 
     | 
    
         
            +
            from collections.abc import Iterable
         
     | 
| 
      
 6 
     | 
    
         
            +
            from typing import Optional, Union
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 9 
     | 
    
         
            +
            from torch._higher_order_ops.auto_functionalize import auto_functionalized
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            from sglang.srt.compilation.fx_utils import is_func
         
     | 
| 
      
 12 
     | 
    
         
            +
            from sglang.srt.compilation.inductor_pass import SGLangInductorPass
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
      
 17 
     | 
    
         
            +
            class FixFunctionalizationPass(SGLangInductorPass):
         
     | 
| 
      
 18 
     | 
    
         
            +
                """
         
     | 
| 
      
 19 
     | 
    
         
            +
                This pass defunctionalizes certain nodes to avoid redundant tensor copies.
         
     | 
| 
      
 20 
     | 
    
         
            +
                After this pass, DCE (dead-code elimination) should never be run,
         
     | 
| 
      
 21 
     | 
    
         
            +
                as de-functionalized nodes may appear as dead code.
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
                To add new nodes to defunctionalize, add to the if-elif chain in __call__.
         
     | 
| 
      
 24 
     | 
    
         
            +
                """
         
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
                def __call__(self, graph: torch.fx.Graph):
         
     | 
| 
      
 27 
     | 
    
         
            +
                    self.begin()
         
     | 
| 
      
 28 
     | 
    
         
            +
                    self.dump_graph(graph, "before_fix_functionalization")
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
                    self.nodes_to_remove: list[torch.fx.Node] = []
         
     | 
| 
      
 31 
     | 
    
         
            +
                    count = 0
         
     | 
| 
      
 32 
     | 
    
         
            +
                    for node in graph.nodes:
         
     | 
| 
      
 33 
     | 
    
         
            +
                        if not is_func(node, auto_functionalized):
         
     | 
| 
      
 34 
     | 
    
         
            +
                            continue  # Avoid deep if-elif nesting
         
     | 
| 
      
 35 
     | 
    
         
            +
                        count += 1
         
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
                    self.dump_graph(graph, "before_fix_functionalization_cleanup")
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
                    # Remove the nodes all at once
         
     | 
| 
      
 40 
     | 
    
         
            +
                    count_removed = len(self.nodes_to_remove)
         
     | 
| 
      
 41 
     | 
    
         
            +
                    for node in self.nodes_to_remove:
         
     | 
| 
      
 42 
     | 
    
         
            +
                        graph.erase_node(node)
         
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
                    logger.debug(
         
     | 
| 
      
 45 
     | 
    
         
            +
                        "De-functionalized %s nodes, removed %s nodes", count, count_removed
         
     | 
| 
      
 46 
     | 
    
         
            +
                    )
         
     | 
| 
      
 47 
     | 
    
         
            +
                    self.dump_graph(graph, "after_fix_functionalization")
         
     | 
| 
      
 48 
     | 
    
         
            +
                    self.end_and_log()
         
     | 
| 
      
 49 
     | 
    
         
            +
             
     | 
| 
      
 50 
     | 
    
         
            +
                def _remove(self, node_or_nodes: Union[torch.fx.Node, Iterable[torch.fx.Node]]):
         
     | 
| 
      
 51 
     | 
    
         
            +
                    """
         
     | 
| 
      
 52 
     | 
    
         
            +
                    Stage a node (or nodes) for removal at the end of the pass.
         
     | 
| 
      
 53 
     | 
    
         
            +
                    """
         
     | 
| 
      
 54 
     | 
    
         
            +
                    if isinstance(node_or_nodes, torch.fx.Node):
         
     | 
| 
      
 55 
     | 
    
         
            +
                        self.nodes_to_remove.append(node_or_nodes)
         
     | 
| 
      
 56 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 57 
     | 
    
         
            +
                        self.nodes_to_remove.extend(node_or_nodes)
         
     | 
| 
      
 58 
     | 
    
         
            +
             
     | 
| 
      
 59 
     | 
    
         
            +
                def defunctionalize(
         
     | 
| 
      
 60 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 61 
     | 
    
         
            +
                    graph: torch.fx.Graph,
         
     | 
| 
      
 62 
     | 
    
         
            +
                    node: torch.fx.Node,
         
     | 
| 
      
 63 
     | 
    
         
            +
                    mutated_args: dict[int, Union[torch.fx.Node, str]],
         
     | 
| 
      
 64 
     | 
    
         
            +
                    args: Optional[tuple[Union[torch.fx.Node, str], ...]] = None,
         
     | 
| 
      
 65 
     | 
    
         
            +
                ):
         
     | 
| 
      
 66 
     | 
    
         
            +
                    """
         
     | 
| 
      
 67 
     | 
    
         
            +
                    De-functionalize a node by replacing it with a call to the original.
         
     | 
| 
      
 68 
     | 
    
         
            +
                    It also replaces the getitem users with the mutated arguments.
         
     | 
| 
      
 69 
     | 
    
         
            +
                    See replace_users_with_mutated_args and insert_defunctionalized.
         
     | 
| 
      
 70 
     | 
    
         
            +
                    """
         
     | 
| 
      
 71 
     | 
    
         
            +
                    self.replace_users_with_mutated_args(node, mutated_args)
         
     | 
| 
      
 72 
     | 
    
         
            +
                    self.insert_defunctionalized(graph, node, args=args)
         
     | 
| 
      
 73 
     | 
    
         
            +
                    self._remove(node)
         
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
                def replace_users_with_mutated_args(
         
     | 
| 
      
 76 
     | 
    
         
            +
                    self, node: torch.fx.Node, mutated_args: dict[int, Union[torch.fx.Node, str]]
         
     | 
| 
      
 77 
     | 
    
         
            +
                ):
         
     | 
| 
      
 78 
     | 
    
         
            +
                    """
         
     | 
| 
      
 79 
     | 
    
         
            +
                    Replace all getitem users of the auto-functionalized node with the
         
     | 
| 
      
 80 
     | 
    
         
            +
                    mutated arguments.
         
     | 
| 
      
 81 
     | 
    
         
            +
                    :param node: The auto-functionalized node
         
     | 
| 
      
 82 
     | 
    
         
            +
                    :param mutated_args: The mutated arguments, indexed by getitem index.
         
     | 
| 
      
 83 
     | 
    
         
            +
                    If the value of an arg is a string, `node.kwargs[arg]` is used.
         
     | 
| 
      
 84 
     | 
    
         
            +
                    """
         
     | 
| 
      
 85 
     | 
    
         
            +
                    for idx, user in self.getitem_users(node).items():
         
     | 
| 
      
 86 
     | 
    
         
            +
                        arg = mutated_args[idx]
         
     | 
| 
      
 87 
     | 
    
         
            +
                        arg = node.kwargs[arg] if isinstance(arg, str) else arg
         
     | 
| 
      
 88 
     | 
    
         
            +
                        user.replace_all_uses_with(arg)
         
     | 
| 
      
 89 
     | 
    
         
            +
                        self._remove(user)
         
     | 
| 
      
 90 
     | 
    
         
            +
             
     | 
| 
      
 91 
     | 
    
         
            +
                def getitem_users(self, node: torch.fx.Node) -> dict[int, torch.fx.Node]:
         
     | 
| 
      
 92 
     | 
    
         
            +
                    """
         
     | 
| 
      
 93 
     | 
    
         
            +
                    Returns the operator.getitem users of the auto-functionalized node,
         
     | 
| 
      
 94 
     | 
    
         
            +
                    indexed by the index they are getting.
         
     | 
| 
      
 95 
     | 
    
         
            +
                    """
         
     | 
| 
      
 96 
     | 
    
         
            +
                    users = {}
         
     | 
| 
      
 97 
     | 
    
         
            +
                    for user in node.users:
         
     | 
| 
      
 98 
     | 
    
         
            +
                        if is_func(user, operator.getitem):
         
     | 
| 
      
 99 
     | 
    
         
            +
                            idx = user.args[1]
         
     | 
| 
      
 100 
     | 
    
         
            +
                            users[idx] = user
         
     | 
| 
      
 101 
     | 
    
         
            +
                    return users
         
     | 
| 
      
 102 
     | 
    
         
            +
             
     | 
| 
      
 103 
     | 
    
         
            +
                def insert_defunctionalized(
         
     | 
| 
      
 104 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 105 
     | 
    
         
            +
                    graph: torch.fx.Graph,
         
     | 
| 
      
 106 
     | 
    
         
            +
                    node: torch.fx.Node,
         
     | 
| 
      
 107 
     | 
    
         
            +
                    args: Optional[tuple[Union[torch.fx.Node, str], ...]] = None,
         
     | 
| 
      
 108 
     | 
    
         
            +
                ):
         
     | 
| 
      
 109 
     | 
    
         
            +
                    """
         
     | 
| 
      
 110 
     | 
    
         
            +
                    Insert a new defunctionalized node into the graph before node.
         
     | 
| 
      
 111 
     | 
    
         
            +
                    If one of the kwargs is 'out', provide args directly,
         
     | 
| 
      
 112 
     | 
    
         
            +
                    as node.kwargs cannot be used.
         
     | 
| 
      
 113 
     | 
    
         
            +
                    See https://github.com/pytorch/pytorch/blob/a00faf440888ffb724bad413f329a49e2b6388e7/torch/_inductor/lowering.py#L351
         
     | 
| 
      
 114 
     | 
    
         
            +
             
     | 
| 
      
 115 
     | 
    
         
            +
                    :param graph: Graph to insert the defunctionalized node into
         
     | 
| 
      
 116 
     | 
    
         
            +
                    :param node: The auto-functionalized node to defunctionalize
         
     | 
| 
      
 117 
     | 
    
         
            +
                    :param args: If we cannot use kwargs, specify args directly.
         
     | 
| 
      
 118 
     | 
    
         
            +
                    If an arg is a string, `node.kwargs[arg]` is used.
         
     | 
| 
      
 119 
     | 
    
         
            +
                    """  # noqa: E501
         
     | 
| 
      
 120 
     | 
    
         
            +
                    assert is_func(
         
     | 
| 
      
 121 
     | 
    
         
            +
                        node, auto_functionalized
         
     | 
| 
      
 122 
     | 
    
         
            +
                    ), f"node must be auto-functionalized, is {node} instead"
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
                    # Create a new call to the original function
         
     | 
| 
      
 125 
     | 
    
         
            +
                    with graph.inserting_before(node):
         
     | 
| 
      
 126 
     | 
    
         
            +
                        function = node.args[0]
         
     | 
| 
      
 127 
     | 
    
         
            +
                        if args is None:
         
     | 
| 
      
 128 
     | 
    
         
            +
                            graph.call_function(function, kwargs=node.kwargs)
         
     | 
| 
      
 129 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 130 
     | 
    
         
            +
                            # Args passed as strings refer to items in node.kwargs
         
     | 
| 
      
 131 
     | 
    
         
            +
                            args = tuple(
         
     | 
| 
      
 132 
     | 
    
         
            +
                                node.kwargs[arg] if isinstance(arg, str) else arg for arg in args
         
     | 
| 
      
 133 
     | 
    
         
            +
                            )
         
     | 
| 
      
 134 
     | 
    
         
            +
                            graph.call_function(function, args=args)
         
     | 
| 
         @@ -0,0 +1,83 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/blob/v0.10.0/vllm/compilation/fx_utils.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import operator
         
     | 
| 
      
 4 
     | 
    
         
            +
            from collections.abc import Iterable, Iterator
         
     | 
| 
      
 5 
     | 
    
         
            +
            from typing import Optional
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            from torch import fx
         
     | 
| 
      
 8 
     | 
    
         
            +
            from torch._higher_order_ops.auto_functionalize import auto_functionalized
         
     | 
| 
      
 9 
     | 
    
         
            +
            from torch._ops import OpOverload
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            def is_func(node: fx.Node, target) -> bool:
         
     | 
| 
      
 13 
     | 
    
         
            +
                return node.op == "call_function" and node.target == target
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            def is_auto_func(node: fx.Node, op: OpOverload) -> bool:
         
     | 
| 
      
 17 
     | 
    
         
            +
                return is_func(node, auto_functionalized) and node.args[0] == op
         
     | 
| 
      
 18 
     | 
    
         
            +
             
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
            # Returns the first specified node with the given op (if it exists)
         
     | 
| 
      
 21 
     | 
    
         
            +
            def find_specified_fn_maybe(
         
     | 
| 
      
 22 
     | 
    
         
            +
                nodes: Iterable[fx.Node], op: OpOverload
         
     | 
| 
      
 23 
     | 
    
         
            +
            ) -> Optional[fx.Node]:
         
     | 
| 
      
 24 
     | 
    
         
            +
                for node in nodes:
         
     | 
| 
      
 25 
     | 
    
         
            +
                    if node.target == op:
         
     | 
| 
      
 26 
     | 
    
         
            +
                        return node
         
     | 
| 
      
 27 
     | 
    
         
            +
                return None
         
     | 
| 
      
 28 
     | 
    
         
            +
             
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
            # Returns the first specified node with the given op
         
     | 
| 
      
 31 
     | 
    
         
            +
            def find_specified_fn(nodes: Iterable[fx.Node], op: OpOverload) -> fx.Node:
         
     | 
| 
      
 32 
     | 
    
         
            +
                node = find_specified_fn_maybe(nodes, op)
         
     | 
| 
      
 33 
     | 
    
         
            +
                assert node is not None, f"Could not find {op} in nodes {nodes}"
         
     | 
| 
      
 34 
     | 
    
         
            +
                return node
         
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
            # Returns the first auto_functionalized node with the given op (if it exists)
         
     | 
| 
      
 38 
     | 
    
         
            +
            def find_auto_fn_maybe(nodes: Iterable[fx.Node], op: OpOverload) -> Optional[fx.Node]:
         
     | 
| 
      
 39 
     | 
    
         
            +
                for node in nodes:
         
     | 
| 
      
 40 
     | 
    
         
            +
                    if is_func(node, auto_functionalized) and node.args[0] == op:  # noqa
         
     | 
| 
      
 41 
     | 
    
         
            +
                        return node
         
     | 
| 
      
 42 
     | 
    
         
            +
                return None
         
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
            # Returns the first auto_functionalized node with the given op
         
     | 
| 
      
 46 
     | 
    
         
            +
            def find_auto_fn(nodes: Iterable[fx.Node], op: OpOverload) -> fx.Node:
         
     | 
| 
      
 47 
     | 
    
         
            +
                node = find_auto_fn_maybe(nodes, op)
         
     | 
| 
      
 48 
     | 
    
         
            +
                assert node is not None, f"Could not find {op} in nodes {nodes}"
         
     | 
| 
      
 49 
     | 
    
         
            +
                return node
         
     | 
| 
      
 50 
     | 
    
         
            +
             
     | 
| 
      
 51 
     | 
    
         
            +
             
     | 
| 
      
 52 
     | 
    
         
            +
            # Returns the getitem node that extracts the idx-th element from node
         
     | 
| 
      
 53 
     | 
    
         
            +
            # (if it exists)
         
     | 
| 
      
 54 
     | 
    
         
            +
            def find_getitem_maybe(node: fx.Node, idx: int) -> Optional[fx.Node]:
         
     | 
| 
      
 55 
     | 
    
         
            +
                for user in node.users:
         
     | 
| 
      
 56 
     | 
    
         
            +
                    if is_func(user, operator.getitem) and user.args[1] == idx:
         
     | 
| 
      
 57 
     | 
    
         
            +
                        return user
         
     | 
| 
      
 58 
     | 
    
         
            +
                return None
         
     | 
| 
      
 59 
     | 
    
         
            +
             
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
            # Returns the getitem node that extracts the idx-th element from node
         
     | 
| 
      
 62 
     | 
    
         
            +
            def find_getitem(node: fx.Node, idx: int) -> fx.Node:
         
     | 
| 
      
 63 
     | 
    
         
            +
                ret = find_getitem_maybe(node, idx)
         
     | 
| 
      
 64 
     | 
    
         
            +
                assert ret is not None, f"Could not find getitem {idx} in node {node}"
         
     | 
| 
      
 65 
     | 
    
         
            +
                return ret
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
            # An auto-functionalization-aware utility for finding nodes with a specific op
         
     | 
| 
      
 69 
     | 
    
         
            +
            def find_op_nodes(op: OpOverload, graph: fx.Graph) -> Iterator[fx.Node]:
         
     | 
| 
      
 70 
     | 
    
         
            +
                if not op._schema.is_mutable:
         
     | 
| 
      
 71 
     | 
    
         
            +
                    yield from graph.find_nodes(op="call_function", target=op)
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
                for n in graph.find_nodes(op="call_function", target=auto_functionalized):
         
     | 
| 
      
 74 
     | 
    
         
            +
                    if n.args[0] == op:
         
     | 
| 
      
 75 
     | 
    
         
            +
                        yield n
         
     | 
| 
      
 76 
     | 
    
         
            +
             
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
            # Asserts that the node only has one user and returns it
         
     | 
| 
      
 79 
     | 
    
         
            +
            # Even if a node has only 1 user, it might share storage with another node,
         
     | 
| 
      
 80 
     | 
    
         
            +
            # which might need to be taken into account.
         
     | 
| 
      
 81 
     | 
    
         
            +
            def get_only_user(node: fx.Node) -> fx.Node:
         
     | 
| 
      
 82 
     | 
    
         
            +
                assert len(node.users) == 1
         
     | 
| 
      
 83 
     | 
    
         
            +
                return next(iter(node.users))
         
     | 
| 
         @@ -0,0 +1,140 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/blob/v0.10.0/vllm/compilation/inductor_pass.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import hashlib
         
     | 
| 
      
 4 
     | 
    
         
            +
            import inspect
         
     | 
| 
      
 5 
     | 
    
         
            +
            import json
         
     | 
| 
      
 6 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 7 
     | 
    
         
            +
            import time
         
     | 
| 
      
 8 
     | 
    
         
            +
            import types
         
     | 
| 
      
 9 
     | 
    
         
            +
            from contextlib import contextmanager
         
     | 
| 
      
 10 
     | 
    
         
            +
            from typing import Any, Callable, Optional, Union
         
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 13 
     | 
    
         
            +
            from torch import fx
         
     | 
| 
      
 14 
     | 
    
         
            +
            from torch._dynamo.utils import lazy_format_graph_code
         
     | 
| 
      
 15 
     | 
    
         
            +
            from torch._inductor.custom_graph_pass import CustomGraphPass
         
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
      
 17 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 18 
     | 
    
         
            +
             
     | 
| 
      
 19 
     | 
    
         
            +
            _pass_context = None
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
             
     | 
| 
      
 22 
     | 
    
         
            +
            class PassContext:
         
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
                def __init__(self, runtime_shape: Optional[int]):
         
     | 
| 
      
 25 
     | 
    
         
            +
                    self.runtime_shape = runtime_shape
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
      
 28 
     | 
    
         
            +
            def get_pass_context() -> PassContext:
         
     | 
| 
      
 29 
     | 
    
         
            +
                """Get the current pass context."""
         
     | 
| 
      
 30 
     | 
    
         
            +
                assert _pass_context is not None
         
     | 
| 
      
 31 
     | 
    
         
            +
                return _pass_context
         
     | 
| 
      
 32 
     | 
    
         
            +
             
     | 
| 
      
 33 
     | 
    
         
            +
             
     | 
| 
      
 34 
     | 
    
         
            +
            @contextmanager
         
     | 
| 
      
 35 
     | 
    
         
            +
            def pass_context(runtime_shape: Optional[int]):
         
     | 
| 
      
 36 
     | 
    
         
            +
                """A context manager that stores the current pass context,
         
     | 
| 
      
 37 
     | 
    
         
            +
                usually it is a list of sizes to specialize.
         
     | 
| 
      
 38 
     | 
    
         
            +
                """
         
     | 
| 
      
 39 
     | 
    
         
            +
                global _pass_context
         
     | 
| 
      
 40 
     | 
    
         
            +
                prev_context = _pass_context
         
     | 
| 
      
 41 
     | 
    
         
            +
                _pass_context = PassContext(runtime_shape)
         
     | 
| 
      
 42 
     | 
    
         
            +
                try:
         
     | 
| 
      
 43 
     | 
    
         
            +
                    yield
         
     | 
| 
      
 44 
     | 
    
         
            +
                finally:
         
     | 
| 
      
 45 
     | 
    
         
            +
                    _pass_context = prev_context
         
     | 
| 
      
 46 
     | 
    
         
            +
             
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
            class InductorPass(CustomGraphPass):
         
     | 
| 
      
 49 
     | 
    
         
            +
                """
         
     | 
| 
      
 50 
     | 
    
         
            +
                A custom graph pass that uses a hash of its source as the UUID.
         
     | 
| 
      
 51 
     | 
    
         
            +
                This is defined as a convenience and should work in most cases.
         
     | 
| 
      
 52 
     | 
    
         
            +
                """
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                def uuid(self) -> Any:
         
     | 
| 
      
 55 
     | 
    
         
            +
                    """
         
     | 
| 
      
 56 
     | 
    
         
            +
                    Provide a unique identifier for the pass, used in Inductor code cache.
         
     | 
| 
      
 57 
     | 
    
         
            +
                    This should depend on the pass implementation, so that changes to the
         
     | 
| 
      
 58 
     | 
    
         
            +
                    pass result in recompilation.
         
     | 
| 
      
 59 
     | 
    
         
            +
                    By default, the object source is hashed.
         
     | 
| 
      
 60 
     | 
    
         
            +
                    """
         
     | 
| 
      
 61 
     | 
    
         
            +
                    return InductorPass.hash_source(self)
         
     | 
| 
      
 62 
     | 
    
         
            +
             
     | 
| 
      
 63 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 64 
     | 
    
         
            +
                def hash_source(*srcs: Union[str, Any]):
         
     | 
| 
      
 65 
     | 
    
         
            +
                    """
         
     | 
| 
      
 66 
     | 
    
         
            +
                    Utility method to hash the sources of functions or objects.
         
     | 
| 
      
 67 
     | 
    
         
            +
                    :param srcs: strings or objects to add to the hash.
         
     | 
| 
      
 68 
     | 
    
         
            +
                    Objects and functions have their source inspected.
         
     | 
| 
      
 69 
     | 
    
         
            +
                    :return:
         
     | 
| 
      
 70 
     | 
    
         
            +
                    """
         
     | 
| 
      
 71 
     | 
    
         
            +
                    hasher = hashlib.sha256()
         
     | 
| 
      
 72 
     | 
    
         
            +
                    for src in srcs:
         
     | 
| 
      
 73 
     | 
    
         
            +
                        if isinstance(src, str):
         
     | 
| 
      
 74 
     | 
    
         
            +
                            src_str = src
         
     | 
| 
      
 75 
     | 
    
         
            +
                        elif isinstance(src, types.FunctionType):
         
     | 
| 
      
 76 
     | 
    
         
            +
                            src_str = inspect.getsource(src)
         
     | 
| 
      
 77 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 78 
     | 
    
         
            +
                            src_str = inspect.getsource(src.__class__)
         
     | 
| 
      
 79 
     | 
    
         
            +
                        hasher.update(src_str.encode("utf-8"))
         
     | 
| 
      
 80 
     | 
    
         
            +
                    return hasher.hexdigest()
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
                @staticmethod
         
     | 
| 
      
 83 
     | 
    
         
            +
                def hash_dict(dict_: dict[Any, Any]):
         
     | 
| 
      
 84 
     | 
    
         
            +
                    """
         
     | 
| 
      
 85 
     | 
    
         
            +
                    Utility method to hash a dictionary, can alternatively be used for uuid.
         
     | 
| 
      
 86 
     | 
    
         
            +
                    :return: A sha256 hash of the json rep of the dictionary.
         
     | 
| 
      
 87 
     | 
    
         
            +
                    """
         
     | 
| 
      
 88 
     | 
    
         
            +
                    encoded = json.dumps(dict_, sort_keys=True).encode("utf-8")
         
     | 
| 
      
 89 
     | 
    
         
            +
                    return hashlib.sha256(encoded).hexdigest()
         
     | 
| 
      
 90 
     | 
    
         
            +
             
     | 
| 
      
 91 
     | 
    
         
            +
                def is_applicable_for_shape(self, shape: Optional[int]):
         
     | 
| 
      
 92 
     | 
    
         
            +
                    return True
         
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
             
     | 
| 
      
 95 
     | 
    
         
            +
            class CallableInductorPass(InductorPass):
         
     | 
| 
      
 96 
     | 
    
         
            +
                """
         
     | 
| 
      
 97 
     | 
    
         
            +
                This class is a wrapper for a callable that automatically provides an
         
     | 
| 
      
 98 
     | 
    
         
            +
                implementation of the UUID.
         
     | 
| 
      
 99 
     | 
    
         
            +
                """
         
     | 
| 
      
 100 
     | 
    
         
            +
             
     | 
| 
      
 101 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 102 
     | 
    
         
            +
                    self, callable: Callable[[fx.Graph], None], uuid: Optional[Any] = None
         
     | 
| 
      
 103 
     | 
    
         
            +
                ):
         
     | 
| 
      
 104 
     | 
    
         
            +
                    self.callable = callable
         
     | 
| 
      
 105 
     | 
    
         
            +
                    self._uuid = self.hash_source(callable) if uuid is None else uuid
         
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
                def __call__(self, graph: torch.fx.Graph):
         
     | 
| 
      
 108 
     | 
    
         
            +
                    self.callable(graph)
         
     | 
| 
      
 109 
     | 
    
         
            +
             
     | 
| 
      
 110 
     | 
    
         
            +
                def uuid(self) -> Any:
         
     | 
| 
      
 111 
     | 
    
         
            +
                    return self._uuid
         
     | 
| 
      
 112 
     | 
    
         
            +
             
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
      
 114 
     | 
    
         
            +
            class SGLangInductorPass(InductorPass):
         
     | 
| 
      
 115 
     | 
    
         
            +
             
     | 
| 
      
 116 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 117 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 118 
     | 
    
         
            +
                ):
         
     | 
| 
      
 119 
     | 
    
         
            +
                    self.pass_name = self.__class__.__name__
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                def dump_graph(self, graph: torch.fx.Graph, stage: str):
         
     | 
| 
      
 122 
     | 
    
         
            +
                    lazy_format_graph_code(stage, graph.owning_module)
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
                def begin(self):
         
     | 
| 
      
 125 
     | 
    
         
            +
                    self._start_time = time.perf_counter_ns()
         
     | 
| 
      
 126 
     | 
    
         
            +
             
     | 
| 
      
 127 
     | 
    
         
            +
                def end_and_log(self):
         
     | 
| 
      
 128 
     | 
    
         
            +
                    self._end_time = time.perf_counter_ns()
         
     | 
| 
      
 129 
     | 
    
         
            +
                    duration_ms = float(self._end_time - self._start_time) / 1.0e6
         
     | 
| 
      
 130 
     | 
    
         
            +
                    logger.debug("%s completed in %.1f ms", self.pass_name, duration_ms)
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
      
 133 
     | 
    
         
            +
            class PrinterInductorPass(SGLangInductorPass):
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
      
 135 
     | 
    
         
            +
                def __init__(self, name: str):
         
     | 
| 
      
 136 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 137 
     | 
    
         
            +
                    self.name = name
         
     | 
| 
      
 138 
     | 
    
         
            +
             
     | 
| 
      
 139 
     | 
    
         
            +
                def __call__(self, graph: torch.fx.Graph):
         
     | 
| 
      
 140 
     | 
    
         
            +
                    self.dump_graph(graph, self.name)
         
     | 
| 
         @@ -0,0 +1,66 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/vllm-project/vllm/blob/v0.10.0/vllm/compilation/pass_manager.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            from torch import fx as fx
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            from sglang.srt.compilation.fix_functionalization import FixFunctionalizationPass
         
     | 
| 
      
 8 
     | 
    
         
            +
            from sglang.srt.compilation.inductor_pass import (
         
     | 
| 
      
 9 
     | 
    
         
            +
                CustomGraphPass,
         
     | 
| 
      
 10 
     | 
    
         
            +
                InductorPass,
         
     | 
| 
      
 11 
     | 
    
         
            +
                SGLangInductorPass,
         
     | 
| 
      
 12 
     | 
    
         
            +
                get_pass_context,
         
     | 
| 
      
 13 
     | 
    
         
            +
            )
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            class PostGradPassManager(CustomGraphPass):
         
     | 
| 
      
 19 
     | 
    
         
            +
                """
         
     | 
| 
      
 20 
     | 
    
         
            +
                The pass manager for post-grad passes.
         
     | 
| 
      
 21 
     | 
    
         
            +
                It handles configuration, adding custom passes, and running passes.
         
     | 
| 
      
 22 
     | 
    
         
            +
                It supports uuid for the Inductor code cache. That includes torch<2.6
         
     | 
| 
      
 23 
     | 
    
         
            +
                support using pickling (in .inductor_pass.CustomGraphPass).
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
                The order of the post-grad post-passes is:
         
     | 
| 
      
 26 
     | 
    
         
            +
                1. passes (constructor parameter)
         
     | 
| 
      
 27 
     | 
    
         
            +
                2. default passes (NoopEliminationPass, FusionPass)
         
     | 
| 
      
 28 
     | 
    
         
            +
                3. config["post_grad_custom_post_pass"] (if it exists)
         
     | 
| 
      
 29 
     | 
    
         
            +
                4. fix_functionalization
         
     | 
| 
      
 30 
     | 
    
         
            +
                This way, all passes operate on a functionalized graph.
         
     | 
| 
      
 31 
     | 
    
         
            +
                """
         
     | 
| 
      
 32 
     | 
    
         
            +
             
     | 
| 
      
 33 
     | 
    
         
            +
                def __init__(self):
         
     | 
| 
      
 34 
     | 
    
         
            +
                    self.passes: list[SGLangInductorPass] = []
         
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
                def __call__(self, graph: fx.Graph):
         
     | 
| 
      
 37 
     | 
    
         
            +
                    shape = get_pass_context().runtime_shape
         
     | 
| 
      
 38 
     | 
    
         
            +
                    for pass_ in self.passes:
         
     | 
| 
      
 39 
     | 
    
         
            +
                        if pass_.is_applicable_for_shape(shape):
         
     | 
| 
      
 40 
     | 
    
         
            +
                            pass_(graph)
         
     | 
| 
      
 41 
     | 
    
         
            +
             
     | 
| 
      
 42 
     | 
    
         
            +
                    # always run fix_functionalization last
         
     | 
| 
      
 43 
     | 
    
         
            +
                    self.fix_functionalization(graph)
         
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
                def configure(
         
     | 
| 
      
 46 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 47 
     | 
    
         
            +
                ):
         
     | 
| 
      
 48 
     | 
    
         
            +
                    self.pass_config = dict()
         
     | 
| 
      
 49 
     | 
    
         
            +
                    self.fix_functionalization = FixFunctionalizationPass()
         
     | 
| 
      
 50 
     | 
    
         
            +
             
     | 
| 
      
 51 
     | 
    
         
            +
                def add(self, pass_: InductorPass):
         
     | 
| 
      
 52 
     | 
    
         
            +
                    assert isinstance(pass_, InductorPass)
         
     | 
| 
      
 53 
     | 
    
         
            +
                    self.passes.append(pass_)
         
     | 
| 
      
 54 
     | 
    
         
            +
             
     | 
| 
      
 55 
     | 
    
         
            +
                def uuid(self):
         
     | 
| 
      
 56 
     | 
    
         
            +
                    """
         
     | 
| 
      
 57 
     | 
    
         
            +
                    The PostGradPassManager is set as a custom pass in the Inductor and
         
     | 
| 
      
 58 
     | 
    
         
            +
                    affects compilation caching. Its uuid depends on the UUIDs of all
         
     | 
| 
      
 59 
     | 
    
         
            +
                    dependent passes and the pass config. See InductorPass for more info.
         
     | 
| 
      
 60 
     | 
    
         
            +
                    """
         
     | 
| 
      
 61 
     | 
    
         
            +
                    pass_manager_uuid = "fshdakhsa"
         
     | 
| 
      
 62 
     | 
    
         
            +
                    state = {"pass_config": pass_manager_uuid, "passes": []}
         
     | 
| 
      
 63 
     | 
    
         
            +
                    for pass_ in self.passes:
         
     | 
| 
      
 64 
     | 
    
         
            +
                        state["passes"].append(pass_.uuid())
         
     | 
| 
      
 65 
     | 
    
         
            +
                    state["passes"].append(self.fix_functionalization.uuid())
         
     | 
| 
      
 66 
     | 
    
         
            +
                    return InductorPass.hash_dict(state)
         
     | 
| 
         @@ -0,0 +1,40 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from contextlib import contextmanager
         
     | 
| 
      
 2 
     | 
    
         
            +
            from dataclasses import dataclass
         
     | 
| 
      
 3 
     | 
    
         
            +
            from typing import Any, List, Optional
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            @dataclass
         
     | 
| 
      
 9 
     | 
    
         
            +
            class ForwardContext:
         
     | 
| 
      
 10 
     | 
    
         
            +
                def __init__(self):
         
     | 
| 
      
 11 
     | 
    
         
            +
                    self.forward_batch = None
         
     | 
| 
      
 12 
     | 
    
         
            +
                    self.attention_layer = None
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
                def set_forward_batch(self, forward_batch: ForwardBatch):
         
     | 
| 
      
 15 
     | 
    
         
            +
                    self.forward_batch = forward_batch
         
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
      
 17 
     | 
    
         
            +
                def set_attention_layers(self, layers: List[Any]):
         
     | 
| 
      
 18 
     | 
    
         
            +
                    self.attention_layers = layers
         
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
            _forward_context: Optional[ForwardContext] = None
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
            def get_forward_context() -> Optional[ForwardContext]:
         
     | 
| 
      
 25 
     | 
    
         
            +
                if _forward_context is None:
         
     | 
| 
      
 26 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 27 
     | 
    
         
            +
                return _forward_context
         
     | 
| 
      
 28 
     | 
    
         
            +
             
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
            @contextmanager
         
     | 
| 
      
 31 
     | 
    
         
            +
            def set_forward_context(forward_batch: ForwardBatch, attention_layers: List[Any]):
         
     | 
| 
      
 32 
     | 
    
         
            +
                global _forward_context
         
     | 
| 
      
 33 
     | 
    
         
            +
                prev_forward_context = _forward_context
         
     | 
| 
      
 34 
     | 
    
         
            +
                _forward_context = ForwardContext()
         
     | 
| 
      
 35 
     | 
    
         
            +
                _forward_context.set_forward_batch(forward_batch)
         
     | 
| 
      
 36 
     | 
    
         
            +
                _forward_context.set_attention_layers(attention_layers)
         
     | 
| 
      
 37 
     | 
    
         
            +
                try:
         
     | 
| 
      
 38 
     | 
    
         
            +
                    yield
         
     | 
| 
      
 39 
     | 
    
         
            +
                finally:
         
     | 
| 
      
 40 
     | 
    
         
            +
                    _forward_context = prev_forward_context
         
     |